4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
50 #define PFX "IPMI message handler: "
52 #define IPMI_DRIVER_VERSION "39.2"
54 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf
);
58 static void need_waiter(ipmi_smi_t intf
);
59 static int handle_one_recv_msg(ipmi_smi_t intf
,
60 struct ipmi_smi_msg
*msg
);
62 static int initialized
;
65 static struct proc_dir_entry
*proc_ipmi_root
;
66 #endif /* CONFIG_PROC_FS */
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
71 #define MAX_EVENTS_IN_QUEUE 25
74 * Don't let a message sit in a queue forever, always time it with at lest
75 * the max message timer. This is in milliseconds.
77 #define MAX_MSG_TIMEOUT 60000
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME 1000
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
86 * Request events from the queue every second (this is the number of
87 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
88 * future, IPMI will add a way to know immediately if an event is in
89 * the queue and this silliness can go away.
91 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
94 * The main "user" data structure.
97 struct list_head link
;
99 /* Set to false when the user is destroyed. */
102 struct kref refcount
;
104 /* The upper layer that handles receive messages. */
105 struct ipmi_user_hndl
*handler
;
108 /* The interface this user is bound to. */
111 /* Does this interface receive IPMI events? */
116 struct list_head link
;
124 * This is used to form a linked lised during mass deletion.
125 * Since this is in an RCU list, we cannot use the link above
126 * or change any data until the RCU period completes. So we
127 * use this next variable during mass deletion so we can have
128 * a list and don't have to wait and restart the search on
129 * every individual deletion of a command.
131 struct cmd_rcvr
*next
;
135 unsigned int inuse
: 1;
136 unsigned int broadcast
: 1;
138 unsigned long timeout
;
139 unsigned long orig_timeout
;
140 unsigned int retries_left
;
143 * To verify on an incoming send message response that this is
144 * the message that the response is for, we keep a sequence id
145 * and increment it every time we send a message.
150 * This is held so we can properly respond to the message on a
151 * timeout, and it is used to hold the temporary data for
152 * retransmission, too.
154 struct ipmi_recv_msg
*recv_msg
;
158 * Store the information in a msgid (long) to allow us to find a
159 * sequence table entry from the msgid.
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
165 seq = ((msgid >> 26) & 0x3f); \
166 seqid = (msgid & 0x3fffff); \
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
171 struct ipmi_channel
{
172 unsigned char medium
;
173 unsigned char protocol
;
176 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
177 * but may be changed by the user.
179 unsigned char address
;
182 * My LUN. This should generally stay the SMS LUN, but just in
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry
{
191 struct ipmi_proc_entry
*next
;
196 struct platform_device pdev
;
197 struct ipmi_device_id id
;
198 unsigned char guid
[16];
201 struct kref usecount
;
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
206 * Various statistics for IPMI, these index stats[] in the ipmi_smi
209 enum ipmi_stat_indexes
{
210 /* Commands we got from the user that were invalid. */
211 IPMI_STAT_sent_invalid_commands
= 0,
213 /* Commands we sent to the MC. */
214 IPMI_STAT_sent_local_commands
,
216 /* Responses from the MC that were delivered to a user. */
217 IPMI_STAT_handled_local_responses
,
219 /* Responses from the MC that were not delivered to a user. */
220 IPMI_STAT_unhandled_local_responses
,
222 /* Commands we sent out to the IPMB bus. */
223 IPMI_STAT_sent_ipmb_commands
,
225 /* Commands sent on the IPMB that had errors on the SEND CMD */
226 IPMI_STAT_sent_ipmb_command_errs
,
228 /* Each retransmit increments this count. */
229 IPMI_STAT_retransmitted_ipmb_commands
,
232 * When a message times out (runs out of retransmits) this is
235 IPMI_STAT_timed_out_ipmb_commands
,
238 * This is like above, but for broadcasts. Broadcasts are
239 * *not* included in the above count (they are expected to
242 IPMI_STAT_timed_out_ipmb_broadcasts
,
244 /* Responses I have sent to the IPMB bus. */
245 IPMI_STAT_sent_ipmb_responses
,
247 /* The response was delivered to the user. */
248 IPMI_STAT_handled_ipmb_responses
,
250 /* The response had invalid data in it. */
251 IPMI_STAT_invalid_ipmb_responses
,
253 /* The response didn't have anyone waiting for it. */
254 IPMI_STAT_unhandled_ipmb_responses
,
256 /* Commands we sent out to the IPMB bus. */
257 IPMI_STAT_sent_lan_commands
,
259 /* Commands sent on the IPMB that had errors on the SEND CMD */
260 IPMI_STAT_sent_lan_command_errs
,
262 /* Each retransmit increments this count. */
263 IPMI_STAT_retransmitted_lan_commands
,
266 * When a message times out (runs out of retransmits) this is
269 IPMI_STAT_timed_out_lan_commands
,
271 /* Responses I have sent to the IPMB bus. */
272 IPMI_STAT_sent_lan_responses
,
274 /* The response was delivered to the user. */
275 IPMI_STAT_handled_lan_responses
,
277 /* The response had invalid data in it. */
278 IPMI_STAT_invalid_lan_responses
,
280 /* The response didn't have anyone waiting for it. */
281 IPMI_STAT_unhandled_lan_responses
,
283 /* The command was delivered to the user. */
284 IPMI_STAT_handled_commands
,
286 /* The command had invalid data in it. */
287 IPMI_STAT_invalid_commands
,
289 /* The command didn't have anyone waiting for it. */
290 IPMI_STAT_unhandled_commands
,
292 /* Invalid data in an event. */
293 IPMI_STAT_invalid_events
,
295 /* Events that were received with the proper format. */
298 /* Retransmissions on IPMB that failed. */
299 IPMI_STAT_dropped_rexmit_ipmb_commands
,
301 /* Retransmissions on LAN that failed. */
302 IPMI_STAT_dropped_rexmit_lan_commands
,
304 /* This *must* remain last, add new values above this. */
309 #define IPMI_IPMB_NUM_SEQ 64
310 #define IPMI_MAX_CHANNELS 16
312 /* What interface number are we? */
315 struct kref refcount
;
317 /* Set when the interface is being unregistered. */
320 /* Used for a list of interfaces. */
321 struct list_head link
;
324 * The list of upper layers that are using me. seq_lock
327 struct list_head users
;
329 /* Information to supply to users. */
330 unsigned char ipmi_version_major
;
331 unsigned char ipmi_version_minor
;
333 /* Used for wake ups at startup. */
334 wait_queue_head_t waitq
;
336 struct bmc_device
*bmc
;
340 * This is the lower-layer's sender routine. Note that you
341 * must either be holding the ipmi_interfaces_mutex or be in
342 * an umpreemptible region to use this. You must fetch the
343 * value into a local variable and make sure it is not NULL.
345 const struct ipmi_smi_handlers
*handlers
;
348 #ifdef CONFIG_PROC_FS
349 /* A list of proc entries for this interface. */
350 struct mutex proc_entry_lock
;
351 struct ipmi_proc_entry
*proc_entries
;
354 /* Driver-model device for the system interface. */
355 struct device
*si_dev
;
358 * A table of sequence numbers for this interface. We use the
359 * sequence numbers for IPMB messages that go out of the
360 * interface to match them up with their responses. A routine
361 * is called periodically to time the items in this list.
364 struct seq_table seq_table
[IPMI_IPMB_NUM_SEQ
];
368 * Messages queued for delivery. If delivery fails (out of memory
369 * for instance), They will stay in here to be processed later in a
370 * periodic timer interrupt. The tasklet is for handling received
371 * messages directly from the handler.
373 spinlock_t waiting_rcv_msgs_lock
;
374 struct list_head waiting_rcv_msgs
;
375 atomic_t watchdog_pretimeouts_to_deliver
;
376 struct tasklet_struct recv_tasklet
;
378 spinlock_t xmit_msgs_lock
;
379 struct list_head xmit_msgs
;
380 struct ipmi_smi_msg
*curr_msg
;
381 struct list_head hp_xmit_msgs
;
384 * The list of command receivers that are registered for commands
387 struct mutex cmd_rcvrs_mutex
;
388 struct list_head cmd_rcvrs
;
391 * Events that were queues because no one was there to receive
394 spinlock_t events_lock
; /* For dealing with event stuff. */
395 struct list_head waiting_events
;
396 unsigned int waiting_events_count
; /* How many events in queue? */
397 char delivering_events
;
398 char event_msg_printed
;
399 atomic_t event_waiters
;
400 unsigned int ticks_to_req_ev
;
401 int last_needs_timer
;
404 * The event receiver for my BMC, only really used at panic
405 * shutdown as a place to store this.
407 unsigned char event_receiver
;
408 unsigned char event_receiver_lun
;
409 unsigned char local_sel_device
;
410 unsigned char local_event_generator
;
412 /* For handling of maintenance mode. */
413 int maintenance_mode
;
414 bool maintenance_mode_enable
;
415 int auto_maintenance_timeout
;
416 spinlock_t maintenance_mode_lock
; /* Used in a timer... */
419 * A cheap hack, if this is non-null and a message to an
420 * interface comes in with a NULL user, call this routine with
421 * it. Note that the message will still be freed by the
422 * caller. This only works on the system interface.
424 void (*null_user_handler
)(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
);
427 * When we are scanning the channels for an SMI, this will
428 * tell which channel we are scanning.
432 /* Channel information */
433 struct ipmi_channel channels
[IPMI_MAX_CHANNELS
];
436 struct proc_dir_entry
*proc_dir
;
437 char proc_dir_name
[10];
439 atomic_t stats
[IPMI_NUM_STATS
];
442 * run_to_completion duplicate of smb_info, smi_info
443 * and ipmi_serial_info structures. Used to decrease numbers of
444 * parameters passed by "low" level IPMI code.
446 int run_to_completion
;
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
451 * The driver model view of the IPMI messaging driver.
453 static struct platform_driver ipmidriver
= {
456 .bus
= &platform_bus_type
459 static DEFINE_MUTEX(ipmidriver_mutex
);
461 static LIST_HEAD(ipmi_interfaces
);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex
);
465 * List of watchers that want to know when smi's are added and deleted.
467 static LIST_HEAD(smi_watchers
);
468 static DEFINE_MUTEX(smi_watchers_mutex
);
470 #define ipmi_inc_stat(intf, stat) \
471 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
475 static char *addr_src_to_str
[] = { "invalid", "hotmod", "hardcoded", "SPMI",
476 "ACPI", "SMBIOS", "PCI",
477 "device-tree", "default" };
479 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src
)
481 if (src
> SI_DEFAULT
)
482 src
= 0; /* Invalid */
483 return addr_src_to_str
[src
];
485 EXPORT_SYMBOL(ipmi_addr_src_to_str
);
487 static int is_lan_addr(struct ipmi_addr
*addr
)
489 return addr
->addr_type
== IPMI_LAN_ADDR_TYPE
;
492 static int is_ipmb_addr(struct ipmi_addr
*addr
)
494 return addr
->addr_type
== IPMI_IPMB_ADDR_TYPE
;
497 static int is_ipmb_bcast_addr(struct ipmi_addr
*addr
)
499 return addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
;
502 static void free_recv_msg_list(struct list_head
*q
)
504 struct ipmi_recv_msg
*msg
, *msg2
;
506 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
507 list_del(&msg
->link
);
508 ipmi_free_recv_msg(msg
);
512 static void free_smi_msg_list(struct list_head
*q
)
514 struct ipmi_smi_msg
*msg
, *msg2
;
516 list_for_each_entry_safe(msg
, msg2
, q
, link
) {
517 list_del(&msg
->link
);
518 ipmi_free_smi_msg(msg
);
522 static void clean_up_interface_data(ipmi_smi_t intf
)
525 struct cmd_rcvr
*rcvr
, *rcvr2
;
526 struct list_head list
;
528 tasklet_kill(&intf
->recv_tasklet
);
530 free_smi_msg_list(&intf
->waiting_rcv_msgs
);
531 free_recv_msg_list(&intf
->waiting_events
);
534 * Wholesale remove all the entries from the list in the
535 * interface and wait for RCU to know that none are in use.
537 mutex_lock(&intf
->cmd_rcvrs_mutex
);
538 INIT_LIST_HEAD(&list
);
539 list_splice_init_rcu(&intf
->cmd_rcvrs
, &list
, synchronize_rcu
);
540 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
542 list_for_each_entry_safe(rcvr
, rcvr2
, &list
, link
)
545 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
546 if ((intf
->seq_table
[i
].inuse
)
547 && (intf
->seq_table
[i
].recv_msg
))
548 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
552 static void intf_free(struct kref
*ref
)
554 ipmi_smi_t intf
= container_of(ref
, struct ipmi_smi
, refcount
);
556 clean_up_interface_data(intf
);
560 struct watcher_entry
{
563 struct list_head link
;
566 int ipmi_smi_watcher_register(struct ipmi_smi_watcher
*watcher
)
569 LIST_HEAD(to_deliver
);
570 struct watcher_entry
*e
, *e2
;
572 mutex_lock(&smi_watchers_mutex
);
574 mutex_lock(&ipmi_interfaces_mutex
);
576 /* Build a list of things to deliver. */
577 list_for_each_entry(intf
, &ipmi_interfaces
, link
) {
578 if (intf
->intf_num
== -1)
580 e
= kmalloc(sizeof(*e
), GFP_KERNEL
);
583 kref_get(&intf
->refcount
);
585 e
->intf_num
= intf
->intf_num
;
586 list_add_tail(&e
->link
, &to_deliver
);
589 /* We will succeed, so add it to the list. */
590 list_add(&watcher
->link
, &smi_watchers
);
592 mutex_unlock(&ipmi_interfaces_mutex
);
594 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
596 watcher
->new_smi(e
->intf_num
, e
->intf
->si_dev
);
597 kref_put(&e
->intf
->refcount
, intf_free
);
601 mutex_unlock(&smi_watchers_mutex
);
606 mutex_unlock(&ipmi_interfaces_mutex
);
607 mutex_unlock(&smi_watchers_mutex
);
608 list_for_each_entry_safe(e
, e2
, &to_deliver
, link
) {
610 kref_put(&e
->intf
->refcount
, intf_free
);
615 EXPORT_SYMBOL(ipmi_smi_watcher_register
);
617 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher
*watcher
)
619 mutex_lock(&smi_watchers_mutex
);
620 list_del(&(watcher
->link
));
621 mutex_unlock(&smi_watchers_mutex
);
624 EXPORT_SYMBOL(ipmi_smi_watcher_unregister
);
627 * Must be called with smi_watchers_mutex held.
630 call_smi_watchers(int i
, struct device
*dev
)
632 struct ipmi_smi_watcher
*w
;
634 list_for_each_entry(w
, &smi_watchers
, link
) {
635 if (try_module_get(w
->owner
)) {
637 module_put(w
->owner
);
643 ipmi_addr_equal(struct ipmi_addr
*addr1
, struct ipmi_addr
*addr2
)
645 if (addr1
->addr_type
!= addr2
->addr_type
)
648 if (addr1
->channel
!= addr2
->channel
)
651 if (addr1
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
652 struct ipmi_system_interface_addr
*smi_addr1
653 = (struct ipmi_system_interface_addr
*) addr1
;
654 struct ipmi_system_interface_addr
*smi_addr2
655 = (struct ipmi_system_interface_addr
*) addr2
;
656 return (smi_addr1
->lun
== smi_addr2
->lun
);
659 if (is_ipmb_addr(addr1
) || is_ipmb_bcast_addr(addr1
)) {
660 struct ipmi_ipmb_addr
*ipmb_addr1
661 = (struct ipmi_ipmb_addr
*) addr1
;
662 struct ipmi_ipmb_addr
*ipmb_addr2
663 = (struct ipmi_ipmb_addr
*) addr2
;
665 return ((ipmb_addr1
->slave_addr
== ipmb_addr2
->slave_addr
)
666 && (ipmb_addr1
->lun
== ipmb_addr2
->lun
));
669 if (is_lan_addr(addr1
)) {
670 struct ipmi_lan_addr
*lan_addr1
671 = (struct ipmi_lan_addr
*) addr1
;
672 struct ipmi_lan_addr
*lan_addr2
673 = (struct ipmi_lan_addr
*) addr2
;
675 return ((lan_addr1
->remote_SWID
== lan_addr2
->remote_SWID
)
676 && (lan_addr1
->local_SWID
== lan_addr2
->local_SWID
)
677 && (lan_addr1
->session_handle
678 == lan_addr2
->session_handle
)
679 && (lan_addr1
->lun
== lan_addr2
->lun
));
685 int ipmi_validate_addr(struct ipmi_addr
*addr
, int len
)
687 if (len
< sizeof(struct ipmi_system_interface_addr
))
690 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
691 if (addr
->channel
!= IPMI_BMC_CHANNEL
)
696 if ((addr
->channel
== IPMI_BMC_CHANNEL
)
697 || (addr
->channel
>= IPMI_MAX_CHANNELS
)
698 || (addr
->channel
< 0))
701 if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
702 if (len
< sizeof(struct ipmi_ipmb_addr
))
707 if (is_lan_addr(addr
)) {
708 if (len
< sizeof(struct ipmi_lan_addr
))
715 EXPORT_SYMBOL(ipmi_validate_addr
);
717 unsigned int ipmi_addr_length(int addr_type
)
719 if (addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
720 return sizeof(struct ipmi_system_interface_addr
);
722 if ((addr_type
== IPMI_IPMB_ADDR_TYPE
)
723 || (addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
))
724 return sizeof(struct ipmi_ipmb_addr
);
726 if (addr_type
== IPMI_LAN_ADDR_TYPE
)
727 return sizeof(struct ipmi_lan_addr
);
731 EXPORT_SYMBOL(ipmi_addr_length
);
733 static void deliver_response(struct ipmi_recv_msg
*msg
)
736 ipmi_smi_t intf
= msg
->user_msg_data
;
738 /* Special handling for NULL users. */
739 if (intf
->null_user_handler
) {
740 intf
->null_user_handler(intf
, msg
);
741 ipmi_inc_stat(intf
, handled_local_responses
);
743 /* No handler, so give up. */
744 ipmi_inc_stat(intf
, unhandled_local_responses
);
746 ipmi_free_recv_msg(msg
);
747 } else if (!oops_in_progress
) {
749 * If we are running in the panic context, calling the
750 * receive handler doesn't much meaning and has a deadlock
751 * risk. At this moment, simply skip it in that case.
754 ipmi_user_t user
= msg
->user
;
755 user
->handler
->ipmi_recv_hndl(msg
, user
->handler_data
);
760 deliver_err_response(struct ipmi_recv_msg
*msg
, int err
)
762 msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
763 msg
->msg_data
[0] = err
;
764 msg
->msg
.netfn
|= 1; /* Convert to a response. */
765 msg
->msg
.data_len
= 1;
766 msg
->msg
.data
= msg
->msg_data
;
767 deliver_response(msg
);
771 * Find the next sequence number not being used and add the given
772 * message with the given timeout to the sequence table. This must be
773 * called with the interface's seq_lock held.
775 static int intf_next_seq(ipmi_smi_t intf
,
776 struct ipmi_recv_msg
*recv_msg
,
777 unsigned long timeout
,
786 for (i
= intf
->curr_seq
; (i
+1)%IPMI_IPMB_NUM_SEQ
!= intf
->curr_seq
;
787 i
= (i
+1)%IPMI_IPMB_NUM_SEQ
) {
788 if (!intf
->seq_table
[i
].inuse
)
792 if (!intf
->seq_table
[i
].inuse
) {
793 intf
->seq_table
[i
].recv_msg
= recv_msg
;
796 * Start with the maximum timeout, when the send response
797 * comes in we will start the real timer.
799 intf
->seq_table
[i
].timeout
= MAX_MSG_TIMEOUT
;
800 intf
->seq_table
[i
].orig_timeout
= timeout
;
801 intf
->seq_table
[i
].retries_left
= retries
;
802 intf
->seq_table
[i
].broadcast
= broadcast
;
803 intf
->seq_table
[i
].inuse
= 1;
804 intf
->seq_table
[i
].seqid
= NEXT_SEQID(intf
->seq_table
[i
].seqid
);
806 *seqid
= intf
->seq_table
[i
].seqid
;
807 intf
->curr_seq
= (i
+1)%IPMI_IPMB_NUM_SEQ
;
817 * Return the receive message for the given sequence number and
818 * release the sequence number so it can be reused. Some other data
819 * is passed in to be sure the message matches up correctly (to help
820 * guard against message coming in after their timeout and the
821 * sequence number being reused).
823 static int intf_find_seq(ipmi_smi_t intf
,
828 struct ipmi_addr
*addr
,
829 struct ipmi_recv_msg
**recv_msg
)
834 if (seq
>= IPMI_IPMB_NUM_SEQ
)
837 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
838 if (intf
->seq_table
[seq
].inuse
) {
839 struct ipmi_recv_msg
*msg
= intf
->seq_table
[seq
].recv_msg
;
841 if ((msg
->addr
.channel
== channel
) && (msg
->msg
.cmd
== cmd
)
842 && (msg
->msg
.netfn
== netfn
)
843 && (ipmi_addr_equal(addr
, &(msg
->addr
)))) {
845 intf
->seq_table
[seq
].inuse
= 0;
849 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
855 /* Start the timer for a specific sequence table entry. */
856 static int intf_start_seq_timer(ipmi_smi_t intf
,
865 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
867 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
869 * We do this verification because the user can be deleted
870 * while a message is outstanding.
872 if ((intf
->seq_table
[seq
].inuse
)
873 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
874 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
875 ent
->timeout
= ent
->orig_timeout
;
878 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
883 /* Got an error for the send message for a specific sequence number. */
884 static int intf_err_seq(ipmi_smi_t intf
,
892 struct ipmi_recv_msg
*msg
= NULL
;
895 GET_SEQ_FROM_MSGID(msgid
, seq
, seqid
);
897 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
899 * We do this verification because the user can be deleted
900 * while a message is outstanding.
902 if ((intf
->seq_table
[seq
].inuse
)
903 && (intf
->seq_table
[seq
].seqid
== seqid
)) {
904 struct seq_table
*ent
= &(intf
->seq_table
[seq
]);
910 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
913 deliver_err_response(msg
, err
);
919 int ipmi_create_user(unsigned int if_num
,
920 struct ipmi_user_hndl
*handler
,
925 ipmi_user_t new_user
;
930 * There is no module usecount here, because it's not
931 * required. Since this can only be used by and called from
932 * other modules, they will implicitly use this module, and
933 * thus this can't be removed unless the other modules are
941 * Make sure the driver is actually initialized, this handles
942 * problems with initialization order.
945 rv
= ipmi_init_msghandler();
950 * The init code doesn't return an error if it was turned
951 * off, but it won't initialize. Check that.
957 new_user
= kmalloc(sizeof(*new_user
), GFP_KERNEL
);
961 mutex_lock(&ipmi_interfaces_mutex
);
962 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
963 if (intf
->intf_num
== if_num
)
966 /* Not found, return an error */
971 /* Note that each existing user holds a refcount to the interface. */
972 kref_get(&intf
->refcount
);
974 kref_init(&new_user
->refcount
);
975 new_user
->handler
= handler
;
976 new_user
->handler_data
= handler_data
;
977 new_user
->intf
= intf
;
978 new_user
->gets_events
= false;
980 if (!try_module_get(intf
->handlers
->owner
)) {
985 if (intf
->handlers
->inc_usecount
) {
986 rv
= intf
->handlers
->inc_usecount(intf
->send_info
);
988 module_put(intf
->handlers
->owner
);
994 * Hold the lock so intf->handlers is guaranteed to be good
997 mutex_unlock(&ipmi_interfaces_mutex
);
999 new_user
->valid
= true;
1000 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1001 list_add_rcu(&new_user
->link
, &intf
->users
);
1002 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1003 if (handler
->ipmi_watchdog_pretimeout
) {
1004 /* User wants pretimeouts, so make sure to watch for them. */
1005 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1012 kref_put(&intf
->refcount
, intf_free
);
1014 mutex_unlock(&ipmi_interfaces_mutex
);
1018 EXPORT_SYMBOL(ipmi_create_user
);
1020 int ipmi_get_smi_info(int if_num
, struct ipmi_smi_info
*data
)
1024 const struct ipmi_smi_handlers
*handlers
;
1026 mutex_lock(&ipmi_interfaces_mutex
);
1027 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
1028 if (intf
->intf_num
== if_num
)
1031 /* Not found, return an error */
1033 mutex_unlock(&ipmi_interfaces_mutex
);
1037 handlers
= intf
->handlers
;
1039 if (handlers
->get_smi_info
)
1040 rv
= handlers
->get_smi_info(intf
->send_info
, data
);
1041 mutex_unlock(&ipmi_interfaces_mutex
);
1045 EXPORT_SYMBOL(ipmi_get_smi_info
);
1047 static void free_user(struct kref
*ref
)
1049 ipmi_user_t user
= container_of(ref
, struct ipmi_user
, refcount
);
1053 int ipmi_destroy_user(ipmi_user_t user
)
1055 ipmi_smi_t intf
= user
->intf
;
1057 unsigned long flags
;
1058 struct cmd_rcvr
*rcvr
;
1059 struct cmd_rcvr
*rcvrs
= NULL
;
1061 user
->valid
= false;
1063 if (user
->handler
->ipmi_watchdog_pretimeout
)
1064 atomic_dec(&intf
->event_waiters
);
1066 if (user
->gets_events
)
1067 atomic_dec(&intf
->event_waiters
);
1069 /* Remove the user from the interface's sequence table. */
1070 spin_lock_irqsave(&intf
->seq_lock
, flags
);
1071 list_del_rcu(&user
->link
);
1073 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
1074 if (intf
->seq_table
[i
].inuse
1075 && (intf
->seq_table
[i
].recv_msg
->user
== user
)) {
1076 intf
->seq_table
[i
].inuse
= 0;
1077 ipmi_free_recv_msg(intf
->seq_table
[i
].recv_msg
);
1080 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
1083 * Remove the user from the command receiver's table. First
1084 * we build a list of everything (not using the standard link,
1085 * since other things may be using it till we do
1086 * synchronize_rcu()) then free everything in that list.
1088 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1089 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1090 if (rcvr
->user
== user
) {
1091 list_del_rcu(&rcvr
->link
);
1096 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1104 mutex_lock(&ipmi_interfaces_mutex
);
1105 if (intf
->handlers
) {
1106 module_put(intf
->handlers
->owner
);
1107 if (intf
->handlers
->dec_usecount
)
1108 intf
->handlers
->dec_usecount(intf
->send_info
);
1110 mutex_unlock(&ipmi_interfaces_mutex
);
1112 kref_put(&intf
->refcount
, intf_free
);
1114 kref_put(&user
->refcount
, free_user
);
1118 EXPORT_SYMBOL(ipmi_destroy_user
);
1120 void ipmi_get_version(ipmi_user_t user
,
1121 unsigned char *major
,
1122 unsigned char *minor
)
1124 *major
= user
->intf
->ipmi_version_major
;
1125 *minor
= user
->intf
->ipmi_version_minor
;
1127 EXPORT_SYMBOL(ipmi_get_version
);
1129 int ipmi_set_my_address(ipmi_user_t user
,
1130 unsigned int channel
,
1131 unsigned char address
)
1133 if (channel
>= IPMI_MAX_CHANNELS
)
1135 user
->intf
->channels
[channel
].address
= address
;
1138 EXPORT_SYMBOL(ipmi_set_my_address
);
1140 int ipmi_get_my_address(ipmi_user_t user
,
1141 unsigned int channel
,
1142 unsigned char *address
)
1144 if (channel
>= IPMI_MAX_CHANNELS
)
1146 *address
= user
->intf
->channels
[channel
].address
;
1149 EXPORT_SYMBOL(ipmi_get_my_address
);
1151 int ipmi_set_my_LUN(ipmi_user_t user
,
1152 unsigned int channel
,
1155 if (channel
>= IPMI_MAX_CHANNELS
)
1157 user
->intf
->channels
[channel
].lun
= LUN
& 0x3;
1160 EXPORT_SYMBOL(ipmi_set_my_LUN
);
1162 int ipmi_get_my_LUN(ipmi_user_t user
,
1163 unsigned int channel
,
1164 unsigned char *address
)
1166 if (channel
>= IPMI_MAX_CHANNELS
)
1168 *address
= user
->intf
->channels
[channel
].lun
;
1171 EXPORT_SYMBOL(ipmi_get_my_LUN
);
1173 int ipmi_get_maintenance_mode(ipmi_user_t user
)
1176 unsigned long flags
;
1178 spin_lock_irqsave(&user
->intf
->maintenance_mode_lock
, flags
);
1179 mode
= user
->intf
->maintenance_mode
;
1180 spin_unlock_irqrestore(&user
->intf
->maintenance_mode_lock
, flags
);
1184 EXPORT_SYMBOL(ipmi_get_maintenance_mode
);
1186 static void maintenance_mode_update(ipmi_smi_t intf
)
1188 if (intf
->handlers
->set_maintenance_mode
)
1189 intf
->handlers
->set_maintenance_mode(
1190 intf
->send_info
, intf
->maintenance_mode_enable
);
1193 int ipmi_set_maintenance_mode(ipmi_user_t user
, int mode
)
1196 unsigned long flags
;
1197 ipmi_smi_t intf
= user
->intf
;
1199 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1200 if (intf
->maintenance_mode
!= mode
) {
1202 case IPMI_MAINTENANCE_MODE_AUTO
:
1203 intf
->maintenance_mode_enable
1204 = (intf
->auto_maintenance_timeout
> 0);
1207 case IPMI_MAINTENANCE_MODE_OFF
:
1208 intf
->maintenance_mode_enable
= false;
1211 case IPMI_MAINTENANCE_MODE_ON
:
1212 intf
->maintenance_mode_enable
= true;
1219 intf
->maintenance_mode
= mode
;
1221 maintenance_mode_update(intf
);
1224 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
, flags
);
1228 EXPORT_SYMBOL(ipmi_set_maintenance_mode
);
1230 int ipmi_set_gets_events(ipmi_user_t user
, bool val
)
1232 unsigned long flags
;
1233 ipmi_smi_t intf
= user
->intf
;
1234 struct ipmi_recv_msg
*msg
, *msg2
;
1235 struct list_head msgs
;
1237 INIT_LIST_HEAD(&msgs
);
1239 spin_lock_irqsave(&intf
->events_lock
, flags
);
1240 if (user
->gets_events
== val
)
1243 user
->gets_events
= val
;
1246 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1249 atomic_dec(&intf
->event_waiters
);
1252 if (intf
->delivering_events
)
1254 * Another thread is delivering events for this, so
1255 * let it handle any new events.
1259 /* Deliver any queued events. */
1260 while (user
->gets_events
&& !list_empty(&intf
->waiting_events
)) {
1261 list_for_each_entry_safe(msg
, msg2
, &intf
->waiting_events
, link
)
1262 list_move_tail(&msg
->link
, &msgs
);
1263 intf
->waiting_events_count
= 0;
1264 if (intf
->event_msg_printed
) {
1265 printk(KERN_WARNING PFX
"Event queue no longer"
1267 intf
->event_msg_printed
= 0;
1270 intf
->delivering_events
= 1;
1271 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1273 list_for_each_entry_safe(msg
, msg2
, &msgs
, link
) {
1275 kref_get(&user
->refcount
);
1276 deliver_response(msg
);
1279 spin_lock_irqsave(&intf
->events_lock
, flags
);
1280 intf
->delivering_events
= 0;
1284 spin_unlock_irqrestore(&intf
->events_lock
, flags
);
1288 EXPORT_SYMBOL(ipmi_set_gets_events
);
1290 static struct cmd_rcvr
*find_cmd_rcvr(ipmi_smi_t intf
,
1291 unsigned char netfn
,
1295 struct cmd_rcvr
*rcvr
;
1297 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1298 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1299 && (rcvr
->chans
& (1 << chan
)))
1305 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf
,
1306 unsigned char netfn
,
1310 struct cmd_rcvr
*rcvr
;
1312 list_for_each_entry_rcu(rcvr
, &intf
->cmd_rcvrs
, link
) {
1313 if ((rcvr
->netfn
== netfn
) && (rcvr
->cmd
== cmd
)
1314 && (rcvr
->chans
& chans
))
1320 int ipmi_register_for_cmd(ipmi_user_t user
,
1321 unsigned char netfn
,
1325 ipmi_smi_t intf
= user
->intf
;
1326 struct cmd_rcvr
*rcvr
;
1330 rcvr
= kmalloc(sizeof(*rcvr
), GFP_KERNEL
);
1334 rcvr
->netfn
= netfn
;
1335 rcvr
->chans
= chans
;
1338 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1339 /* Make sure the command/netfn is not already registered. */
1340 if (!is_cmd_rcvr_exclusive(intf
, netfn
, cmd
, chans
)) {
1345 if (atomic_inc_return(&intf
->event_waiters
) == 1)
1348 list_add_rcu(&rcvr
->link
, &intf
->cmd_rcvrs
);
1351 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1357 EXPORT_SYMBOL(ipmi_register_for_cmd
);
1359 int ipmi_unregister_for_cmd(ipmi_user_t user
,
1360 unsigned char netfn
,
1364 ipmi_smi_t intf
= user
->intf
;
1365 struct cmd_rcvr
*rcvr
;
1366 struct cmd_rcvr
*rcvrs
= NULL
;
1367 int i
, rv
= -ENOENT
;
1369 mutex_lock(&intf
->cmd_rcvrs_mutex
);
1370 for (i
= 0; i
< IPMI_NUM_CHANNELS
; i
++) {
1371 if (((1 << i
) & chans
) == 0)
1373 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, i
);
1376 if (rcvr
->user
== user
) {
1378 rcvr
->chans
&= ~chans
;
1379 if (rcvr
->chans
== 0) {
1380 list_del_rcu(&rcvr
->link
);
1386 mutex_unlock(&intf
->cmd_rcvrs_mutex
);
1389 atomic_dec(&intf
->event_waiters
);
1396 EXPORT_SYMBOL(ipmi_unregister_for_cmd
);
1398 static unsigned char
1399 ipmb_checksum(unsigned char *data
, int size
)
1401 unsigned char csum
= 0;
1403 for (; size
> 0; size
--, data
++)
1409 static inline void format_ipmb_msg(struct ipmi_smi_msg
*smi_msg
,
1410 struct kernel_ipmi_msg
*msg
,
1411 struct ipmi_ipmb_addr
*ipmb_addr
,
1413 unsigned char ipmb_seq
,
1415 unsigned char source_address
,
1416 unsigned char source_lun
)
1420 /* Format the IPMB header data. */
1421 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1422 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1423 smi_msg
->data
[2] = ipmb_addr
->channel
;
1425 smi_msg
->data
[3] = 0;
1426 smi_msg
->data
[i
+3] = ipmb_addr
->slave_addr
;
1427 smi_msg
->data
[i
+4] = (msg
->netfn
<< 2) | (ipmb_addr
->lun
& 0x3);
1428 smi_msg
->data
[i
+5] = ipmb_checksum(&(smi_msg
->data
[i
+3]), 2);
1429 smi_msg
->data
[i
+6] = source_address
;
1430 smi_msg
->data
[i
+7] = (ipmb_seq
<< 2) | source_lun
;
1431 smi_msg
->data
[i
+8] = msg
->cmd
;
1433 /* Now tack on the data to the message. */
1434 if (msg
->data_len
> 0)
1435 memcpy(&(smi_msg
->data
[i
+9]), msg
->data
,
1437 smi_msg
->data_size
= msg
->data_len
+ 9;
1439 /* Now calculate the checksum and tack it on. */
1440 smi_msg
->data
[i
+smi_msg
->data_size
]
1441 = ipmb_checksum(&(smi_msg
->data
[i
+6]),
1442 smi_msg
->data_size
-6);
1445 * Add on the checksum size and the offset from the
1448 smi_msg
->data_size
+= 1 + i
;
1450 smi_msg
->msgid
= msgid
;
1453 static inline void format_lan_msg(struct ipmi_smi_msg
*smi_msg
,
1454 struct kernel_ipmi_msg
*msg
,
1455 struct ipmi_lan_addr
*lan_addr
,
1457 unsigned char ipmb_seq
,
1458 unsigned char source_lun
)
1460 /* Format the IPMB header data. */
1461 smi_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
1462 smi_msg
->data
[1] = IPMI_SEND_MSG_CMD
;
1463 smi_msg
->data
[2] = lan_addr
->channel
;
1464 smi_msg
->data
[3] = lan_addr
->session_handle
;
1465 smi_msg
->data
[4] = lan_addr
->remote_SWID
;
1466 smi_msg
->data
[5] = (msg
->netfn
<< 2) | (lan_addr
->lun
& 0x3);
1467 smi_msg
->data
[6] = ipmb_checksum(&(smi_msg
->data
[4]), 2);
1468 smi_msg
->data
[7] = lan_addr
->local_SWID
;
1469 smi_msg
->data
[8] = (ipmb_seq
<< 2) | source_lun
;
1470 smi_msg
->data
[9] = msg
->cmd
;
1472 /* Now tack on the data to the message. */
1473 if (msg
->data_len
> 0)
1474 memcpy(&(smi_msg
->data
[10]), msg
->data
,
1476 smi_msg
->data_size
= msg
->data_len
+ 10;
1478 /* Now calculate the checksum and tack it on. */
1479 smi_msg
->data
[smi_msg
->data_size
]
1480 = ipmb_checksum(&(smi_msg
->data
[7]),
1481 smi_msg
->data_size
-7);
1484 * Add on the checksum size and the offset from the
1487 smi_msg
->data_size
+= 1;
1489 smi_msg
->msgid
= msgid
;
1492 static struct ipmi_smi_msg
*smi_add_send_msg(ipmi_smi_t intf
,
1493 struct ipmi_smi_msg
*smi_msg
,
1496 if (intf
->curr_msg
) {
1498 list_add_tail(&smi_msg
->link
, &intf
->hp_xmit_msgs
);
1500 list_add_tail(&smi_msg
->link
, &intf
->xmit_msgs
);
1503 intf
->curr_msg
= smi_msg
;
1510 static void smi_send(ipmi_smi_t intf
, const struct ipmi_smi_handlers
*handlers
,
1511 struct ipmi_smi_msg
*smi_msg
, int priority
)
1513 int run_to_completion
= intf
->run_to_completion
;
1515 if (run_to_completion
) {
1516 smi_msg
= smi_add_send_msg(intf
, smi_msg
, priority
);
1518 unsigned long flags
;
1520 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
1521 smi_msg
= smi_add_send_msg(intf
, smi_msg
, priority
);
1522 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
1526 handlers
->sender(intf
->send_info
, smi_msg
);
1530 * Separate from ipmi_request so that the user does not have to be
1531 * supplied in certain circumstances (mainly at panic time). If
1532 * messages are supplied, they will be freed, even if an error
1535 static int i_ipmi_request(ipmi_user_t user
,
1537 struct ipmi_addr
*addr
,
1539 struct kernel_ipmi_msg
*msg
,
1540 void *user_msg_data
,
1542 struct ipmi_recv_msg
*supplied_recv
,
1544 unsigned char source_address
,
1545 unsigned char source_lun
,
1547 unsigned int retry_time_ms
)
1550 struct ipmi_smi_msg
*smi_msg
;
1551 struct ipmi_recv_msg
*recv_msg
;
1552 unsigned long flags
;
1556 recv_msg
= supplied_recv
;
1558 recv_msg
= ipmi_alloc_recv_msg();
1559 if (recv_msg
== NULL
)
1562 recv_msg
->user_msg_data
= user_msg_data
;
1565 smi_msg
= (struct ipmi_smi_msg
*) supplied_smi
;
1567 smi_msg
= ipmi_alloc_smi_msg();
1568 if (smi_msg
== NULL
) {
1569 ipmi_free_recv_msg(recv_msg
);
1575 if (intf
->in_shutdown
) {
1580 recv_msg
->user
= user
;
1582 kref_get(&user
->refcount
);
1583 recv_msg
->msgid
= msgid
;
1585 * Store the message to send in the receive message so timeout
1586 * responses can get the proper response data.
1588 recv_msg
->msg
= *msg
;
1590 if (addr
->addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
) {
1591 struct ipmi_system_interface_addr
*smi_addr
;
1593 if (msg
->netfn
& 1) {
1594 /* Responses are not allowed to the SMI. */
1599 smi_addr
= (struct ipmi_system_interface_addr
*) addr
;
1600 if (smi_addr
->lun
> 3) {
1601 ipmi_inc_stat(intf
, sent_invalid_commands
);
1606 memcpy(&recv_msg
->addr
, smi_addr
, sizeof(*smi_addr
));
1608 if ((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1609 && ((msg
->cmd
== IPMI_SEND_MSG_CMD
)
1610 || (msg
->cmd
== IPMI_GET_MSG_CMD
)
1611 || (msg
->cmd
== IPMI_READ_EVENT_MSG_BUFFER_CMD
))) {
1613 * We don't let the user do these, since we manage
1614 * the sequence numbers.
1616 ipmi_inc_stat(intf
, sent_invalid_commands
);
1621 if (((msg
->netfn
== IPMI_NETFN_APP_REQUEST
)
1622 && ((msg
->cmd
== IPMI_COLD_RESET_CMD
)
1623 || (msg
->cmd
== IPMI_WARM_RESET_CMD
)))
1624 || (msg
->netfn
== IPMI_NETFN_FIRMWARE_REQUEST
)) {
1625 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
1626 intf
->auto_maintenance_timeout
1627 = IPMI_MAINTENANCE_MODE_TIMEOUT
;
1628 if (!intf
->maintenance_mode
1629 && !intf
->maintenance_mode_enable
) {
1630 intf
->maintenance_mode_enable
= true;
1631 maintenance_mode_update(intf
);
1633 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
1637 if ((msg
->data_len
+ 2) > IPMI_MAX_MSG_LENGTH
) {
1638 ipmi_inc_stat(intf
, sent_invalid_commands
);
1643 smi_msg
->data
[0] = (msg
->netfn
<< 2) | (smi_addr
->lun
& 0x3);
1644 smi_msg
->data
[1] = msg
->cmd
;
1645 smi_msg
->msgid
= msgid
;
1646 smi_msg
->user_data
= recv_msg
;
1647 if (msg
->data_len
> 0)
1648 memcpy(&(smi_msg
->data
[2]), msg
->data
, msg
->data_len
);
1649 smi_msg
->data_size
= msg
->data_len
+ 2;
1650 ipmi_inc_stat(intf
, sent_local_commands
);
1651 } else if (is_ipmb_addr(addr
) || is_ipmb_bcast_addr(addr
)) {
1652 struct ipmi_ipmb_addr
*ipmb_addr
;
1653 unsigned char ipmb_seq
;
1657 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1658 ipmi_inc_stat(intf
, sent_invalid_commands
);
1663 if (intf
->channels
[addr
->channel
].medium
1664 != IPMI_CHANNEL_MEDIUM_IPMB
) {
1665 ipmi_inc_stat(intf
, sent_invalid_commands
);
1671 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
)
1672 retries
= 0; /* Don't retry broadcasts. */
1676 if (addr
->addr_type
== IPMI_IPMB_BROADCAST_ADDR_TYPE
) {
1678 * Broadcasts add a zero at the beginning of the
1679 * message, but otherwise is the same as an IPMB
1682 addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
1687 /* Default to 1 second retries. */
1688 if (retry_time_ms
== 0)
1689 retry_time_ms
= 1000;
1692 * 9 for the header and 1 for the checksum, plus
1693 * possibly one for the broadcast.
1695 if ((msg
->data_len
+ 10 + broadcast
) > IPMI_MAX_MSG_LENGTH
) {
1696 ipmi_inc_stat(intf
, sent_invalid_commands
);
1701 ipmb_addr
= (struct ipmi_ipmb_addr
*) addr
;
1702 if (ipmb_addr
->lun
> 3) {
1703 ipmi_inc_stat(intf
, sent_invalid_commands
);
1708 memcpy(&recv_msg
->addr
, ipmb_addr
, sizeof(*ipmb_addr
));
1710 if (recv_msg
->msg
.netfn
& 0x1) {
1712 * It's a response, so use the user's sequence
1715 ipmi_inc_stat(intf
, sent_ipmb_responses
);
1716 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
, msgid
,
1718 source_address
, source_lun
);
1721 * Save the receive message so we can use it
1722 * to deliver the response.
1724 smi_msg
->user_data
= recv_msg
;
1726 /* It's a command, so get a sequence for it. */
1728 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1731 * Create a sequence number with a 1 second
1732 * timeout and 4 retries.
1734 rv
= intf_next_seq(intf
,
1743 * We have used up all the sequence numbers,
1744 * probably, so abort.
1746 spin_unlock_irqrestore(&(intf
->seq_lock
),
1751 ipmi_inc_stat(intf
, sent_ipmb_commands
);
1754 * Store the sequence number in the message,
1755 * so that when the send message response
1756 * comes back we can start the timer.
1758 format_ipmb_msg(smi_msg
, msg
, ipmb_addr
,
1759 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1760 ipmb_seq
, broadcast
,
1761 source_address
, source_lun
);
1764 * Copy the message into the recv message data, so we
1765 * can retransmit it later if necessary.
1767 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1768 smi_msg
->data_size
);
1769 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1770 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1773 * We don't unlock until here, because we need
1774 * to copy the completed message into the
1775 * recv_msg before we release the lock.
1776 * Otherwise, race conditions may bite us. I
1777 * know that's pretty paranoid, but I prefer
1780 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1782 } else if (is_lan_addr(addr
)) {
1783 struct ipmi_lan_addr
*lan_addr
;
1784 unsigned char ipmb_seq
;
1787 if (addr
->channel
>= IPMI_MAX_CHANNELS
) {
1788 ipmi_inc_stat(intf
, sent_invalid_commands
);
1793 if ((intf
->channels
[addr
->channel
].medium
1794 != IPMI_CHANNEL_MEDIUM_8023LAN
)
1795 && (intf
->channels
[addr
->channel
].medium
1796 != IPMI_CHANNEL_MEDIUM_ASYNC
)) {
1797 ipmi_inc_stat(intf
, sent_invalid_commands
);
1804 /* Default to 1 second retries. */
1805 if (retry_time_ms
== 0)
1806 retry_time_ms
= 1000;
1808 /* 11 for the header and 1 for the checksum. */
1809 if ((msg
->data_len
+ 12) > IPMI_MAX_MSG_LENGTH
) {
1810 ipmi_inc_stat(intf
, sent_invalid_commands
);
1815 lan_addr
= (struct ipmi_lan_addr
*) addr
;
1816 if (lan_addr
->lun
> 3) {
1817 ipmi_inc_stat(intf
, sent_invalid_commands
);
1822 memcpy(&recv_msg
->addr
, lan_addr
, sizeof(*lan_addr
));
1824 if (recv_msg
->msg
.netfn
& 0x1) {
1826 * It's a response, so use the user's sequence
1829 ipmi_inc_stat(intf
, sent_lan_responses
);
1830 format_lan_msg(smi_msg
, msg
, lan_addr
, msgid
,
1834 * Save the receive message so we can use it
1835 * to deliver the response.
1837 smi_msg
->user_data
= recv_msg
;
1839 /* It's a command, so get a sequence for it. */
1841 spin_lock_irqsave(&(intf
->seq_lock
), flags
);
1844 * Create a sequence number with a 1 second
1845 * timeout and 4 retries.
1847 rv
= intf_next_seq(intf
,
1856 * We have used up all the sequence numbers,
1857 * probably, so abort.
1859 spin_unlock_irqrestore(&(intf
->seq_lock
),
1864 ipmi_inc_stat(intf
, sent_lan_commands
);
1867 * Store the sequence number in the message,
1868 * so that when the send message response
1869 * comes back we can start the timer.
1871 format_lan_msg(smi_msg
, msg
, lan_addr
,
1872 STORE_SEQ_IN_MSGID(ipmb_seq
, seqid
),
1873 ipmb_seq
, source_lun
);
1876 * Copy the message into the recv message data, so we
1877 * can retransmit it later if necessary.
1879 memcpy(recv_msg
->msg_data
, smi_msg
->data
,
1880 smi_msg
->data_size
);
1881 recv_msg
->msg
.data
= recv_msg
->msg_data
;
1882 recv_msg
->msg
.data_len
= smi_msg
->data_size
;
1885 * We don't unlock until here, because we need
1886 * to copy the completed message into the
1887 * recv_msg before we release the lock.
1888 * Otherwise, race conditions may bite us. I
1889 * know that's pretty paranoid, but I prefer
1892 spin_unlock_irqrestore(&(intf
->seq_lock
), flags
);
1895 /* Unknown address type. */
1896 ipmi_inc_stat(intf
, sent_invalid_commands
);
1904 for (m
= 0; m
< smi_msg
->data_size
; m
++)
1905 printk(" %2.2x", smi_msg
->data
[m
]);
1910 smi_send(intf
, intf
->handlers
, smi_msg
, priority
);
1917 ipmi_free_smi_msg(smi_msg
);
1918 ipmi_free_recv_msg(recv_msg
);
1922 static int check_addr(ipmi_smi_t intf
,
1923 struct ipmi_addr
*addr
,
1924 unsigned char *saddr
,
1927 if (addr
->channel
>= IPMI_MAX_CHANNELS
)
1929 *lun
= intf
->channels
[addr
->channel
].lun
;
1930 *saddr
= intf
->channels
[addr
->channel
].address
;
1934 int ipmi_request_settime(ipmi_user_t user
,
1935 struct ipmi_addr
*addr
,
1937 struct kernel_ipmi_msg
*msg
,
1938 void *user_msg_data
,
1941 unsigned int retry_time_ms
)
1943 unsigned char saddr
= 0, lun
= 0;
1948 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1951 return i_ipmi_request(user
,
1964 EXPORT_SYMBOL(ipmi_request_settime
);
1966 int ipmi_request_supply_msgs(ipmi_user_t user
,
1967 struct ipmi_addr
*addr
,
1969 struct kernel_ipmi_msg
*msg
,
1970 void *user_msg_data
,
1972 struct ipmi_recv_msg
*supplied_recv
,
1975 unsigned char saddr
= 0, lun
= 0;
1980 rv
= check_addr(user
->intf
, addr
, &saddr
, &lun
);
1983 return i_ipmi_request(user
,
1996 EXPORT_SYMBOL(ipmi_request_supply_msgs
);
1998 #ifdef CONFIG_PROC_FS
1999 static int smi_ipmb_proc_show(struct seq_file
*m
, void *v
)
2001 ipmi_smi_t intf
= m
->private;
2004 seq_printf(m
, "%x", intf
->channels
[0].address
);
2005 for (i
= 1; i
< IPMI_MAX_CHANNELS
; i
++)
2006 seq_printf(m
, " %x", intf
->channels
[i
].address
);
2012 static int smi_ipmb_proc_open(struct inode
*inode
, struct file
*file
)
2014 return single_open(file
, smi_ipmb_proc_show
, PDE_DATA(inode
));
2017 static const struct file_operations smi_ipmb_proc_ops
= {
2018 .open
= smi_ipmb_proc_open
,
2020 .llseek
= seq_lseek
,
2021 .release
= single_release
,
2024 static int smi_version_proc_show(struct seq_file
*m
, void *v
)
2026 ipmi_smi_t intf
= m
->private;
2028 seq_printf(m
, "%u.%u\n",
2029 ipmi_version_major(&intf
->bmc
->id
),
2030 ipmi_version_minor(&intf
->bmc
->id
));
2035 static int smi_version_proc_open(struct inode
*inode
, struct file
*file
)
2037 return single_open(file
, smi_version_proc_show
, PDE_DATA(inode
));
2040 static const struct file_operations smi_version_proc_ops
= {
2041 .open
= smi_version_proc_open
,
2043 .llseek
= seq_lseek
,
2044 .release
= single_release
,
2047 static int smi_stats_proc_show(struct seq_file
*m
, void *v
)
2049 ipmi_smi_t intf
= m
->private;
2051 seq_printf(m
, "sent_invalid_commands: %u\n",
2052 ipmi_get_stat(intf
, sent_invalid_commands
));
2053 seq_printf(m
, "sent_local_commands: %u\n",
2054 ipmi_get_stat(intf
, sent_local_commands
));
2055 seq_printf(m
, "handled_local_responses: %u\n",
2056 ipmi_get_stat(intf
, handled_local_responses
));
2057 seq_printf(m
, "unhandled_local_responses: %u\n",
2058 ipmi_get_stat(intf
, unhandled_local_responses
));
2059 seq_printf(m
, "sent_ipmb_commands: %u\n",
2060 ipmi_get_stat(intf
, sent_ipmb_commands
));
2061 seq_printf(m
, "sent_ipmb_command_errs: %u\n",
2062 ipmi_get_stat(intf
, sent_ipmb_command_errs
));
2063 seq_printf(m
, "retransmitted_ipmb_commands: %u\n",
2064 ipmi_get_stat(intf
, retransmitted_ipmb_commands
));
2065 seq_printf(m
, "timed_out_ipmb_commands: %u\n",
2066 ipmi_get_stat(intf
, timed_out_ipmb_commands
));
2067 seq_printf(m
, "timed_out_ipmb_broadcasts: %u\n",
2068 ipmi_get_stat(intf
, timed_out_ipmb_broadcasts
));
2069 seq_printf(m
, "sent_ipmb_responses: %u\n",
2070 ipmi_get_stat(intf
, sent_ipmb_responses
));
2071 seq_printf(m
, "handled_ipmb_responses: %u\n",
2072 ipmi_get_stat(intf
, handled_ipmb_responses
));
2073 seq_printf(m
, "invalid_ipmb_responses: %u\n",
2074 ipmi_get_stat(intf
, invalid_ipmb_responses
));
2075 seq_printf(m
, "unhandled_ipmb_responses: %u\n",
2076 ipmi_get_stat(intf
, unhandled_ipmb_responses
));
2077 seq_printf(m
, "sent_lan_commands: %u\n",
2078 ipmi_get_stat(intf
, sent_lan_commands
));
2079 seq_printf(m
, "sent_lan_command_errs: %u\n",
2080 ipmi_get_stat(intf
, sent_lan_command_errs
));
2081 seq_printf(m
, "retransmitted_lan_commands: %u\n",
2082 ipmi_get_stat(intf
, retransmitted_lan_commands
));
2083 seq_printf(m
, "timed_out_lan_commands: %u\n",
2084 ipmi_get_stat(intf
, timed_out_lan_commands
));
2085 seq_printf(m
, "sent_lan_responses: %u\n",
2086 ipmi_get_stat(intf
, sent_lan_responses
));
2087 seq_printf(m
, "handled_lan_responses: %u\n",
2088 ipmi_get_stat(intf
, handled_lan_responses
));
2089 seq_printf(m
, "invalid_lan_responses: %u\n",
2090 ipmi_get_stat(intf
, invalid_lan_responses
));
2091 seq_printf(m
, "unhandled_lan_responses: %u\n",
2092 ipmi_get_stat(intf
, unhandled_lan_responses
));
2093 seq_printf(m
, "handled_commands: %u\n",
2094 ipmi_get_stat(intf
, handled_commands
));
2095 seq_printf(m
, "invalid_commands: %u\n",
2096 ipmi_get_stat(intf
, invalid_commands
));
2097 seq_printf(m
, "unhandled_commands: %u\n",
2098 ipmi_get_stat(intf
, unhandled_commands
));
2099 seq_printf(m
, "invalid_events: %u\n",
2100 ipmi_get_stat(intf
, invalid_events
));
2101 seq_printf(m
, "events: %u\n",
2102 ipmi_get_stat(intf
, events
));
2103 seq_printf(m
, "failed rexmit LAN msgs: %u\n",
2104 ipmi_get_stat(intf
, dropped_rexmit_lan_commands
));
2105 seq_printf(m
, "failed rexmit IPMB msgs: %u\n",
2106 ipmi_get_stat(intf
, dropped_rexmit_ipmb_commands
));
2110 static int smi_stats_proc_open(struct inode
*inode
, struct file
*file
)
2112 return single_open(file
, smi_stats_proc_show
, PDE_DATA(inode
));
2115 static const struct file_operations smi_stats_proc_ops
= {
2116 .open
= smi_stats_proc_open
,
2118 .llseek
= seq_lseek
,
2119 .release
= single_release
,
2121 #endif /* CONFIG_PROC_FS */
2123 int ipmi_smi_add_proc_entry(ipmi_smi_t smi
, char *name
,
2124 const struct file_operations
*proc_ops
,
2128 #ifdef CONFIG_PROC_FS
2129 struct proc_dir_entry
*file
;
2130 struct ipmi_proc_entry
*entry
;
2132 /* Create a list element. */
2133 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
2136 entry
->name
= kstrdup(name
, GFP_KERNEL
);
2142 file
= proc_create_data(name
, 0, smi
->proc_dir
, proc_ops
, data
);
2148 mutex_lock(&smi
->proc_entry_lock
);
2149 /* Stick it on the list. */
2150 entry
->next
= smi
->proc_entries
;
2151 smi
->proc_entries
= entry
;
2152 mutex_unlock(&smi
->proc_entry_lock
);
2154 #endif /* CONFIG_PROC_FS */
2158 EXPORT_SYMBOL(ipmi_smi_add_proc_entry
);
2160 static int add_proc_entries(ipmi_smi_t smi
, int num
)
2164 #ifdef CONFIG_PROC_FS
2165 sprintf(smi
->proc_dir_name
, "%d", num
);
2166 smi
->proc_dir
= proc_mkdir(smi
->proc_dir_name
, proc_ipmi_root
);
2171 rv
= ipmi_smi_add_proc_entry(smi
, "stats",
2172 &smi_stats_proc_ops
,
2176 rv
= ipmi_smi_add_proc_entry(smi
, "ipmb",
2181 rv
= ipmi_smi_add_proc_entry(smi
, "version",
2182 &smi_version_proc_ops
,
2184 #endif /* CONFIG_PROC_FS */
2189 static void remove_proc_entries(ipmi_smi_t smi
)
2191 #ifdef CONFIG_PROC_FS
2192 struct ipmi_proc_entry
*entry
;
2194 mutex_lock(&smi
->proc_entry_lock
);
2195 while (smi
->proc_entries
) {
2196 entry
= smi
->proc_entries
;
2197 smi
->proc_entries
= entry
->next
;
2199 remove_proc_entry(entry
->name
, smi
->proc_dir
);
2203 mutex_unlock(&smi
->proc_entry_lock
);
2204 remove_proc_entry(smi
->proc_dir_name
, proc_ipmi_root
);
2205 #endif /* CONFIG_PROC_FS */
2208 static int __find_bmc_guid(struct device
*dev
, void *data
)
2210 unsigned char *id
= data
;
2211 struct bmc_device
*bmc
= to_bmc_device(dev
);
2212 return memcmp(bmc
->guid
, id
, 16) == 0;
2215 static struct bmc_device
*ipmi_find_bmc_guid(struct device_driver
*drv
,
2216 unsigned char *guid
)
2220 dev
= driver_find_device(drv
, NULL
, guid
, __find_bmc_guid
);
2222 return to_bmc_device(dev
);
2227 struct prod_dev_id
{
2228 unsigned int product_id
;
2229 unsigned char device_id
;
2232 static int __find_bmc_prod_dev_id(struct device
*dev
, void *data
)
2234 struct prod_dev_id
*id
= data
;
2235 struct bmc_device
*bmc
= to_bmc_device(dev
);
2237 return (bmc
->id
.product_id
== id
->product_id
2238 && bmc
->id
.device_id
== id
->device_id
);
2241 static struct bmc_device
*ipmi_find_bmc_prod_dev_id(
2242 struct device_driver
*drv
,
2243 unsigned int product_id
, unsigned char device_id
)
2245 struct prod_dev_id id
= {
2246 .product_id
= product_id
,
2247 .device_id
= device_id
,
2251 dev
= driver_find_device(drv
, NULL
, &id
, __find_bmc_prod_dev_id
);
2253 return to_bmc_device(dev
);
2258 static ssize_t
device_id_show(struct device
*dev
,
2259 struct device_attribute
*attr
,
2262 struct bmc_device
*bmc
= to_bmc_device(dev
);
2264 return snprintf(buf
, 10, "%u\n", bmc
->id
.device_id
);
2266 static DEVICE_ATTR(device_id
, S_IRUGO
, device_id_show
, NULL
);
2268 static ssize_t
provides_device_sdrs_show(struct device
*dev
,
2269 struct device_attribute
*attr
,
2272 struct bmc_device
*bmc
= to_bmc_device(dev
);
2274 return snprintf(buf
, 10, "%u\n",
2275 (bmc
->id
.device_revision
& 0x80) >> 7);
2277 static DEVICE_ATTR(provides_device_sdrs
, S_IRUGO
, provides_device_sdrs_show
,
2280 static ssize_t
revision_show(struct device
*dev
, struct device_attribute
*attr
,
2283 struct bmc_device
*bmc
= to_bmc_device(dev
);
2285 return snprintf(buf
, 20, "%u\n",
2286 bmc
->id
.device_revision
& 0x0F);
2288 static DEVICE_ATTR(revision
, S_IRUGO
, revision_show
, NULL
);
2290 static ssize_t
firmware_revision_show(struct device
*dev
,
2291 struct device_attribute
*attr
,
2294 struct bmc_device
*bmc
= to_bmc_device(dev
);
2296 return snprintf(buf
, 20, "%u.%x\n", bmc
->id
.firmware_revision_1
,
2297 bmc
->id
.firmware_revision_2
);
2299 static DEVICE_ATTR(firmware_revision
, S_IRUGO
, firmware_revision_show
, NULL
);
2301 static ssize_t
ipmi_version_show(struct device
*dev
,
2302 struct device_attribute
*attr
,
2305 struct bmc_device
*bmc
= to_bmc_device(dev
);
2307 return snprintf(buf
, 20, "%u.%u\n",
2308 ipmi_version_major(&bmc
->id
),
2309 ipmi_version_minor(&bmc
->id
));
2311 static DEVICE_ATTR(ipmi_version
, S_IRUGO
, ipmi_version_show
, NULL
);
2313 static ssize_t
add_dev_support_show(struct device
*dev
,
2314 struct device_attribute
*attr
,
2317 struct bmc_device
*bmc
= to_bmc_device(dev
);
2319 return snprintf(buf
, 10, "0x%02x\n",
2320 bmc
->id
.additional_device_support
);
2322 static DEVICE_ATTR(additional_device_support
, S_IRUGO
, add_dev_support_show
,
2325 static ssize_t
manufacturer_id_show(struct device
*dev
,
2326 struct device_attribute
*attr
,
2329 struct bmc_device
*bmc
= to_bmc_device(dev
);
2331 return snprintf(buf
, 20, "0x%6.6x\n", bmc
->id
.manufacturer_id
);
2333 static DEVICE_ATTR(manufacturer_id
, S_IRUGO
, manufacturer_id_show
, NULL
);
2335 static ssize_t
product_id_show(struct device
*dev
,
2336 struct device_attribute
*attr
,
2339 struct bmc_device
*bmc
= to_bmc_device(dev
);
2341 return snprintf(buf
, 10, "0x%4.4x\n", bmc
->id
.product_id
);
2343 static DEVICE_ATTR(product_id
, S_IRUGO
, product_id_show
, NULL
);
2345 static ssize_t
aux_firmware_rev_show(struct device
*dev
,
2346 struct device_attribute
*attr
,
2349 struct bmc_device
*bmc
= to_bmc_device(dev
);
2351 return snprintf(buf
, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2352 bmc
->id
.aux_firmware_revision
[3],
2353 bmc
->id
.aux_firmware_revision
[2],
2354 bmc
->id
.aux_firmware_revision
[1],
2355 bmc
->id
.aux_firmware_revision
[0]);
2357 static DEVICE_ATTR(aux_firmware_revision
, S_IRUGO
, aux_firmware_rev_show
, NULL
);
2359 static ssize_t
guid_show(struct device
*dev
, struct device_attribute
*attr
,
2362 struct bmc_device
*bmc
= to_bmc_device(dev
);
2364 return snprintf(buf
, 100, "%Lx%Lx\n",
2365 (long long) bmc
->guid
[0],
2366 (long long) bmc
->guid
[8]);
2368 static DEVICE_ATTR(guid
, S_IRUGO
, guid_show
, NULL
);
2370 static struct attribute
*bmc_dev_attrs
[] = {
2371 &dev_attr_device_id
.attr
,
2372 &dev_attr_provides_device_sdrs
.attr
,
2373 &dev_attr_revision
.attr
,
2374 &dev_attr_firmware_revision
.attr
,
2375 &dev_attr_ipmi_version
.attr
,
2376 &dev_attr_additional_device_support
.attr
,
2377 &dev_attr_manufacturer_id
.attr
,
2378 &dev_attr_product_id
.attr
,
2379 &dev_attr_aux_firmware_revision
.attr
,
2380 &dev_attr_guid
.attr
,
2384 static umode_t
bmc_dev_attr_is_visible(struct kobject
*kobj
,
2385 struct attribute
*attr
, int idx
)
2387 struct device
*dev
= kobj_to_dev(kobj
);
2388 struct bmc_device
*bmc
= to_bmc_device(dev
);
2389 umode_t mode
= attr
->mode
;
2391 if (attr
== &dev_attr_aux_firmware_revision
.attr
)
2392 return bmc
->id
.aux_firmware_revision_set
? mode
: 0;
2393 if (attr
== &dev_attr_guid
.attr
)
2394 return bmc
->guid_set
? mode
: 0;
2398 static struct attribute_group bmc_dev_attr_group
= {
2399 .attrs
= bmc_dev_attrs
,
2400 .is_visible
= bmc_dev_attr_is_visible
,
2403 static const struct attribute_group
*bmc_dev_attr_groups
[] = {
2404 &bmc_dev_attr_group
,
2408 static struct device_type bmc_device_type
= {
2409 .groups
= bmc_dev_attr_groups
,
2413 release_bmc_device(struct device
*dev
)
2415 kfree(to_bmc_device(dev
));
2419 cleanup_bmc_device(struct kref
*ref
)
2421 struct bmc_device
*bmc
= container_of(ref
, struct bmc_device
, usecount
);
2423 platform_device_unregister(&bmc
->pdev
);
2426 static void ipmi_bmc_unregister(ipmi_smi_t intf
)
2428 struct bmc_device
*bmc
= intf
->bmc
;
2430 sysfs_remove_link(&intf
->si_dev
->kobj
, "bmc");
2431 if (intf
->my_dev_name
) {
2432 sysfs_remove_link(&bmc
->pdev
.dev
.kobj
, intf
->my_dev_name
);
2433 kfree(intf
->my_dev_name
);
2434 intf
->my_dev_name
= NULL
;
2437 mutex_lock(&ipmidriver_mutex
);
2438 kref_put(&bmc
->usecount
, cleanup_bmc_device
);
2440 mutex_unlock(&ipmidriver_mutex
);
2443 static int ipmi_bmc_register(ipmi_smi_t intf
, int ifnum
)
2446 struct bmc_device
*bmc
= intf
->bmc
;
2447 struct bmc_device
*old_bmc
;
2449 mutex_lock(&ipmidriver_mutex
);
2452 * Try to find if there is an bmc_device struct
2453 * representing the interfaced BMC already
2456 old_bmc
= ipmi_find_bmc_guid(&ipmidriver
.driver
, bmc
->guid
);
2458 old_bmc
= ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2463 * If there is already an bmc_device, free the new one,
2464 * otherwise register the new BMC device
2468 intf
->bmc
= old_bmc
;
2471 kref_get(&bmc
->usecount
);
2472 mutex_unlock(&ipmidriver_mutex
);
2475 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2476 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2477 bmc
->id
.manufacturer_id
,
2481 unsigned char orig_dev_id
= bmc
->id
.device_id
;
2482 int warn_printed
= 0;
2484 snprintf(bmc
->name
, sizeof(bmc
->name
),
2485 "ipmi_bmc.%4.4x", bmc
->id
.product_id
);
2486 bmc
->pdev
.name
= bmc
->name
;
2488 while (ipmi_find_bmc_prod_dev_id(&ipmidriver
.driver
,
2490 bmc
->id
.device_id
)) {
2491 if (!warn_printed
) {
2492 printk(KERN_WARNING PFX
2493 "This machine has two different BMCs"
2494 " with the same product id and device"
2495 " id. This is an error in the"
2496 " firmware, but incrementing the"
2497 " device id to work around the problem."
2498 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2499 bmc
->id
.product_id
, bmc
->id
.device_id
);
2502 bmc
->id
.device_id
++; /* Wraps at 255 */
2503 if (bmc
->id
.device_id
== orig_dev_id
) {
2505 "Out of device ids!\n");
2510 bmc
->pdev
.dev
.driver
= &ipmidriver
.driver
;
2511 bmc
->pdev
.id
= bmc
->id
.device_id
;
2512 bmc
->pdev
.dev
.release
= release_bmc_device
;
2513 bmc
->pdev
.dev
.type
= &bmc_device_type
;
2514 kref_init(&bmc
->usecount
);
2516 rv
= platform_device_register(&bmc
->pdev
);
2517 mutex_unlock(&ipmidriver_mutex
);
2519 put_device(&bmc
->pdev
.dev
);
2522 " Unable to register bmc device: %d\n",
2525 * Don't go to out_err, you can only do that if
2526 * the device is registered already.
2531 dev_info(intf
->si_dev
, "Found new BMC (man_id: 0x%6.6x, "
2532 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2533 bmc
->id
.manufacturer_id
,
2539 * create symlink from system interface device to bmc device
2542 rv
= sysfs_create_link(&intf
->si_dev
->kobj
, &bmc
->pdev
.dev
.kobj
, "bmc");
2545 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2550 intf
->my_dev_name
= kasprintf(GFP_KERNEL
, "ipmi%d", ifnum
);
2551 if (!intf
->my_dev_name
) {
2554 "ipmi_msghandler: allocate link from BMC: %d\n",
2559 rv
= sysfs_create_link(&bmc
->pdev
.dev
.kobj
, &intf
->si_dev
->kobj
,
2562 kfree(intf
->my_dev_name
);
2563 intf
->my_dev_name
= NULL
;
2566 " Unable to create symlink to bmc: %d\n",
2574 ipmi_bmc_unregister(intf
);
2579 send_guid_cmd(ipmi_smi_t intf
, int chan
)
2581 struct kernel_ipmi_msg msg
;
2582 struct ipmi_system_interface_addr si
;
2584 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2585 si
.channel
= IPMI_BMC_CHANNEL
;
2588 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2589 msg
.cmd
= IPMI_GET_DEVICE_GUID_CMD
;
2592 return i_ipmi_request(NULL
,
2594 (struct ipmi_addr
*) &si
,
2601 intf
->channels
[0].address
,
2602 intf
->channels
[0].lun
,
2607 guid_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2609 if ((msg
->addr
.addr_type
!= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2610 || (msg
->msg
.netfn
!= IPMI_NETFN_APP_RESPONSE
)
2611 || (msg
->msg
.cmd
!= IPMI_GET_DEVICE_GUID_CMD
))
2615 if (msg
->msg
.data
[0] != 0) {
2616 /* Error from getting the GUID, the BMC doesn't have one. */
2617 intf
->bmc
->guid_set
= 0;
2621 if (msg
->msg
.data_len
< 17) {
2622 intf
->bmc
->guid_set
= 0;
2623 printk(KERN_WARNING PFX
2624 "guid_handler: The GUID response from the BMC was too"
2625 " short, it was %d but should have been 17. Assuming"
2626 " GUID is not available.\n",
2631 memcpy(intf
->bmc
->guid
, msg
->msg
.data
, 16);
2632 intf
->bmc
->guid_set
= 1;
2634 wake_up(&intf
->waitq
);
2638 get_guid(ipmi_smi_t intf
)
2642 intf
->bmc
->guid_set
= 0x2;
2643 intf
->null_user_handler
= guid_handler
;
2644 rv
= send_guid_cmd(intf
, 0);
2646 /* Send failed, no GUID available. */
2647 intf
->bmc
->guid_set
= 0;
2648 wait_event(intf
->waitq
, intf
->bmc
->guid_set
!= 2);
2649 intf
->null_user_handler
= NULL
;
2653 send_channel_info_cmd(ipmi_smi_t intf
, int chan
)
2655 struct kernel_ipmi_msg msg
;
2656 unsigned char data
[1];
2657 struct ipmi_system_interface_addr si
;
2659 si
.addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
2660 si
.channel
= IPMI_BMC_CHANNEL
;
2663 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
2664 msg
.cmd
= IPMI_GET_CHANNEL_INFO_CMD
;
2668 return i_ipmi_request(NULL
,
2670 (struct ipmi_addr
*) &si
,
2677 intf
->channels
[0].address
,
2678 intf
->channels
[0].lun
,
2683 channel_handler(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
2688 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
2689 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
2690 && (msg
->msg
.cmd
== IPMI_GET_CHANNEL_INFO_CMD
)) {
2691 /* It's the one we want */
2692 if (msg
->msg
.data
[0] != 0) {
2693 /* Got an error from the channel, just go on. */
2695 if (msg
->msg
.data
[0] == IPMI_INVALID_COMMAND_ERR
) {
2697 * If the MC does not support this
2698 * command, that is legal. We just
2699 * assume it has one IPMB at channel
2702 intf
->channels
[0].medium
2703 = IPMI_CHANNEL_MEDIUM_IPMB
;
2704 intf
->channels
[0].protocol
2705 = IPMI_CHANNEL_PROTOCOL_IPMB
;
2707 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2708 wake_up(&intf
->waitq
);
2713 if (msg
->msg
.data_len
< 4) {
2714 /* Message not big enough, just go on. */
2717 chan
= intf
->curr_channel
;
2718 intf
->channels
[chan
].medium
= msg
->msg
.data
[2] & 0x7f;
2719 intf
->channels
[chan
].protocol
= msg
->msg
.data
[3] & 0x1f;
2722 intf
->curr_channel
++;
2723 if (intf
->curr_channel
>= IPMI_MAX_CHANNELS
)
2724 wake_up(&intf
->waitq
);
2726 rv
= send_channel_info_cmd(intf
, intf
->curr_channel
);
2729 /* Got an error somehow, just give up. */
2730 printk(KERN_WARNING PFX
2731 "Error sending channel information for channel"
2732 " %d: %d\n", intf
->curr_channel
, rv
);
2734 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2735 wake_up(&intf
->waitq
);
2742 static void ipmi_poll(ipmi_smi_t intf
)
2744 if (intf
->handlers
->poll
)
2745 intf
->handlers
->poll(intf
->send_info
);
2746 /* In case something came in */
2747 handle_new_recv_msgs(intf
);
2750 void ipmi_poll_interface(ipmi_user_t user
)
2752 ipmi_poll(user
->intf
);
2754 EXPORT_SYMBOL(ipmi_poll_interface
);
2756 int ipmi_register_smi(const struct ipmi_smi_handlers
*handlers
,
2758 struct ipmi_device_id
*device_id
,
2759 struct device
*si_dev
,
2760 unsigned char slave_addr
)
2766 struct list_head
*link
;
2769 * Make sure the driver is actually initialized, this handles
2770 * problems with initialization order.
2773 rv
= ipmi_init_msghandler();
2777 * The init code doesn't return an error if it was turned
2778 * off, but it won't initialize. Check that.
2784 intf
= kzalloc(sizeof(*intf
), GFP_KERNEL
);
2788 intf
->ipmi_version_major
= ipmi_version_major(device_id
);
2789 intf
->ipmi_version_minor
= ipmi_version_minor(device_id
);
2791 intf
->bmc
= kzalloc(sizeof(*intf
->bmc
), GFP_KERNEL
);
2796 intf
->intf_num
= -1; /* Mark it invalid for now. */
2797 kref_init(&intf
->refcount
);
2798 intf
->bmc
->id
= *device_id
;
2799 intf
->si_dev
= si_dev
;
2800 for (j
= 0; j
< IPMI_MAX_CHANNELS
; j
++) {
2801 intf
->channels
[j
].address
= IPMI_BMC_SLAVE_ADDR
;
2802 intf
->channels
[j
].lun
= 2;
2804 if (slave_addr
!= 0)
2805 intf
->channels
[0].address
= slave_addr
;
2806 INIT_LIST_HEAD(&intf
->users
);
2807 intf
->handlers
= handlers
;
2808 intf
->send_info
= send_info
;
2809 spin_lock_init(&intf
->seq_lock
);
2810 for (j
= 0; j
< IPMI_IPMB_NUM_SEQ
; j
++) {
2811 intf
->seq_table
[j
].inuse
= 0;
2812 intf
->seq_table
[j
].seqid
= 0;
2815 #ifdef CONFIG_PROC_FS
2816 mutex_init(&intf
->proc_entry_lock
);
2818 spin_lock_init(&intf
->waiting_rcv_msgs_lock
);
2819 INIT_LIST_HEAD(&intf
->waiting_rcv_msgs
);
2820 tasklet_init(&intf
->recv_tasklet
,
2822 (unsigned long) intf
);
2823 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 0);
2824 spin_lock_init(&intf
->xmit_msgs_lock
);
2825 INIT_LIST_HEAD(&intf
->xmit_msgs
);
2826 INIT_LIST_HEAD(&intf
->hp_xmit_msgs
);
2827 spin_lock_init(&intf
->events_lock
);
2828 atomic_set(&intf
->event_waiters
, 0);
2829 intf
->ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
2830 INIT_LIST_HEAD(&intf
->waiting_events
);
2831 intf
->waiting_events_count
= 0;
2832 mutex_init(&intf
->cmd_rcvrs_mutex
);
2833 spin_lock_init(&intf
->maintenance_mode_lock
);
2834 INIT_LIST_HEAD(&intf
->cmd_rcvrs
);
2835 init_waitqueue_head(&intf
->waitq
);
2836 for (i
= 0; i
< IPMI_NUM_STATS
; i
++)
2837 atomic_set(&intf
->stats
[i
], 0);
2839 intf
->proc_dir
= NULL
;
2841 mutex_lock(&smi_watchers_mutex
);
2842 mutex_lock(&ipmi_interfaces_mutex
);
2843 /* Look for a hole in the numbers. */
2845 link
= &ipmi_interfaces
;
2846 list_for_each_entry_rcu(tintf
, &ipmi_interfaces
, link
) {
2847 if (tintf
->intf_num
!= i
) {
2848 link
= &tintf
->link
;
2853 /* Add the new interface in numeric order. */
2855 list_add_rcu(&intf
->link
, &ipmi_interfaces
);
2857 list_add_tail_rcu(&intf
->link
, link
);
2859 rv
= handlers
->start_processing(send_info
, intf
);
2865 if ((intf
->ipmi_version_major
> 1)
2866 || ((intf
->ipmi_version_major
== 1)
2867 && (intf
->ipmi_version_minor
>= 5))) {
2869 * Start scanning the channels to see what is
2872 intf
->null_user_handler
= channel_handler
;
2873 intf
->curr_channel
= 0;
2874 rv
= send_channel_info_cmd(intf
, 0);
2876 printk(KERN_WARNING PFX
2877 "Error sending channel information for channel"
2882 /* Wait for the channel info to be read. */
2883 wait_event(intf
->waitq
,
2884 intf
->curr_channel
>= IPMI_MAX_CHANNELS
);
2885 intf
->null_user_handler
= NULL
;
2887 /* Assume a single IPMB channel at zero. */
2888 intf
->channels
[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB
;
2889 intf
->channels
[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB
;
2890 intf
->curr_channel
= IPMI_MAX_CHANNELS
;
2894 rv
= add_proc_entries(intf
, i
);
2896 rv
= ipmi_bmc_register(intf
, i
);
2901 remove_proc_entries(intf
);
2902 intf
->handlers
= NULL
;
2903 list_del_rcu(&intf
->link
);
2904 mutex_unlock(&ipmi_interfaces_mutex
);
2905 mutex_unlock(&smi_watchers_mutex
);
2907 kref_put(&intf
->refcount
, intf_free
);
2910 * Keep memory order straight for RCU readers. Make
2911 * sure everything else is committed to memory before
2912 * setting intf_num to mark the interface valid.
2916 mutex_unlock(&ipmi_interfaces_mutex
);
2917 /* After this point the interface is legal to use. */
2918 call_smi_watchers(i
, intf
->si_dev
);
2919 mutex_unlock(&smi_watchers_mutex
);
2924 EXPORT_SYMBOL(ipmi_register_smi
);
2926 static void deliver_smi_err_response(ipmi_smi_t intf
,
2927 struct ipmi_smi_msg
*msg
,
2930 msg
->rsp
[0] = msg
->data
[0] | 4;
2931 msg
->rsp
[1] = msg
->data
[1];
2934 /* It's an error, so it will never requeue, no need to check return. */
2935 handle_one_recv_msg(intf
, msg
);
2938 static void cleanup_smi_msgs(ipmi_smi_t intf
)
2941 struct seq_table
*ent
;
2942 struct ipmi_smi_msg
*msg
;
2943 struct list_head
*entry
;
2944 struct list_head tmplist
;
2946 /* Clear out our transmit queues and hold the messages. */
2947 INIT_LIST_HEAD(&tmplist
);
2948 list_splice_tail(&intf
->hp_xmit_msgs
, &tmplist
);
2949 list_splice_tail(&intf
->xmit_msgs
, &tmplist
);
2951 /* Current message first, to preserve order */
2952 while (intf
->curr_msg
&& !list_empty(&intf
->waiting_rcv_msgs
)) {
2953 /* Wait for the message to clear out. */
2954 schedule_timeout(1);
2957 /* No need for locks, the interface is down. */
2960 * Return errors for all pending messages in queue and in the
2961 * tables waiting for remote responses.
2963 while (!list_empty(&tmplist
)) {
2964 entry
= tmplist
.next
;
2966 msg
= list_entry(entry
, struct ipmi_smi_msg
, link
);
2967 deliver_smi_err_response(intf
, msg
, IPMI_ERR_UNSPECIFIED
);
2970 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++) {
2971 ent
= &(intf
->seq_table
[i
]);
2974 deliver_err_response(ent
->recv_msg
, IPMI_ERR_UNSPECIFIED
);
2978 int ipmi_unregister_smi(ipmi_smi_t intf
)
2980 struct ipmi_smi_watcher
*w
;
2981 int intf_num
= intf
->intf_num
;
2984 ipmi_bmc_unregister(intf
);
2986 mutex_lock(&smi_watchers_mutex
);
2987 mutex_lock(&ipmi_interfaces_mutex
);
2988 intf
->intf_num
= -1;
2989 intf
->in_shutdown
= true;
2990 list_del_rcu(&intf
->link
);
2991 mutex_unlock(&ipmi_interfaces_mutex
);
2994 cleanup_smi_msgs(intf
);
2996 /* Clean up the effects of users on the lower-level software. */
2997 mutex_lock(&ipmi_interfaces_mutex
);
2999 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3000 module_put(intf
->handlers
->owner
);
3001 if (intf
->handlers
->dec_usecount
)
3002 intf
->handlers
->dec_usecount(intf
->send_info
);
3005 intf
->handlers
= NULL
;
3006 mutex_unlock(&ipmi_interfaces_mutex
);
3008 remove_proc_entries(intf
);
3011 * Call all the watcher interfaces to tell them that
3012 * an interface is gone.
3014 list_for_each_entry(w
, &smi_watchers
, link
)
3015 w
->smi_gone(intf_num
);
3016 mutex_unlock(&smi_watchers_mutex
);
3018 kref_put(&intf
->refcount
, intf_free
);
3021 EXPORT_SYMBOL(ipmi_unregister_smi
);
3023 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf
,
3024 struct ipmi_smi_msg
*msg
)
3026 struct ipmi_ipmb_addr ipmb_addr
;
3027 struct ipmi_recv_msg
*recv_msg
;
3030 * This is 11, not 10, because the response must contain a
3033 if (msg
->rsp_size
< 11) {
3034 /* Message not big enough, just ignore it. */
3035 ipmi_inc_stat(intf
, invalid_ipmb_responses
);
3039 if (msg
->rsp
[2] != 0) {
3040 /* An error getting the response, just ignore it. */
3044 ipmb_addr
.addr_type
= IPMI_IPMB_ADDR_TYPE
;
3045 ipmb_addr
.slave_addr
= msg
->rsp
[6];
3046 ipmb_addr
.channel
= msg
->rsp
[3] & 0x0f;
3047 ipmb_addr
.lun
= msg
->rsp
[7] & 3;
3050 * It's a response from a remote entity. Look up the sequence
3051 * number and handle the response.
3053 if (intf_find_seq(intf
,
3057 (msg
->rsp
[4] >> 2) & (~1),
3058 (struct ipmi_addr
*) &(ipmb_addr
),
3061 * We were unable to find the sequence number,
3062 * so just nuke the message.
3064 ipmi_inc_stat(intf
, unhandled_ipmb_responses
);
3068 memcpy(recv_msg
->msg_data
,
3072 * The other fields matched, so no need to set them, except
3073 * for netfn, which needs to be the response that was
3074 * returned, not the request value.
3076 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3077 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3078 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3079 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3080 ipmi_inc_stat(intf
, handled_ipmb_responses
);
3081 deliver_response(recv_msg
);
3086 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf
,
3087 struct ipmi_smi_msg
*msg
)
3089 struct cmd_rcvr
*rcvr
;
3091 unsigned char netfn
;
3094 ipmi_user_t user
= NULL
;
3095 struct ipmi_ipmb_addr
*ipmb_addr
;
3096 struct ipmi_recv_msg
*recv_msg
;
3098 if (msg
->rsp_size
< 10) {
3099 /* Message not big enough, just ignore it. */
3100 ipmi_inc_stat(intf
, invalid_commands
);
3104 if (msg
->rsp
[2] != 0) {
3105 /* An error getting the response, just ignore it. */
3109 netfn
= msg
->rsp
[4] >> 2;
3111 chan
= msg
->rsp
[3] & 0xf;
3114 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3117 kref_get(&user
->refcount
);
3123 /* We didn't find a user, deliver an error response. */
3124 ipmi_inc_stat(intf
, unhandled_commands
);
3126 msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
3127 msg
->data
[1] = IPMI_SEND_MSG_CMD
;
3128 msg
->data
[2] = msg
->rsp
[3];
3129 msg
->data
[3] = msg
->rsp
[6];
3130 msg
->data
[4] = ((netfn
+ 1) << 2) | (msg
->rsp
[7] & 0x3);
3131 msg
->data
[5] = ipmb_checksum(&(msg
->data
[3]), 2);
3132 msg
->data
[6] = intf
->channels
[msg
->rsp
[3] & 0xf].address
;
3134 msg
->data
[7] = (msg
->rsp
[7] & 0xfc) | (msg
->rsp
[4] & 0x3);
3135 msg
->data
[8] = msg
->rsp
[8]; /* cmd */
3136 msg
->data
[9] = IPMI_INVALID_CMD_COMPLETION_CODE
;
3137 msg
->data
[10] = ipmb_checksum(&(msg
->data
[6]), 4);
3138 msg
->data_size
= 11;
3143 printk("Invalid command:");
3144 for (m
= 0; m
< msg
->data_size
; m
++)
3145 printk(" %2.2x", msg
->data
[m
]);
3150 if (!intf
->in_shutdown
) {
3151 smi_send(intf
, intf
->handlers
, msg
, 0);
3153 * We used the message, so return the value
3154 * that causes it to not be freed or
3161 /* Deliver the message to the user. */
3162 ipmi_inc_stat(intf
, handled_commands
);
3164 recv_msg
= ipmi_alloc_recv_msg();
3167 * We couldn't allocate memory for the
3168 * message, so requeue it for handling
3172 kref_put(&user
->refcount
, free_user
);
3174 /* Extract the source address from the data. */
3175 ipmb_addr
= (struct ipmi_ipmb_addr
*) &recv_msg
->addr
;
3176 ipmb_addr
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
3177 ipmb_addr
->slave_addr
= msg
->rsp
[6];
3178 ipmb_addr
->lun
= msg
->rsp
[7] & 3;
3179 ipmb_addr
->channel
= msg
->rsp
[3] & 0xf;
3182 * Extract the rest of the message information
3183 * from the IPMB header.
3185 recv_msg
->user
= user
;
3186 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3187 recv_msg
->msgid
= msg
->rsp
[7] >> 2;
3188 recv_msg
->msg
.netfn
= msg
->rsp
[4] >> 2;
3189 recv_msg
->msg
.cmd
= msg
->rsp
[8];
3190 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3193 * We chop off 10, not 9 bytes because the checksum
3194 * at the end also needs to be removed.
3196 recv_msg
->msg
.data_len
= msg
->rsp_size
- 10;
3197 memcpy(recv_msg
->msg_data
,
3199 msg
->rsp_size
- 10);
3200 deliver_response(recv_msg
);
3207 static int handle_lan_get_msg_rsp(ipmi_smi_t intf
,
3208 struct ipmi_smi_msg
*msg
)
3210 struct ipmi_lan_addr lan_addr
;
3211 struct ipmi_recv_msg
*recv_msg
;
3215 * This is 13, not 12, because the response must contain a
3218 if (msg
->rsp_size
< 13) {
3219 /* Message not big enough, just ignore it. */
3220 ipmi_inc_stat(intf
, invalid_lan_responses
);
3224 if (msg
->rsp
[2] != 0) {
3225 /* An error getting the response, just ignore it. */
3229 lan_addr
.addr_type
= IPMI_LAN_ADDR_TYPE
;
3230 lan_addr
.session_handle
= msg
->rsp
[4];
3231 lan_addr
.remote_SWID
= msg
->rsp
[8];
3232 lan_addr
.local_SWID
= msg
->rsp
[5];
3233 lan_addr
.channel
= msg
->rsp
[3] & 0x0f;
3234 lan_addr
.privilege
= msg
->rsp
[3] >> 4;
3235 lan_addr
.lun
= msg
->rsp
[9] & 3;
3238 * It's a response from a remote entity. Look up the sequence
3239 * number and handle the response.
3241 if (intf_find_seq(intf
,
3245 (msg
->rsp
[6] >> 2) & (~1),
3246 (struct ipmi_addr
*) &(lan_addr
),
3249 * We were unable to find the sequence number,
3250 * so just nuke the message.
3252 ipmi_inc_stat(intf
, unhandled_lan_responses
);
3256 memcpy(recv_msg
->msg_data
,
3258 msg
->rsp_size
- 11);
3260 * The other fields matched, so no need to set them, except
3261 * for netfn, which needs to be the response that was
3262 * returned, not the request value.
3264 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3265 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3266 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3267 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3268 ipmi_inc_stat(intf
, handled_lan_responses
);
3269 deliver_response(recv_msg
);
3274 static int handle_lan_get_msg_cmd(ipmi_smi_t intf
,
3275 struct ipmi_smi_msg
*msg
)
3277 struct cmd_rcvr
*rcvr
;
3279 unsigned char netfn
;
3282 ipmi_user_t user
= NULL
;
3283 struct ipmi_lan_addr
*lan_addr
;
3284 struct ipmi_recv_msg
*recv_msg
;
3286 if (msg
->rsp_size
< 12) {
3287 /* Message not big enough, just ignore it. */
3288 ipmi_inc_stat(intf
, invalid_commands
);
3292 if (msg
->rsp
[2] != 0) {
3293 /* An error getting the response, just ignore it. */
3297 netfn
= msg
->rsp
[6] >> 2;
3299 chan
= msg
->rsp
[3] & 0xf;
3302 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3305 kref_get(&user
->refcount
);
3311 /* We didn't find a user, just give up. */
3312 ipmi_inc_stat(intf
, unhandled_commands
);
3315 * Don't do anything with these messages, just allow
3320 /* Deliver the message to the user. */
3321 ipmi_inc_stat(intf
, handled_commands
);
3323 recv_msg
= ipmi_alloc_recv_msg();
3326 * We couldn't allocate memory for the
3327 * message, so requeue it for handling later.
3330 kref_put(&user
->refcount
, free_user
);
3332 /* Extract the source address from the data. */
3333 lan_addr
= (struct ipmi_lan_addr
*) &recv_msg
->addr
;
3334 lan_addr
->addr_type
= IPMI_LAN_ADDR_TYPE
;
3335 lan_addr
->session_handle
= msg
->rsp
[4];
3336 lan_addr
->remote_SWID
= msg
->rsp
[8];
3337 lan_addr
->local_SWID
= msg
->rsp
[5];
3338 lan_addr
->lun
= msg
->rsp
[9] & 3;
3339 lan_addr
->channel
= msg
->rsp
[3] & 0xf;
3340 lan_addr
->privilege
= msg
->rsp
[3] >> 4;
3343 * Extract the rest of the message information
3344 * from the IPMB header.
3346 recv_msg
->user
= user
;
3347 recv_msg
->recv_type
= IPMI_CMD_RECV_TYPE
;
3348 recv_msg
->msgid
= msg
->rsp
[9] >> 2;
3349 recv_msg
->msg
.netfn
= msg
->rsp
[6] >> 2;
3350 recv_msg
->msg
.cmd
= msg
->rsp
[10];
3351 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3354 * We chop off 12, not 11 bytes because the checksum
3355 * at the end also needs to be removed.
3357 recv_msg
->msg
.data_len
= msg
->rsp_size
- 12;
3358 memcpy(recv_msg
->msg_data
,
3360 msg
->rsp_size
- 12);
3361 deliver_response(recv_msg
);
3369 * This routine will handle "Get Message" command responses with
3370 * channels that use an OEM Medium. The message format belongs to
3371 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3372 * Chapter 22, sections 22.6 and 22.24 for more details.
3374 static int handle_oem_get_msg_cmd(ipmi_smi_t intf
,
3375 struct ipmi_smi_msg
*msg
)
3377 struct cmd_rcvr
*rcvr
;
3379 unsigned char netfn
;
3382 ipmi_user_t user
= NULL
;
3383 struct ipmi_system_interface_addr
*smi_addr
;
3384 struct ipmi_recv_msg
*recv_msg
;
3387 * We expect the OEM SW to perform error checking
3388 * so we just do some basic sanity checks
3390 if (msg
->rsp_size
< 4) {
3391 /* Message not big enough, just ignore it. */
3392 ipmi_inc_stat(intf
, invalid_commands
);
3396 if (msg
->rsp
[2] != 0) {
3397 /* An error getting the response, just ignore it. */
3402 * This is an OEM Message so the OEM needs to know how
3403 * handle the message. We do no interpretation.
3405 netfn
= msg
->rsp
[0] >> 2;
3407 chan
= msg
->rsp
[3] & 0xf;
3410 rcvr
= find_cmd_rcvr(intf
, netfn
, cmd
, chan
);
3413 kref_get(&user
->refcount
);
3419 /* We didn't find a user, just give up. */
3420 ipmi_inc_stat(intf
, unhandled_commands
);
3423 * Don't do anything with these messages, just allow
3429 /* Deliver the message to the user. */
3430 ipmi_inc_stat(intf
, handled_commands
);
3432 recv_msg
= ipmi_alloc_recv_msg();
3435 * We couldn't allocate memory for the
3436 * message, so requeue it for handling
3440 kref_put(&user
->refcount
, free_user
);
3443 * OEM Messages are expected to be delivered via
3444 * the system interface to SMS software. We might
3445 * need to visit this again depending on OEM
3448 smi_addr
= ((struct ipmi_system_interface_addr
*)
3450 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3451 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3452 smi_addr
->lun
= msg
->rsp
[0] & 3;
3454 recv_msg
->user
= user
;
3455 recv_msg
->user_msg_data
= NULL
;
3456 recv_msg
->recv_type
= IPMI_OEM_RECV_TYPE
;
3457 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3458 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3459 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3462 * The message starts at byte 4 which follows the
3463 * the Channel Byte in the "GET MESSAGE" command
3465 recv_msg
->msg
.data_len
= msg
->rsp_size
- 4;
3466 memcpy(recv_msg
->msg_data
,
3469 deliver_response(recv_msg
);
3476 static void copy_event_into_recv_msg(struct ipmi_recv_msg
*recv_msg
,
3477 struct ipmi_smi_msg
*msg
)
3479 struct ipmi_system_interface_addr
*smi_addr
;
3481 recv_msg
->msgid
= 0;
3482 smi_addr
= (struct ipmi_system_interface_addr
*) &(recv_msg
->addr
);
3483 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3484 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3485 smi_addr
->lun
= msg
->rsp
[0] & 3;
3486 recv_msg
->recv_type
= IPMI_ASYNC_EVENT_RECV_TYPE
;
3487 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3488 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3489 memcpy(recv_msg
->msg_data
, &(msg
->rsp
[3]), msg
->rsp_size
- 3);
3490 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3491 recv_msg
->msg
.data_len
= msg
->rsp_size
- 3;
3494 static int handle_read_event_rsp(ipmi_smi_t intf
,
3495 struct ipmi_smi_msg
*msg
)
3497 struct ipmi_recv_msg
*recv_msg
, *recv_msg2
;
3498 struct list_head msgs
;
3501 int deliver_count
= 0;
3502 unsigned long flags
;
3504 if (msg
->rsp_size
< 19) {
3505 /* Message is too small to be an IPMB event. */
3506 ipmi_inc_stat(intf
, invalid_events
);
3510 if (msg
->rsp
[2] != 0) {
3511 /* An error getting the event, just ignore it. */
3515 INIT_LIST_HEAD(&msgs
);
3517 spin_lock_irqsave(&intf
->events_lock
, flags
);
3519 ipmi_inc_stat(intf
, events
);
3522 * Allocate and fill in one message for every user that is
3526 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3527 if (!user
->gets_events
)
3530 recv_msg
= ipmi_alloc_recv_msg();
3533 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
,
3535 list_del(&recv_msg
->link
);
3536 ipmi_free_recv_msg(recv_msg
);
3539 * We couldn't allocate memory for the
3540 * message, so requeue it for handling
3549 copy_event_into_recv_msg(recv_msg
, msg
);
3550 recv_msg
->user
= user
;
3551 kref_get(&user
->refcount
);
3552 list_add_tail(&(recv_msg
->link
), &msgs
);
3556 if (deliver_count
) {
3557 /* Now deliver all the messages. */
3558 list_for_each_entry_safe(recv_msg
, recv_msg2
, &msgs
, link
) {
3559 list_del(&recv_msg
->link
);
3560 deliver_response(recv_msg
);
3562 } else if (intf
->waiting_events_count
< MAX_EVENTS_IN_QUEUE
) {
3564 * No one to receive the message, put it in queue if there's
3565 * not already too many things in the queue.
3567 recv_msg
= ipmi_alloc_recv_msg();
3570 * We couldn't allocate memory for the
3571 * message, so requeue it for handling
3578 copy_event_into_recv_msg(recv_msg
, msg
);
3579 list_add_tail(&(recv_msg
->link
), &(intf
->waiting_events
));
3580 intf
->waiting_events_count
++;
3581 } else if (!intf
->event_msg_printed
) {
3583 * There's too many things in the queue, discard this
3586 printk(KERN_WARNING PFX
"Event queue full, discarding"
3587 " incoming events\n");
3588 intf
->event_msg_printed
= 1;
3592 spin_unlock_irqrestore(&(intf
->events_lock
), flags
);
3597 static int handle_bmc_rsp(ipmi_smi_t intf
,
3598 struct ipmi_smi_msg
*msg
)
3600 struct ipmi_recv_msg
*recv_msg
;
3601 struct ipmi_user
*user
;
3603 recv_msg
= (struct ipmi_recv_msg
*) msg
->user_data
;
3604 if (recv_msg
== NULL
) {
3606 "IPMI message received with no owner. This\n"
3607 "could be because of a malformed message, or\n"
3608 "because of a hardware error. Contact your\n"
3609 "hardware vender for assistance\n");
3613 user
= recv_msg
->user
;
3614 /* Make sure the user still exists. */
3615 if (user
&& !user
->valid
) {
3616 /* The user for the message went away, so give up. */
3617 ipmi_inc_stat(intf
, unhandled_local_responses
);
3618 ipmi_free_recv_msg(recv_msg
);
3620 struct ipmi_system_interface_addr
*smi_addr
;
3622 ipmi_inc_stat(intf
, handled_local_responses
);
3623 recv_msg
->recv_type
= IPMI_RESPONSE_RECV_TYPE
;
3624 recv_msg
->msgid
= msg
->msgid
;
3625 smi_addr
= ((struct ipmi_system_interface_addr
*)
3627 smi_addr
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
3628 smi_addr
->channel
= IPMI_BMC_CHANNEL
;
3629 smi_addr
->lun
= msg
->rsp
[0] & 3;
3630 recv_msg
->msg
.netfn
= msg
->rsp
[0] >> 2;
3631 recv_msg
->msg
.cmd
= msg
->rsp
[1];
3632 memcpy(recv_msg
->msg_data
,
3635 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3636 recv_msg
->msg
.data_len
= msg
->rsp_size
- 2;
3637 deliver_response(recv_msg
);
3644 * Handle a received message. Return 1 if the message should be requeued,
3645 * 0 if the message should be freed, or -1 if the message should not
3646 * be freed or requeued.
3648 static int handle_one_recv_msg(ipmi_smi_t intf
,
3649 struct ipmi_smi_msg
*msg
)
3657 for (m
= 0; m
< msg
->rsp_size
; m
++)
3658 printk(" %2.2x", msg
->rsp
[m
]);
3661 if (msg
->rsp_size
< 2) {
3662 /* Message is too small to be correct. */
3663 printk(KERN_WARNING PFX
"BMC returned to small a message"
3664 " for netfn %x cmd %x, got %d bytes\n",
3665 (msg
->data
[0] >> 2) | 1, msg
->data
[1], msg
->rsp_size
);
3667 /* Generate an error response for the message. */
3668 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3669 msg
->rsp
[1] = msg
->data
[1];
3670 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3672 } else if (((msg
->rsp
[0] >> 2) != ((msg
->data
[0] >> 2) | 1))
3673 || (msg
->rsp
[1] != msg
->data
[1])) {
3675 * The NetFN and Command in the response is not even
3676 * marginally correct.
3678 printk(KERN_WARNING PFX
"BMC returned incorrect response,"
3679 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3680 (msg
->data
[0] >> 2) | 1, msg
->data
[1],
3681 msg
->rsp
[0] >> 2, msg
->rsp
[1]);
3683 /* Generate an error response for the message. */
3684 msg
->rsp
[0] = msg
->data
[0] | (1 << 2);
3685 msg
->rsp
[1] = msg
->data
[1];
3686 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
3690 if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3691 && (msg
->rsp
[1] == IPMI_SEND_MSG_CMD
)
3692 && (msg
->user_data
!= NULL
)) {
3694 * It's a response to a response we sent. For this we
3695 * deliver a send message response to the user.
3697 struct ipmi_recv_msg
*recv_msg
= msg
->user_data
;
3700 if (msg
->rsp_size
< 2)
3701 /* Message is too small to be correct. */
3704 chan
= msg
->data
[2] & 0x0f;
3705 if (chan
>= IPMI_MAX_CHANNELS
)
3706 /* Invalid channel number */
3712 /* Make sure the user still exists. */
3713 if (!recv_msg
->user
|| !recv_msg
->user
->valid
)
3716 recv_msg
->recv_type
= IPMI_RESPONSE_RESPONSE_TYPE
;
3717 recv_msg
->msg
.data
= recv_msg
->msg_data
;
3718 recv_msg
->msg
.data_len
= 1;
3719 recv_msg
->msg_data
[0] = msg
->rsp
[2];
3720 deliver_response(recv_msg
);
3721 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3722 && (msg
->rsp
[1] == IPMI_GET_MSG_CMD
)) {
3723 /* It's from the receive queue. */
3724 chan
= msg
->rsp
[3] & 0xf;
3725 if (chan
>= IPMI_MAX_CHANNELS
) {
3726 /* Invalid channel number */
3732 * We need to make sure the channels have been initialized.
3733 * The channel_handler routine will set the "curr_channel"
3734 * equal to or greater than IPMI_MAX_CHANNELS when all the
3735 * channels for this interface have been initialized.
3737 if (intf
->curr_channel
< IPMI_MAX_CHANNELS
) {
3738 requeue
= 0; /* Throw the message away */
3742 switch (intf
->channels
[chan
].medium
) {
3743 case IPMI_CHANNEL_MEDIUM_IPMB
:
3744 if (msg
->rsp
[4] & 0x04) {
3746 * It's a response, so find the
3747 * requesting message and send it up.
3749 requeue
= handle_ipmb_get_msg_rsp(intf
, msg
);
3752 * It's a command to the SMS from some other
3753 * entity. Handle that.
3755 requeue
= handle_ipmb_get_msg_cmd(intf
, msg
);
3759 case IPMI_CHANNEL_MEDIUM_8023LAN
:
3760 case IPMI_CHANNEL_MEDIUM_ASYNC
:
3761 if (msg
->rsp
[6] & 0x04) {
3763 * It's a response, so find the
3764 * requesting message and send it up.
3766 requeue
= handle_lan_get_msg_rsp(intf
, msg
);
3769 * It's a command to the SMS from some other
3770 * entity. Handle that.
3772 requeue
= handle_lan_get_msg_cmd(intf
, msg
);
3777 /* Check for OEM Channels. Clients had better
3778 register for these commands. */
3779 if ((intf
->channels
[chan
].medium
3780 >= IPMI_CHANNEL_MEDIUM_OEM_MIN
)
3781 && (intf
->channels
[chan
].medium
3782 <= IPMI_CHANNEL_MEDIUM_OEM_MAX
)) {
3783 requeue
= handle_oem_get_msg_cmd(intf
, msg
);
3786 * We don't handle the channel type, so just
3793 } else if ((msg
->rsp
[0] == ((IPMI_NETFN_APP_REQUEST
|1) << 2))
3794 && (msg
->rsp
[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD
)) {
3795 /* It's an asynchronous event. */
3796 requeue
= handle_read_event_rsp(intf
, msg
);
3798 /* It's a response from the local BMC. */
3799 requeue
= handle_bmc_rsp(intf
, msg
);
3807 * If there are messages in the queue or pretimeouts, handle them.
3809 static void handle_new_recv_msgs(ipmi_smi_t intf
)
3811 struct ipmi_smi_msg
*smi_msg
;
3812 unsigned long flags
= 0;
3814 int run_to_completion
= intf
->run_to_completion
;
3816 /* See if any waiting messages need to be processed. */
3817 if (!run_to_completion
)
3818 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
3819 while (!list_empty(&intf
->waiting_rcv_msgs
)) {
3820 smi_msg
= list_entry(intf
->waiting_rcv_msgs
.next
,
3821 struct ipmi_smi_msg
, link
);
3822 if (!run_to_completion
)
3823 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
,
3825 rv
= handle_one_recv_msg(intf
, smi_msg
);
3826 if (!run_to_completion
)
3827 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
3830 * To preserve message order, quit if we
3831 * can't handle a message.
3835 list_del(&smi_msg
->link
);
3837 /* Message handled */
3838 ipmi_free_smi_msg(smi_msg
);
3839 /* If rv < 0, fatal error, del but don't free. */
3842 if (!run_to_completion
)
3843 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
, flags
);
3846 * If the pretimout count is non-zero, decrement one from it and
3847 * deliver pretimeouts to all the users.
3849 if (atomic_add_unless(&intf
->watchdog_pretimeouts_to_deliver
, -1, 0)) {
3853 list_for_each_entry_rcu(user
, &intf
->users
, link
) {
3854 if (user
->handler
->ipmi_watchdog_pretimeout
)
3855 user
->handler
->ipmi_watchdog_pretimeout(
3856 user
->handler_data
);
3862 static void smi_recv_tasklet(unsigned long val
)
3864 unsigned long flags
= 0; /* keep us warning-free. */
3865 ipmi_smi_t intf
= (ipmi_smi_t
) val
;
3866 int run_to_completion
= intf
->run_to_completion
;
3867 struct ipmi_smi_msg
*newmsg
= NULL
;
3870 * Start the next message if available.
3872 * Do this here, not in the actual receiver, because we may deadlock
3873 * because the lower layer is allowed to hold locks while calling
3876 if (!run_to_completion
)
3877 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
3878 if (intf
->curr_msg
== NULL
&& !intf
->in_shutdown
) {
3879 struct list_head
*entry
= NULL
;
3881 /* Pick the high priority queue first. */
3882 if (!list_empty(&intf
->hp_xmit_msgs
))
3883 entry
= intf
->hp_xmit_msgs
.next
;
3884 else if (!list_empty(&intf
->xmit_msgs
))
3885 entry
= intf
->xmit_msgs
.next
;
3889 newmsg
= list_entry(entry
, struct ipmi_smi_msg
, link
);
3890 intf
->curr_msg
= newmsg
;
3893 if (!run_to_completion
)
3894 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
3896 intf
->handlers
->sender(intf
->send_info
, newmsg
);
3898 handle_new_recv_msgs(intf
);
3901 /* Handle a new message from the lower layer. */
3902 void ipmi_smi_msg_received(ipmi_smi_t intf
,
3903 struct ipmi_smi_msg
*msg
)
3905 unsigned long flags
= 0; /* keep us warning-free. */
3906 int run_to_completion
= intf
->run_to_completion
;
3908 if ((msg
->data_size
>= 2)
3909 && (msg
->data
[0] == (IPMI_NETFN_APP_REQUEST
<< 2))
3910 && (msg
->data
[1] == IPMI_SEND_MSG_CMD
)
3911 && (msg
->user_data
== NULL
)) {
3913 if (intf
->in_shutdown
)
3917 * This is the local response to a command send, start
3918 * the timer for these. The user_data will not be
3919 * NULL if this is a response send, and we will let
3920 * response sends just go through.
3924 * Check for errors, if we get certain errors (ones
3925 * that mean basically we can try again later), we
3926 * ignore them and start the timer. Otherwise we
3927 * report the error immediately.
3929 if ((msg
->rsp_size
>= 3) && (msg
->rsp
[2] != 0)
3930 && (msg
->rsp
[2] != IPMI_NODE_BUSY_ERR
)
3931 && (msg
->rsp
[2] != IPMI_LOST_ARBITRATION_ERR
)
3932 && (msg
->rsp
[2] != IPMI_BUS_ERR
)
3933 && (msg
->rsp
[2] != IPMI_NAK_ON_WRITE_ERR
)) {
3934 int chan
= msg
->rsp
[3] & 0xf;
3936 /* Got an error sending the message, handle it. */
3937 if (chan
>= IPMI_MAX_CHANNELS
)
3938 ; /* This shouldn't happen */
3939 else if ((intf
->channels
[chan
].medium
3940 == IPMI_CHANNEL_MEDIUM_8023LAN
)
3941 || (intf
->channels
[chan
].medium
3942 == IPMI_CHANNEL_MEDIUM_ASYNC
))
3943 ipmi_inc_stat(intf
, sent_lan_command_errs
);
3945 ipmi_inc_stat(intf
, sent_ipmb_command_errs
);
3946 intf_err_seq(intf
, msg
->msgid
, msg
->rsp
[2]);
3948 /* The message was sent, start the timer. */
3949 intf_start_seq_timer(intf
, msg
->msgid
);
3952 ipmi_free_smi_msg(msg
);
3955 * To preserve message order, we keep a queue and deliver from
3958 if (!run_to_completion
)
3959 spin_lock_irqsave(&intf
->waiting_rcv_msgs_lock
, flags
);
3960 list_add_tail(&msg
->link
, &intf
->waiting_rcv_msgs
);
3961 if (!run_to_completion
)
3962 spin_unlock_irqrestore(&intf
->waiting_rcv_msgs_lock
,
3966 if (!run_to_completion
)
3967 spin_lock_irqsave(&intf
->xmit_msgs_lock
, flags
);
3969 * We can get an asynchronous event or receive message in addition
3970 * to commands we send.
3972 if (msg
== intf
->curr_msg
)
3973 intf
->curr_msg
= NULL
;
3974 if (!run_to_completion
)
3975 spin_unlock_irqrestore(&intf
->xmit_msgs_lock
, flags
);
3977 if (run_to_completion
)
3978 smi_recv_tasklet((unsigned long) intf
);
3980 tasklet_schedule(&intf
->recv_tasklet
);
3982 EXPORT_SYMBOL(ipmi_smi_msg_received
);
3984 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf
)
3986 if (intf
->in_shutdown
)
3989 atomic_set(&intf
->watchdog_pretimeouts_to_deliver
, 1);
3990 tasklet_schedule(&intf
->recv_tasklet
);
3992 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout
);
3994 static struct ipmi_smi_msg
*
3995 smi_from_recv_msg(ipmi_smi_t intf
, struct ipmi_recv_msg
*recv_msg
,
3996 unsigned char seq
, long seqid
)
3998 struct ipmi_smi_msg
*smi_msg
= ipmi_alloc_smi_msg();
4001 * If we can't allocate the message, then just return, we
4002 * get 4 retries, so this should be ok.
4006 memcpy(smi_msg
->data
, recv_msg
->msg
.data
, recv_msg
->msg
.data_len
);
4007 smi_msg
->data_size
= recv_msg
->msg
.data_len
;
4008 smi_msg
->msgid
= STORE_SEQ_IN_MSGID(seq
, seqid
);
4014 for (m
= 0; m
< smi_msg
->data_size
; m
++)
4015 printk(" %2.2x", smi_msg
->data
[m
]);
4022 static void check_msg_timeout(ipmi_smi_t intf
, struct seq_table
*ent
,
4023 struct list_head
*timeouts
, long timeout_period
,
4024 int slot
, unsigned long *flags
,
4025 unsigned int *waiting_msgs
)
4027 struct ipmi_recv_msg
*msg
;
4028 const struct ipmi_smi_handlers
*handlers
;
4030 if (intf
->in_shutdown
)
4036 ent
->timeout
-= timeout_period
;
4037 if (ent
->timeout
> 0) {
4042 if (ent
->retries_left
== 0) {
4043 /* The message has used all its retries. */
4045 msg
= ent
->recv_msg
;
4046 list_add_tail(&msg
->link
, timeouts
);
4048 ipmi_inc_stat(intf
, timed_out_ipmb_broadcasts
);
4049 else if (is_lan_addr(&ent
->recv_msg
->addr
))
4050 ipmi_inc_stat(intf
, timed_out_lan_commands
);
4052 ipmi_inc_stat(intf
, timed_out_ipmb_commands
);
4054 struct ipmi_smi_msg
*smi_msg
;
4055 /* More retries, send again. */
4060 * Start with the max timer, set to normal timer after
4061 * the message is sent.
4063 ent
->timeout
= MAX_MSG_TIMEOUT
;
4064 ent
->retries_left
--;
4065 smi_msg
= smi_from_recv_msg(intf
, ent
->recv_msg
, slot
,
4068 if (is_lan_addr(&ent
->recv_msg
->addr
))
4070 dropped_rexmit_lan_commands
);
4073 dropped_rexmit_ipmb_commands
);
4077 spin_unlock_irqrestore(&intf
->seq_lock
, *flags
);
4080 * Send the new message. We send with a zero
4081 * priority. It timed out, I doubt time is that
4082 * critical now, and high priority messages are really
4083 * only for messages to the local MC, which don't get
4086 handlers
= intf
->handlers
;
4088 if (is_lan_addr(&ent
->recv_msg
->addr
))
4090 retransmitted_lan_commands
);
4093 retransmitted_ipmb_commands
);
4095 smi_send(intf
, handlers
, smi_msg
, 0);
4097 ipmi_free_smi_msg(smi_msg
);
4099 spin_lock_irqsave(&intf
->seq_lock
, *flags
);
4103 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf
, long timeout_period
)
4105 struct list_head timeouts
;
4106 struct ipmi_recv_msg
*msg
, *msg2
;
4107 unsigned long flags
;
4109 unsigned int waiting_msgs
= 0;
4112 * Go through the seq table and find any messages that
4113 * have timed out, putting them in the timeouts
4116 INIT_LIST_HEAD(&timeouts
);
4117 spin_lock_irqsave(&intf
->seq_lock
, flags
);
4118 for (i
= 0; i
< IPMI_IPMB_NUM_SEQ
; i
++)
4119 check_msg_timeout(intf
, &(intf
->seq_table
[i
]),
4120 &timeouts
, timeout_period
, i
,
4121 &flags
, &waiting_msgs
);
4122 spin_unlock_irqrestore(&intf
->seq_lock
, flags
);
4124 list_for_each_entry_safe(msg
, msg2
, &timeouts
, link
)
4125 deliver_err_response(msg
, IPMI_TIMEOUT_COMPLETION_CODE
);
4128 * Maintenance mode handling. Check the timeout
4129 * optimistically before we claim the lock. It may
4130 * mean a timeout gets missed occasionally, but that
4131 * only means the timeout gets extended by one period
4132 * in that case. No big deal, and it avoids the lock
4135 if (intf
->auto_maintenance_timeout
> 0) {
4136 spin_lock_irqsave(&intf
->maintenance_mode_lock
, flags
);
4137 if (intf
->auto_maintenance_timeout
> 0) {
4138 intf
->auto_maintenance_timeout
4140 if (!intf
->maintenance_mode
4141 && (intf
->auto_maintenance_timeout
<= 0)) {
4142 intf
->maintenance_mode_enable
= false;
4143 maintenance_mode_update(intf
);
4146 spin_unlock_irqrestore(&intf
->maintenance_mode_lock
,
4150 tasklet_schedule(&intf
->recv_tasklet
);
4152 return waiting_msgs
;
4155 static void ipmi_request_event(ipmi_smi_t intf
)
4157 /* No event requests when in maintenance mode. */
4158 if (intf
->maintenance_mode_enable
)
4161 if (!intf
->in_shutdown
)
4162 intf
->handlers
->request_events(intf
->send_info
);
4165 static struct timer_list ipmi_timer
;
4167 static atomic_t stop_operation
;
4169 static void ipmi_timeout(unsigned long data
)
4174 if (atomic_read(&stop_operation
))
4178 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4181 if (atomic_read(&intf
->event_waiters
)) {
4182 intf
->ticks_to_req_ev
--;
4183 if (intf
->ticks_to_req_ev
== 0) {
4184 ipmi_request_event(intf
);
4185 intf
->ticks_to_req_ev
= IPMI_REQUEST_EV_TIME
;
4190 lnt
+= ipmi_timeout_handler(intf
, IPMI_TIMEOUT_TIME
);
4193 if (lnt
!= intf
->last_needs_timer
&&
4194 intf
->handlers
->set_need_watch
)
4195 intf
->handlers
->set_need_watch(intf
->send_info
, lnt
);
4196 intf
->last_needs_timer
= lnt
;
4203 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4206 static void need_waiter(ipmi_smi_t intf
)
4208 /* Racy, but worst case we start the timer twice. */
4209 if (!timer_pending(&ipmi_timer
))
4210 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4213 static atomic_t smi_msg_inuse_count
= ATOMIC_INIT(0);
4214 static atomic_t recv_msg_inuse_count
= ATOMIC_INIT(0);
4216 static void free_smi_msg(struct ipmi_smi_msg
*msg
)
4218 atomic_dec(&smi_msg_inuse_count
);
4222 struct ipmi_smi_msg
*ipmi_alloc_smi_msg(void)
4224 struct ipmi_smi_msg
*rv
;
4225 rv
= kmalloc(sizeof(struct ipmi_smi_msg
), GFP_ATOMIC
);
4227 rv
->done
= free_smi_msg
;
4228 rv
->user_data
= NULL
;
4229 atomic_inc(&smi_msg_inuse_count
);
4233 EXPORT_SYMBOL(ipmi_alloc_smi_msg
);
4235 static void free_recv_msg(struct ipmi_recv_msg
*msg
)
4237 atomic_dec(&recv_msg_inuse_count
);
4241 static struct ipmi_recv_msg
*ipmi_alloc_recv_msg(void)
4243 struct ipmi_recv_msg
*rv
;
4245 rv
= kmalloc(sizeof(struct ipmi_recv_msg
), GFP_ATOMIC
);
4248 rv
->done
= free_recv_msg
;
4249 atomic_inc(&recv_msg_inuse_count
);
4254 void ipmi_free_recv_msg(struct ipmi_recv_msg
*msg
)
4257 kref_put(&msg
->user
->refcount
, free_user
);
4260 EXPORT_SYMBOL(ipmi_free_recv_msg
);
4262 #ifdef CONFIG_IPMI_PANIC_EVENT
4264 static atomic_t panic_done_count
= ATOMIC_INIT(0);
4266 static void dummy_smi_done_handler(struct ipmi_smi_msg
*msg
)
4268 atomic_dec(&panic_done_count
);
4271 static void dummy_recv_done_handler(struct ipmi_recv_msg
*msg
)
4273 atomic_dec(&panic_done_count
);
4277 * Inside a panic, send a message and wait for a response.
4279 static void ipmi_panic_request_and_wait(ipmi_smi_t intf
,
4280 struct ipmi_addr
*addr
,
4281 struct kernel_ipmi_msg
*msg
)
4283 struct ipmi_smi_msg smi_msg
;
4284 struct ipmi_recv_msg recv_msg
;
4287 smi_msg
.done
= dummy_smi_done_handler
;
4288 recv_msg
.done
= dummy_recv_done_handler
;
4289 atomic_add(2, &panic_done_count
);
4290 rv
= i_ipmi_request(NULL
,
4299 intf
->channels
[0].address
,
4300 intf
->channels
[0].lun
,
4301 0, 1); /* Don't retry, and don't wait. */
4303 atomic_sub(2, &panic_done_count
);
4304 else if (intf
->handlers
->flush_messages
)
4305 intf
->handlers
->flush_messages(intf
->send_info
);
4307 while (atomic_read(&panic_done_count
) != 0)
4311 #ifdef CONFIG_IPMI_PANIC_STRING
4312 static void event_receiver_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4314 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4315 && (msg
->msg
.netfn
== IPMI_NETFN_SENSOR_EVENT_RESPONSE
)
4316 && (msg
->msg
.cmd
== IPMI_GET_EVENT_RECEIVER_CMD
)
4317 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4318 /* A get event receiver command, save it. */
4319 intf
->event_receiver
= msg
->msg
.data
[1];
4320 intf
->event_receiver_lun
= msg
->msg
.data
[2] & 0x3;
4324 static void device_id_fetcher(ipmi_smi_t intf
, struct ipmi_recv_msg
*msg
)
4326 if ((msg
->addr
.addr_type
== IPMI_SYSTEM_INTERFACE_ADDR_TYPE
)
4327 && (msg
->msg
.netfn
== IPMI_NETFN_APP_RESPONSE
)
4328 && (msg
->msg
.cmd
== IPMI_GET_DEVICE_ID_CMD
)
4329 && (msg
->msg
.data
[0] == IPMI_CC_NO_ERROR
)) {
4331 * A get device id command, save if we are an event
4332 * receiver or generator.
4334 intf
->local_sel_device
= (msg
->msg
.data
[6] >> 2) & 1;
4335 intf
->local_event_generator
= (msg
->msg
.data
[6] >> 5) & 1;
4340 static void send_panic_events(char *str
)
4342 struct kernel_ipmi_msg msg
;
4344 unsigned char data
[16];
4345 struct ipmi_system_interface_addr
*si
;
4346 struct ipmi_addr addr
;
4348 si
= (struct ipmi_system_interface_addr
*) &addr
;
4349 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4350 si
->channel
= IPMI_BMC_CHANNEL
;
4353 /* Fill in an event telling that we have failed. */
4354 msg
.netfn
= 0x04; /* Sensor or Event. */
4355 msg
.cmd
= 2; /* Platform event command. */
4358 data
[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4359 data
[1] = 0x03; /* This is for IPMI 1.0. */
4360 data
[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4361 data
[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4362 data
[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4365 * Put a few breadcrumbs in. Hopefully later we can add more things
4366 * to make the panic events more useful.
4374 /* For every registered interface, send the event. */
4375 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4376 if (!intf
->handlers
)
4377 /* Interface is not ready. */
4380 /* Send the event announcing the panic. */
4381 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4384 #ifdef CONFIG_IPMI_PANIC_STRING
4386 * On every interface, dump a bunch of OEM event holding the
4392 /* For every registered interface, send the event. */
4393 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4395 struct ipmi_ipmb_addr
*ipmb
;
4398 if (intf
->intf_num
== -1)
4399 /* Interface was not ready yet. */
4403 * intf_num is used as an marker to tell if the
4404 * interface is valid. Thus we need a read barrier to
4405 * make sure data fetched before checking intf_num
4411 * First job here is to figure out where to send the
4412 * OEM events. There's no way in IPMI to send OEM
4413 * events using an event send command, so we have to
4414 * find the SEL to put them in and stick them in
4418 /* Get capabilities from the get device id. */
4419 intf
->local_sel_device
= 0;
4420 intf
->local_event_generator
= 0;
4421 intf
->event_receiver
= 0;
4423 /* Request the device info from the local MC. */
4424 msg
.netfn
= IPMI_NETFN_APP_REQUEST
;
4425 msg
.cmd
= IPMI_GET_DEVICE_ID_CMD
;
4428 intf
->null_user_handler
= device_id_fetcher
;
4429 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4431 if (intf
->local_event_generator
) {
4432 /* Request the event receiver from the local MC. */
4433 msg
.netfn
= IPMI_NETFN_SENSOR_EVENT_REQUEST
;
4434 msg
.cmd
= IPMI_GET_EVENT_RECEIVER_CMD
;
4437 intf
->null_user_handler
= event_receiver_fetcher
;
4438 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4440 intf
->null_user_handler
= NULL
;
4443 * Validate the event receiver. The low bit must not
4444 * be 1 (it must be a valid IPMB address), it cannot
4445 * be zero, and it must not be my address.
4447 if (((intf
->event_receiver
& 1) == 0)
4448 && (intf
->event_receiver
!= 0)
4449 && (intf
->event_receiver
!= intf
->channels
[0].address
)) {
4451 * The event receiver is valid, send an IPMB
4454 ipmb
= (struct ipmi_ipmb_addr
*) &addr
;
4455 ipmb
->addr_type
= IPMI_IPMB_ADDR_TYPE
;
4456 ipmb
->channel
= 0; /* FIXME - is this right? */
4457 ipmb
->lun
= intf
->event_receiver_lun
;
4458 ipmb
->slave_addr
= intf
->event_receiver
;
4459 } else if (intf
->local_sel_device
) {
4461 * The event receiver was not valid (or was
4462 * me), but I am an SEL device, just dump it
4465 si
= (struct ipmi_system_interface_addr
*) &addr
;
4466 si
->addr_type
= IPMI_SYSTEM_INTERFACE_ADDR_TYPE
;
4467 si
->channel
= IPMI_BMC_CHANNEL
;
4470 continue; /* No where to send the event. */
4472 msg
.netfn
= IPMI_NETFN_STORAGE_REQUEST
; /* Storage. */
4473 msg
.cmd
= IPMI_ADD_SEL_ENTRY_CMD
;
4479 int size
= strlen(p
);
4485 data
[2] = 0xf0; /* OEM event without timestamp. */
4486 data
[3] = intf
->channels
[0].address
;
4487 data
[4] = j
++; /* sequence # */
4489 * Always give 11 bytes, so strncpy will fill
4490 * it with zeroes for me.
4492 strncpy(data
+5, p
, 11);
4495 ipmi_panic_request_and_wait(intf
, &addr
, &msg
);
4498 #endif /* CONFIG_IPMI_PANIC_STRING */
4500 #endif /* CONFIG_IPMI_PANIC_EVENT */
4502 static int has_panicked
;
4504 static int panic_event(struct notifier_block
*this,
4505 unsigned long event
,
4514 /* For every registered interface, set it to run to completion. */
4515 list_for_each_entry_rcu(intf
, &ipmi_interfaces
, link
) {
4516 if (!intf
->handlers
)
4517 /* Interface is not ready. */
4521 * If we were interrupted while locking xmit_msgs_lock or
4522 * waiting_rcv_msgs_lock, the corresponding list may be
4523 * corrupted. In this case, drop items on the list for
4526 if (!spin_trylock(&intf
->xmit_msgs_lock
)) {
4527 INIT_LIST_HEAD(&intf
->xmit_msgs
);
4528 INIT_LIST_HEAD(&intf
->hp_xmit_msgs
);
4530 spin_unlock(&intf
->xmit_msgs_lock
);
4532 if (!spin_trylock(&intf
->waiting_rcv_msgs_lock
))
4533 INIT_LIST_HEAD(&intf
->waiting_rcv_msgs
);
4535 spin_unlock(&intf
->waiting_rcv_msgs_lock
);
4537 intf
->run_to_completion
= 1;
4538 intf
->handlers
->set_run_to_completion(intf
->send_info
, 1);
4541 #ifdef CONFIG_IPMI_PANIC_EVENT
4542 send_panic_events(ptr
);
4548 static struct notifier_block panic_block
= {
4549 .notifier_call
= panic_event
,
4551 .priority
= 200 /* priority: INT_MAX >= x >= 0 */
4554 static int ipmi_init_msghandler(void)
4561 rv
= driver_register(&ipmidriver
.driver
);
4563 printk(KERN_ERR PFX
"Could not register IPMI driver\n");
4567 printk(KERN_INFO
"ipmi message handler version "
4568 IPMI_DRIVER_VERSION
"\n");
4570 #ifdef CONFIG_PROC_FS
4571 proc_ipmi_root
= proc_mkdir("ipmi", NULL
);
4572 if (!proc_ipmi_root
) {
4573 printk(KERN_ERR PFX
"Unable to create IPMI proc dir");
4574 driver_unregister(&ipmidriver
.driver
);
4578 #endif /* CONFIG_PROC_FS */
4580 setup_timer(&ipmi_timer
, ipmi_timeout
, 0);
4581 mod_timer(&ipmi_timer
, jiffies
+ IPMI_TIMEOUT_JIFFIES
);
4583 atomic_notifier_chain_register(&panic_notifier_list
, &panic_block
);
4590 static int __init
ipmi_init_msghandler_mod(void)
4592 ipmi_init_msghandler();
4596 static void __exit
cleanup_ipmi(void)
4603 atomic_notifier_chain_unregister(&panic_notifier_list
, &panic_block
);
4606 * This can't be called if any interfaces exist, so no worry
4607 * about shutting down the interfaces.
4611 * Tell the timer to stop, then wait for it to stop. This
4612 * avoids problems with race conditions removing the timer
4615 atomic_inc(&stop_operation
);
4616 del_timer_sync(&ipmi_timer
);
4618 #ifdef CONFIG_PROC_FS
4619 proc_remove(proc_ipmi_root
);
4620 #endif /* CONFIG_PROC_FS */
4622 driver_unregister(&ipmidriver
.driver
);
4626 /* Check for buffer leaks. */
4627 count
= atomic_read(&smi_msg_inuse_count
);
4629 printk(KERN_WARNING PFX
"SMI message count %d at exit\n",
4631 count
= atomic_read(&recv_msg_inuse_count
);
4633 printk(KERN_WARNING PFX
"recv message count %d at exit\n",
4636 module_exit(cleanup_ipmi
);
4638 module_init(ipmi_init_msghandler_mod
);
4639 MODULE_LICENSE("GPL");
4640 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4641 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4643 MODULE_VERSION(IPMI_DRIVER_VERSION
);