2 * Port on Texas Instruments TMS320C6x architecture
4 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5 * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/div64.h>
33 #include <asm/setup.h>
35 #include <asm/clock.h>
37 #include <asm/special_insns.h>
39 static const char *c6x_soc_name
;
42 EXPORT_SYMBOL_GPL(c6x_num_cores
);
44 unsigned int c6x_silicon_rev
;
45 EXPORT_SYMBOL_GPL(c6x_silicon_rev
);
48 * Device status register. This holds information
49 * about device configuration needed by some drivers.
51 unsigned int c6x_devstat
;
52 EXPORT_SYMBOL_GPL(c6x_devstat
);
55 * Some SoCs have fuse registers holding a unique MAC
56 * address. This is parsed out of the device tree with
57 * the resulting MAC being held here.
59 unsigned char c6x_fuse_mac
[6];
61 unsigned long memory_start
;
62 unsigned long memory_end
;
64 unsigned long ram_start
;
65 unsigned long ram_end
;
67 /* Uncached memory for DMA consistent use (memdma=) */
68 static unsigned long dma_start __initdata
;
69 static unsigned long dma_size __initdata
;
73 const char *cpu_voltage
;
81 static DEFINE_PER_CPU(struct cpuinfo_c6x
, cpu_data
);
83 unsigned int ticks_per_ns_scaled
;
84 EXPORT_SYMBOL(ticks_per_ns_scaled
);
86 unsigned int c6x_core_freq
;
88 static void __init
get_cpuinfo(void)
90 unsigned cpu_id
, rev_id
, csr
;
91 struct clk
*coreclk
= clk_get_sys(NULL
, "core");
92 unsigned long core_khz
;
94 struct cpuinfo_c6x
*p
;
95 struct device_node
*node
, *np
;
97 p
= &per_cpu(cpu_data
, smp_processor_id());
100 c6x_core_freq
= clk_get_rate(coreclk
);
103 "Cannot find core clock frequency. Using 700MHz\n");
104 c6x_core_freq
= 700000000;
107 core_khz
= c6x_core_freq
/ 1000;
109 tmp
= (uint64_t)core_khz
<< C6X_NDELAY_SCALE
;
110 do_div(tmp
, 1000000);
111 ticks_per_ns_scaled
= tmp
;
115 rev_id
= (csr
>> 16) & 0xff;
119 p
->cpu_voltage
= "unknown";
123 p
->cpu_name
= "C67x";
127 p
->cpu_name
= "C62x";
130 p
->cpu_name
= "C64x";
133 p
->cpu_name
= "C64x";
136 p
->cpu_name
= "C64x+";
137 p
->cpu_voltage
= "1.2";
140 p
->cpu_name
= "C66X";
141 p
->cpu_voltage
= "1.2";
144 p
->cpu_name
= "unknown";
152 p
->cpu_rev
= "DM640/DM641/DM642/DM643";
153 p
->cpu_voltage
= "1.2 - 1.4";
155 p
->cpu_rev
= "C6201";
156 p
->cpu_voltage
= "2.5";
160 p
->cpu_rev
= "C6201B/C6202/C6211";
161 p
->cpu_voltage
= "1.8";
164 p
->cpu_rev
= "C6202B/C6203/C6204/C6205";
165 p
->cpu_voltage
= "1.5";
168 p
->cpu_rev
= "C6701 revision 0 (early CPU)";
169 p
->cpu_voltage
= "1.8";
172 p
->cpu_rev
= "C6701/C6711/C6712";
173 p
->cpu_voltage
= "1.8";
177 p
->cpu_voltage
= "1.5";
180 p
->cpu_rev
= "unknown";
183 p
->cpu_rev
= p
->__cpu_rev
;
184 snprintf(p
->__cpu_rev
, sizeof(p
->__cpu_rev
), "0x%x", cpu_id
);
187 p
->core_id
= get_coreid();
189 node
= of_find_node_by_name(NULL
, "cpus");
191 for_each_child_of_node(node
, np
)
192 if (!strcmp("cpu", np
->name
))
197 node
= of_find_node_by_name(NULL
, "soc");
199 if (of_property_read_string(node
, "model", &c6x_soc_name
))
200 c6x_soc_name
= "unknown";
203 c6x_soc_name
= "unknown";
205 printk(KERN_INFO
"CPU%d: %s rev %s, %s volts, %uMHz\n",
206 p
->core_id
, p
->cpu_name
, p
->cpu_rev
,
207 p
->cpu_voltage
, c6x_core_freq
/ 1000000);
211 * Early parsing of the command line
213 static u32 mem_size __initdata
;
215 /* "mem=" parsing. */
216 static int __init
early_mem(char *p
)
221 mem_size
= memparse(p
, &p
);
222 /* don't remove all of memory when handling "mem={invalid}" */
228 early_param("mem", early_mem
);
230 /* "memdma=<size>[@<address>]" parsing. */
231 static int __init
early_memdma(char *p
)
236 dma_size
= memparse(p
, &p
);
238 dma_start
= memparse(p
, &p
);
242 early_param("memdma", early_memdma
);
244 int __init
c6x_add_memory(phys_addr_t start
, unsigned long size
)
246 static int ram_found __initdata
;
248 /* We only handle one bank (the one with PAGE_OFFSET) for now */
252 if (start
> PAGE_OFFSET
|| PAGE_OFFSET
>= (start
+ size
))
256 ram_end
= start
+ size
;
263 * Do early machine setup and device tree parsing. This is called very
264 * early on the boot process.
266 notrace
void __init
machine_init(unsigned long dt_ptr
)
268 struct boot_param_header
*dtb
= __va(dt_ptr
);
269 struct boot_param_header
*fdt
= (struct boot_param_header
*)_fdt_start
;
271 /* interrupts must be masked */
275 * Set the Interrupt Service Table (IST) to the beginning of the
278 set_ist(_vectors_start
);
283 * dtb is passed in from bootloader.
284 * fdt is linked in blob.
286 if (dtb
&& dtb
!= fdt
)
289 /* Do some early initialization based on the flat device tree */
290 early_init_dt_scan(fdt
);
295 void __init
setup_arch(char **cmdline_p
)
298 struct memblock_region
*reg
;
300 printk(KERN_INFO
"Initializing kernel\n");
302 /* Initialize command line */
303 *cmdline_p
= boot_command_line
;
305 memory_end
= ram_end
;
306 memory_end
&= ~(PAGE_SIZE
- 1);
308 if (mem_size
&& (PAGE_OFFSET
+ PAGE_ALIGN(mem_size
)) < memory_end
)
309 memory_end
= PAGE_OFFSET
+ PAGE_ALIGN(mem_size
);
311 /* add block that this kernel can use */
312 memblock_add(PAGE_OFFSET
, memory_end
- PAGE_OFFSET
);
314 /* reserve kernel text/data/bss */
315 memblock_reserve(PAGE_OFFSET
,
316 PAGE_ALIGN((unsigned long)&_end
- PAGE_OFFSET
));
319 /* align to cacheability granularity */
320 dma_size
= CACHE_REGION_END(dma_size
);
323 dma_start
= memory_end
- dma_size
;
325 /* align to cacheability granularity */
326 dma_start
= CACHE_REGION_START(dma_start
);
328 /* reserve DMA memory taken from kernel memory */
329 if (memblock_is_region_memory(dma_start
, dma_size
))
330 memblock_reserve(dma_start
, dma_size
);
333 memory_start
= PAGE_ALIGN((unsigned int) &_end
);
335 printk(KERN_INFO
"Memory Start=%08lx, Memory End=%08lx\n",
336 memory_start
, memory_end
);
338 #ifdef CONFIG_BLK_DEV_INITRD
340 * Reserve initrd memory if in kernel memory.
342 if (initrd_start
< initrd_end
)
343 if (memblock_is_region_memory(initrd_start
,
344 initrd_end
- initrd_start
))
345 memblock_reserve(initrd_start
,
346 initrd_end
- initrd_start
);
349 init_mm
.start_code
= (unsigned long) &_stext
;
350 init_mm
.end_code
= (unsigned long) &_etext
;
351 init_mm
.end_data
= memory_start
;
352 init_mm
.brk
= memory_start
;
355 * Give all the memory to the bootmap allocator, tell it to put the
356 * boot mem_map at the start of memory
358 bootmap_size
= init_bootmem_node(NODE_DATA(0),
359 memory_start
>> PAGE_SHIFT
,
360 PAGE_OFFSET
>> PAGE_SHIFT
,
361 memory_end
>> PAGE_SHIFT
);
362 memblock_reserve(memory_start
, bootmap_size
);
364 unflatten_device_tree();
368 /* Set the whole external memory as non-cacheable */
369 disable_caching(ram_start
, ram_end
- 1);
371 /* Set caching of external RAM used by Linux */
372 for_each_memblock(memory
, reg
)
373 enable_caching(CACHE_REGION_START(reg
->base
),
374 CACHE_REGION_START(reg
->base
+ reg
->size
- 1));
376 #ifdef CONFIG_BLK_DEV_INITRD
378 * Enable caching for initrd which falls outside kernel memory.
380 if (initrd_start
< initrd_end
) {
381 if (!memblock_is_region_memory(initrd_start
,
382 initrd_end
- initrd_start
))
383 enable_caching(CACHE_REGION_START(initrd_start
),
384 CACHE_REGION_START(initrd_end
- 1));
389 * Disable caching for dma coherent memory taken from kernel memory.
391 if (dma_size
&& memblock_is_region_memory(dma_start
, dma_size
))
392 disable_caching(dma_start
,
393 CACHE_REGION_START(dma_start
+ dma_size
- 1));
395 /* Initialize the coherent memory allocator */
396 coherent_mem_init(dma_start
, dma_size
);
399 * Free all memory as a starting point.
401 free_bootmem(PAGE_OFFSET
, memory_end
- PAGE_OFFSET
);
404 * Then reserve memory which is already being used.
406 for_each_memblock(reserved
, reg
) {
407 pr_debug("reserved - 0x%08x-0x%08x\n",
408 (u32
) reg
->base
, (u32
) reg
->size
);
409 reserve_bootmem(reg
->base
, reg
->size
, BOOTMEM_DEFAULT
);
412 max_low_pfn
= PFN_DOWN(memory_end
);
413 min_low_pfn
= PFN_UP(memory_start
);
414 max_mapnr
= max_low_pfn
- min_low_pfn
;
416 /* Get kmalloc into gear */
420 * Probe for Device State Configuration Registers.
421 * We have to do this early in case timer needs to be enabled
426 /* We do this early for timer and core clock frequency */
432 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
433 conswitchp
= &dummy_con
;
437 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
438 #define ptr_to_cpu(p) ((long)(p) - 1)
440 static int show_cpuinfo(struct seq_file
*m
, void *v
)
442 int n
= ptr_to_cpu(v
);
443 struct cpuinfo_c6x
*p
= &per_cpu(cpu_data
, n
);
448 "soc revision\t: 0x%x\n"
450 c6x_soc_name
, c6x_silicon_rev
, c6x_num_cores
);
457 "core revision\t: %s\n"
458 "core voltage\t: %s\n"
463 "bogomips\t: %lu.%02lu\n\n",
465 p
->cpu_name
, p
->cpu_rev
, p
->cpu_voltage
,
466 p
->core_id
, p
->mmu
, p
->fpu
,
467 (c6x_core_freq
+ 500000) / 1000000,
468 (loops_per_jiffy
/(500000/HZ
)),
469 (loops_per_jiffy
/(5000/HZ
))%100);
474 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
476 return *pos
< nr_cpu_ids
? cpu_to_ptr(*pos
) : NULL
;
478 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
483 static void c_stop(struct seq_file
*m
, void *v
)
487 const struct seq_operations cpuinfo_op
= {
494 static struct cpu cpu_devices
[NR_CPUS
];
496 static int __init
topology_init(void)
500 for_each_present_cpu(i
)
501 register_cpu(&cpu_devices
[i
], i
);
506 subsys_initcall(topology_init
);