SUNRPC: Fix oops when trace sunrpc_task events in nfs client
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_pr.c
blobc5c052a9729c95d14591087fe71b20168237dc5d
1 /*
2 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 * Authors:
5 * Alexander Graf <agraf@suse.de>
6 * Kevin Wolf <mail@kevin-wolf.de>
7 * Paul Mackerras <paulus@samba.org>
9 * Description:
10 * Functions relating to running KVM on Book 3S processors where
11 * we don't have access to hypervisor mode, and we run the guest
12 * in problem state (user mode).
14 * This file is derived from arch/powerpc/kvm/44x.c,
15 * by Hollis Blanchard <hollisb@us.ibm.com>.
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License, version 2, as
19 * published by the Free Software Foundation.
22 #include <linux/kvm_host.h>
23 #include <linux/export.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
27 #include <asm/reg.h>
28 #include <asm/cputable.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlbflush.h>
31 #include <asm/uaccess.h>
32 #include <asm/io.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/mmu_context.h>
36 #include <asm/switch_to.h>
37 #include <asm/firmware.h>
38 #include <asm/hvcall.h>
39 #include <linux/gfp.h>
40 #include <linux/sched.h>
41 #include <linux/vmalloc.h>
42 #include <linux/highmem.h>
43 #include <linux/module.h>
44 #include <linux/miscdevice.h>
46 #include "book3s.h"
48 #define CREATE_TRACE_POINTS
49 #include "trace_pr.h"
51 /* #define EXIT_DEBUG */
52 /* #define DEBUG_EXT */
54 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
55 ulong msr);
57 /* Some compatibility defines */
58 #ifdef CONFIG_PPC_BOOK3S_32
59 #define MSR_USER32 MSR_USER
60 #define MSR_USER64 MSR_USER
61 #define HW_PAGE_SIZE PAGE_SIZE
62 #endif
64 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
66 #ifdef CONFIG_PPC_BOOK3S_64
67 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
68 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
69 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
70 svcpu->in_use = 0;
71 svcpu_put(svcpu);
72 #endif
73 vcpu->cpu = smp_processor_id();
74 #ifdef CONFIG_PPC_BOOK3S_32
75 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
76 #endif
79 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
81 #ifdef CONFIG_PPC_BOOK3S_64
82 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
83 if (svcpu->in_use) {
84 kvmppc_copy_from_svcpu(vcpu, svcpu);
86 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
87 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
88 svcpu_put(svcpu);
89 #endif
91 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
92 vcpu->cpu = -1;
95 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
96 void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
97 struct kvm_vcpu *vcpu)
99 svcpu->gpr[0] = vcpu->arch.gpr[0];
100 svcpu->gpr[1] = vcpu->arch.gpr[1];
101 svcpu->gpr[2] = vcpu->arch.gpr[2];
102 svcpu->gpr[3] = vcpu->arch.gpr[3];
103 svcpu->gpr[4] = vcpu->arch.gpr[4];
104 svcpu->gpr[5] = vcpu->arch.gpr[5];
105 svcpu->gpr[6] = vcpu->arch.gpr[6];
106 svcpu->gpr[7] = vcpu->arch.gpr[7];
107 svcpu->gpr[8] = vcpu->arch.gpr[8];
108 svcpu->gpr[9] = vcpu->arch.gpr[9];
109 svcpu->gpr[10] = vcpu->arch.gpr[10];
110 svcpu->gpr[11] = vcpu->arch.gpr[11];
111 svcpu->gpr[12] = vcpu->arch.gpr[12];
112 svcpu->gpr[13] = vcpu->arch.gpr[13];
113 svcpu->cr = vcpu->arch.cr;
114 svcpu->xer = vcpu->arch.xer;
115 svcpu->ctr = vcpu->arch.ctr;
116 svcpu->lr = vcpu->arch.lr;
117 svcpu->pc = vcpu->arch.pc;
118 svcpu->in_use = true;
121 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
122 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
123 struct kvmppc_book3s_shadow_vcpu *svcpu)
126 * vcpu_put would just call us again because in_use hasn't
127 * been updated yet.
129 preempt_disable();
132 * Maybe we were already preempted and synced the svcpu from
133 * our preempt notifiers. Don't bother touching this svcpu then.
135 if (!svcpu->in_use)
136 goto out;
138 vcpu->arch.gpr[0] = svcpu->gpr[0];
139 vcpu->arch.gpr[1] = svcpu->gpr[1];
140 vcpu->arch.gpr[2] = svcpu->gpr[2];
141 vcpu->arch.gpr[3] = svcpu->gpr[3];
142 vcpu->arch.gpr[4] = svcpu->gpr[4];
143 vcpu->arch.gpr[5] = svcpu->gpr[5];
144 vcpu->arch.gpr[6] = svcpu->gpr[6];
145 vcpu->arch.gpr[7] = svcpu->gpr[7];
146 vcpu->arch.gpr[8] = svcpu->gpr[8];
147 vcpu->arch.gpr[9] = svcpu->gpr[9];
148 vcpu->arch.gpr[10] = svcpu->gpr[10];
149 vcpu->arch.gpr[11] = svcpu->gpr[11];
150 vcpu->arch.gpr[12] = svcpu->gpr[12];
151 vcpu->arch.gpr[13] = svcpu->gpr[13];
152 vcpu->arch.cr = svcpu->cr;
153 vcpu->arch.xer = svcpu->xer;
154 vcpu->arch.ctr = svcpu->ctr;
155 vcpu->arch.lr = svcpu->lr;
156 vcpu->arch.pc = svcpu->pc;
157 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
158 vcpu->arch.fault_dar = svcpu->fault_dar;
159 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
160 vcpu->arch.last_inst = svcpu->last_inst;
161 svcpu->in_use = false;
163 out:
164 preempt_enable();
167 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
169 int r = 1; /* Indicate we want to get back into the guest */
171 /* We misuse TLB_FLUSH to indicate that we want to clear
172 all shadow cache entries */
173 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
174 kvmppc_mmu_pte_flush(vcpu, 0, 0);
176 return r;
179 /************* MMU Notifiers *************/
180 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
181 unsigned long end)
183 long i;
184 struct kvm_vcpu *vcpu;
185 struct kvm_memslots *slots;
186 struct kvm_memory_slot *memslot;
188 slots = kvm_memslots(kvm);
189 kvm_for_each_memslot(memslot, slots) {
190 unsigned long hva_start, hva_end;
191 gfn_t gfn, gfn_end;
193 hva_start = max(start, memslot->userspace_addr);
194 hva_end = min(end, memslot->userspace_addr +
195 (memslot->npages << PAGE_SHIFT));
196 if (hva_start >= hva_end)
197 continue;
199 * {gfn(page) | page intersects with [hva_start, hva_end)} =
200 * {gfn, gfn+1, ..., gfn_end-1}.
202 gfn = hva_to_gfn_memslot(hva_start, memslot);
203 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
204 kvm_for_each_vcpu(i, vcpu, kvm)
205 kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
206 gfn_end << PAGE_SHIFT);
210 static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
212 trace_kvm_unmap_hva(hva);
214 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
216 return 0;
219 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
220 unsigned long end)
222 do_kvm_unmap_hva(kvm, start, end);
224 return 0;
227 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
229 /* XXX could be more clever ;) */
230 return 0;
233 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
235 /* XXX could be more clever ;) */
236 return 0;
239 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
241 /* The page will get remapped properly on its next fault */
242 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
245 /*****************************************/
247 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
249 ulong smsr = vcpu->arch.shared->msr;
251 /* Guest MSR values */
252 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE;
253 /* Process MSR values */
254 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
255 /* External providers the guest reserved */
256 smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
257 /* 64-bit Process MSR values */
258 #ifdef CONFIG_PPC_BOOK3S_64
259 smsr |= MSR_ISF | MSR_HV;
260 #endif
261 vcpu->arch.shadow_msr = smsr;
264 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
266 ulong old_msr = vcpu->arch.shared->msr;
268 #ifdef EXIT_DEBUG
269 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
270 #endif
272 msr &= to_book3s(vcpu)->msr_mask;
273 vcpu->arch.shared->msr = msr;
274 kvmppc_recalc_shadow_msr(vcpu);
276 if (msr & MSR_POW) {
277 if (!vcpu->arch.pending_exceptions) {
278 kvm_vcpu_block(vcpu);
279 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
280 vcpu->stat.halt_wakeup++;
282 /* Unset POW bit after we woke up */
283 msr &= ~MSR_POW;
284 vcpu->arch.shared->msr = msr;
288 if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
289 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
290 kvmppc_mmu_flush_segments(vcpu);
291 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
293 /* Preload magic page segment when in kernel mode */
294 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
295 struct kvm_vcpu_arch *a = &vcpu->arch;
297 if (msr & MSR_DR)
298 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
299 else
300 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
305 * When switching from 32 to 64-bit, we may have a stale 32-bit
306 * magic page around, we need to flush it. Typically 32-bit magic
307 * page will be instanciated when calling into RTAS. Note: We
308 * assume that such transition only happens while in kernel mode,
309 * ie, we never transition from user 32-bit to kernel 64-bit with
310 * a 32-bit magic page around.
312 if (vcpu->arch.magic_page_pa &&
313 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
314 /* going from RTAS to normal kernel code */
315 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
316 ~0xFFFUL);
319 /* Preload FPU if it's enabled */
320 if (vcpu->arch.shared->msr & MSR_FP)
321 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
324 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
326 u32 host_pvr;
328 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
329 vcpu->arch.pvr = pvr;
330 #ifdef CONFIG_PPC_BOOK3S_64
331 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
332 kvmppc_mmu_book3s_64_init(vcpu);
333 if (!to_book3s(vcpu)->hior_explicit)
334 to_book3s(vcpu)->hior = 0xfff00000;
335 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
336 vcpu->arch.cpu_type = KVM_CPU_3S_64;
337 } else
338 #endif
340 kvmppc_mmu_book3s_32_init(vcpu);
341 if (!to_book3s(vcpu)->hior_explicit)
342 to_book3s(vcpu)->hior = 0;
343 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
344 vcpu->arch.cpu_type = KVM_CPU_3S_32;
347 kvmppc_sanity_check(vcpu);
349 /* If we are in hypervisor level on 970, we can tell the CPU to
350 * treat DCBZ as 32 bytes store */
351 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
352 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
353 !strcmp(cur_cpu_spec->platform, "ppc970"))
354 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
356 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
357 really needs them in a VM on Cell and force disable them. */
358 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
359 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
362 * If they're asking for POWER6 or later, set the flag
363 * indicating that we can do multiple large page sizes
364 * and 1TB segments.
365 * Also set the flag that indicates that tlbie has the large
366 * page bit in the RB operand instead of the instruction.
368 switch (PVR_VER(pvr)) {
369 case PVR_POWER6:
370 case PVR_POWER7:
371 case PVR_POWER7p:
372 case PVR_POWER8:
373 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
374 BOOK3S_HFLAG_NEW_TLBIE;
375 break;
378 #ifdef CONFIG_PPC_BOOK3S_32
379 /* 32 bit Book3S always has 32 byte dcbz */
380 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
381 #endif
383 /* On some CPUs we can execute paired single operations natively */
384 asm ( "mfpvr %0" : "=r"(host_pvr));
385 switch (host_pvr) {
386 case 0x00080200: /* lonestar 2.0 */
387 case 0x00088202: /* lonestar 2.2 */
388 case 0x70000100: /* gekko 1.0 */
389 case 0x00080100: /* gekko 2.0 */
390 case 0x00083203: /* gekko 2.3a */
391 case 0x00083213: /* gekko 2.3b */
392 case 0x00083204: /* gekko 2.4 */
393 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
394 case 0x00087200: /* broadway */
395 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
396 /* Enable HID2.PSE - in case we need it later */
397 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
401 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
402 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
403 * emulate 32 bytes dcbz length.
405 * The Book3s_64 inventors also realized this case and implemented a special bit
406 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
408 * My approach here is to patch the dcbz instruction on executing pages.
410 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
412 struct page *hpage;
413 u64 hpage_offset;
414 u32 *page;
415 int i;
417 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
418 if (is_error_page(hpage))
419 return;
421 hpage_offset = pte->raddr & ~PAGE_MASK;
422 hpage_offset &= ~0xFFFULL;
423 hpage_offset /= 4;
425 get_page(hpage);
426 page = kmap_atomic(hpage);
428 /* patch dcbz into reserved instruction, so we trap */
429 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
430 if ((page[i] & 0xff0007ff) == INS_DCBZ)
431 page[i] &= 0xfffffff7;
433 kunmap_atomic(page);
434 put_page(hpage);
437 static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
439 ulong mp_pa = vcpu->arch.magic_page_pa;
441 if (!(vcpu->arch.shared->msr & MSR_SF))
442 mp_pa = (uint32_t)mp_pa;
444 if (unlikely(mp_pa) &&
445 unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
446 return 1;
449 return kvm_is_visible_gfn(vcpu->kvm, gfn);
452 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
453 ulong eaddr, int vec)
455 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
456 bool iswrite = false;
457 int r = RESUME_GUEST;
458 int relocated;
459 int page_found = 0;
460 struct kvmppc_pte pte;
461 bool is_mmio = false;
462 bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
463 bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
464 u64 vsid;
466 relocated = data ? dr : ir;
467 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
468 iswrite = true;
470 /* Resolve real address if translation turned on */
471 if (relocated) {
472 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
473 } else {
474 pte.may_execute = true;
475 pte.may_read = true;
476 pte.may_write = true;
477 pte.raddr = eaddr & KVM_PAM;
478 pte.eaddr = eaddr;
479 pte.vpage = eaddr >> 12;
480 pte.page_size = MMU_PAGE_64K;
483 switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
484 case 0:
485 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
486 break;
487 case MSR_DR:
488 case MSR_IR:
489 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
491 if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
492 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
493 else
494 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
495 pte.vpage |= vsid;
497 if (vsid == -1)
498 page_found = -EINVAL;
499 break;
502 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
503 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
505 * If we do the dcbz hack, we have to NX on every execution,
506 * so we can patch the executing code. This renders our guest
507 * NX-less.
509 pte.may_execute = !data;
512 if (page_found == -ENOENT) {
513 /* Page not found in guest PTE entries */
514 vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
515 vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr;
516 vcpu->arch.shared->msr |=
517 vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL;
518 kvmppc_book3s_queue_irqprio(vcpu, vec);
519 } else if (page_found == -EPERM) {
520 /* Storage protection */
521 vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
522 vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr & ~DSISR_NOHPTE;
523 vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
524 vcpu->arch.shared->msr |=
525 vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL;
526 kvmppc_book3s_queue_irqprio(vcpu, vec);
527 } else if (page_found == -EINVAL) {
528 /* Page not found in guest SLB */
529 vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
530 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
531 } else if (!is_mmio &&
532 kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
533 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
535 * There is already a host HPTE there, presumably
536 * a read-only one for a page the guest thinks
537 * is writable, so get rid of it first.
539 kvmppc_mmu_unmap_page(vcpu, &pte);
541 /* The guest's PTE is not mapped yet. Map on the host */
542 kvmppc_mmu_map_page(vcpu, &pte, iswrite);
543 if (data)
544 vcpu->stat.sp_storage++;
545 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
546 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
547 kvmppc_patch_dcbz(vcpu, &pte);
548 } else {
549 /* MMIO */
550 vcpu->stat.mmio_exits++;
551 vcpu->arch.paddr_accessed = pte.raddr;
552 vcpu->arch.vaddr_accessed = pte.eaddr;
553 r = kvmppc_emulate_mmio(run, vcpu);
554 if ( r == RESUME_HOST_NV )
555 r = RESUME_HOST;
558 return r;
561 static inline int get_fpr_index(int i)
563 return i * TS_FPRWIDTH;
566 /* Give up external provider (FPU, Altivec, VSX) */
567 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
569 struct thread_struct *t = &current->thread;
572 * VSX instructions can access FP and vector registers, so if
573 * we are giving up VSX, make sure we give up FP and VMX as well.
575 if (msr & MSR_VSX)
576 msr |= MSR_FP | MSR_VEC;
578 msr &= vcpu->arch.guest_owned_ext;
579 if (!msr)
580 return;
582 #ifdef DEBUG_EXT
583 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
584 #endif
586 if (msr & MSR_FP) {
588 * Note that on CPUs with VSX, giveup_fpu stores
589 * both the traditional FP registers and the added VSX
590 * registers into thread.fp_state.fpr[].
592 if (t->regs->msr & MSR_FP)
593 giveup_fpu(current);
594 t->fp_save_area = NULL;
597 #ifdef CONFIG_ALTIVEC
598 if (msr & MSR_VEC) {
599 if (current->thread.regs->msr & MSR_VEC)
600 giveup_altivec(current);
601 t->vr_save_area = NULL;
603 #endif
605 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
606 kvmppc_recalc_shadow_msr(vcpu);
609 static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
611 ulong srr0 = kvmppc_get_pc(vcpu);
612 u32 last_inst = kvmppc_get_last_inst(vcpu);
613 int ret;
615 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
616 if (ret == -ENOENT) {
617 ulong msr = vcpu->arch.shared->msr;
619 msr = kvmppc_set_field(msr, 33, 33, 1);
620 msr = kvmppc_set_field(msr, 34, 36, 0);
621 vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
622 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
623 return EMULATE_AGAIN;
626 return EMULATE_DONE;
629 static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
632 /* Need to do paired single emulation? */
633 if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
634 return EMULATE_DONE;
636 /* Read out the instruction */
637 if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
638 /* Need to emulate */
639 return EMULATE_FAIL;
641 return EMULATE_AGAIN;
644 /* Handle external providers (FPU, Altivec, VSX) */
645 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
646 ulong msr)
648 struct thread_struct *t = &current->thread;
650 /* When we have paired singles, we emulate in software */
651 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
652 return RESUME_GUEST;
654 if (!(vcpu->arch.shared->msr & msr)) {
655 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
656 return RESUME_GUEST;
659 if (msr == MSR_VSX) {
660 /* No VSX? Give an illegal instruction interrupt */
661 #ifdef CONFIG_VSX
662 if (!cpu_has_feature(CPU_FTR_VSX))
663 #endif
665 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
666 return RESUME_GUEST;
670 * We have to load up all the FP and VMX registers before
671 * we can let the guest use VSX instructions.
673 msr = MSR_FP | MSR_VEC | MSR_VSX;
676 /* See if we already own all the ext(s) needed */
677 msr &= ~vcpu->arch.guest_owned_ext;
678 if (!msr)
679 return RESUME_GUEST;
681 #ifdef DEBUG_EXT
682 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
683 #endif
685 if (msr & MSR_FP) {
686 enable_kernel_fp();
687 load_fp_state(&vcpu->arch.fp);
688 t->fp_save_area = &vcpu->arch.fp;
691 if (msr & MSR_VEC) {
692 #ifdef CONFIG_ALTIVEC
693 enable_kernel_altivec();
694 load_vr_state(&vcpu->arch.vr);
695 t->vr_save_area = &vcpu->arch.vr;
696 #endif
699 t->regs->msr |= msr;
700 vcpu->arch.guest_owned_ext |= msr;
701 kvmppc_recalc_shadow_msr(vcpu);
703 return RESUME_GUEST;
707 * Kernel code using FP or VMX could have flushed guest state to
708 * the thread_struct; if so, get it back now.
710 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
712 unsigned long lost_ext;
714 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
715 if (!lost_ext)
716 return;
718 if (lost_ext & MSR_FP) {
719 enable_kernel_fp();
720 load_fp_state(&vcpu->arch.fp);
722 #ifdef CONFIG_ALTIVEC
723 if (lost_ext & MSR_VEC) {
724 enable_kernel_altivec();
725 load_vr_state(&vcpu->arch.vr);
727 #endif
728 current->thread.regs->msr |= lost_ext;
731 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
732 unsigned int exit_nr)
734 int r = RESUME_HOST;
735 int s;
737 vcpu->stat.sum_exits++;
739 run->exit_reason = KVM_EXIT_UNKNOWN;
740 run->ready_for_interrupt_injection = 1;
742 /* We get here with MSR.EE=1 */
744 trace_kvm_exit(exit_nr, vcpu);
745 kvm_guest_exit();
747 switch (exit_nr) {
748 case BOOK3S_INTERRUPT_INST_STORAGE:
750 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
751 vcpu->stat.pf_instruc++;
753 #ifdef CONFIG_PPC_BOOK3S_32
754 /* We set segments as unused segments when invalidating them. So
755 * treat the respective fault as segment fault. */
757 struct kvmppc_book3s_shadow_vcpu *svcpu;
758 u32 sr;
760 svcpu = svcpu_get(vcpu);
761 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
762 svcpu_put(svcpu);
763 if (sr == SR_INVALID) {
764 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
765 r = RESUME_GUEST;
766 break;
769 #endif
771 /* only care about PTEG not found errors, but leave NX alone */
772 if (shadow_srr1 & 0x40000000) {
773 int idx = srcu_read_lock(&vcpu->kvm->srcu);
774 r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
775 srcu_read_unlock(&vcpu->kvm->srcu, idx);
776 vcpu->stat.sp_instruc++;
777 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
778 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
780 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
781 * so we can't use the NX bit inside the guest. Let's cross our fingers,
782 * that no guest that needs the dcbz hack does NX.
784 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
785 r = RESUME_GUEST;
786 } else {
787 vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000;
788 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
789 r = RESUME_GUEST;
791 break;
793 case BOOK3S_INTERRUPT_DATA_STORAGE:
795 ulong dar = kvmppc_get_fault_dar(vcpu);
796 u32 fault_dsisr = vcpu->arch.fault_dsisr;
797 vcpu->stat.pf_storage++;
799 #ifdef CONFIG_PPC_BOOK3S_32
800 /* We set segments as unused segments when invalidating them. So
801 * treat the respective fault as segment fault. */
803 struct kvmppc_book3s_shadow_vcpu *svcpu;
804 u32 sr;
806 svcpu = svcpu_get(vcpu);
807 sr = svcpu->sr[dar >> SID_SHIFT];
808 svcpu_put(svcpu);
809 if (sr == SR_INVALID) {
810 kvmppc_mmu_map_segment(vcpu, dar);
811 r = RESUME_GUEST;
812 break;
815 #endif
818 * We need to handle missing shadow PTEs, and
819 * protection faults due to us mapping a page read-only
820 * when the guest thinks it is writable.
822 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
823 int idx = srcu_read_lock(&vcpu->kvm->srcu);
824 r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
825 srcu_read_unlock(&vcpu->kvm->srcu, idx);
826 } else {
827 vcpu->arch.shared->dar = dar;
828 vcpu->arch.shared->dsisr = fault_dsisr;
829 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
830 r = RESUME_GUEST;
832 break;
834 case BOOK3S_INTERRUPT_DATA_SEGMENT:
835 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
836 vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
837 kvmppc_book3s_queue_irqprio(vcpu,
838 BOOK3S_INTERRUPT_DATA_SEGMENT);
840 r = RESUME_GUEST;
841 break;
842 case BOOK3S_INTERRUPT_INST_SEGMENT:
843 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
844 kvmppc_book3s_queue_irqprio(vcpu,
845 BOOK3S_INTERRUPT_INST_SEGMENT);
847 r = RESUME_GUEST;
848 break;
849 /* We're good on these - the host merely wanted to get our attention */
850 case BOOK3S_INTERRUPT_DECREMENTER:
851 case BOOK3S_INTERRUPT_HV_DECREMENTER:
852 case BOOK3S_INTERRUPT_DOORBELL:
853 vcpu->stat.dec_exits++;
854 r = RESUME_GUEST;
855 break;
856 case BOOK3S_INTERRUPT_EXTERNAL:
857 case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
858 case BOOK3S_INTERRUPT_EXTERNAL_HV:
859 vcpu->stat.ext_intr_exits++;
860 r = RESUME_GUEST;
861 break;
862 case BOOK3S_INTERRUPT_PERFMON:
863 r = RESUME_GUEST;
864 break;
865 case BOOK3S_INTERRUPT_PROGRAM:
866 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
868 enum emulation_result er;
869 ulong flags;
871 program_interrupt:
872 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
874 if (vcpu->arch.shared->msr & MSR_PR) {
875 #ifdef EXIT_DEBUG
876 printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
877 #endif
878 if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
879 (INS_DCBZ & 0xfffffff7)) {
880 kvmppc_core_queue_program(vcpu, flags);
881 r = RESUME_GUEST;
882 break;
886 vcpu->stat.emulated_inst_exits++;
887 er = kvmppc_emulate_instruction(run, vcpu);
888 switch (er) {
889 case EMULATE_DONE:
890 r = RESUME_GUEST_NV;
891 break;
892 case EMULATE_AGAIN:
893 r = RESUME_GUEST;
894 break;
895 case EMULATE_FAIL:
896 printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
897 __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
898 kvmppc_core_queue_program(vcpu, flags);
899 r = RESUME_GUEST;
900 break;
901 case EMULATE_DO_MMIO:
902 run->exit_reason = KVM_EXIT_MMIO;
903 r = RESUME_HOST_NV;
904 break;
905 case EMULATE_EXIT_USER:
906 r = RESUME_HOST_NV;
907 break;
908 default:
909 BUG();
911 break;
913 case BOOK3S_INTERRUPT_SYSCALL:
914 if (vcpu->arch.papr_enabled &&
915 (kvmppc_get_last_sc(vcpu) == 0x44000022) &&
916 !(vcpu->arch.shared->msr & MSR_PR)) {
917 /* SC 1 papr hypercalls */
918 ulong cmd = kvmppc_get_gpr(vcpu, 3);
919 int i;
921 #ifdef CONFIG_PPC_BOOK3S_64
922 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
923 r = RESUME_GUEST;
924 break;
926 #endif
928 run->papr_hcall.nr = cmd;
929 for (i = 0; i < 9; ++i) {
930 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
931 run->papr_hcall.args[i] = gpr;
933 run->exit_reason = KVM_EXIT_PAPR_HCALL;
934 vcpu->arch.hcall_needed = 1;
935 r = RESUME_HOST;
936 } else if (vcpu->arch.osi_enabled &&
937 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
938 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
939 /* MOL hypercalls */
940 u64 *gprs = run->osi.gprs;
941 int i;
943 run->exit_reason = KVM_EXIT_OSI;
944 for (i = 0; i < 32; i++)
945 gprs[i] = kvmppc_get_gpr(vcpu, i);
946 vcpu->arch.osi_needed = 1;
947 r = RESUME_HOST_NV;
948 } else if (!(vcpu->arch.shared->msr & MSR_PR) &&
949 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
950 /* KVM PV hypercalls */
951 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
952 r = RESUME_GUEST;
953 } else {
954 /* Guest syscalls */
955 vcpu->stat.syscall_exits++;
956 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
957 r = RESUME_GUEST;
959 break;
960 case BOOK3S_INTERRUPT_FP_UNAVAIL:
961 case BOOK3S_INTERRUPT_ALTIVEC:
962 case BOOK3S_INTERRUPT_VSX:
964 int ext_msr = 0;
966 switch (exit_nr) {
967 case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
968 case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
969 case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
972 switch (kvmppc_check_ext(vcpu, exit_nr)) {
973 case EMULATE_DONE:
974 /* everything ok - let's enable the ext */
975 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
976 break;
977 case EMULATE_FAIL:
978 /* we need to emulate this instruction */
979 goto program_interrupt;
980 break;
981 default:
982 /* nothing to worry about - go again */
983 break;
985 break;
987 case BOOK3S_INTERRUPT_ALIGNMENT:
988 if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
989 vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
990 kvmppc_get_last_inst(vcpu));
991 vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
992 kvmppc_get_last_inst(vcpu));
993 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
995 r = RESUME_GUEST;
996 break;
997 case BOOK3S_INTERRUPT_MACHINE_CHECK:
998 case BOOK3S_INTERRUPT_TRACE:
999 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1000 r = RESUME_GUEST;
1001 break;
1002 default:
1004 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1005 /* Ugh - bork here! What did we get? */
1006 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1007 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1008 r = RESUME_HOST;
1009 BUG();
1010 break;
1014 if (!(r & RESUME_HOST)) {
1015 /* To avoid clobbering exit_reason, only check for signals if
1016 * we aren't already exiting to userspace for some other
1017 * reason. */
1020 * Interrupts could be timers for the guest which we have to
1021 * inject again, so let's postpone them until we're in the guest
1022 * and if we really did time things so badly, then we just exit
1023 * again due to a host external interrupt.
1025 s = kvmppc_prepare_to_enter(vcpu);
1026 if (s <= 0)
1027 r = s;
1028 else {
1029 /* interrupts now hard-disabled */
1030 kvmppc_fix_ee_before_entry();
1033 kvmppc_handle_lost_ext(vcpu);
1036 trace_kvm_book3s_reenter(r, vcpu);
1038 return r;
1041 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1042 struct kvm_sregs *sregs)
1044 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1045 int i;
1047 sregs->pvr = vcpu->arch.pvr;
1049 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1050 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1051 for (i = 0; i < 64; i++) {
1052 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1053 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1055 } else {
1056 for (i = 0; i < 16; i++)
1057 sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];
1059 for (i = 0; i < 8; i++) {
1060 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1061 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1065 return 0;
1068 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1069 struct kvm_sregs *sregs)
1071 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1072 int i;
1074 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1076 vcpu3s->sdr1 = sregs->u.s.sdr1;
1077 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1078 for (i = 0; i < 64; i++) {
1079 vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
1080 sregs->u.s.ppc64.slb[i].slbe);
1082 } else {
1083 for (i = 0; i < 16; i++) {
1084 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1086 for (i = 0; i < 8; i++) {
1087 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1088 (u32)sregs->u.s.ppc32.ibat[i]);
1089 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1090 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1091 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1092 (u32)sregs->u.s.ppc32.dbat[i]);
1093 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1094 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1098 /* Flush the MMU after messing with the segments */
1099 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1101 return 0;
1104 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1105 union kvmppc_one_reg *val)
1107 int r = 0;
1109 switch (id) {
1110 case KVM_REG_PPC_HIOR:
1111 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1112 break;
1113 default:
1114 r = -EINVAL;
1115 break;
1118 return r;
1121 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1122 union kvmppc_one_reg *val)
1124 int r = 0;
1126 switch (id) {
1127 case KVM_REG_PPC_HIOR:
1128 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1129 to_book3s(vcpu)->hior_explicit = true;
1130 break;
1131 default:
1132 r = -EINVAL;
1133 break;
1136 return r;
1139 static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
1140 unsigned int id)
1142 struct kvmppc_vcpu_book3s *vcpu_book3s;
1143 struct kvm_vcpu *vcpu;
1144 int err = -ENOMEM;
1145 unsigned long p;
1147 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1148 if (!vcpu)
1149 goto out;
1151 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1152 if (!vcpu_book3s)
1153 goto free_vcpu;
1154 vcpu->arch.book3s = vcpu_book3s;
1156 #ifdef CONFIG_KVM_BOOK3S_32
1157 vcpu->arch.shadow_vcpu =
1158 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1159 if (!vcpu->arch.shadow_vcpu)
1160 goto free_vcpu3s;
1161 #endif
1163 err = kvm_vcpu_init(vcpu, kvm, id);
1164 if (err)
1165 goto free_shadow_vcpu;
1167 err = -ENOMEM;
1168 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1169 if (!p)
1170 goto uninit_vcpu;
1171 /* the real shared page fills the last 4k of our page */
1172 vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
1174 #ifdef CONFIG_PPC_BOOK3S_64
1176 * Default to the same as the host if we're on sufficiently
1177 * recent machine that we have 1TB segments;
1178 * otherwise default to PPC970FX.
1180 vcpu->arch.pvr = 0x3C0301;
1181 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1182 vcpu->arch.pvr = mfspr(SPRN_PVR);
1183 #else
1184 /* default to book3s_32 (750) */
1185 vcpu->arch.pvr = 0x84202;
1186 #endif
1187 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1188 vcpu->arch.slb_nr = 64;
1190 vcpu->arch.shadow_msr = MSR_USER64;
1192 err = kvmppc_mmu_init(vcpu);
1193 if (err < 0)
1194 goto uninit_vcpu;
1196 return vcpu;
1198 uninit_vcpu:
1199 kvm_vcpu_uninit(vcpu);
1200 free_shadow_vcpu:
1201 #ifdef CONFIG_KVM_BOOK3S_32
1202 kfree(vcpu->arch.shadow_vcpu);
1203 free_vcpu3s:
1204 #endif
1205 vfree(vcpu_book3s);
1206 free_vcpu:
1207 kmem_cache_free(kvm_vcpu_cache, vcpu);
1208 out:
1209 return ERR_PTR(err);
1212 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1214 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1216 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1217 kvm_vcpu_uninit(vcpu);
1218 #ifdef CONFIG_KVM_BOOK3S_32
1219 kfree(vcpu->arch.shadow_vcpu);
1220 #endif
1221 vfree(vcpu_book3s);
1222 kmem_cache_free(kvm_vcpu_cache, vcpu);
1225 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1227 int ret;
1228 #ifdef CONFIG_ALTIVEC
1229 unsigned long uninitialized_var(vrsave);
1230 #endif
1232 /* Check if we can run the vcpu at all */
1233 if (!vcpu->arch.sane) {
1234 kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1235 ret = -EINVAL;
1236 goto out;
1240 * Interrupts could be timers for the guest which we have to inject
1241 * again, so let's postpone them until we're in the guest and if we
1242 * really did time things so badly, then we just exit again due to
1243 * a host external interrupt.
1245 ret = kvmppc_prepare_to_enter(vcpu);
1246 if (ret <= 0)
1247 goto out;
1248 /* interrupts now hard-disabled */
1250 /* Save FPU state in thread_struct */
1251 if (current->thread.regs->msr & MSR_FP)
1252 giveup_fpu(current);
1254 #ifdef CONFIG_ALTIVEC
1255 /* Save Altivec state in thread_struct */
1256 if (current->thread.regs->msr & MSR_VEC)
1257 giveup_altivec(current);
1258 #endif
1260 #ifdef CONFIG_VSX
1261 /* Save VSX state in thread_struct */
1262 if (current->thread.regs->msr & MSR_VSX)
1263 __giveup_vsx(current);
1264 #endif
1266 /* Preload FPU if it's enabled */
1267 if (vcpu->arch.shared->msr & MSR_FP)
1268 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1270 kvmppc_fix_ee_before_entry();
1272 ret = __kvmppc_vcpu_run(kvm_run, vcpu);
1274 /* No need for kvm_guest_exit. It's done in handle_exit.
1275 We also get here with interrupts enabled. */
1277 /* Make sure we save the guest FPU/Altivec/VSX state */
1278 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1280 out:
1281 vcpu->mode = OUTSIDE_GUEST_MODE;
1282 return ret;
1286 * Get (and clear) the dirty memory log for a memory slot.
1288 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1289 struct kvm_dirty_log *log)
1291 struct kvm_memory_slot *memslot;
1292 struct kvm_vcpu *vcpu;
1293 ulong ga, ga_end;
1294 int is_dirty = 0;
1295 int r;
1296 unsigned long n;
1298 mutex_lock(&kvm->slots_lock);
1300 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1301 if (r)
1302 goto out;
1304 /* If nothing is dirty, don't bother messing with page tables. */
1305 if (is_dirty) {
1306 memslot = id_to_memslot(kvm->memslots, log->slot);
1308 ga = memslot->base_gfn << PAGE_SHIFT;
1309 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1311 kvm_for_each_vcpu(n, vcpu, kvm)
1312 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1314 n = kvm_dirty_bitmap_bytes(memslot);
1315 memset(memslot->dirty_bitmap, 0, n);
1318 r = 0;
1319 out:
1320 mutex_unlock(&kvm->slots_lock);
1321 return r;
1324 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1325 struct kvm_memory_slot *memslot)
1327 return;
1330 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1331 struct kvm_memory_slot *memslot,
1332 struct kvm_userspace_memory_region *mem)
1334 return 0;
1337 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1338 struct kvm_userspace_memory_region *mem,
1339 const struct kvm_memory_slot *old)
1341 return;
1344 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
1345 struct kvm_memory_slot *dont)
1347 return;
1350 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
1351 unsigned long npages)
1353 return 0;
1357 #ifdef CONFIG_PPC64
1358 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1359 struct kvm_ppc_smmu_info *info)
1361 long int i;
1362 struct kvm_vcpu *vcpu;
1364 info->flags = 0;
1366 /* SLB is always 64 entries */
1367 info->slb_size = 64;
1369 /* Standard 4k base page size segment */
1370 info->sps[0].page_shift = 12;
1371 info->sps[0].slb_enc = 0;
1372 info->sps[0].enc[0].page_shift = 12;
1373 info->sps[0].enc[0].pte_enc = 0;
1376 * 64k large page size.
1377 * We only want to put this in if the CPUs we're emulating
1378 * support it, but unfortunately we don't have a vcpu easily
1379 * to hand here to test. Just pick the first vcpu, and if
1380 * that doesn't exist yet, report the minimum capability,
1381 * i.e., no 64k pages.
1382 * 1T segment support goes along with 64k pages.
1384 i = 1;
1385 vcpu = kvm_get_vcpu(kvm, 0);
1386 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1387 info->flags = KVM_PPC_1T_SEGMENTS;
1388 info->sps[i].page_shift = 16;
1389 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1390 info->sps[i].enc[0].page_shift = 16;
1391 info->sps[i].enc[0].pte_enc = 1;
1392 ++i;
1395 /* Standard 16M large page size segment */
1396 info->sps[i].page_shift = 24;
1397 info->sps[i].slb_enc = SLB_VSID_L;
1398 info->sps[i].enc[0].page_shift = 24;
1399 info->sps[i].enc[0].pte_enc = 0;
1401 return 0;
1403 #else
1404 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1405 struct kvm_ppc_smmu_info *info)
1407 /* We should not get called */
1408 BUG();
1410 #endif /* CONFIG_PPC64 */
1412 static unsigned int kvm_global_user_count = 0;
1413 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1415 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1417 mutex_init(&kvm->arch.hpt_mutex);
1419 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
1420 spin_lock(&kvm_global_user_count_lock);
1421 if (++kvm_global_user_count == 1)
1422 pSeries_disable_reloc_on_exc();
1423 spin_unlock(&kvm_global_user_count_lock);
1425 return 0;
1428 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1430 #ifdef CONFIG_PPC64
1431 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1432 #endif
1434 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
1435 spin_lock(&kvm_global_user_count_lock);
1436 BUG_ON(kvm_global_user_count == 0);
1437 if (--kvm_global_user_count == 0)
1438 pSeries_enable_reloc_on_exc();
1439 spin_unlock(&kvm_global_user_count_lock);
1443 static int kvmppc_core_check_processor_compat_pr(void)
1445 /* we are always compatible */
1446 return 0;
1449 static long kvm_arch_vm_ioctl_pr(struct file *filp,
1450 unsigned int ioctl, unsigned long arg)
1452 return -ENOTTY;
1455 static struct kvmppc_ops kvm_ops_pr = {
1456 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
1457 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
1458 .get_one_reg = kvmppc_get_one_reg_pr,
1459 .set_one_reg = kvmppc_set_one_reg_pr,
1460 .vcpu_load = kvmppc_core_vcpu_load_pr,
1461 .vcpu_put = kvmppc_core_vcpu_put_pr,
1462 .set_msr = kvmppc_set_msr_pr,
1463 .vcpu_run = kvmppc_vcpu_run_pr,
1464 .vcpu_create = kvmppc_core_vcpu_create_pr,
1465 .vcpu_free = kvmppc_core_vcpu_free_pr,
1466 .check_requests = kvmppc_core_check_requests_pr,
1467 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
1468 .flush_memslot = kvmppc_core_flush_memslot_pr,
1469 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
1470 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
1471 .unmap_hva = kvm_unmap_hva_pr,
1472 .unmap_hva_range = kvm_unmap_hva_range_pr,
1473 .age_hva = kvm_age_hva_pr,
1474 .test_age_hva = kvm_test_age_hva_pr,
1475 .set_spte_hva = kvm_set_spte_hva_pr,
1476 .mmu_destroy = kvmppc_mmu_destroy_pr,
1477 .free_memslot = kvmppc_core_free_memslot_pr,
1478 .create_memslot = kvmppc_core_create_memslot_pr,
1479 .init_vm = kvmppc_core_init_vm_pr,
1480 .destroy_vm = kvmppc_core_destroy_vm_pr,
1481 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
1482 .emulate_op = kvmppc_core_emulate_op_pr,
1483 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
1484 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
1485 .fast_vcpu_kick = kvm_vcpu_kick,
1486 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
1490 int kvmppc_book3s_init_pr(void)
1492 int r;
1494 r = kvmppc_core_check_processor_compat_pr();
1495 if (r < 0)
1496 return r;
1498 kvm_ops_pr.owner = THIS_MODULE;
1499 kvmppc_pr_ops = &kvm_ops_pr;
1501 r = kvmppc_mmu_hpte_sysinit();
1502 return r;
1505 void kvmppc_book3s_exit_pr(void)
1507 kvmppc_pr_ops = NULL;
1508 kvmppc_mmu_hpte_sysexit();
1512 * We only support separate modules for book3s 64
1514 #ifdef CONFIG_PPC_BOOK3S_64
1516 module_init(kvmppc_book3s_init_pr);
1517 module_exit(kvmppc_book3s_exit_pr);
1519 MODULE_LICENSE("GPL");
1520 MODULE_ALIAS_MISCDEV(KVM_MINOR);
1521 MODULE_ALIAS("devname:kvm");
1522 #endif