4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode
*, struct file
*);
51 static int nfs_closedir(struct inode
*, struct file
*);
52 static int nfs_readdir(struct file
*, struct dir_context
*);
53 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
54 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
55 static void nfs_readdir_clear_array(struct page
*);
57 const struct file_operations nfs_dir_operations
= {
58 .llseek
= nfs_llseek_dir
,
59 .read
= generic_read_dir
,
60 .iterate
= nfs_readdir
,
62 .release
= nfs_closedir
,
63 .fsync
= nfs_fsync_dir
,
66 const struct address_space_operations nfs_dir_aops
= {
67 .freepage
= nfs_readdir_clear_array
,
70 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, struct rpc_cred
*cred
)
72 struct nfs_open_dir_context
*ctx
;
73 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
76 ctx
->attr_gencount
= NFS_I(dir
)->attr_gencount
;
79 ctx
->cred
= get_rpccred(cred
);
82 return ERR_PTR(-ENOMEM
);
85 static void put_nfs_open_dir_context(struct nfs_open_dir_context
*ctx
)
87 put_rpccred(ctx
->cred
);
95 nfs_opendir(struct inode
*inode
, struct file
*filp
)
98 struct nfs_open_dir_context
*ctx
;
99 struct rpc_cred
*cred
;
101 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
103 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
105 cred
= rpc_lookup_cred();
107 return PTR_ERR(cred
);
108 ctx
= alloc_nfs_open_dir_context(inode
, cred
);
113 filp
->private_data
= ctx
;
114 if (filp
->f_path
.dentry
== filp
->f_path
.mnt
->mnt_root
) {
115 /* This is a mountpoint, so d_revalidate will never
116 * have been called, so we need to refresh the
117 * inode (for close-open consistency) ourselves.
119 __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
127 nfs_closedir(struct inode
*inode
, struct file
*filp
)
129 put_nfs_open_dir_context(filp
->private_data
);
133 struct nfs_cache_array_entry
{
137 unsigned char d_type
;
140 struct nfs_cache_array
{
144 struct nfs_cache_array_entry array
[0];
147 typedef int (*decode_dirent_t
)(struct xdr_stream
*, struct nfs_entry
*, int);
151 struct dir_context
*ctx
;
152 unsigned long page_index
;
155 loff_t current_index
;
156 decode_dirent_t decode
;
158 unsigned long timestamp
;
159 unsigned long gencount
;
160 unsigned int cache_entry_index
;
163 } nfs_readdir_descriptor_t
;
166 * The caller is responsible for calling nfs_readdir_release_array(page)
169 struct nfs_cache_array
*nfs_readdir_get_array(struct page
*page
)
173 return ERR_PTR(-EIO
);
176 return ERR_PTR(-ENOMEM
);
181 void nfs_readdir_release_array(struct page
*page
)
187 * we are freeing strings created by nfs_add_to_readdir_array()
190 void nfs_readdir_clear_array(struct page
*page
)
192 struct nfs_cache_array
*array
;
195 array
= kmap_atomic(page
);
196 for (i
= 0; i
< array
->size
; i
++)
197 kfree(array
->array
[i
].string
.name
);
198 kunmap_atomic(array
);
202 * the caller is responsible for freeing qstr.name
203 * when called by nfs_readdir_add_to_array, the strings will be freed in
204 * nfs_clear_readdir_array()
207 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
210 string
->name
= kmemdup(name
, len
, GFP_KERNEL
);
211 if (string
->name
== NULL
)
214 * Avoid a kmemleak false positive. The pointer to the name is stored
215 * in a page cache page which kmemleak does not scan.
217 kmemleak_not_leak(string
->name
);
218 string
->hash
= full_name_hash(name
, len
);
223 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
225 struct nfs_cache_array
*array
= nfs_readdir_get_array(page
);
226 struct nfs_cache_array_entry
*cache_entry
;
230 return PTR_ERR(array
);
232 cache_entry
= &array
->array
[array
->size
];
234 /* Check that this entry lies within the page bounds */
236 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
239 cache_entry
->cookie
= entry
->prev_cookie
;
240 cache_entry
->ino
= entry
->ino
;
241 cache_entry
->d_type
= entry
->d_type
;
242 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
245 array
->last_cookie
= entry
->cookie
;
248 array
->eof_index
= array
->size
;
250 nfs_readdir_release_array(page
);
255 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
257 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
262 if (diff
>= array
->size
) {
263 if (array
->eof_index
>= 0)
268 index
= (unsigned int)diff
;
269 *desc
->dir_cookie
= array
->array
[index
].cookie
;
270 desc
->cache_entry_index
= index
;
278 nfs_readdir_inode_mapping_valid(struct nfs_inode
*nfsi
)
280 if (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))
283 return !test_bit(NFS_INO_INVALIDATING
, &nfsi
->flags
);
287 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
291 int status
= -EAGAIN
;
293 for (i
= 0; i
< array
->size
; i
++) {
294 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
295 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
296 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
298 new_pos
= desc
->current_index
+ i
;
299 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
||
300 !nfs_readdir_inode_mapping_valid(nfsi
)) {
302 ctx
->attr_gencount
= nfsi
->attr_gencount
;
303 } else if (new_pos
< desc
->ctx
->pos
) {
305 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
306 if (printk_ratelimit()) {
307 pr_notice("NFS: directory %pD2 contains a readdir loop."
308 "Please contact your server vendor. "
309 "The file: %s has duplicate cookie %llu\n",
311 array
->array
[i
].string
.name
,
317 ctx
->dup_cookie
= *desc
->dir_cookie
;
320 desc
->ctx
->pos
= new_pos
;
321 desc
->cache_entry_index
= i
;
325 if (array
->eof_index
>= 0) {
326 status
= -EBADCOOKIE
;
327 if (*desc
->dir_cookie
== array
->last_cookie
)
335 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
337 struct nfs_cache_array
*array
;
340 array
= nfs_readdir_get_array(desc
->page
);
342 status
= PTR_ERR(array
);
346 if (*desc
->dir_cookie
== 0)
347 status
= nfs_readdir_search_for_pos(array
, desc
);
349 status
= nfs_readdir_search_for_cookie(array
, desc
);
351 if (status
== -EAGAIN
) {
352 desc
->last_cookie
= array
->last_cookie
;
353 desc
->current_index
+= array
->size
;
356 nfs_readdir_release_array(desc
->page
);
361 /* Fill a page with xdr information before transferring to the cache page */
363 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
364 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
366 struct nfs_open_dir_context
*ctx
= file
->private_data
;
367 struct rpc_cred
*cred
= ctx
->cred
;
368 unsigned long timestamp
, gencount
;
373 gencount
= nfs_inc_attr_generation_counter();
374 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, entry
->cookie
, pages
,
375 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
377 /* We requested READDIRPLUS, but the server doesn't grok it */
378 if (error
== -ENOTSUPP
&& desc
->plus
) {
379 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
380 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
386 desc
->timestamp
= timestamp
;
387 desc
->gencount
= gencount
;
392 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
393 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
397 error
= desc
->decode(xdr
, entry
, desc
->plus
);
400 entry
->fattr
->time_start
= desc
->timestamp
;
401 entry
->fattr
->gencount
= desc
->gencount
;
406 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
408 if (dentry
->d_inode
== NULL
)
410 if (nfs_compare_fh(entry
->fh
, NFS_FH(dentry
->d_inode
)) != 0)
418 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
420 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
422 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
430 * This function is called by the lookup code to request the use of
431 * readdirplus to accelerate any future lookups in the same
435 void nfs_advise_use_readdirplus(struct inode
*dir
)
437 set_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
);
441 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
)
443 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
444 struct dentry
*dentry
;
445 struct dentry
*alias
;
446 struct inode
*dir
= parent
->d_inode
;
450 if (filename
.name
[0] == '.') {
451 if (filename
.len
== 1)
453 if (filename
.len
== 2 && filename
.name
[1] == '.')
456 filename
.hash
= full_name_hash(filename
.name
, filename
.len
);
458 dentry
= d_lookup(parent
, &filename
);
459 if (dentry
!= NULL
) {
460 if (nfs_same_file(dentry
, entry
)) {
461 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
462 status
= nfs_refresh_inode(dentry
->d_inode
, entry
->fattr
);
464 nfs_setsecurity(dentry
->d_inode
, entry
->fattr
, entry
->label
);
467 if (d_invalidate(dentry
) != 0)
473 dentry
= d_alloc(parent
, &filename
);
477 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
481 alias
= d_materialise_unique(dentry
, inode
);
485 nfs_set_verifier(alias
, nfs_save_change_attribute(dir
));
488 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
494 /* Perform conversion from xdr to cache array */
496 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
497 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
499 struct xdr_stream stream
;
501 struct page
*scratch
;
502 struct nfs_cache_array
*array
;
503 unsigned int count
= 0;
506 scratch
= alloc_page(GFP_KERNEL
);
510 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
511 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
514 status
= xdr_decode(desc
, entry
, &stream
);
516 if (status
== -EAGAIN
)
524 nfs_prime_dcache(desc
->file
->f_path
.dentry
, entry
);
526 status
= nfs_readdir_add_to_array(entry
, page
);
529 } while (!entry
->eof
);
531 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
532 array
= nfs_readdir_get_array(page
);
533 if (!IS_ERR(array
)) {
534 array
->eof_index
= array
->size
;
536 nfs_readdir_release_array(page
);
538 status
= PTR_ERR(array
);
546 void nfs_readdir_free_pagearray(struct page
**pages
, unsigned int npages
)
549 for (i
= 0; i
< npages
; i
++)
554 void nfs_readdir_free_large_page(void *ptr
, struct page
**pages
,
557 nfs_readdir_free_pagearray(pages
, npages
);
561 * nfs_readdir_large_page will allocate pages that must be freed with a call
562 * to nfs_readdir_free_large_page
565 int nfs_readdir_large_page(struct page
**pages
, unsigned int npages
)
569 for (i
= 0; i
< npages
; i
++) {
570 struct page
*page
= alloc_page(GFP_KERNEL
);
578 nfs_readdir_free_pagearray(pages
, i
);
583 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
585 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
586 void *pages_ptr
= NULL
;
587 struct nfs_entry entry
;
588 struct file
*file
= desc
->file
;
589 struct nfs_cache_array
*array
;
590 int status
= -ENOMEM
;
591 unsigned int array_size
= ARRAY_SIZE(pages
);
593 entry
.prev_cookie
= 0;
594 entry
.cookie
= desc
->last_cookie
;
596 entry
.fh
= nfs_alloc_fhandle();
597 entry
.fattr
= nfs_alloc_fattr();
598 entry
.server
= NFS_SERVER(inode
);
599 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
602 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
603 if (IS_ERR(entry
.label
)) {
604 status
= PTR_ERR(entry
.label
);
608 array
= nfs_readdir_get_array(page
);
610 status
= PTR_ERR(array
);
613 memset(array
, 0, sizeof(struct nfs_cache_array
));
614 array
->eof_index
= -1;
616 status
= nfs_readdir_large_page(pages
, array_size
);
618 goto out_release_array
;
621 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
626 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
628 if (status
== -ENOSPC
)
632 } while (array
->eof_index
< 0);
634 nfs_readdir_free_large_page(pages_ptr
, pages
, array_size
);
636 nfs_readdir_release_array(page
);
638 nfs4_label_free(entry
.label
);
640 nfs_free_fattr(entry
.fattr
);
641 nfs_free_fhandle(entry
.fh
);
646 * Now we cache directories properly, by converting xdr information
647 * to an array that can be used for lookups later. This results in
648 * fewer cache pages, since we can store more information on each page.
649 * We only need to convert from xdr once so future lookups are much simpler
652 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
* page
)
654 struct inode
*inode
= file_inode(desc
->file
);
657 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
660 SetPageUptodate(page
);
662 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
663 /* Should never happen */
664 nfs_zap_mapping(inode
, inode
->i_mapping
);
674 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
676 if (!desc
->page
->mapping
)
677 nfs_readdir_clear_array(desc
->page
);
678 page_cache_release(desc
->page
);
683 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
685 return read_cache_page(file_inode(desc
->file
)->i_mapping
,
686 desc
->page_index
, (filler_t
*)nfs_readdir_filler
, desc
);
690 * Returns 0 if desc->dir_cookie was found on page desc->page_index
693 int find_cache_page(nfs_readdir_descriptor_t
*desc
)
697 desc
->page
= get_cache_page(desc
);
698 if (IS_ERR(desc
->page
))
699 return PTR_ERR(desc
->page
);
701 res
= nfs_readdir_search_array(desc
);
703 cache_page_release(desc
);
707 /* Search for desc->dir_cookie from the beginning of the page cache */
709 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
713 if (desc
->page_index
== 0) {
714 desc
->current_index
= 0;
715 desc
->last_cookie
= 0;
718 res
= find_cache_page(desc
);
719 } while (res
== -EAGAIN
);
724 * Once we've found the start of the dirent within a page: fill 'er up...
727 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
729 struct file
*file
= desc
->file
;
732 struct nfs_cache_array
*array
= NULL
;
733 struct nfs_open_dir_context
*ctx
= file
->private_data
;
735 array
= nfs_readdir_get_array(desc
->page
);
737 res
= PTR_ERR(array
);
741 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
742 struct nfs_cache_array_entry
*ent
;
744 ent
= &array
->array
[i
];
745 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
746 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
751 if (i
< (array
->size
-1))
752 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
754 *desc
->dir_cookie
= array
->last_cookie
;
758 if (array
->eof_index
>= 0)
761 nfs_readdir_release_array(desc
->page
);
763 cache_page_release(desc
);
764 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
765 (unsigned long long)*desc
->dir_cookie
, res
);
770 * If we cannot find a cookie in our cache, we suspect that this is
771 * because it points to a deleted file, so we ask the server to return
772 * whatever it thinks is the next entry. We then feed this to filldir.
773 * If all goes well, we should then be able to find our way round the
774 * cache on the next call to readdir_search_pagecache();
776 * NOTE: we cannot add the anonymous page to the pagecache because
777 * the data it contains might not be page aligned. Besides,
778 * we should already have a complete representation of the
779 * directory in the page cache by the time we get here.
782 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
784 struct page
*page
= NULL
;
786 struct inode
*inode
= file_inode(desc
->file
);
787 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
789 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
790 (unsigned long long)*desc
->dir_cookie
);
792 page
= alloc_page(GFP_HIGHUSER
);
798 desc
->page_index
= 0;
799 desc
->last_cookie
= *desc
->dir_cookie
;
803 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
807 status
= nfs_do_filldir(desc
);
810 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
814 cache_page_release(desc
);
818 /* The file offset position represents the dirent entry number. A
819 last cookie cache takes care of the common case of reading the
822 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
824 struct dentry
*dentry
= file
->f_path
.dentry
;
825 struct inode
*inode
= dentry
->d_inode
;
826 nfs_readdir_descriptor_t my_desc
,
828 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
831 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
832 file
, (long long)ctx
->pos
);
833 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
836 * ctx->pos points to the dirent entry number.
837 * *desc->dir_cookie has the cookie for the next entry. We have
838 * to either find the entry with the appropriate number or
839 * revalidate the cookie.
841 memset(desc
, 0, sizeof(*desc
));
845 desc
->dir_cookie
= &dir_ctx
->dir_cookie
;
846 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
847 desc
->plus
= nfs_use_readdirplus(inode
, ctx
) ? 1 : 0;
849 nfs_block_sillyrename(dentry
);
850 if (ctx
->pos
== 0 || nfs_attribute_cache_expired(inode
))
851 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
856 res
= readdir_search_pagecache(desc
);
858 if (res
== -EBADCOOKIE
) {
860 /* This means either end of directory */
861 if (*desc
->dir_cookie
&& desc
->eof
== 0) {
862 /* Or that the server has 'lost' a cookie */
863 res
= uncached_readdir(desc
);
869 if (res
== -ETOOSMALL
&& desc
->plus
) {
870 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
871 nfs_zap_caches(inode
);
872 desc
->page_index
= 0;
880 res
= nfs_do_filldir(desc
);
883 } while (!desc
->eof
);
885 nfs_unblock_sillyrename(dentry
);
888 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
892 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
894 struct inode
*inode
= file_inode(filp
);
895 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
897 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
898 filp
, offset
, whence
);
900 mutex_lock(&inode
->i_mutex
);
903 offset
+= filp
->f_pos
;
911 if (offset
!= filp
->f_pos
) {
912 filp
->f_pos
= offset
;
913 dir_ctx
->dir_cookie
= 0;
917 mutex_unlock(&inode
->i_mutex
);
922 * All directory operations under NFS are synchronous, so fsync()
923 * is a dummy operation.
925 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
928 struct inode
*inode
= file_inode(filp
);
930 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
932 mutex_lock(&inode
->i_mutex
);
933 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
934 mutex_unlock(&inode
->i_mutex
);
939 * nfs_force_lookup_revalidate - Mark the directory as having changed
940 * @dir - pointer to directory inode
942 * This forces the revalidation code in nfs_lookup_revalidate() to do a
943 * full lookup on all child dentries of 'dir' whenever a change occurs
944 * on the server that might have invalidated our dcache.
946 * The caller should be holding dir->i_lock
948 void nfs_force_lookup_revalidate(struct inode
*dir
)
950 NFS_I(dir
)->cache_change_attribute
++;
952 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
955 * A check for whether or not the parent directory has changed.
956 * In the case it has, we assume that the dentries are untrustworthy
957 * and may need to be looked up again.
959 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
963 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
965 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
967 /* Revalidate nfsi->cache_change_attribute before we declare a match */
968 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
970 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
976 * Use intent information to check whether or not we're going to do
977 * an O_EXCL create using this path component.
979 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
981 if (NFS_PROTO(dir
)->version
== 2)
983 return flags
& LOOKUP_EXCL
;
987 * Inode and filehandle revalidation for lookups.
989 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
990 * or if the intent information indicates that we're about to open this
991 * particular file and the "nocto" mount flag is not set.
995 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
997 struct nfs_server
*server
= NFS_SERVER(inode
);
1000 if (IS_AUTOMOUNT(inode
))
1002 /* VFS wants an on-the-wire revalidation */
1003 if (flags
& LOOKUP_REVAL
)
1005 /* This is an open(2) */
1006 if ((flags
& LOOKUP_OPEN
) && !(server
->flags
& NFS_MOUNT_NOCTO
) &&
1007 (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
)))
1010 return (inode
->i_nlink
== 0) ? -ENOENT
: 0;
1012 ret
= __nfs_revalidate_inode(server
, inode
);
1019 * We judge how long we want to trust negative
1020 * dentries by looking at the parent inode mtime.
1022 * If parent mtime has changed, we revalidate, else we wait for a
1023 * period corresponding to the parent's attribute cache timeout value.
1026 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1029 /* Don't revalidate a negative dentry if we're creating a new file */
1030 if (flags
& LOOKUP_CREATE
)
1032 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1034 return !nfs_check_verifier(dir
, dentry
);
1038 * This is called every time the dcache has a lookup hit,
1039 * and we should check whether we can really trust that
1042 * NOTE! The hit can be a negative hit too, don't assume
1045 * If the parent directory is seen to have changed, we throw out the
1046 * cached dentry and do a new lookup.
1048 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1051 struct inode
*inode
;
1052 struct dentry
*parent
;
1053 struct nfs_fh
*fhandle
= NULL
;
1054 struct nfs_fattr
*fattr
= NULL
;
1055 struct nfs4_label
*label
= NULL
;
1058 if (flags
& LOOKUP_RCU
)
1061 parent
= dget_parent(dentry
);
1062 dir
= parent
->d_inode
;
1063 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1064 inode
= dentry
->d_inode
;
1067 if (nfs_neg_need_reval(dir
, dentry
, flags
))
1069 goto out_valid_noent
;
1072 if (is_bad_inode(inode
)) {
1073 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1078 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1079 goto out_set_verifier
;
1081 /* Force a full look up iff the parent directory has changed */
1082 if (!nfs_is_exclusive_create(dir
, flags
) && nfs_check_verifier(dir
, dentry
)) {
1083 if (nfs_lookup_verify_inode(inode
, flags
))
1084 goto out_zap_parent
;
1088 if (NFS_STALE(inode
))
1092 fhandle
= nfs_alloc_fhandle();
1093 fattr
= nfs_alloc_fattr();
1094 if (fhandle
== NULL
|| fattr
== NULL
)
1097 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
1101 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1102 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1103 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1106 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1108 if ((error
= nfs_refresh_inode(inode
, fattr
)) != 0)
1111 nfs_setsecurity(inode
, fattr
, label
);
1113 nfs_free_fattr(fattr
);
1114 nfs_free_fhandle(fhandle
);
1115 nfs4_label_free(label
);
1118 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1120 /* Success: notify readdir to use READDIRPLUS */
1121 nfs_advise_use_readdirplus(dir
);
1124 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1128 nfs_zap_caches(dir
);
1130 nfs_free_fattr(fattr
);
1131 nfs_free_fhandle(fhandle
);
1132 nfs4_label_free(label
);
1133 nfs_mark_for_revalidate(dir
);
1134 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1135 /* Purge readdir caches. */
1136 nfs_zap_caches(inode
);
1138 * We can't d_drop the root of a disconnected tree:
1139 * its d_hash is on the s_anon list and d_drop() would hide
1140 * it from shrink_dcache_for_unmount(), leading to busy
1141 * inodes on unmount and further oopses.
1143 if (IS_ROOT(dentry
))
1146 /* If we have submounts, don't unhash ! */
1147 if (check_submounts_and_drop(dentry
) != 0)
1151 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1155 nfs_free_fattr(fattr
);
1156 nfs_free_fhandle(fhandle
);
1157 nfs4_label_free(label
);
1159 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1160 __func__
, dentry
, error
);
1165 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1166 * when we don't really care about the dentry name. This is called when a
1167 * pathwalk ends on a dentry that was not found via a normal lookup in the
1168 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1170 * In this situation, we just want to verify that the inode itself is OK
1171 * since the dentry might have changed on the server.
1173 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1176 struct inode
*inode
= dentry
->d_inode
;
1179 * I believe we can only get a negative dentry here in the case of a
1180 * procfs-style symlink. Just assume it's correct for now, but we may
1181 * eventually need to do something more here.
1184 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1189 if (is_bad_inode(inode
)) {
1190 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1195 error
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1196 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1197 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1202 * This is called from dput() when d_count is going to 0.
1204 static int nfs_dentry_delete(const struct dentry
*dentry
)
1206 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1207 dentry
, dentry
->d_flags
);
1209 /* Unhash any dentry with a stale inode */
1210 if (dentry
->d_inode
!= NULL
&& NFS_STALE(dentry
->d_inode
))
1213 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1214 /* Unhash it, so that ->d_iput() would be called */
1217 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
1218 /* Unhash it, so that ancestors of killed async unlink
1219 * files will be cleaned up during umount */
1226 /* Ensure that we revalidate inode->i_nlink */
1227 static void nfs_drop_nlink(struct inode
*inode
)
1229 spin_lock(&inode
->i_lock
);
1230 /* drop the inode if we're reasonably sure this is the last link */
1231 if (inode
->i_nlink
== 1)
1233 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATTR
;
1234 spin_unlock(&inode
->i_lock
);
1238 * Called when the dentry loses inode.
1239 * We use it to clean up silly-renamed files.
1241 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1243 if (S_ISDIR(inode
->i_mode
))
1244 /* drop any readdir cache as it could easily be old */
1245 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1247 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1248 nfs_complete_unlink(dentry
, inode
);
1249 nfs_drop_nlink(inode
);
1254 static void nfs_d_release(struct dentry
*dentry
)
1256 /* free cached devname value, if it survived that far */
1257 if (unlikely(dentry
->d_fsdata
)) {
1258 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1261 kfree(dentry
->d_fsdata
);
1265 const struct dentry_operations nfs_dentry_operations
= {
1266 .d_revalidate
= nfs_lookup_revalidate
,
1267 .d_weak_revalidate
= nfs_weak_revalidate
,
1268 .d_delete
= nfs_dentry_delete
,
1269 .d_iput
= nfs_dentry_iput
,
1270 .d_automount
= nfs_d_automount
,
1271 .d_release
= nfs_d_release
,
1273 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1275 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1278 struct dentry
*parent
;
1279 struct inode
*inode
= NULL
;
1280 struct nfs_fh
*fhandle
= NULL
;
1281 struct nfs_fattr
*fattr
= NULL
;
1282 struct nfs4_label
*label
= NULL
;
1285 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1286 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1288 res
= ERR_PTR(-ENAMETOOLONG
);
1289 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1293 * If we're doing an exclusive create, optimize away the lookup
1294 * but don't hash the dentry.
1296 if (nfs_is_exclusive_create(dir
, flags
)) {
1297 d_instantiate(dentry
, NULL
);
1302 res
= ERR_PTR(-ENOMEM
);
1303 fhandle
= nfs_alloc_fhandle();
1304 fattr
= nfs_alloc_fattr();
1305 if (fhandle
== NULL
|| fattr
== NULL
)
1308 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1312 parent
= dentry
->d_parent
;
1313 /* Protect against concurrent sillydeletes */
1314 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1315 nfs_block_sillyrename(parent
);
1316 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1317 if (error
== -ENOENT
)
1320 res
= ERR_PTR(error
);
1321 goto out_unblock_sillyrename
;
1323 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1324 res
= ERR_CAST(inode
);
1326 goto out_unblock_sillyrename
;
1328 /* Success: notify readdir to use READDIRPLUS */
1329 nfs_advise_use_readdirplus(dir
);
1332 res
= d_materialise_unique(dentry
, inode
);
1335 goto out_unblock_sillyrename
;
1338 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1339 out_unblock_sillyrename
:
1340 nfs_unblock_sillyrename(parent
);
1341 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1342 nfs4_label_free(label
);
1344 nfs_free_fattr(fattr
);
1345 nfs_free_fhandle(fhandle
);
1348 EXPORT_SYMBOL_GPL(nfs_lookup
);
1350 #if IS_ENABLED(CONFIG_NFS_V4)
1351 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1353 const struct dentry_operations nfs4_dentry_operations
= {
1354 .d_revalidate
= nfs4_lookup_revalidate
,
1355 .d_delete
= nfs_dentry_delete
,
1356 .d_iput
= nfs_dentry_iput
,
1357 .d_automount
= nfs_d_automount
,
1358 .d_release
= nfs_d_release
,
1360 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1362 static fmode_t
flags_to_mode(int flags
)
1364 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1365 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1367 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1372 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
)
1374 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
));
1377 static int do_open(struct inode
*inode
, struct file
*filp
)
1379 nfs_fscache_open_file(inode
, filp
);
1383 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1384 struct dentry
*dentry
,
1385 struct file
*file
, unsigned open_flags
,
1390 if ((open_flags
& (O_CREAT
| O_EXCL
)) == (O_CREAT
| O_EXCL
))
1391 *opened
|= FILE_CREATED
;
1393 err
= finish_open(file
, dentry
, do_open
, opened
);
1396 nfs_file_set_open_context(file
, ctx
);
1402 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1403 struct file
*file
, unsigned open_flags
,
1404 umode_t mode
, int *opened
)
1406 struct nfs_open_context
*ctx
;
1408 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1409 struct inode
*inode
;
1410 unsigned int lookup_flags
= 0;
1413 /* Expect a negative dentry */
1414 BUG_ON(dentry
->d_inode
);
1416 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1417 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1419 err
= nfs_check_flags(open_flags
);
1423 /* NFS only supports OPEN on regular files */
1424 if ((open_flags
& O_DIRECTORY
)) {
1425 if (!d_unhashed(dentry
)) {
1427 * Hashed negative dentry with O_DIRECTORY: dentry was
1428 * revalidated and is fine, no need to perform lookup
1433 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1437 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1438 return -ENAMETOOLONG
;
1440 if (open_flags
& O_CREAT
) {
1441 attr
.ia_valid
|= ATTR_MODE
;
1442 attr
.ia_mode
= mode
& ~current_umask();
1444 if (open_flags
& O_TRUNC
) {
1445 attr
.ia_valid
|= ATTR_SIZE
;
1449 ctx
= create_nfs_open_context(dentry
, open_flags
);
1454 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1455 nfs_block_sillyrename(dentry
->d_parent
);
1456 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, opened
);
1457 nfs_unblock_sillyrename(dentry
->d_parent
);
1458 if (IS_ERR(inode
)) {
1459 err
= PTR_ERR(inode
);
1460 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1461 put_nfs_open_context(ctx
);
1465 d_add(dentry
, NULL
);
1471 if (!(open_flags
& O_NOFOLLOW
))
1481 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
, opened
);
1482 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1483 put_nfs_open_context(ctx
);
1488 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1493 return finish_no_open(file
, res
);
1495 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1497 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1499 struct dentry
*parent
= NULL
;
1500 struct inode
*inode
;
1504 if (flags
& LOOKUP_RCU
)
1507 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1509 if (d_mountpoint(dentry
))
1511 if (NFS_SB(dentry
->d_sb
)->caps
& NFS_CAP_ATOMIC_OPEN_V1
)
1514 inode
= dentry
->d_inode
;
1515 parent
= dget_parent(dentry
);
1516 dir
= parent
->d_inode
;
1518 /* We can't create new files in nfs_open_revalidate(), so we
1519 * optimize away revalidation of negative dentries.
1521 if (inode
== NULL
) {
1522 if (!nfs_neg_need_reval(dir
, dentry
, flags
))
1527 /* NFS only supports OPEN on regular files */
1528 if (!S_ISREG(inode
->i_mode
))
1530 /* We cannot do exclusive creation on a positive dentry */
1531 if (flags
& LOOKUP_EXCL
)
1534 /* Let f_op->open() actually open (and revalidate) the file */
1544 return nfs_lookup_revalidate(dentry
, flags
);
1547 #endif /* CONFIG_NFSV4 */
1550 * Code common to create, mkdir, and mknod.
1552 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1553 struct nfs_fattr
*fattr
,
1554 struct nfs4_label
*label
)
1556 struct dentry
*parent
= dget_parent(dentry
);
1557 struct inode
*dir
= parent
->d_inode
;
1558 struct inode
*inode
;
1559 int error
= -EACCES
;
1563 /* We may have been initialized further down */
1564 if (dentry
->d_inode
)
1566 if (fhandle
->size
== 0) {
1567 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, NULL
);
1571 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1572 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1573 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1574 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
, NULL
);
1578 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1579 error
= PTR_ERR(inode
);
1582 d_add(dentry
, inode
);
1587 nfs_mark_for_revalidate(dir
);
1591 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1594 * Following a failed create operation, we drop the dentry rather
1595 * than retain a negative dentry. This avoids a problem in the event
1596 * that the operation succeeded on the server, but an error in the
1597 * reply path made it appear to have failed.
1599 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1600 umode_t mode
, bool excl
)
1603 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1606 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1607 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1609 attr
.ia_mode
= mode
;
1610 attr
.ia_valid
= ATTR_MODE
;
1612 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1613 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1614 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1622 EXPORT_SYMBOL_GPL(nfs_create
);
1625 * See comments for nfs_proc_create regarding failed operations.
1628 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1633 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1634 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1636 if (!new_valid_dev(rdev
))
1639 attr
.ia_mode
= mode
;
1640 attr
.ia_valid
= ATTR_MODE
;
1642 trace_nfs_mknod_enter(dir
, dentry
);
1643 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1644 trace_nfs_mknod_exit(dir
, dentry
, status
);
1652 EXPORT_SYMBOL_GPL(nfs_mknod
);
1655 * See comments for nfs_proc_create regarding failed operations.
1657 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1662 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1663 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1665 attr
.ia_valid
= ATTR_MODE
;
1666 attr
.ia_mode
= mode
| S_IFDIR
;
1668 trace_nfs_mkdir_enter(dir
, dentry
);
1669 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1670 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1678 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1680 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1682 if (dentry
->d_inode
!= NULL
&& !d_unhashed(dentry
))
1686 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1690 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1691 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1693 trace_nfs_rmdir_enter(dir
, dentry
);
1694 if (dentry
->d_inode
) {
1695 nfs_wait_on_sillyrename(dentry
);
1696 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1697 /* Ensure the VFS deletes this inode */
1700 clear_nlink(dentry
->d_inode
);
1703 nfs_dentry_handle_enoent(dentry
);
1706 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1707 trace_nfs_rmdir_exit(dir
, dentry
, error
);
1711 EXPORT_SYMBOL_GPL(nfs_rmdir
);
1714 * Remove a file after making sure there are no pending writes,
1715 * and after checking that the file has only one user.
1717 * We invalidate the attribute cache and free the inode prior to the operation
1718 * to avoid possible races if the server reuses the inode.
1720 static int nfs_safe_remove(struct dentry
*dentry
)
1722 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1723 struct inode
*inode
= dentry
->d_inode
;
1726 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
1728 /* If the dentry was sillyrenamed, we simply call d_delete() */
1729 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1734 trace_nfs_remove_enter(dir
, dentry
);
1735 if (inode
!= NULL
) {
1736 NFS_PROTO(inode
)->return_delegation(inode
);
1737 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1739 nfs_drop_nlink(inode
);
1741 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1742 if (error
== -ENOENT
)
1743 nfs_dentry_handle_enoent(dentry
);
1744 trace_nfs_remove_exit(dir
, dentry
, error
);
1749 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1750 * belongs to an active ".nfs..." file and we return -EBUSY.
1752 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1754 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1757 int need_rehash
= 0;
1759 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
1760 dir
->i_ino
, dentry
);
1762 trace_nfs_unlink_enter(dir
, dentry
);
1763 spin_lock(&dentry
->d_lock
);
1764 if (d_count(dentry
) > 1) {
1765 spin_unlock(&dentry
->d_lock
);
1766 /* Start asynchronous writeout of the inode */
1767 write_inode_now(dentry
->d_inode
, 0);
1768 error
= nfs_sillyrename(dir
, dentry
);
1771 if (!d_unhashed(dentry
)) {
1775 spin_unlock(&dentry
->d_lock
);
1776 error
= nfs_safe_remove(dentry
);
1777 if (!error
|| error
== -ENOENT
) {
1778 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1779 } else if (need_rehash
)
1782 trace_nfs_unlink_exit(dir
, dentry
, error
);
1785 EXPORT_SYMBOL_GPL(nfs_unlink
);
1788 * To create a symbolic link, most file systems instantiate a new inode,
1789 * add a page to it containing the path, then write it out to the disk
1790 * using prepare_write/commit_write.
1792 * Unfortunately the NFS client can't create the in-core inode first
1793 * because it needs a file handle to create an in-core inode (see
1794 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1795 * symlink request has completed on the server.
1797 * So instead we allocate a raw page, copy the symname into it, then do
1798 * the SYMLINK request with the page as the buffer. If it succeeds, we
1799 * now have a new file handle and can instantiate an in-core NFS inode
1800 * and move the raw page into its mapping.
1802 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1807 unsigned int pathlen
= strlen(symname
);
1810 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
1811 dir
->i_ino
, dentry
, symname
);
1813 if (pathlen
> PAGE_SIZE
)
1814 return -ENAMETOOLONG
;
1816 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1817 attr
.ia_valid
= ATTR_MODE
;
1819 page
= alloc_page(GFP_HIGHUSER
);
1823 kaddr
= kmap_atomic(page
);
1824 memcpy(kaddr
, symname
, pathlen
);
1825 if (pathlen
< PAGE_SIZE
)
1826 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1827 kunmap_atomic(kaddr
);
1829 trace_nfs_symlink_enter(dir
, dentry
);
1830 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1831 trace_nfs_symlink_exit(dir
, dentry
, error
);
1833 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1834 dir
->i_sb
->s_id
, dir
->i_ino
,
1835 dentry
, symname
, error
);
1842 * No big deal if we can't add this page to the page cache here.
1843 * READLINK will get the missing page from the server if needed.
1845 if (!add_to_page_cache_lru(page
, dentry
->d_inode
->i_mapping
, 0,
1847 SetPageUptodate(page
);
1854 EXPORT_SYMBOL_GPL(nfs_symlink
);
1857 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1859 struct inode
*inode
= old_dentry
->d_inode
;
1862 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
1863 old_dentry
, dentry
);
1865 trace_nfs_link_enter(inode
, dir
, dentry
);
1866 NFS_PROTO(inode
)->return_delegation(inode
);
1869 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1872 d_add(dentry
, inode
);
1874 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
1877 EXPORT_SYMBOL_GPL(nfs_link
);
1881 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1882 * different file handle for the same inode after a rename (e.g. when
1883 * moving to a different directory). A fail-safe method to do so would
1884 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1885 * rename the old file using the sillyrename stuff. This way, the original
1886 * file in old_dir will go away when the last process iput()s the inode.
1890 * It actually works quite well. One needs to have the possibility for
1891 * at least one ".nfs..." file in each directory the file ever gets
1892 * moved or linked to which happens automagically with the new
1893 * implementation that only depends on the dcache stuff instead of
1894 * using the inode layer
1896 * Unfortunately, things are a little more complicated than indicated
1897 * above. For a cross-directory move, we want to make sure we can get
1898 * rid of the old inode after the operation. This means there must be
1899 * no pending writes (if it's a file), and the use count must be 1.
1900 * If these conditions are met, we can drop the dentries before doing
1903 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1904 struct inode
*new_dir
, struct dentry
*new_dentry
)
1906 struct inode
*old_inode
= old_dentry
->d_inode
;
1907 struct inode
*new_inode
= new_dentry
->d_inode
;
1908 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1911 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1912 old_dentry
, new_dentry
,
1913 d_count(new_dentry
));
1915 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
1917 * For non-directories, check whether the target is busy and if so,
1918 * make a copy of the dentry and then do a silly-rename. If the
1919 * silly-rename succeeds, the copied dentry is hashed and becomes
1922 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
1924 * To prevent any new references to the target during the
1925 * rename, we unhash the dentry in advance.
1927 if (!d_unhashed(new_dentry
)) {
1929 rehash
= new_dentry
;
1932 if (d_count(new_dentry
) > 2) {
1935 /* copy the target dentry's name */
1936 dentry
= d_alloc(new_dentry
->d_parent
,
1937 &new_dentry
->d_name
);
1941 /* silly-rename the existing target ... */
1942 err
= nfs_sillyrename(new_dir
, new_dentry
);
1946 new_dentry
= dentry
;
1952 NFS_PROTO(old_inode
)->return_delegation(old_inode
);
1953 if (new_inode
!= NULL
)
1954 NFS_PROTO(new_inode
)->return_delegation(new_inode
);
1956 error
= NFS_PROTO(old_dir
)->rename(old_dir
, &old_dentry
->d_name
,
1957 new_dir
, &new_dentry
->d_name
);
1958 nfs_mark_for_revalidate(old_inode
);
1962 trace_nfs_rename_exit(old_dir
, old_dentry
,
1963 new_dir
, new_dentry
, error
);
1965 if (new_inode
!= NULL
)
1966 nfs_drop_nlink(new_inode
);
1967 d_move(old_dentry
, new_dentry
);
1968 nfs_set_verifier(new_dentry
,
1969 nfs_save_change_attribute(new_dir
));
1970 } else if (error
== -ENOENT
)
1971 nfs_dentry_handle_enoent(old_dentry
);
1973 /* new dentry created? */
1978 EXPORT_SYMBOL_GPL(nfs_rename
);
1980 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
1981 static LIST_HEAD(nfs_access_lru_list
);
1982 static atomic_long_t nfs_access_nr_entries
;
1984 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
1986 put_rpccred(entry
->cred
);
1988 smp_mb__before_atomic_dec();
1989 atomic_long_dec(&nfs_access_nr_entries
);
1990 smp_mb__after_atomic_dec();
1993 static void nfs_access_free_list(struct list_head
*head
)
1995 struct nfs_access_entry
*cache
;
1997 while (!list_empty(head
)) {
1998 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
1999 list_del(&cache
->lru
);
2000 nfs_access_free_entry(cache
);
2005 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
2008 struct nfs_inode
*nfsi
, *next
;
2009 struct nfs_access_entry
*cache
;
2010 int nr_to_scan
= sc
->nr_to_scan
;
2011 gfp_t gfp_mask
= sc
->gfp_mask
;
2014 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2017 spin_lock(&nfs_access_lru_lock
);
2018 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2019 struct inode
*inode
;
2021 if (nr_to_scan
-- == 0)
2023 inode
= &nfsi
->vfs_inode
;
2024 spin_lock(&inode
->i_lock
);
2025 if (list_empty(&nfsi
->access_cache_entry_lru
))
2026 goto remove_lru_entry
;
2027 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2028 struct nfs_access_entry
, lru
);
2029 list_move(&cache
->lru
, &head
);
2030 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2032 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2033 list_move_tail(&nfsi
->access_cache_inode_lru
,
2034 &nfs_access_lru_list
);
2037 list_del_init(&nfsi
->access_cache_inode_lru
);
2038 smp_mb__before_clear_bit();
2039 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2040 smp_mb__after_clear_bit();
2042 spin_unlock(&inode
->i_lock
);
2044 spin_unlock(&nfs_access_lru_lock
);
2045 nfs_access_free_list(&head
);
2050 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2052 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2055 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2057 struct rb_root
*root_node
= &nfsi
->access_cache
;
2059 struct nfs_access_entry
*entry
;
2061 /* Unhook entries from the cache */
2062 while ((n
= rb_first(root_node
)) != NULL
) {
2063 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2064 rb_erase(n
, root_node
);
2065 list_move(&entry
->lru
, head
);
2067 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2070 void nfs_access_zap_cache(struct inode
*inode
)
2074 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2076 /* Remove from global LRU init */
2077 spin_lock(&nfs_access_lru_lock
);
2078 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2079 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2081 spin_lock(&inode
->i_lock
);
2082 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2083 spin_unlock(&inode
->i_lock
);
2084 spin_unlock(&nfs_access_lru_lock
);
2085 nfs_access_free_list(&head
);
2087 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2089 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
2091 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2092 struct nfs_access_entry
*entry
;
2095 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2097 if (cred
< entry
->cred
)
2099 else if (cred
> entry
->cred
)
2107 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
2109 struct nfs_inode
*nfsi
= NFS_I(inode
);
2110 struct nfs_access_entry
*cache
;
2113 spin_lock(&inode
->i_lock
);
2114 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2116 cache
= nfs_access_search_rbtree(inode
, cred
);
2119 if (!nfs_have_delegated_attributes(inode
) &&
2120 !time_in_range_open(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
2122 res
->jiffies
= cache
->jiffies
;
2123 res
->cred
= cache
->cred
;
2124 res
->mask
= cache
->mask
;
2125 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2128 spin_unlock(&inode
->i_lock
);
2131 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2132 list_del(&cache
->lru
);
2133 spin_unlock(&inode
->i_lock
);
2134 nfs_access_free_entry(cache
);
2137 spin_unlock(&inode
->i_lock
);
2138 nfs_access_zap_cache(inode
);
2142 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2144 struct nfs_inode
*nfsi
= NFS_I(inode
);
2145 struct rb_root
*root_node
= &nfsi
->access_cache
;
2146 struct rb_node
**p
= &root_node
->rb_node
;
2147 struct rb_node
*parent
= NULL
;
2148 struct nfs_access_entry
*entry
;
2150 spin_lock(&inode
->i_lock
);
2151 while (*p
!= NULL
) {
2153 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2155 if (set
->cred
< entry
->cred
)
2156 p
= &parent
->rb_left
;
2157 else if (set
->cred
> entry
->cred
)
2158 p
= &parent
->rb_right
;
2162 rb_link_node(&set
->rb_node
, parent
, p
);
2163 rb_insert_color(&set
->rb_node
, root_node
);
2164 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2165 spin_unlock(&inode
->i_lock
);
2168 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2169 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2170 list_del(&entry
->lru
);
2171 spin_unlock(&inode
->i_lock
);
2172 nfs_access_free_entry(entry
);
2175 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2177 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2180 RB_CLEAR_NODE(&cache
->rb_node
);
2181 cache
->jiffies
= set
->jiffies
;
2182 cache
->cred
= get_rpccred(set
->cred
);
2183 cache
->mask
= set
->mask
;
2185 nfs_access_add_rbtree(inode
, cache
);
2187 /* Update accounting */
2188 smp_mb__before_atomic_inc();
2189 atomic_long_inc(&nfs_access_nr_entries
);
2190 smp_mb__after_atomic_inc();
2192 /* Add inode to global LRU list */
2193 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2194 spin_lock(&nfs_access_lru_lock
);
2195 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2196 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2197 &nfs_access_lru_list
);
2198 spin_unlock(&nfs_access_lru_lock
);
2201 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2203 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2206 if (access_result
& NFS4_ACCESS_READ
)
2207 entry
->mask
|= MAY_READ
;
2209 (NFS4_ACCESS_MODIFY
| NFS4_ACCESS_EXTEND
| NFS4_ACCESS_DELETE
))
2210 entry
->mask
|= MAY_WRITE
;
2211 if (access_result
& (NFS4_ACCESS_LOOKUP
|NFS4_ACCESS_EXECUTE
))
2212 entry
->mask
|= MAY_EXEC
;
2214 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2216 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
2218 struct nfs_access_entry cache
;
2221 trace_nfs_access_enter(inode
);
2223 status
= nfs_access_get_cached(inode
, cred
, &cache
);
2227 /* Be clever: ask server to check for all possible rights */
2228 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
2230 cache
.jiffies
= jiffies
;
2231 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2233 if (status
== -ESTALE
) {
2234 nfs_zap_caches(inode
);
2235 if (!S_ISDIR(inode
->i_mode
))
2236 set_bit(NFS_INO_STALE
, &NFS_I(inode
)->flags
);
2240 nfs_access_add_cache(inode
, &cache
);
2242 if ((mask
& ~cache
.mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2245 trace_nfs_access_exit(inode
, status
);
2249 static int nfs_open_permission_mask(int openflags
)
2253 if (openflags
& __FMODE_EXEC
) {
2254 /* ONLY check exec rights */
2257 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2259 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2266 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
2268 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2270 EXPORT_SYMBOL_GPL(nfs_may_open
);
2272 int nfs_permission(struct inode
*inode
, int mask
)
2274 struct rpc_cred
*cred
;
2277 if (mask
& MAY_NOT_BLOCK
)
2280 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2282 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2284 /* Is this sys_access() ? */
2285 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2288 switch (inode
->i_mode
& S_IFMT
) {
2295 * Optimize away all write operations, since the server
2296 * will check permissions when we perform the op.
2298 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2303 if (!NFS_PROTO(inode
)->access
)
2306 cred
= rpc_lookup_cred();
2307 if (!IS_ERR(cred
)) {
2308 res
= nfs_do_access(inode
, cred
, mask
);
2311 res
= PTR_ERR(cred
);
2313 if (!res
&& (mask
& MAY_EXEC
) && !execute_ok(inode
))
2316 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2317 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2320 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2322 res
= generic_permission(inode
, mask
);
2325 EXPORT_SYMBOL_GPL(nfs_permission
);
2329 * version-control: t
2330 * kept-new-versions: 5