4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
30 static void sum_vm_events(unsigned long *ret
)
35 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
37 for_each_online_cpu(cpu
) {
38 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
40 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
41 ret
[i
] += this->event
[i
];
46 * Accumulate the vm event counters across all CPUs.
47 * The result is unavoidably approximate - it can change
48 * during and after execution of this function.
50 void all_vm_events(unsigned long *ret
)
56 EXPORT_SYMBOL_GPL(all_vm_events
);
59 * Fold the foreign cpu events into our own.
61 * This is adding to the events on one processor
62 * but keeps the global counts constant.
64 void vm_events_fold_cpu(int cpu
)
66 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
69 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
70 count_vm_events(i
, fold_state
->event
[i
]);
71 fold_state
->event
[i
] = 0;
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
78 * Manage combined zone based / global counters
80 * vm_stat contains the global counters
82 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
83 EXPORT_SYMBOL(vm_stat
);
87 int calculate_pressure_threshold(struct zone
*zone
)
90 int watermark_distance
;
93 * As vmstats are not up to date, there is drift between the estimated
94 * and real values. For high thresholds and a high number of CPUs, it
95 * is possible for the min watermark to be breached while the estimated
96 * value looks fine. The pressure threshold is a reduced value such
97 * that even the maximum amount of drift will not accidentally breach
100 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
101 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
104 * Maximum threshold is 125
106 threshold
= min(125, threshold
);
111 int calculate_normal_threshold(struct zone
*zone
)
114 int mem
; /* memory in 128 MB units */
117 * The threshold scales with the number of processors and the amount
118 * of memory per zone. More memory means that we can defer updates for
119 * longer, more processors could lead to more contention.
120 * fls() is used to have a cheap way of logarithmic scaling.
122 * Some sample thresholds:
124 * Threshold Processors (fls) Zonesize fls(mem+1)
125 * ------------------------------------------------------------------
142 * 125 1024 10 8-16 GB 8
143 * 125 1024 10 16-32 GB 9
146 mem
= zone
->managed_pages
>> (27 - PAGE_SHIFT
);
148 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
151 * Maximum threshold is 125
153 threshold
= min(125, threshold
);
159 * Refresh the thresholds for each zone.
161 void refresh_zone_stat_thresholds(void)
167 for_each_populated_zone(zone
) {
168 unsigned long max_drift
, tolerate_drift
;
170 threshold
= calculate_normal_threshold(zone
);
172 for_each_online_cpu(cpu
)
173 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
177 * Only set percpu_drift_mark if there is a danger that
178 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 * the min watermark could be breached by an allocation
181 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
182 max_drift
= num_online_cpus() * threshold
;
183 if (max_drift
> tolerate_drift
)
184 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
189 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
190 int (*calculate_pressure
)(struct zone
*))
197 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
198 zone
= &pgdat
->node_zones
[i
];
199 if (!zone
->percpu_drift_mark
)
202 threshold
= (*calculate_pressure
)(zone
);
203 for_each_possible_cpu(cpu
)
204 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
210 * For use when we know that interrupts are disabled.
212 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
215 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
216 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
220 x
= delta
+ __this_cpu_read(*p
);
222 t
= __this_cpu_read(pcp
->stat_threshold
);
224 if (unlikely(x
> t
|| x
< -t
)) {
225 zone_page_state_add(x
, zone
, item
);
228 __this_cpu_write(*p
, x
);
230 EXPORT_SYMBOL(__mod_zone_page_state
);
233 * Optimized increment and decrement functions.
235 * These are only for a single page and therefore can take a struct page *
236 * argument instead of struct zone *. This allows the inclusion of the code
237 * generated for page_zone(page) into the optimized functions.
239 * No overflow check is necessary and therefore the differential can be
240 * incremented or decremented in place which may allow the compilers to
241 * generate better code.
242 * The increment or decrement is known and therefore one boundary check can
245 * NOTE: These functions are very performance sensitive. Change only
248 * Some processors have inc/dec instructions that are atomic vs an interrupt.
249 * However, the code must first determine the differential location in a zone
250 * based on the processor number and then inc/dec the counter. There is no
251 * guarantee without disabling preemption that the processor will not change
252 * in between and therefore the atomicity vs. interrupt cannot be exploited
253 * in a useful way here.
255 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
257 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
258 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
261 v
= __this_cpu_inc_return(*p
);
262 t
= __this_cpu_read(pcp
->stat_threshold
);
263 if (unlikely(v
> t
)) {
264 s8 overstep
= t
>> 1;
266 zone_page_state_add(v
+ overstep
, zone
, item
);
267 __this_cpu_write(*p
, -overstep
);
271 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
273 __inc_zone_state(page_zone(page
), item
);
275 EXPORT_SYMBOL(__inc_zone_page_state
);
277 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
279 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
280 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
283 v
= __this_cpu_dec_return(*p
);
284 t
= __this_cpu_read(pcp
->stat_threshold
);
285 if (unlikely(v
< - t
)) {
286 s8 overstep
= t
>> 1;
288 zone_page_state_add(v
- overstep
, zone
, item
);
289 __this_cpu_write(*p
, overstep
);
293 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
295 __dec_zone_state(page_zone(page
), item
);
297 EXPORT_SYMBOL(__dec_zone_page_state
);
299 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
301 * If we have cmpxchg_local support then we do not need to incur the overhead
302 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
304 * mod_state() modifies the zone counter state through atomic per cpu
307 * Overstep mode specifies how overstep should handled:
309 * 1 Overstepping half of threshold
310 * -1 Overstepping minus half of threshold
312 static inline void mod_state(struct zone
*zone
,
313 enum zone_stat_item item
, int delta
, int overstep_mode
)
315 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
316 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
320 z
= 0; /* overflow to zone counters */
323 * The fetching of the stat_threshold is racy. We may apply
324 * a counter threshold to the wrong the cpu if we get
325 * rescheduled while executing here. However, the next
326 * counter update will apply the threshold again and
327 * therefore bring the counter under the threshold again.
329 * Most of the time the thresholds are the same anyways
330 * for all cpus in a zone.
332 t
= this_cpu_read(pcp
->stat_threshold
);
334 o
= this_cpu_read(*p
);
337 if (n
> t
|| n
< -t
) {
338 int os
= overstep_mode
* (t
>> 1) ;
340 /* Overflow must be added to zone counters */
344 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
347 zone_page_state_add(z
, zone
, item
);
350 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
353 mod_state(zone
, item
, delta
, 0);
355 EXPORT_SYMBOL(mod_zone_page_state
);
357 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
359 mod_state(zone
, item
, 1, 1);
362 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
364 mod_state(page_zone(page
), item
, 1, 1);
366 EXPORT_SYMBOL(inc_zone_page_state
);
368 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
370 mod_state(page_zone(page
), item
, -1, -1);
372 EXPORT_SYMBOL(dec_zone_page_state
);
375 * Use interrupt disable to serialize counter updates
377 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
382 local_irq_save(flags
);
383 __mod_zone_page_state(zone
, item
, delta
);
384 local_irq_restore(flags
);
386 EXPORT_SYMBOL(mod_zone_page_state
);
388 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
392 local_irq_save(flags
);
393 __inc_zone_state(zone
, item
);
394 local_irq_restore(flags
);
397 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
402 zone
= page_zone(page
);
403 local_irq_save(flags
);
404 __inc_zone_state(zone
, item
);
405 local_irq_restore(flags
);
407 EXPORT_SYMBOL(inc_zone_page_state
);
409 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
413 local_irq_save(flags
);
414 __dec_zone_page_state(page
, item
);
415 local_irq_restore(flags
);
417 EXPORT_SYMBOL(dec_zone_page_state
);
420 static inline void fold_diff(int *diff
)
424 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
426 atomic_long_add(diff
[i
], &vm_stat
[i
]);
430 * Update the zone counters for the current cpu.
432 * Note that refresh_cpu_vm_stats strives to only access
433 * node local memory. The per cpu pagesets on remote zones are placed
434 * in the memory local to the processor using that pageset. So the
435 * loop over all zones will access a series of cachelines local to
438 * The call to zone_page_state_add updates the cachelines with the
439 * statistics in the remote zone struct as well as the global cachelines
440 * with the global counters. These could cause remote node cache line
441 * bouncing and will have to be only done when necessary.
443 static void refresh_cpu_vm_stats(void)
447 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
449 for_each_populated_zone(zone
) {
450 struct per_cpu_pageset __percpu
*p
= zone
->pageset
;
452 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++) {
455 v
= this_cpu_xchg(p
->vm_stat_diff
[i
], 0);
458 atomic_long_add(v
, &zone
->vm_stat
[i
]);
461 /* 3 seconds idle till flush */
462 __this_cpu_write(p
->expire
, 3);
469 * Deal with draining the remote pageset of this
472 * Check if there are pages remaining in this pageset
473 * if not then there is nothing to expire.
475 if (!__this_cpu_read(p
->expire
) ||
476 !__this_cpu_read(p
->pcp
.count
))
480 * We never drain zones local to this processor.
482 if (zone_to_nid(zone
) == numa_node_id()) {
483 __this_cpu_write(p
->expire
, 0);
488 if (__this_cpu_dec_return(p
->expire
))
491 if (__this_cpu_read(p
->pcp
.count
))
492 drain_zone_pages(zone
, __this_cpu_ptr(&p
->pcp
));
495 fold_diff(global_diff
);
499 * Fold the data for an offline cpu into the global array.
500 * There cannot be any access by the offline cpu and therefore
501 * synchronization is simplified.
503 void cpu_vm_stats_fold(int cpu
)
507 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
509 for_each_populated_zone(zone
) {
510 struct per_cpu_pageset
*p
;
512 p
= per_cpu_ptr(zone
->pageset
, cpu
);
514 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
515 if (p
->vm_stat_diff
[i
]) {
518 v
= p
->vm_stat_diff
[i
];
519 p
->vm_stat_diff
[i
] = 0;
520 atomic_long_add(v
, &zone
->vm_stat
[i
]);
525 fold_diff(global_diff
);
529 * this is only called if !populated_zone(zone), which implies no other users of
530 * pset->vm_stat_diff[] exsist.
532 void drain_zonestat(struct zone
*zone
, struct per_cpu_pageset
*pset
)
536 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
537 if (pset
->vm_stat_diff
[i
]) {
538 int v
= pset
->vm_stat_diff
[i
];
539 pset
->vm_stat_diff
[i
] = 0;
540 atomic_long_add(v
, &zone
->vm_stat
[i
]);
541 atomic_long_add(v
, &vm_stat
[i
]);
548 * zonelist = the list of zones passed to the allocator
549 * z = the zone from which the allocation occurred.
551 * Must be called with interrupts disabled.
553 * When __GFP_OTHER_NODE is set assume the node of the preferred
554 * zone is the local node. This is useful for daemons who allocate
555 * memory on behalf of other processes.
557 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
, gfp_t flags
)
559 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
560 __inc_zone_state(z
, NUMA_HIT
);
562 __inc_zone_state(z
, NUMA_MISS
);
563 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
565 if (z
->node
== ((flags
& __GFP_OTHER_NODE
) ?
566 preferred_zone
->node
: numa_node_id()))
567 __inc_zone_state(z
, NUMA_LOCAL
);
569 __inc_zone_state(z
, NUMA_OTHER
);
573 #ifdef CONFIG_COMPACTION
575 struct contig_page_info
{
576 unsigned long free_pages
;
577 unsigned long free_blocks_total
;
578 unsigned long free_blocks_suitable
;
582 * Calculate the number of free pages in a zone, how many contiguous
583 * pages are free and how many are large enough to satisfy an allocation of
584 * the target size. Note that this function makes no attempt to estimate
585 * how many suitable free blocks there *might* be if MOVABLE pages were
586 * migrated. Calculating that is possible, but expensive and can be
587 * figured out from userspace
589 static void fill_contig_page_info(struct zone
*zone
,
590 unsigned int suitable_order
,
591 struct contig_page_info
*info
)
595 info
->free_pages
= 0;
596 info
->free_blocks_total
= 0;
597 info
->free_blocks_suitable
= 0;
599 for (order
= 0; order
< MAX_ORDER
; order
++) {
600 unsigned long blocks
;
602 /* Count number of free blocks */
603 blocks
= zone
->free_area
[order
].nr_free
;
604 info
->free_blocks_total
+= blocks
;
606 /* Count free base pages */
607 info
->free_pages
+= blocks
<< order
;
609 /* Count the suitable free blocks */
610 if (order
>= suitable_order
)
611 info
->free_blocks_suitable
+= blocks
<<
612 (order
- suitable_order
);
617 * A fragmentation index only makes sense if an allocation of a requested
618 * size would fail. If that is true, the fragmentation index indicates
619 * whether external fragmentation or a lack of memory was the problem.
620 * The value can be used to determine if page reclaim or compaction
623 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
625 unsigned long requested
= 1UL << order
;
627 if (!info
->free_blocks_total
)
630 /* Fragmentation index only makes sense when a request would fail */
631 if (info
->free_blocks_suitable
)
635 * Index is between 0 and 1 so return within 3 decimal places
637 * 0 => allocation would fail due to lack of memory
638 * 1 => allocation would fail due to fragmentation
640 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
643 /* Same as __fragmentation index but allocs contig_page_info on stack */
644 int fragmentation_index(struct zone
*zone
, unsigned int order
)
646 struct contig_page_info info
;
648 fill_contig_page_info(zone
, order
, &info
);
649 return __fragmentation_index(order
, &info
);
653 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
654 #include <linux/proc_fs.h>
655 #include <linux/seq_file.h>
657 static char * const migratetype_names
[MIGRATE_TYPES
] = {
665 #ifdef CONFIG_MEMORY_ISOLATION
670 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
674 for (pgdat
= first_online_pgdat();
676 pgdat
= next_online_pgdat(pgdat
))
682 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
684 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
687 return next_online_pgdat(pgdat
);
690 static void frag_stop(struct seq_file
*m
, void *arg
)
694 /* Walk all the zones in a node and print using a callback */
695 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
696 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
699 struct zone
*node_zones
= pgdat
->node_zones
;
702 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
703 if (!populated_zone(zone
))
706 spin_lock_irqsave(&zone
->lock
, flags
);
707 print(m
, pgdat
, zone
);
708 spin_unlock_irqrestore(&zone
->lock
, flags
);
713 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
714 #ifdef CONFIG_ZONE_DMA
715 #define TEXT_FOR_DMA(xx) xx "_dma",
717 #define TEXT_FOR_DMA(xx)
720 #ifdef CONFIG_ZONE_DMA32
721 #define TEXT_FOR_DMA32(xx) xx "_dma32",
723 #define TEXT_FOR_DMA32(xx)
726 #ifdef CONFIG_HIGHMEM
727 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
729 #define TEXT_FOR_HIGHMEM(xx)
732 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
733 TEXT_FOR_HIGHMEM(xx) xx "_movable",
735 const char * const vmstat_text
[] = {
736 /* Zoned VM counters */
750 "nr_slab_reclaimable",
751 "nr_slab_unreclaimable",
752 "nr_page_table_pages",
757 "nr_vmscan_immediate_reclaim",
773 "nr_anon_transparent_hugepages",
775 "nr_dirty_threshold",
776 "nr_dirty_background_threshold",
778 #ifdef CONFIG_VM_EVENT_COUNTERS
784 TEXTS_FOR_ZONES("pgalloc")
793 TEXTS_FOR_ZONES("pgrefill")
794 TEXTS_FOR_ZONES("pgsteal_kswapd")
795 TEXTS_FOR_ZONES("pgsteal_direct")
796 TEXTS_FOR_ZONES("pgscan_kswapd")
797 TEXTS_FOR_ZONES("pgscan_direct")
798 "pgscan_direct_throttle",
801 "zone_reclaim_failed",
806 "kswapd_low_wmark_hit_quickly",
807 "kswapd_high_wmark_hit_quickly",
813 #ifdef CONFIG_NUMA_BALANCING
815 "numa_huge_pte_updates",
817 "numa_hint_faults_local",
818 "numa_pages_migrated",
820 #ifdef CONFIG_MIGRATION
824 #ifdef CONFIG_COMPACTION
825 "compact_migrate_scanned",
826 "compact_free_scanned",
833 #ifdef CONFIG_HUGETLB_PAGE
834 "htlb_buddy_alloc_success",
835 "htlb_buddy_alloc_fail",
837 "unevictable_pgs_culled",
838 "unevictable_pgs_scanned",
839 "unevictable_pgs_rescued",
840 "unevictable_pgs_mlocked",
841 "unevictable_pgs_munlocked",
842 "unevictable_pgs_cleared",
843 "unevictable_pgs_stranded",
845 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
847 "thp_fault_fallback",
848 "thp_collapse_alloc",
849 "thp_collapse_alloc_failed",
851 "thp_zero_page_alloc",
852 "thp_zero_page_alloc_failed",
854 #ifdef CONFIG_DEBUG_TLBFLUSH
856 "nr_tlb_remote_flush",
857 "nr_tlb_remote_flush_received",
858 #endif /* CONFIG_SMP */
859 "nr_tlb_local_flush_all",
860 "nr_tlb_local_flush_one",
861 #endif /* CONFIG_DEBUG_TLBFLUSH */
863 #endif /* CONFIG_VM_EVENTS_COUNTERS */
865 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
868 #ifdef CONFIG_PROC_FS
869 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
874 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
875 for (order
= 0; order
< MAX_ORDER
; ++order
)
876 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
881 * This walks the free areas for each zone.
883 static int frag_show(struct seq_file
*m
, void *arg
)
885 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
886 walk_zones_in_node(m
, pgdat
, frag_show_print
);
890 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
891 pg_data_t
*pgdat
, struct zone
*zone
)
895 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
896 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
899 migratetype_names
[mtype
]);
900 for (order
= 0; order
< MAX_ORDER
; ++order
) {
901 unsigned long freecount
= 0;
902 struct free_area
*area
;
903 struct list_head
*curr
;
905 area
= &(zone
->free_area
[order
]);
907 list_for_each(curr
, &area
->free_list
[mtype
])
909 seq_printf(m
, "%6lu ", freecount
);
915 /* Print out the free pages at each order for each migatetype */
916 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
919 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
922 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
923 for (order
= 0; order
< MAX_ORDER
; ++order
)
924 seq_printf(m
, "%6d ", order
);
927 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
932 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
933 pg_data_t
*pgdat
, struct zone
*zone
)
937 unsigned long start_pfn
= zone
->zone_start_pfn
;
938 unsigned long end_pfn
= zone_end_pfn(zone
);
939 unsigned long count
[MIGRATE_TYPES
] = { 0, };
941 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
947 page
= pfn_to_page(pfn
);
949 /* Watch for unexpected holes punched in the memmap */
950 if (!memmap_valid_within(pfn
, page
, zone
))
953 mtype
= get_pageblock_migratetype(page
);
955 if (mtype
< MIGRATE_TYPES
)
960 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
961 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
962 seq_printf(m
, "%12lu ", count
[mtype
]);
966 /* Print out the free pages at each order for each migratetype */
967 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
970 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
972 seq_printf(m
, "\n%-23s", "Number of blocks type ");
973 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
974 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
976 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
982 * This prints out statistics in relation to grouping pages by mobility.
983 * It is expensive to collect so do not constantly read the file.
985 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
987 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
989 /* check memoryless node */
990 if (!node_state(pgdat
->node_id
, N_MEMORY
))
993 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
994 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
996 pagetypeinfo_showfree(m
, pgdat
);
997 pagetypeinfo_showblockcount(m
, pgdat
);
1002 static const struct seq_operations fragmentation_op
= {
1003 .start
= frag_start
,
1009 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
1011 return seq_open(file
, &fragmentation_op
);
1014 static const struct file_operations fragmentation_file_operations
= {
1015 .open
= fragmentation_open
,
1017 .llseek
= seq_lseek
,
1018 .release
= seq_release
,
1021 static const struct seq_operations pagetypeinfo_op
= {
1022 .start
= frag_start
,
1025 .show
= pagetypeinfo_show
,
1028 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
1030 return seq_open(file
, &pagetypeinfo_op
);
1033 static const struct file_operations pagetypeinfo_file_ops
= {
1034 .open
= pagetypeinfo_open
,
1036 .llseek
= seq_lseek
,
1037 .release
= seq_release
,
1040 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1044 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
1054 zone_page_state(zone
, NR_FREE_PAGES
),
1055 min_wmark_pages(zone
),
1056 low_wmark_pages(zone
),
1057 high_wmark_pages(zone
),
1058 zone
->pages_scanned
,
1059 zone
->spanned_pages
,
1060 zone
->present_pages
,
1061 zone
->managed_pages
);
1063 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1064 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
1065 zone_page_state(zone
, i
));
1068 "\n protection: (%lu",
1069 zone
->lowmem_reserve
[0]);
1070 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
1071 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
1075 for_each_online_cpu(i
) {
1076 struct per_cpu_pageset
*pageset
;
1078 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1087 pageset
->pcp
.batch
);
1089 seq_printf(m
, "\n vm stats threshold: %d",
1090 pageset
->stat_threshold
);
1094 "\n all_unreclaimable: %u"
1096 "\n inactive_ratio: %u",
1097 !zone_reclaimable(zone
),
1098 zone
->zone_start_pfn
,
1099 zone
->inactive_ratio
);
1104 * Output information about zones in @pgdat.
1106 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1108 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1109 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1113 static const struct seq_operations zoneinfo_op
= {
1114 .start
= frag_start
, /* iterate over all zones. The same as in
1118 .show
= zoneinfo_show
,
1121 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1123 return seq_open(file
, &zoneinfo_op
);
1126 static const struct file_operations proc_zoneinfo_file_operations
= {
1127 .open
= zoneinfo_open
,
1129 .llseek
= seq_lseek
,
1130 .release
= seq_release
,
1133 enum writeback_stat_item
{
1135 NR_DIRTY_BG_THRESHOLD
,
1136 NR_VM_WRITEBACK_STAT_ITEMS
,
1139 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1142 int i
, stat_items_size
;
1144 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1146 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1147 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1149 #ifdef CONFIG_VM_EVENT_COUNTERS
1150 stat_items_size
+= sizeof(struct vm_event_state
);
1153 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1156 return ERR_PTR(-ENOMEM
);
1157 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1158 v
[i
] = global_page_state(i
);
1159 v
+= NR_VM_ZONE_STAT_ITEMS
;
1161 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1162 v
+ NR_DIRTY_THRESHOLD
);
1163 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1165 #ifdef CONFIG_VM_EVENT_COUNTERS
1167 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1170 return (unsigned long *)m
->private + *pos
;
1173 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1176 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1178 return (unsigned long *)m
->private + *pos
;
1181 static int vmstat_show(struct seq_file
*m
, void *arg
)
1183 unsigned long *l
= arg
;
1184 unsigned long off
= l
- (unsigned long *)m
->private;
1186 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1190 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1196 static const struct seq_operations vmstat_op
= {
1197 .start
= vmstat_start
,
1198 .next
= vmstat_next
,
1199 .stop
= vmstat_stop
,
1200 .show
= vmstat_show
,
1203 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1205 return seq_open(file
, &vmstat_op
);
1208 static const struct file_operations proc_vmstat_file_operations
= {
1209 .open
= vmstat_open
,
1211 .llseek
= seq_lseek
,
1212 .release
= seq_release
,
1214 #endif /* CONFIG_PROC_FS */
1217 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1218 int sysctl_stat_interval __read_mostly
= HZ
;
1220 static void vmstat_update(struct work_struct
*w
)
1222 refresh_cpu_vm_stats();
1223 schedule_delayed_work(&__get_cpu_var(vmstat_work
),
1224 round_jiffies_relative(sysctl_stat_interval
));
1227 static void start_cpu_timer(int cpu
)
1229 struct delayed_work
*work
= &per_cpu(vmstat_work
, cpu
);
1231 INIT_DEFERRABLE_WORK(work
, vmstat_update
);
1232 schedule_delayed_work_on(cpu
, work
, __round_jiffies_relative(HZ
, cpu
));
1235 static void vmstat_cpu_dead(int node
)
1240 for_each_online_cpu(cpu
)
1241 if (cpu_to_node(cpu
) == node
)
1244 node_clear_state(node
, N_CPU
);
1250 * Use the cpu notifier to insure that the thresholds are recalculated
1253 static int vmstat_cpuup_callback(struct notifier_block
*nfb
,
1254 unsigned long action
,
1257 long cpu
= (long)hcpu
;
1261 case CPU_ONLINE_FROZEN
:
1262 refresh_zone_stat_thresholds();
1263 start_cpu_timer(cpu
);
1264 node_set_state(cpu_to_node(cpu
), N_CPU
);
1266 case CPU_DOWN_PREPARE
:
1267 case CPU_DOWN_PREPARE_FROZEN
:
1268 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1269 per_cpu(vmstat_work
, cpu
).work
.func
= NULL
;
1271 case CPU_DOWN_FAILED
:
1272 case CPU_DOWN_FAILED_FROZEN
:
1273 start_cpu_timer(cpu
);
1276 case CPU_DEAD_FROZEN
:
1277 refresh_zone_stat_thresholds();
1278 vmstat_cpu_dead(cpu_to_node(cpu
));
1286 static struct notifier_block vmstat_notifier
=
1287 { &vmstat_cpuup_callback
, NULL
, 0 };
1290 static int __init
setup_vmstat(void)
1295 register_cpu_notifier(&vmstat_notifier
);
1298 for_each_online_cpu(cpu
) {
1299 start_cpu_timer(cpu
);
1300 node_set_state(cpu_to_node(cpu
), N_CPU
);
1304 #ifdef CONFIG_PROC_FS
1305 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1306 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1307 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1308 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1312 module_init(setup_vmstat
)
1314 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1315 #include <linux/debugfs.h>
1319 * Return an index indicating how much of the available free memory is
1320 * unusable for an allocation of the requested size.
1322 static int unusable_free_index(unsigned int order
,
1323 struct contig_page_info
*info
)
1325 /* No free memory is interpreted as all free memory is unusable */
1326 if (info
->free_pages
== 0)
1330 * Index should be a value between 0 and 1. Return a value to 3
1333 * 0 => no fragmentation
1334 * 1 => high fragmentation
1336 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1340 static void unusable_show_print(struct seq_file
*m
,
1341 pg_data_t
*pgdat
, struct zone
*zone
)
1345 struct contig_page_info info
;
1347 seq_printf(m
, "Node %d, zone %8s ",
1350 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1351 fill_contig_page_info(zone
, order
, &info
);
1352 index
= unusable_free_index(order
, &info
);
1353 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1360 * Display unusable free space index
1362 * The unusable free space index measures how much of the available free
1363 * memory cannot be used to satisfy an allocation of a given size and is a
1364 * value between 0 and 1. The higher the value, the more of free memory is
1365 * unusable and by implication, the worse the external fragmentation is. This
1366 * can be expressed as a percentage by multiplying by 100.
1368 static int unusable_show(struct seq_file
*m
, void *arg
)
1370 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1372 /* check memoryless node */
1373 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1376 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1381 static const struct seq_operations unusable_op
= {
1382 .start
= frag_start
,
1385 .show
= unusable_show
,
1388 static int unusable_open(struct inode
*inode
, struct file
*file
)
1390 return seq_open(file
, &unusable_op
);
1393 static const struct file_operations unusable_file_ops
= {
1394 .open
= unusable_open
,
1396 .llseek
= seq_lseek
,
1397 .release
= seq_release
,
1400 static void extfrag_show_print(struct seq_file
*m
,
1401 pg_data_t
*pgdat
, struct zone
*zone
)
1406 /* Alloc on stack as interrupts are disabled for zone walk */
1407 struct contig_page_info info
;
1409 seq_printf(m
, "Node %d, zone %8s ",
1412 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1413 fill_contig_page_info(zone
, order
, &info
);
1414 index
= __fragmentation_index(order
, &info
);
1415 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1422 * Display fragmentation index for orders that allocations would fail for
1424 static int extfrag_show(struct seq_file
*m
, void *arg
)
1426 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1428 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1433 static const struct seq_operations extfrag_op
= {
1434 .start
= frag_start
,
1437 .show
= extfrag_show
,
1440 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1442 return seq_open(file
, &extfrag_op
);
1445 static const struct file_operations extfrag_file_ops
= {
1446 .open
= extfrag_open
,
1448 .llseek
= seq_lseek
,
1449 .release
= seq_release
,
1452 static int __init
extfrag_debug_init(void)
1454 struct dentry
*extfrag_debug_root
;
1456 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1457 if (!extfrag_debug_root
)
1460 if (!debugfs_create_file("unusable_index", 0444,
1461 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1464 if (!debugfs_create_file("extfrag_index", 0444,
1465 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1470 debugfs_remove_recursive(extfrag_debug_root
);
1474 module_init(extfrag_debug_init
);