4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
45 static void free_swap_count_continuations(struct swap_info_struct
*);
46 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
48 DEFINE_SPINLOCK(swap_lock
);
49 static unsigned int nr_swapfiles
;
50 atomic_long_t nr_swap_pages
;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages
;
53 static int least_priority
;
55 static const char Bad_file
[] = "Bad swap file entry ";
56 static const char Unused_file
[] = "Unused swap file entry ";
57 static const char Bad_offset
[] = "Bad swap offset entry ";
58 static const char Unused_offset
[] = "Unused swap offset entry ";
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
64 PLIST_HEAD(swap_active_head
);
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
78 static PLIST_HEAD(swap_avail_head
);
79 static DEFINE_SPINLOCK(swap_avail_lock
);
81 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
83 static DEFINE_MUTEX(swapon_mutex
);
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
89 static inline unsigned char swap_count(unsigned char ent
)
91 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
94 /* returns 1 if swap entry is freed */
96 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
98 swp_entry_t entry
= swp_entry(si
->type
, offset
);
102 page
= find_get_page(swap_address_space(entry
), entry
.val
);
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
112 if (trylock_page(page
)) {
113 ret
= try_to_free_swap(page
);
116 page_cache_release(page
);
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
124 static int discard_swap(struct swap_info_struct
*si
)
126 struct swap_extent
*se
;
127 sector_t start_block
;
131 /* Do not discard the swap header page! */
132 se
= &si
->first_swap_extent
;
133 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
134 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
136 err
= blkdev_issue_discard(si
->bdev
, start_block
,
137 nr_blocks
, GFP_KERNEL
, 0);
143 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
144 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
145 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
147 err
= blkdev_issue_discard(si
->bdev
, start_block
,
148 nr_blocks
, GFP_KERNEL
, 0);
154 return err
; /* That will often be -EOPNOTSUPP */
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
161 static void discard_swap_cluster(struct swap_info_struct
*si
,
162 pgoff_t start_page
, pgoff_t nr_pages
)
164 struct swap_extent
*se
= si
->curr_swap_extent
;
165 int found_extent
= 0;
168 struct list_head
*lh
;
170 if (se
->start_page
<= start_page
&&
171 start_page
< se
->start_page
+ se
->nr_pages
) {
172 pgoff_t offset
= start_page
- se
->start_page
;
173 sector_t start_block
= se
->start_block
+ offset
;
174 sector_t nr_blocks
= se
->nr_pages
- offset
;
176 if (nr_blocks
> nr_pages
)
177 nr_blocks
= nr_pages
;
178 start_page
+= nr_blocks
;
179 nr_pages
-= nr_blocks
;
182 si
->curr_swap_extent
= se
;
184 start_block
<<= PAGE_SHIFT
- 9;
185 nr_blocks
<<= PAGE_SHIFT
- 9;
186 if (blkdev_issue_discard(si
->bdev
, start_block
,
187 nr_blocks
, GFP_NOIO
, 0))
192 se
= list_entry(lh
, struct swap_extent
, list
);
196 #define SWAPFILE_CLUSTER 256
197 #define LATENCY_LIMIT 256
199 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
205 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
210 static inline void cluster_set_count(struct swap_cluster_info
*info
,
216 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
217 unsigned int c
, unsigned int f
)
223 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
228 static inline void cluster_set_next(struct swap_cluster_info
*info
,
234 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
235 unsigned int n
, unsigned int f
)
241 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
243 return info
->flags
& CLUSTER_FLAG_FREE
;
246 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
248 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
251 static inline void cluster_set_null(struct swap_cluster_info
*info
)
253 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
262 * If scan_swap_map() can't find a free cluster, it will check
263 * si->swap_map directly. To make sure the discarding cluster isn't
264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 * will be cleared after discard
267 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
268 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
270 if (cluster_is_null(&si
->discard_cluster_head
)) {
271 cluster_set_next_flag(&si
->discard_cluster_head
,
273 cluster_set_next_flag(&si
->discard_cluster_tail
,
276 unsigned int tail
= cluster_next(&si
->discard_cluster_tail
);
277 cluster_set_next(&si
->cluster_info
[tail
], idx
);
278 cluster_set_next_flag(&si
->discard_cluster_tail
,
282 schedule_work(&si
->discard_work
);
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
289 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
291 struct swap_cluster_info
*info
;
294 info
= si
->cluster_info
;
296 while (!cluster_is_null(&si
->discard_cluster_head
)) {
297 idx
= cluster_next(&si
->discard_cluster_head
);
299 cluster_set_next_flag(&si
->discard_cluster_head
,
300 cluster_next(&info
[idx
]), 0);
301 if (cluster_next(&si
->discard_cluster_tail
) == idx
) {
302 cluster_set_null(&si
->discard_cluster_head
);
303 cluster_set_null(&si
->discard_cluster_tail
);
305 spin_unlock(&si
->lock
);
307 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
310 spin_lock(&si
->lock
);
311 cluster_set_flag(&info
[idx
], CLUSTER_FLAG_FREE
);
312 if (cluster_is_null(&si
->free_cluster_head
)) {
313 cluster_set_next_flag(&si
->free_cluster_head
,
315 cluster_set_next_flag(&si
->free_cluster_tail
,
320 tail
= cluster_next(&si
->free_cluster_tail
);
321 cluster_set_next(&info
[tail
], idx
);
322 cluster_set_next_flag(&si
->free_cluster_tail
,
325 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
326 0, SWAPFILE_CLUSTER
);
330 static void swap_discard_work(struct work_struct
*work
)
332 struct swap_info_struct
*si
;
334 si
= container_of(work
, struct swap_info_struct
, discard_work
);
336 spin_lock(&si
->lock
);
337 swap_do_scheduled_discard(si
);
338 spin_unlock(&si
->lock
);
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
345 static void inc_cluster_info_page(struct swap_info_struct
*p
,
346 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
348 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
352 if (cluster_is_free(&cluster_info
[idx
])) {
353 VM_BUG_ON(cluster_next(&p
->free_cluster_head
) != idx
);
354 cluster_set_next_flag(&p
->free_cluster_head
,
355 cluster_next(&cluster_info
[idx
]), 0);
356 if (cluster_next(&p
->free_cluster_tail
) == idx
) {
357 cluster_set_null(&p
->free_cluster_tail
);
358 cluster_set_null(&p
->free_cluster_head
);
360 cluster_set_count_flag(&cluster_info
[idx
], 0, 0);
363 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
364 cluster_set_count(&cluster_info
[idx
],
365 cluster_count(&cluster_info
[idx
]) + 1);
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
373 static void dec_cluster_info_page(struct swap_info_struct
*p
,
374 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
376 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
381 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
382 cluster_set_count(&cluster_info
[idx
],
383 cluster_count(&cluster_info
[idx
]) - 1);
385 if (cluster_count(&cluster_info
[idx
]) == 0) {
387 * If the swap is discardable, prepare discard the cluster
388 * instead of free it immediately. The cluster will be freed
391 if ((p
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
392 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
393 swap_cluster_schedule_discard(p
, idx
);
397 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
398 if (cluster_is_null(&p
->free_cluster_head
)) {
399 cluster_set_next_flag(&p
->free_cluster_head
, idx
, 0);
400 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
402 unsigned int tail
= cluster_next(&p
->free_cluster_tail
);
403 cluster_set_next(&cluster_info
[tail
], idx
);
404 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
415 unsigned long offset
)
417 struct percpu_cluster
*percpu_cluster
;
420 offset
/= SWAPFILE_CLUSTER
;
421 conflict
= !cluster_is_null(&si
->free_cluster_head
) &&
422 offset
!= cluster_next(&si
->free_cluster_head
) &&
423 cluster_is_free(&si
->cluster_info
[offset
]);
428 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
429 cluster_set_null(&percpu_cluster
->index
);
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
438 unsigned long *offset
, unsigned long *scan_base
)
440 struct percpu_cluster
*cluster
;
445 cluster
= this_cpu_ptr(si
->percpu_cluster
);
446 if (cluster_is_null(&cluster
->index
)) {
447 if (!cluster_is_null(&si
->free_cluster_head
)) {
448 cluster
->index
= si
->free_cluster_head
;
449 cluster
->next
= cluster_next(&cluster
->index
) *
451 } else if (!cluster_is_null(&si
->discard_cluster_head
)) {
453 * we don't have free cluster but have some clusters in
454 * discarding, do discard now and reclaim them
456 swap_do_scheduled_discard(si
);
457 *scan_base
= *offset
= si
->cluster_next
;
466 * Other CPUs can use our cluster if they can't find a free cluster,
467 * check if there is still free entry in the cluster
470 while (tmp
< si
->max
&& tmp
< (cluster_next(&cluster
->index
) + 1) *
472 if (!si
->swap_map
[tmp
]) {
479 cluster_set_null(&cluster
->index
);
482 cluster
->next
= tmp
+ 1;
487 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
490 unsigned long offset
;
491 unsigned long scan_base
;
492 unsigned long last_in_cluster
= 0;
493 int latency_ration
= LATENCY_LIMIT
;
496 * We try to cluster swap pages by allocating them sequentially
497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
498 * way, however, we resort to first-free allocation, starting
499 * a new cluster. This prevents us from scattering swap pages
500 * all over the entire swap partition, so that we reduce
501 * overall disk seek times between swap pages. -- sct
502 * But we do now try to find an empty cluster. -Andrea
503 * And we let swap pages go all over an SSD partition. Hugh
506 si
->flags
+= SWP_SCANNING
;
507 scan_base
= offset
= si
->cluster_next
;
510 if (si
->cluster_info
) {
511 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
515 if (unlikely(!si
->cluster_nr
--)) {
516 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
517 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
521 spin_unlock(&si
->lock
);
524 * If seek is expensive, start searching for new cluster from
525 * start of partition, to minimize the span of allocated swap.
526 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527 * case, just handled by scan_swap_map_try_ssd_cluster() above.
529 scan_base
= offset
= si
->lowest_bit
;
530 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
532 /* Locate the first empty (unaligned) cluster */
533 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
534 if (si
->swap_map
[offset
])
535 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
536 else if (offset
== last_in_cluster
) {
537 spin_lock(&si
->lock
);
538 offset
-= SWAPFILE_CLUSTER
- 1;
539 si
->cluster_next
= offset
;
540 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
543 if (unlikely(--latency_ration
< 0)) {
545 latency_ration
= LATENCY_LIMIT
;
550 spin_lock(&si
->lock
);
551 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
555 if (si
->cluster_info
) {
556 while (scan_swap_map_ssd_cluster_conflict(si
, offset
))
557 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
559 if (!(si
->flags
& SWP_WRITEOK
))
561 if (!si
->highest_bit
)
563 if (offset
> si
->highest_bit
)
564 scan_base
= offset
= si
->lowest_bit
;
566 /* reuse swap entry of cache-only swap if not busy. */
567 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
569 spin_unlock(&si
->lock
);
570 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
571 spin_lock(&si
->lock
);
572 /* entry was freed successfully, try to use this again */
575 goto scan
; /* check next one */
578 if (si
->swap_map
[offset
])
581 if (offset
== si
->lowest_bit
)
583 if (offset
== si
->highest_bit
)
586 if (si
->inuse_pages
== si
->pages
) {
587 si
->lowest_bit
= si
->max
;
589 spin_lock(&swap_avail_lock
);
590 plist_del(&si
->avail_list
, &swap_avail_head
);
591 spin_unlock(&swap_avail_lock
);
593 si
->swap_map
[offset
] = usage
;
594 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
595 si
->cluster_next
= offset
+ 1;
596 si
->flags
-= SWP_SCANNING
;
601 spin_unlock(&si
->lock
);
602 while (++offset
<= si
->highest_bit
) {
603 if (!si
->swap_map
[offset
]) {
604 spin_lock(&si
->lock
);
607 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
608 spin_lock(&si
->lock
);
611 if (unlikely(--latency_ration
< 0)) {
613 latency_ration
= LATENCY_LIMIT
;
616 offset
= si
->lowest_bit
;
617 while (offset
< scan_base
) {
618 if (!si
->swap_map
[offset
]) {
619 spin_lock(&si
->lock
);
622 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
623 spin_lock(&si
->lock
);
626 if (unlikely(--latency_ration
< 0)) {
628 latency_ration
= LATENCY_LIMIT
;
632 spin_lock(&si
->lock
);
635 si
->flags
-= SWP_SCANNING
;
639 swp_entry_t
get_swap_page(void)
641 struct swap_info_struct
*si
, *next
;
644 if (atomic_long_read(&nr_swap_pages
) <= 0)
646 atomic_long_dec(&nr_swap_pages
);
648 spin_lock(&swap_avail_lock
);
651 plist_for_each_entry_safe(si
, next
, &swap_avail_head
, avail_list
) {
652 /* requeue si to after same-priority siblings */
653 plist_requeue(&si
->avail_list
, &swap_avail_head
);
654 spin_unlock(&swap_avail_lock
);
655 spin_lock(&si
->lock
);
656 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
657 spin_lock(&swap_avail_lock
);
658 if (plist_node_empty(&si
->avail_list
)) {
659 spin_unlock(&si
->lock
);
662 WARN(!si
->highest_bit
,
663 "swap_info %d in list but !highest_bit\n",
665 WARN(!(si
->flags
& SWP_WRITEOK
),
666 "swap_info %d in list but !SWP_WRITEOK\n",
668 plist_del(&si
->avail_list
, &swap_avail_head
);
669 spin_unlock(&si
->lock
);
673 /* This is called for allocating swap entry for cache */
674 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
675 spin_unlock(&si
->lock
);
677 return swp_entry(si
->type
, offset
);
678 pr_debug("scan_swap_map of si %d failed to find offset\n",
680 spin_lock(&swap_avail_lock
);
683 * if we got here, it's likely that si was almost full before,
684 * and since scan_swap_map() can drop the si->lock, multiple
685 * callers probably all tried to get a page from the same si
686 * and it filled up before we could get one; or, the si filled
687 * up between us dropping swap_avail_lock and taking si->lock.
688 * Since we dropped the swap_avail_lock, the swap_avail_head
689 * list may have been modified; so if next is still in the
690 * swap_avail_head list then try it, otherwise start over.
692 if (plist_node_empty(&next
->avail_list
))
696 spin_unlock(&swap_avail_lock
);
698 atomic_long_inc(&nr_swap_pages
);
700 return (swp_entry_t
) {0};
703 /* The only caller of this function is now suspend routine */
704 swp_entry_t
get_swap_page_of_type(int type
)
706 struct swap_info_struct
*si
;
709 si
= swap_info
[type
];
710 spin_lock(&si
->lock
);
711 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
712 atomic_long_dec(&nr_swap_pages
);
713 /* This is called for allocating swap entry, not cache */
714 offset
= scan_swap_map(si
, 1);
716 spin_unlock(&si
->lock
);
717 return swp_entry(type
, offset
);
719 atomic_long_inc(&nr_swap_pages
);
721 spin_unlock(&si
->lock
);
722 return (swp_entry_t
) {0};
725 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
727 struct swap_info_struct
*p
;
728 unsigned long offset
, type
;
732 type
= swp_type(entry
);
733 if (type
>= nr_swapfiles
)
736 if (!(p
->flags
& SWP_USED
))
738 offset
= swp_offset(entry
);
739 if (offset
>= p
->max
)
741 if (!p
->swap_map
[offset
])
747 pr_err("swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
750 pr_err("swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
753 pr_err("swap_free: %s%08lx\n", Unused_file
, entry
.val
);
756 pr_err("swap_free: %s%08lx\n", Bad_file
, entry
.val
);
761 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
762 swp_entry_t entry
, unsigned char usage
)
764 unsigned long offset
= swp_offset(entry
);
766 unsigned char has_cache
;
768 count
= p
->swap_map
[offset
];
769 has_cache
= count
& SWAP_HAS_CACHE
;
770 count
&= ~SWAP_HAS_CACHE
;
772 if (usage
== SWAP_HAS_CACHE
) {
773 VM_BUG_ON(!has_cache
);
775 } else if (count
== SWAP_MAP_SHMEM
) {
777 * Or we could insist on shmem.c using a special
778 * swap_shmem_free() and free_shmem_swap_and_cache()...
781 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
782 if (count
== COUNT_CONTINUED
) {
783 if (swap_count_continued(p
, offset
, count
))
784 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
786 count
= SWAP_MAP_MAX
;
792 mem_cgroup_uncharge_swap(entry
);
794 usage
= count
| has_cache
;
795 p
->swap_map
[offset
] = usage
;
797 /* free if no reference */
799 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
800 if (offset
< p
->lowest_bit
)
801 p
->lowest_bit
= offset
;
802 if (offset
> p
->highest_bit
) {
803 bool was_full
= !p
->highest_bit
;
804 p
->highest_bit
= offset
;
805 if (was_full
&& (p
->flags
& SWP_WRITEOK
)) {
806 spin_lock(&swap_avail_lock
);
807 WARN_ON(!plist_node_empty(&p
->avail_list
));
808 if (plist_node_empty(&p
->avail_list
))
809 plist_add(&p
->avail_list
,
811 spin_unlock(&swap_avail_lock
);
814 atomic_long_inc(&nr_swap_pages
);
816 frontswap_invalidate_page(p
->type
, offset
);
817 if (p
->flags
& SWP_BLKDEV
) {
818 struct gendisk
*disk
= p
->bdev
->bd_disk
;
819 if (disk
->fops
->swap_slot_free_notify
)
820 disk
->fops
->swap_slot_free_notify(p
->bdev
,
829 * Caller has made sure that the swap device corresponding to entry
830 * is still around or has not been recycled.
832 void swap_free(swp_entry_t entry
)
834 struct swap_info_struct
*p
;
836 p
= swap_info_get(entry
);
838 swap_entry_free(p
, entry
, 1);
839 spin_unlock(&p
->lock
);
844 * Called after dropping swapcache to decrease refcnt to swap entries.
846 void swapcache_free(swp_entry_t entry
)
848 struct swap_info_struct
*p
;
850 p
= swap_info_get(entry
);
852 swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
853 spin_unlock(&p
->lock
);
858 * How many references to page are currently swapped out?
859 * This does not give an exact answer when swap count is continued,
860 * but does include the high COUNT_CONTINUED flag to allow for that.
862 int page_swapcount(struct page
*page
)
865 struct swap_info_struct
*p
;
868 entry
.val
= page_private(page
);
869 p
= swap_info_get(entry
);
871 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
872 spin_unlock(&p
->lock
);
878 * We can write to an anon page without COW if there are no other references
879 * to it. And as a side-effect, free up its swap: because the old content
880 * on disk will never be read, and seeking back there to write new content
881 * later would only waste time away from clustering.
883 int reuse_swap_page(struct page
*page
)
887 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
888 if (unlikely(PageKsm(page
)))
890 count
= page_mapcount(page
);
891 if (count
<= 1 && PageSwapCache(page
)) {
892 count
+= page_swapcount(page
);
893 if (count
== 1 && !PageWriteback(page
)) {
894 delete_from_swap_cache(page
);
902 * If swap is getting full, or if there are no more mappings of this page,
903 * then try_to_free_swap is called to free its swap space.
905 int try_to_free_swap(struct page
*page
)
907 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
909 if (!PageSwapCache(page
))
911 if (PageWriteback(page
))
913 if (page_swapcount(page
))
917 * Once hibernation has begun to create its image of memory,
918 * there's a danger that one of the calls to try_to_free_swap()
919 * - most probably a call from __try_to_reclaim_swap() while
920 * hibernation is allocating its own swap pages for the image,
921 * but conceivably even a call from memory reclaim - will free
922 * the swap from a page which has already been recorded in the
923 * image as a clean swapcache page, and then reuse its swap for
924 * another page of the image. On waking from hibernation, the
925 * original page might be freed under memory pressure, then
926 * later read back in from swap, now with the wrong data.
928 * Hibernation suspends storage while it is writing the image
929 * to disk so check that here.
931 if (pm_suspended_storage())
934 delete_from_swap_cache(page
);
940 * Free the swap entry like above, but also try to
941 * free the page cache entry if it is the last user.
943 int free_swap_and_cache(swp_entry_t entry
)
945 struct swap_info_struct
*p
;
946 struct page
*page
= NULL
;
948 if (non_swap_entry(entry
))
951 p
= swap_info_get(entry
);
953 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
954 page
= find_get_page(swap_address_space(entry
),
956 if (page
&& !trylock_page(page
)) {
957 page_cache_release(page
);
961 spin_unlock(&p
->lock
);
965 * Not mapped elsewhere, or swap space full? Free it!
966 * Also recheck PageSwapCache now page is locked (above).
968 if (PageSwapCache(page
) && !PageWriteback(page
) &&
969 (!page_mapped(page
) || vm_swap_full())) {
970 delete_from_swap_cache(page
);
974 page_cache_release(page
);
979 #ifdef CONFIG_HIBERNATION
981 * Find the swap type that corresponds to given device (if any).
983 * @offset - number of the PAGE_SIZE-sized block of the device, starting
984 * from 0, in which the swap header is expected to be located.
986 * This is needed for the suspend to disk (aka swsusp).
988 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
990 struct block_device
*bdev
= NULL
;
994 bdev
= bdget(device
);
996 spin_lock(&swap_lock
);
997 for (type
= 0; type
< nr_swapfiles
; type
++) {
998 struct swap_info_struct
*sis
= swap_info
[type
];
1000 if (!(sis
->flags
& SWP_WRITEOK
))
1005 *bdev_p
= bdgrab(sis
->bdev
);
1007 spin_unlock(&swap_lock
);
1010 if (bdev
== sis
->bdev
) {
1011 struct swap_extent
*se
= &sis
->first_swap_extent
;
1013 if (se
->start_block
== offset
) {
1015 *bdev_p
= bdgrab(sis
->bdev
);
1017 spin_unlock(&swap_lock
);
1023 spin_unlock(&swap_lock
);
1031 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1032 * corresponding to given index in swap_info (swap type).
1034 sector_t
swapdev_block(int type
, pgoff_t offset
)
1036 struct block_device
*bdev
;
1038 if ((unsigned int)type
>= nr_swapfiles
)
1040 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1042 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1046 * Return either the total number of swap pages of given type, or the number
1047 * of free pages of that type (depending on @free)
1049 * This is needed for software suspend
1051 unsigned int count_swap_pages(int type
, int free
)
1055 spin_lock(&swap_lock
);
1056 if ((unsigned int)type
< nr_swapfiles
) {
1057 struct swap_info_struct
*sis
= swap_info
[type
];
1059 spin_lock(&sis
->lock
);
1060 if (sis
->flags
& SWP_WRITEOK
) {
1063 n
-= sis
->inuse_pages
;
1065 spin_unlock(&sis
->lock
);
1067 spin_unlock(&swap_lock
);
1070 #endif /* CONFIG_HIBERNATION */
1072 static inline int maybe_same_pte(pte_t pte
, pte_t swp_pte
)
1074 #ifdef CONFIG_MEM_SOFT_DIRTY
1076 * When pte keeps soft dirty bit the pte generated
1077 * from swap entry does not has it, still it's same
1078 * pte from logical point of view.
1080 pte_t swp_pte_dirty
= pte_swp_mksoft_dirty(swp_pte
);
1081 return pte_same(pte
, swp_pte
) || pte_same(pte
, swp_pte_dirty
);
1083 return pte_same(pte
, swp_pte
);
1088 * No need to decide whether this PTE shares the swap entry with others,
1089 * just let do_wp_page work it out if a write is requested later - to
1090 * force COW, vm_page_prot omits write permission from any private vma.
1092 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1093 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1095 struct page
*swapcache
;
1096 struct mem_cgroup
*memcg
;
1102 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1103 if (unlikely(!page
))
1106 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
)) {
1111 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1112 if (unlikely(!maybe_same_pte(*pte
, swp_entry_to_pte(entry
)))) {
1113 mem_cgroup_cancel_charge(page
, memcg
);
1118 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1119 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1121 set_pte_at(vma
->vm_mm
, addr
, pte
,
1122 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1123 if (page
== swapcache
) {
1124 page_add_anon_rmap(page
, vma
, addr
);
1125 mem_cgroup_commit_charge(page
, memcg
, true);
1126 } else { /* ksm created a completely new copy */
1127 page_add_new_anon_rmap(page
, vma
, addr
);
1128 mem_cgroup_commit_charge(page
, memcg
, false);
1129 lru_cache_add_active_or_unevictable(page
, vma
);
1133 * Move the page to the active list so it is not
1134 * immediately swapped out again after swapon.
1136 activate_page(page
);
1138 pte_unmap_unlock(pte
, ptl
);
1140 if (page
!= swapcache
) {
1147 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1148 unsigned long addr
, unsigned long end
,
1149 swp_entry_t entry
, struct page
*page
)
1151 pte_t swp_pte
= swp_entry_to_pte(entry
);
1156 * We don't actually need pte lock while scanning for swp_pte: since
1157 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1158 * page table while we're scanning; though it could get zapped, and on
1159 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1160 * of unmatched parts which look like swp_pte, so unuse_pte must
1161 * recheck under pte lock. Scanning without pte lock lets it be
1162 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1164 pte
= pte_offset_map(pmd
, addr
);
1167 * swapoff spends a _lot_ of time in this loop!
1168 * Test inline before going to call unuse_pte.
1170 if (unlikely(maybe_same_pte(*pte
, swp_pte
))) {
1172 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1175 pte
= pte_offset_map(pmd
, addr
);
1177 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1183 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1184 unsigned long addr
, unsigned long end
,
1185 swp_entry_t entry
, struct page
*page
)
1191 pmd
= pmd_offset(pud
, addr
);
1193 next
= pmd_addr_end(addr
, end
);
1194 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1196 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1199 } while (pmd
++, addr
= next
, addr
!= end
);
1203 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1204 unsigned long addr
, unsigned long end
,
1205 swp_entry_t entry
, struct page
*page
)
1211 pud
= pud_offset(pgd
, addr
);
1213 next
= pud_addr_end(addr
, end
);
1214 if (pud_none_or_clear_bad(pud
))
1216 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1219 } while (pud
++, addr
= next
, addr
!= end
);
1223 static int unuse_vma(struct vm_area_struct
*vma
,
1224 swp_entry_t entry
, struct page
*page
)
1227 unsigned long addr
, end
, next
;
1230 if (page_anon_vma(page
)) {
1231 addr
= page_address_in_vma(page
, vma
);
1232 if (addr
== -EFAULT
)
1235 end
= addr
+ PAGE_SIZE
;
1237 addr
= vma
->vm_start
;
1241 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1243 next
= pgd_addr_end(addr
, end
);
1244 if (pgd_none_or_clear_bad(pgd
))
1246 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1249 } while (pgd
++, addr
= next
, addr
!= end
);
1253 static int unuse_mm(struct mm_struct
*mm
,
1254 swp_entry_t entry
, struct page
*page
)
1256 struct vm_area_struct
*vma
;
1259 if (!down_read_trylock(&mm
->mmap_sem
)) {
1261 * Activate page so shrink_inactive_list is unlikely to unmap
1262 * its ptes while lock is dropped, so swapoff can make progress.
1264 activate_page(page
);
1266 down_read(&mm
->mmap_sem
);
1269 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1270 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1273 up_read(&mm
->mmap_sem
);
1274 return (ret
< 0)? ret
: 0;
1278 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1279 * from current position to next entry still in use.
1280 * Recycle to start on reaching the end, returning 0 when empty.
1282 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1283 unsigned int prev
, bool frontswap
)
1285 unsigned int max
= si
->max
;
1286 unsigned int i
= prev
;
1287 unsigned char count
;
1290 * No need for swap_lock here: we're just looking
1291 * for whether an entry is in use, not modifying it; false
1292 * hits are okay, and sys_swapoff() has already prevented new
1293 * allocations from this area (while holding swap_lock).
1302 * No entries in use at top of swap_map,
1303 * loop back to start and recheck there.
1310 if (frontswap_test(si
, i
))
1315 count
= READ_ONCE(si
->swap_map
[i
]);
1316 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1323 * We completely avoid races by reading each swap page in advance,
1324 * and then search for the process using it. All the necessary
1325 * page table adjustments can then be made atomically.
1327 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1328 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1330 int try_to_unuse(unsigned int type
, bool frontswap
,
1331 unsigned long pages_to_unuse
)
1333 struct swap_info_struct
*si
= swap_info
[type
];
1334 struct mm_struct
*start_mm
;
1335 volatile unsigned char *swap_map
; /* swap_map is accessed without
1336 * locking. Mark it as volatile
1337 * to prevent compiler doing
1340 unsigned char swcount
;
1347 * When searching mms for an entry, a good strategy is to
1348 * start at the first mm we freed the previous entry from
1349 * (though actually we don't notice whether we or coincidence
1350 * freed the entry). Initialize this start_mm with a hold.
1352 * A simpler strategy would be to start at the last mm we
1353 * freed the previous entry from; but that would take less
1354 * advantage of mmlist ordering, which clusters forked mms
1355 * together, child after parent. If we race with dup_mmap(), we
1356 * prefer to resolve parent before child, lest we miss entries
1357 * duplicated after we scanned child: using last mm would invert
1360 start_mm
= &init_mm
;
1361 atomic_inc(&init_mm
.mm_users
);
1364 * Keep on scanning until all entries have gone. Usually,
1365 * one pass through swap_map is enough, but not necessarily:
1366 * there are races when an instance of an entry might be missed.
1368 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1369 if (signal_pending(current
)) {
1375 * Get a page for the entry, using the existing swap
1376 * cache page if there is one. Otherwise, get a clean
1377 * page and read the swap into it.
1379 swap_map
= &si
->swap_map
[i
];
1380 entry
= swp_entry(type
, i
);
1381 page
= read_swap_cache_async(entry
,
1382 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1385 * Either swap_duplicate() failed because entry
1386 * has been freed independently, and will not be
1387 * reused since sys_swapoff() already disabled
1388 * allocation from here, or alloc_page() failed.
1390 swcount
= *swap_map
;
1392 * We don't hold lock here, so the swap entry could be
1393 * SWAP_MAP_BAD (when the cluster is discarding).
1394 * Instead of fail out, We can just skip the swap
1395 * entry because swapoff will wait for discarding
1398 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
1405 * Don't hold on to start_mm if it looks like exiting.
1407 if (atomic_read(&start_mm
->mm_users
) == 1) {
1409 start_mm
= &init_mm
;
1410 atomic_inc(&init_mm
.mm_users
);
1414 * Wait for and lock page. When do_swap_page races with
1415 * try_to_unuse, do_swap_page can handle the fault much
1416 * faster than try_to_unuse can locate the entry. This
1417 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1418 * defer to do_swap_page in such a case - in some tests,
1419 * do_swap_page and try_to_unuse repeatedly compete.
1421 wait_on_page_locked(page
);
1422 wait_on_page_writeback(page
);
1424 wait_on_page_writeback(page
);
1427 * Remove all references to entry.
1429 swcount
= *swap_map
;
1430 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1431 retval
= shmem_unuse(entry
, page
);
1432 /* page has already been unlocked and released */
1437 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1438 retval
= unuse_mm(start_mm
, entry
, page
);
1440 if (swap_count(*swap_map
)) {
1441 int set_start_mm
= (*swap_map
>= swcount
);
1442 struct list_head
*p
= &start_mm
->mmlist
;
1443 struct mm_struct
*new_start_mm
= start_mm
;
1444 struct mm_struct
*prev_mm
= start_mm
;
1445 struct mm_struct
*mm
;
1447 atomic_inc(&new_start_mm
->mm_users
);
1448 atomic_inc(&prev_mm
->mm_users
);
1449 spin_lock(&mmlist_lock
);
1450 while (swap_count(*swap_map
) && !retval
&&
1451 (p
= p
->next
) != &start_mm
->mmlist
) {
1452 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1453 if (!atomic_inc_not_zero(&mm
->mm_users
))
1455 spin_unlock(&mmlist_lock
);
1461 swcount
= *swap_map
;
1462 if (!swap_count(swcount
)) /* any usage ? */
1464 else if (mm
== &init_mm
)
1467 retval
= unuse_mm(mm
, entry
, page
);
1469 if (set_start_mm
&& *swap_map
< swcount
) {
1470 mmput(new_start_mm
);
1471 atomic_inc(&mm
->mm_users
);
1475 spin_lock(&mmlist_lock
);
1477 spin_unlock(&mmlist_lock
);
1480 start_mm
= new_start_mm
;
1484 page_cache_release(page
);
1489 * If a reference remains (rare), we would like to leave
1490 * the page in the swap cache; but try_to_unmap could
1491 * then re-duplicate the entry once we drop page lock,
1492 * so we might loop indefinitely; also, that page could
1493 * not be swapped out to other storage meanwhile. So:
1494 * delete from cache even if there's another reference,
1495 * after ensuring that the data has been saved to disk -
1496 * since if the reference remains (rarer), it will be
1497 * read from disk into another page. Splitting into two
1498 * pages would be incorrect if swap supported "shared
1499 * private" pages, but they are handled by tmpfs files.
1501 * Given how unuse_vma() targets one particular offset
1502 * in an anon_vma, once the anon_vma has been determined,
1503 * this splitting happens to be just what is needed to
1504 * handle where KSM pages have been swapped out: re-reading
1505 * is unnecessarily slow, but we can fix that later on.
1507 if (swap_count(*swap_map
) &&
1508 PageDirty(page
) && PageSwapCache(page
)) {
1509 struct writeback_control wbc
= {
1510 .sync_mode
= WB_SYNC_NONE
,
1513 swap_writepage(page
, &wbc
);
1515 wait_on_page_writeback(page
);
1519 * It is conceivable that a racing task removed this page from
1520 * swap cache just before we acquired the page lock at the top,
1521 * or while we dropped it in unuse_mm(). The page might even
1522 * be back in swap cache on another swap area: that we must not
1523 * delete, since it may not have been written out to swap yet.
1525 if (PageSwapCache(page
) &&
1526 likely(page_private(page
) == entry
.val
))
1527 delete_from_swap_cache(page
);
1530 * So we could skip searching mms once swap count went
1531 * to 1, we did not mark any present ptes as dirty: must
1532 * mark page dirty so shrink_page_list will preserve it.
1536 page_cache_release(page
);
1539 * Make sure that we aren't completely killing
1540 * interactive performance.
1543 if (frontswap
&& pages_to_unuse
> 0) {
1544 if (!--pages_to_unuse
)
1554 * After a successful try_to_unuse, if no swap is now in use, we know
1555 * we can empty the mmlist. swap_lock must be held on entry and exit.
1556 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1557 * added to the mmlist just after page_duplicate - before would be racy.
1559 static void drain_mmlist(void)
1561 struct list_head
*p
, *next
;
1564 for (type
= 0; type
< nr_swapfiles
; type
++)
1565 if (swap_info
[type
]->inuse_pages
)
1567 spin_lock(&mmlist_lock
);
1568 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1570 spin_unlock(&mmlist_lock
);
1574 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1575 * corresponds to page offset for the specified swap entry.
1576 * Note that the type of this function is sector_t, but it returns page offset
1577 * into the bdev, not sector offset.
1579 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1581 struct swap_info_struct
*sis
;
1582 struct swap_extent
*start_se
;
1583 struct swap_extent
*se
;
1586 sis
= swap_info
[swp_type(entry
)];
1589 offset
= swp_offset(entry
);
1590 start_se
= sis
->curr_swap_extent
;
1594 struct list_head
*lh
;
1596 if (se
->start_page
<= offset
&&
1597 offset
< (se
->start_page
+ se
->nr_pages
)) {
1598 return se
->start_block
+ (offset
- se
->start_page
);
1601 se
= list_entry(lh
, struct swap_extent
, list
);
1602 sis
->curr_swap_extent
= se
;
1603 BUG_ON(se
== start_se
); /* It *must* be present */
1608 * Returns the page offset into bdev for the specified page's swap entry.
1610 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1613 entry
.val
= page_private(page
);
1614 return map_swap_entry(entry
, bdev
);
1618 * Free all of a swapdev's extent information
1620 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1622 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1623 struct swap_extent
*se
;
1625 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1626 struct swap_extent
, list
);
1627 list_del(&se
->list
);
1631 if (sis
->flags
& SWP_FILE
) {
1632 struct file
*swap_file
= sis
->swap_file
;
1633 struct address_space
*mapping
= swap_file
->f_mapping
;
1635 sis
->flags
&= ~SWP_FILE
;
1636 mapping
->a_ops
->swap_deactivate(swap_file
);
1641 * Add a block range (and the corresponding page range) into this swapdev's
1642 * extent list. The extent list is kept sorted in page order.
1644 * This function rather assumes that it is called in ascending page order.
1647 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1648 unsigned long nr_pages
, sector_t start_block
)
1650 struct swap_extent
*se
;
1651 struct swap_extent
*new_se
;
1652 struct list_head
*lh
;
1654 if (start_page
== 0) {
1655 se
= &sis
->first_swap_extent
;
1656 sis
->curr_swap_extent
= se
;
1658 se
->nr_pages
= nr_pages
;
1659 se
->start_block
= start_block
;
1662 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1663 se
= list_entry(lh
, struct swap_extent
, list
);
1664 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1665 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1667 se
->nr_pages
+= nr_pages
;
1673 * No merge. Insert a new extent, preserving ordering.
1675 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1678 new_se
->start_page
= start_page
;
1679 new_se
->nr_pages
= nr_pages
;
1680 new_se
->start_block
= start_block
;
1682 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1687 * A `swap extent' is a simple thing which maps a contiguous range of pages
1688 * onto a contiguous range of disk blocks. An ordered list of swap extents
1689 * is built at swapon time and is then used at swap_writepage/swap_readpage
1690 * time for locating where on disk a page belongs.
1692 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1693 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1694 * swap files identically.
1696 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1697 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1698 * swapfiles are handled *identically* after swapon time.
1700 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1701 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1702 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1703 * requirements, they are simply tossed out - we will never use those blocks
1706 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1707 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1708 * which will scribble on the fs.
1710 * The amount of disk space which a single swap extent represents varies.
1711 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1712 * extents in the list. To avoid much list walking, we cache the previous
1713 * search location in `curr_swap_extent', and start new searches from there.
1714 * This is extremely effective. The average number of iterations in
1715 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1717 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1719 struct file
*swap_file
= sis
->swap_file
;
1720 struct address_space
*mapping
= swap_file
->f_mapping
;
1721 struct inode
*inode
= mapping
->host
;
1724 if (S_ISBLK(inode
->i_mode
)) {
1725 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1730 if (mapping
->a_ops
->swap_activate
) {
1731 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
1733 sis
->flags
|= SWP_FILE
;
1734 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1740 return generic_swapfile_activate(sis
, swap_file
, span
);
1743 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
1744 unsigned char *swap_map
,
1745 struct swap_cluster_info
*cluster_info
)
1750 p
->prio
= --least_priority
;
1752 * the plist prio is negated because plist ordering is
1753 * low-to-high, while swap ordering is high-to-low
1755 p
->list
.prio
= -p
->prio
;
1756 p
->avail_list
.prio
= -p
->prio
;
1757 p
->swap_map
= swap_map
;
1758 p
->cluster_info
= cluster_info
;
1759 p
->flags
|= SWP_WRITEOK
;
1760 atomic_long_add(p
->pages
, &nr_swap_pages
);
1761 total_swap_pages
+= p
->pages
;
1763 assert_spin_locked(&swap_lock
);
1765 * both lists are plists, and thus priority ordered.
1766 * swap_active_head needs to be priority ordered for swapoff(),
1767 * which on removal of any swap_info_struct with an auto-assigned
1768 * (i.e. negative) priority increments the auto-assigned priority
1769 * of any lower-priority swap_info_structs.
1770 * swap_avail_head needs to be priority ordered for get_swap_page(),
1771 * which allocates swap pages from the highest available priority
1774 plist_add(&p
->list
, &swap_active_head
);
1775 spin_lock(&swap_avail_lock
);
1776 plist_add(&p
->avail_list
, &swap_avail_head
);
1777 spin_unlock(&swap_avail_lock
);
1780 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1781 unsigned char *swap_map
,
1782 struct swap_cluster_info
*cluster_info
,
1783 unsigned long *frontswap_map
)
1785 frontswap_init(p
->type
, frontswap_map
);
1786 spin_lock(&swap_lock
);
1787 spin_lock(&p
->lock
);
1788 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
1789 spin_unlock(&p
->lock
);
1790 spin_unlock(&swap_lock
);
1793 static void reinsert_swap_info(struct swap_info_struct
*p
)
1795 spin_lock(&swap_lock
);
1796 spin_lock(&p
->lock
);
1797 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
1798 spin_unlock(&p
->lock
);
1799 spin_unlock(&swap_lock
);
1802 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1804 struct swap_info_struct
*p
= NULL
;
1805 unsigned char *swap_map
;
1806 struct swap_cluster_info
*cluster_info
;
1807 unsigned long *frontswap_map
;
1808 struct file
*swap_file
, *victim
;
1809 struct address_space
*mapping
;
1810 struct inode
*inode
;
1811 struct filename
*pathname
;
1813 unsigned int old_block_size
;
1815 if (!capable(CAP_SYS_ADMIN
))
1818 BUG_ON(!current
->mm
);
1820 pathname
= getname(specialfile
);
1821 if (IS_ERR(pathname
))
1822 return PTR_ERR(pathname
);
1824 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1825 err
= PTR_ERR(victim
);
1829 mapping
= victim
->f_mapping
;
1830 spin_lock(&swap_lock
);
1831 plist_for_each_entry(p
, &swap_active_head
, list
) {
1832 if (p
->flags
& SWP_WRITEOK
) {
1833 if (p
->swap_file
->f_mapping
== mapping
) {
1841 spin_unlock(&swap_lock
);
1844 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1845 vm_unacct_memory(p
->pages
);
1848 spin_unlock(&swap_lock
);
1851 spin_lock(&swap_avail_lock
);
1852 plist_del(&p
->avail_list
, &swap_avail_head
);
1853 spin_unlock(&swap_avail_lock
);
1854 spin_lock(&p
->lock
);
1856 struct swap_info_struct
*si
= p
;
1858 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
1861 si
->avail_list
.prio
--;
1865 plist_del(&p
->list
, &swap_active_head
);
1866 atomic_long_sub(p
->pages
, &nr_swap_pages
);
1867 total_swap_pages
-= p
->pages
;
1868 p
->flags
&= ~SWP_WRITEOK
;
1869 spin_unlock(&p
->lock
);
1870 spin_unlock(&swap_lock
);
1872 set_current_oom_origin();
1873 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
1874 clear_current_oom_origin();
1877 /* re-insert swap space back into swap_list */
1878 reinsert_swap_info(p
);
1882 flush_work(&p
->discard_work
);
1884 destroy_swap_extents(p
);
1885 if (p
->flags
& SWP_CONTINUED
)
1886 free_swap_count_continuations(p
);
1888 mutex_lock(&swapon_mutex
);
1889 spin_lock(&swap_lock
);
1890 spin_lock(&p
->lock
);
1893 /* wait for anyone still in scan_swap_map */
1894 p
->highest_bit
= 0; /* cuts scans short */
1895 while (p
->flags
>= SWP_SCANNING
) {
1896 spin_unlock(&p
->lock
);
1897 spin_unlock(&swap_lock
);
1898 schedule_timeout_uninterruptible(1);
1899 spin_lock(&swap_lock
);
1900 spin_lock(&p
->lock
);
1903 swap_file
= p
->swap_file
;
1904 old_block_size
= p
->old_block_size
;
1905 p
->swap_file
= NULL
;
1907 swap_map
= p
->swap_map
;
1909 cluster_info
= p
->cluster_info
;
1910 p
->cluster_info
= NULL
;
1911 frontswap_map
= frontswap_map_get(p
);
1912 spin_unlock(&p
->lock
);
1913 spin_unlock(&swap_lock
);
1914 frontswap_invalidate_area(p
->type
);
1915 frontswap_map_set(p
, NULL
);
1916 mutex_unlock(&swapon_mutex
);
1917 free_percpu(p
->percpu_cluster
);
1918 p
->percpu_cluster
= NULL
;
1920 vfree(cluster_info
);
1921 vfree(frontswap_map
);
1922 /* Destroy swap account information */
1923 swap_cgroup_swapoff(p
->type
);
1925 inode
= mapping
->host
;
1926 if (S_ISBLK(inode
->i_mode
)) {
1927 struct block_device
*bdev
= I_BDEV(inode
);
1928 set_blocksize(bdev
, old_block_size
);
1929 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1931 mutex_lock(&inode
->i_mutex
);
1932 inode
->i_flags
&= ~S_SWAPFILE
;
1933 mutex_unlock(&inode
->i_mutex
);
1935 filp_close(swap_file
, NULL
);
1938 * Clear the SWP_USED flag after all resources are freed so that swapon
1939 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1940 * not hold p->lock after we cleared its SWP_WRITEOK.
1942 spin_lock(&swap_lock
);
1944 spin_unlock(&swap_lock
);
1947 atomic_inc(&proc_poll_event
);
1948 wake_up_interruptible(&proc_poll_wait
);
1951 filp_close(victim
, NULL
);
1957 #ifdef CONFIG_PROC_FS
1958 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
1960 struct seq_file
*seq
= file
->private_data
;
1962 poll_wait(file
, &proc_poll_wait
, wait
);
1964 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
1965 seq
->poll_event
= atomic_read(&proc_poll_event
);
1966 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
1969 return POLLIN
| POLLRDNORM
;
1973 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1975 struct swap_info_struct
*si
;
1979 mutex_lock(&swapon_mutex
);
1982 return SEQ_START_TOKEN
;
1984 for (type
= 0; type
< nr_swapfiles
; type
++) {
1985 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1986 si
= swap_info
[type
];
1987 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1996 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1998 struct swap_info_struct
*si
= v
;
2001 if (v
== SEQ_START_TOKEN
)
2004 type
= si
->type
+ 1;
2006 for (; type
< nr_swapfiles
; type
++) {
2007 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2008 si
= swap_info
[type
];
2009 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2018 static void swap_stop(struct seq_file
*swap
, void *v
)
2020 mutex_unlock(&swapon_mutex
);
2023 static int swap_show(struct seq_file
*swap
, void *v
)
2025 struct swap_info_struct
*si
= v
;
2029 if (si
== SEQ_START_TOKEN
) {
2030 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2034 file
= si
->swap_file
;
2035 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
2036 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2037 len
< 40 ? 40 - len
: 1, " ",
2038 S_ISBLK(file_inode(file
)->i_mode
) ?
2039 "partition" : "file\t",
2040 si
->pages
<< (PAGE_SHIFT
- 10),
2041 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2046 static const struct seq_operations swaps_op
= {
2047 .start
= swap_start
,
2053 static int swaps_open(struct inode
*inode
, struct file
*file
)
2055 struct seq_file
*seq
;
2058 ret
= seq_open(file
, &swaps_op
);
2062 seq
= file
->private_data
;
2063 seq
->poll_event
= atomic_read(&proc_poll_event
);
2067 static const struct file_operations proc_swaps_operations
= {
2070 .llseek
= seq_lseek
,
2071 .release
= seq_release
,
2075 static int __init
procswaps_init(void)
2077 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2080 __initcall(procswaps_init
);
2081 #endif /* CONFIG_PROC_FS */
2083 #ifdef MAX_SWAPFILES_CHECK
2084 static int __init
max_swapfiles_check(void)
2086 MAX_SWAPFILES_CHECK();
2089 late_initcall(max_swapfiles_check
);
2092 static struct swap_info_struct
*alloc_swap_info(void)
2094 struct swap_info_struct
*p
;
2097 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2099 return ERR_PTR(-ENOMEM
);
2101 spin_lock(&swap_lock
);
2102 for (type
= 0; type
< nr_swapfiles
; type
++) {
2103 if (!(swap_info
[type
]->flags
& SWP_USED
))
2106 if (type
>= MAX_SWAPFILES
) {
2107 spin_unlock(&swap_lock
);
2109 return ERR_PTR(-EPERM
);
2111 if (type
>= nr_swapfiles
) {
2113 swap_info
[type
] = p
;
2115 * Write swap_info[type] before nr_swapfiles, in case a
2116 * racing procfs swap_start() or swap_next() is reading them.
2117 * (We never shrink nr_swapfiles, we never free this entry.)
2123 p
= swap_info
[type
];
2125 * Do not memset this entry: a racing procfs swap_next()
2126 * would be relying on p->type to remain valid.
2129 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2130 plist_node_init(&p
->list
, 0);
2131 plist_node_init(&p
->avail_list
, 0);
2132 p
->flags
= SWP_USED
;
2133 spin_unlock(&swap_lock
);
2134 spin_lock_init(&p
->lock
);
2139 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2143 if (S_ISBLK(inode
->i_mode
)) {
2144 p
->bdev
= bdgrab(I_BDEV(inode
));
2145 error
= blkdev_get(p
->bdev
,
2146 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
,
2152 p
->old_block_size
= block_size(p
->bdev
);
2153 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2156 p
->flags
|= SWP_BLKDEV
;
2157 } else if (S_ISREG(inode
->i_mode
)) {
2158 p
->bdev
= inode
->i_sb
->s_bdev
;
2159 mutex_lock(&inode
->i_mutex
);
2160 if (IS_SWAPFILE(inode
))
2168 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2169 union swap_header
*swap_header
,
2170 struct inode
*inode
)
2173 unsigned long maxpages
;
2174 unsigned long swapfilepages
;
2175 unsigned long last_page
;
2177 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2178 pr_err("Unable to find swap-space signature\n");
2182 /* swap partition endianess hack... */
2183 if (swab32(swap_header
->info
.version
) == 1) {
2184 swab32s(&swap_header
->info
.version
);
2185 swab32s(&swap_header
->info
.last_page
);
2186 swab32s(&swap_header
->info
.nr_badpages
);
2187 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2188 swab32s(&swap_header
->info
.badpages
[i
]);
2190 /* Check the swap header's sub-version */
2191 if (swap_header
->info
.version
!= 1) {
2192 pr_warn("Unable to handle swap header version %d\n",
2193 swap_header
->info
.version
);
2198 p
->cluster_next
= 1;
2202 * Find out how many pages are allowed for a single swap
2203 * device. There are two limiting factors: 1) the number
2204 * of bits for the swap offset in the swp_entry_t type, and
2205 * 2) the number of bits in the swap pte as defined by the
2206 * different architectures. In order to find the
2207 * largest possible bit mask, a swap entry with swap type 0
2208 * and swap offset ~0UL is created, encoded to a swap pte,
2209 * decoded to a swp_entry_t again, and finally the swap
2210 * offset is extracted. This will mask all the bits from
2211 * the initial ~0UL mask that can't be encoded in either
2212 * the swp_entry_t or the architecture definition of a
2215 maxpages
= swp_offset(pte_to_swp_entry(
2216 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2217 last_page
= swap_header
->info
.last_page
;
2218 if (last_page
> maxpages
) {
2219 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2220 maxpages
<< (PAGE_SHIFT
- 10),
2221 last_page
<< (PAGE_SHIFT
- 10));
2223 if (maxpages
> last_page
) {
2224 maxpages
= last_page
+ 1;
2225 /* p->max is an unsigned int: don't overflow it */
2226 if ((unsigned int)maxpages
== 0)
2227 maxpages
= UINT_MAX
;
2229 p
->highest_bit
= maxpages
- 1;
2233 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2234 if (swapfilepages
&& maxpages
> swapfilepages
) {
2235 pr_warn("Swap area shorter than signature indicates\n");
2238 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2240 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2246 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2247 union swap_header
*swap_header
,
2248 unsigned char *swap_map
,
2249 struct swap_cluster_info
*cluster_info
,
2250 unsigned long maxpages
,
2254 unsigned int nr_good_pages
;
2256 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2257 unsigned long idx
= p
->cluster_next
/ SWAPFILE_CLUSTER
;
2259 nr_good_pages
= maxpages
- 1; /* omit header page */
2261 cluster_set_null(&p
->free_cluster_head
);
2262 cluster_set_null(&p
->free_cluster_tail
);
2263 cluster_set_null(&p
->discard_cluster_head
);
2264 cluster_set_null(&p
->discard_cluster_tail
);
2266 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2267 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2268 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2270 if (page_nr
< maxpages
) {
2271 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2274 * Haven't marked the cluster free yet, no list
2275 * operation involved
2277 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2281 /* Haven't marked the cluster free yet, no list operation involved */
2282 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2283 inc_cluster_info_page(p
, cluster_info
, i
);
2285 if (nr_good_pages
) {
2286 swap_map
[0] = SWAP_MAP_BAD
;
2288 * Not mark the cluster free yet, no list
2289 * operation involved
2291 inc_cluster_info_page(p
, cluster_info
, 0);
2293 p
->pages
= nr_good_pages
;
2294 nr_extents
= setup_swap_extents(p
, span
);
2297 nr_good_pages
= p
->pages
;
2299 if (!nr_good_pages
) {
2300 pr_warn("Empty swap-file\n");
2307 for (i
= 0; i
< nr_clusters
; i
++) {
2308 if (!cluster_count(&cluster_info
[idx
])) {
2309 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2310 if (cluster_is_null(&p
->free_cluster_head
)) {
2311 cluster_set_next_flag(&p
->free_cluster_head
,
2313 cluster_set_next_flag(&p
->free_cluster_tail
,
2318 tail
= cluster_next(&p
->free_cluster_tail
);
2319 cluster_set_next(&cluster_info
[tail
], idx
);
2320 cluster_set_next_flag(&p
->free_cluster_tail
,
2325 if (idx
== nr_clusters
)
2332 * Helper to sys_swapon determining if a given swap
2333 * backing device queue supports DISCARD operations.
2335 static bool swap_discardable(struct swap_info_struct
*si
)
2337 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2339 if (!q
|| !blk_queue_discard(q
))
2345 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2347 struct swap_info_struct
*p
;
2348 struct filename
*name
;
2349 struct file
*swap_file
= NULL
;
2350 struct address_space
*mapping
;
2354 union swap_header
*swap_header
;
2357 unsigned long maxpages
;
2358 unsigned char *swap_map
= NULL
;
2359 struct swap_cluster_info
*cluster_info
= NULL
;
2360 unsigned long *frontswap_map
= NULL
;
2361 struct page
*page
= NULL
;
2362 struct inode
*inode
= NULL
;
2364 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2367 if (!capable(CAP_SYS_ADMIN
))
2370 p
= alloc_swap_info();
2374 INIT_WORK(&p
->discard_work
, swap_discard_work
);
2376 name
= getname(specialfile
);
2378 error
= PTR_ERR(name
);
2382 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2383 if (IS_ERR(swap_file
)) {
2384 error
= PTR_ERR(swap_file
);
2389 p
->swap_file
= swap_file
;
2390 mapping
= swap_file
->f_mapping
;
2392 for (i
= 0; i
< nr_swapfiles
; i
++) {
2393 struct swap_info_struct
*q
= swap_info
[i
];
2395 if (q
== p
|| !q
->swap_file
)
2397 if (mapping
== q
->swap_file
->f_mapping
) {
2403 inode
= mapping
->host
;
2404 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2405 error
= claim_swapfile(p
, inode
);
2406 if (unlikely(error
))
2410 * Read the swap header.
2412 if (!mapping
->a_ops
->readpage
) {
2416 page
= read_mapping_page(mapping
, 0, swap_file
);
2418 error
= PTR_ERR(page
);
2421 swap_header
= kmap(page
);
2423 maxpages
= read_swap_header(p
, swap_header
, inode
);
2424 if (unlikely(!maxpages
)) {
2429 /* OK, set up the swap map and apply the bad block list */
2430 swap_map
= vzalloc(maxpages
);
2435 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2436 p
->flags
|= SWP_SOLIDSTATE
;
2438 * select a random position to start with to help wear leveling
2441 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2443 cluster_info
= vzalloc(DIV_ROUND_UP(maxpages
,
2444 SWAPFILE_CLUSTER
) * sizeof(*cluster_info
));
2445 if (!cluster_info
) {
2449 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
2450 if (!p
->percpu_cluster
) {
2454 for_each_possible_cpu(i
) {
2455 struct percpu_cluster
*cluster
;
2456 cluster
= per_cpu_ptr(p
->percpu_cluster
, i
);
2457 cluster_set_null(&cluster
->index
);
2461 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2465 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2466 cluster_info
, maxpages
, &span
);
2467 if (unlikely(nr_extents
< 0)) {
2471 /* frontswap enabled? set up bit-per-page map for frontswap */
2472 if (frontswap_enabled
)
2473 frontswap_map
= vzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long));
2475 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2477 * When discard is enabled for swap with no particular
2478 * policy flagged, we set all swap discard flags here in
2479 * order to sustain backward compatibility with older
2480 * swapon(8) releases.
2482 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2486 * By flagging sys_swapon, a sysadmin can tell us to
2487 * either do single-time area discards only, or to just
2488 * perform discards for released swap page-clusters.
2489 * Now it's time to adjust the p->flags accordingly.
2491 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
2492 p
->flags
&= ~SWP_PAGE_DISCARD
;
2493 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
2494 p
->flags
&= ~SWP_AREA_DISCARD
;
2496 /* issue a swapon-time discard if it's still required */
2497 if (p
->flags
& SWP_AREA_DISCARD
) {
2498 int err
= discard_swap(p
);
2500 pr_err("swapon: discard_swap(%p): %d\n",
2505 mutex_lock(&swapon_mutex
);
2507 if (swap_flags
& SWAP_FLAG_PREFER
)
2509 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2510 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
2512 pr_info("Adding %uk swap on %s. "
2513 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2514 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2515 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2516 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2517 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2518 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
2519 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
2520 (frontswap_map
) ? "FS" : "");
2522 mutex_unlock(&swapon_mutex
);
2523 atomic_inc(&proc_poll_event
);
2524 wake_up_interruptible(&proc_poll_wait
);
2526 if (S_ISREG(inode
->i_mode
))
2527 inode
->i_flags
|= S_SWAPFILE
;
2531 free_percpu(p
->percpu_cluster
);
2532 p
->percpu_cluster
= NULL
;
2533 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2534 set_blocksize(p
->bdev
, p
->old_block_size
);
2535 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2537 destroy_swap_extents(p
);
2538 swap_cgroup_swapoff(p
->type
);
2539 spin_lock(&swap_lock
);
2540 p
->swap_file
= NULL
;
2542 spin_unlock(&swap_lock
);
2544 vfree(cluster_info
);
2546 if (inode
&& S_ISREG(inode
->i_mode
)) {
2547 mutex_unlock(&inode
->i_mutex
);
2550 filp_close(swap_file
, NULL
);
2553 if (page
&& !IS_ERR(page
)) {
2555 page_cache_release(page
);
2559 if (inode
&& S_ISREG(inode
->i_mode
))
2560 mutex_unlock(&inode
->i_mutex
);
2564 void si_swapinfo(struct sysinfo
*val
)
2567 unsigned long nr_to_be_unused
= 0;
2569 spin_lock(&swap_lock
);
2570 for (type
= 0; type
< nr_swapfiles
; type
++) {
2571 struct swap_info_struct
*si
= swap_info
[type
];
2573 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2574 nr_to_be_unused
+= si
->inuse_pages
;
2576 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
2577 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2578 spin_unlock(&swap_lock
);
2582 * Verify that a swap entry is valid and increment its swap map count.
2584 * Returns error code in following case.
2586 * - swp_entry is invalid -> EINVAL
2587 * - swp_entry is migration entry -> EINVAL
2588 * - swap-cache reference is requested but there is already one. -> EEXIST
2589 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2590 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2592 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2594 struct swap_info_struct
*p
;
2595 unsigned long offset
, type
;
2596 unsigned char count
;
2597 unsigned char has_cache
;
2600 if (non_swap_entry(entry
))
2603 type
= swp_type(entry
);
2604 if (type
>= nr_swapfiles
)
2606 p
= swap_info
[type
];
2607 offset
= swp_offset(entry
);
2609 spin_lock(&p
->lock
);
2610 if (unlikely(offset
>= p
->max
))
2613 count
= p
->swap_map
[offset
];
2616 * swapin_readahead() doesn't check if a swap entry is valid, so the
2617 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2619 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
2624 has_cache
= count
& SWAP_HAS_CACHE
;
2625 count
&= ~SWAP_HAS_CACHE
;
2628 if (usage
== SWAP_HAS_CACHE
) {
2630 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2631 if (!has_cache
&& count
)
2632 has_cache
= SWAP_HAS_CACHE
;
2633 else if (has_cache
) /* someone else added cache */
2635 else /* no users remaining */
2638 } else if (count
|| has_cache
) {
2640 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2642 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2644 else if (swap_count_continued(p
, offset
, count
))
2645 count
= COUNT_CONTINUED
;
2649 err
= -ENOENT
; /* unused swap entry */
2651 p
->swap_map
[offset
] = count
| has_cache
;
2654 spin_unlock(&p
->lock
);
2659 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2664 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2665 * (in which case its reference count is never incremented).
2667 void swap_shmem_alloc(swp_entry_t entry
)
2669 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2673 * Increase reference count of swap entry by 1.
2674 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2675 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2676 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2677 * might occur if a page table entry has got corrupted.
2679 int swap_duplicate(swp_entry_t entry
)
2683 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2684 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2689 * @entry: swap entry for which we allocate swap cache.
2691 * Called when allocating swap cache for existing swap entry,
2692 * This can return error codes. Returns 0 at success.
2693 * -EBUSY means there is a swap cache.
2694 * Note: return code is different from swap_duplicate().
2696 int swapcache_prepare(swp_entry_t entry
)
2698 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2701 struct swap_info_struct
*page_swap_info(struct page
*page
)
2703 swp_entry_t swap
= { .val
= page_private(page
) };
2704 BUG_ON(!PageSwapCache(page
));
2705 return swap_info
[swp_type(swap
)];
2709 * out-of-line __page_file_ methods to avoid include hell.
2711 struct address_space
*__page_file_mapping(struct page
*page
)
2713 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2714 return page_swap_info(page
)->swap_file
->f_mapping
;
2716 EXPORT_SYMBOL_GPL(__page_file_mapping
);
2718 pgoff_t
__page_file_index(struct page
*page
)
2720 swp_entry_t swap
= { .val
= page_private(page
) };
2721 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2722 return swp_offset(swap
);
2724 EXPORT_SYMBOL_GPL(__page_file_index
);
2727 * add_swap_count_continuation - called when a swap count is duplicated
2728 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2729 * page of the original vmalloc'ed swap_map, to hold the continuation count
2730 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2731 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2733 * These continuation pages are seldom referenced: the common paths all work
2734 * on the original swap_map, only referring to a continuation page when the
2735 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2737 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2738 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2739 * can be called after dropping locks.
2741 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2743 struct swap_info_struct
*si
;
2746 struct page
*list_page
;
2748 unsigned char count
;
2751 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2752 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2754 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2756 si
= swap_info_get(entry
);
2759 * An acceptable race has occurred since the failing
2760 * __swap_duplicate(): the swap entry has been freed,
2761 * perhaps even the whole swap_map cleared for swapoff.
2766 offset
= swp_offset(entry
);
2767 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2769 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2771 * The higher the swap count, the more likely it is that tasks
2772 * will race to add swap count continuation: we need to avoid
2773 * over-provisioning.
2779 spin_unlock(&si
->lock
);
2784 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2785 * no architecture is using highmem pages for kernel page tables: so it
2786 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2788 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2789 offset
&= ~PAGE_MASK
;
2792 * Page allocation does not initialize the page's lru field,
2793 * but it does always reset its private field.
2795 if (!page_private(head
)) {
2796 BUG_ON(count
& COUNT_CONTINUED
);
2797 INIT_LIST_HEAD(&head
->lru
);
2798 set_page_private(head
, SWP_CONTINUED
);
2799 si
->flags
|= SWP_CONTINUED
;
2802 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2806 * If the previous map said no continuation, but we've found
2807 * a continuation page, free our allocation and use this one.
2809 if (!(count
& COUNT_CONTINUED
))
2812 map
= kmap_atomic(list_page
) + offset
;
2817 * If this continuation count now has some space in it,
2818 * free our allocation and use this one.
2820 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2824 list_add_tail(&page
->lru
, &head
->lru
);
2825 page
= NULL
; /* now it's attached, don't free it */
2827 spin_unlock(&si
->lock
);
2835 * swap_count_continued - when the original swap_map count is incremented
2836 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2837 * into, carry if so, or else fail until a new continuation page is allocated;
2838 * when the original swap_map count is decremented from 0 with continuation,
2839 * borrow from the continuation and report whether it still holds more.
2840 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2842 static bool swap_count_continued(struct swap_info_struct
*si
,
2843 pgoff_t offset
, unsigned char count
)
2849 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2850 if (page_private(head
) != SWP_CONTINUED
) {
2851 BUG_ON(count
& COUNT_CONTINUED
);
2852 return false; /* need to add count continuation */
2855 offset
&= ~PAGE_MASK
;
2856 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2857 map
= kmap_atomic(page
) + offset
;
2859 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2860 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2862 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2864 * Think of how you add 1 to 999
2866 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2868 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2869 BUG_ON(page
== head
);
2870 map
= kmap_atomic(page
) + offset
;
2872 if (*map
== SWAP_CONT_MAX
) {
2874 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2876 return false; /* add count continuation */
2877 map
= kmap_atomic(page
) + offset
;
2878 init_map
: *map
= 0; /* we didn't zero the page */
2882 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2883 while (page
!= head
) {
2884 map
= kmap_atomic(page
) + offset
;
2885 *map
= COUNT_CONTINUED
;
2887 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2889 return true; /* incremented */
2891 } else { /* decrementing */
2893 * Think of how you subtract 1 from 1000
2895 BUG_ON(count
!= COUNT_CONTINUED
);
2896 while (*map
== COUNT_CONTINUED
) {
2898 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2899 BUG_ON(page
== head
);
2900 map
= kmap_atomic(page
) + offset
;
2907 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2908 while (page
!= head
) {
2909 map
= kmap_atomic(page
) + offset
;
2910 *map
= SWAP_CONT_MAX
| count
;
2911 count
= COUNT_CONTINUED
;
2913 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2915 return count
== COUNT_CONTINUED
;
2920 * free_swap_count_continuations - swapoff free all the continuation pages
2921 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2923 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2927 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2929 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2930 if (page_private(head
)) {
2931 struct list_head
*this, *next
;
2932 list_for_each_safe(this, next
, &head
->lru
) {
2934 page
= list_entry(this, struct page
, lru
);