1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include "percpu_freelist.h"
13 #include "bpf_lru_list.h"
14 #include "map_in_map.h"
16 #define HTAB_CREATE_FLAG_MASK \
17 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
18 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20 #define BATCH_OPS(_name) \
22 _name##_map_lookup_batch, \
23 .map_lookup_and_delete_batch = \
24 _name##_map_lookup_and_delete_batch, \
26 generic_map_update_batch, \
28 generic_map_delete_batch
31 * The bucket lock has two protection scopes:
33 * 1) Serializing concurrent operations from BPF programs on differrent
36 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38 * BPF programs can execute in any context including perf, kprobes and
39 * tracing. As there are almost no limits where perf, kprobes and tracing
40 * can be invoked from the lock operations need to be protected against
41 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
42 * the lock held section when functions which acquire this lock are invoked
43 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
44 * variable bpf_prog_active, which prevents BPF programs attached to perf
45 * events, kprobes and tracing to be invoked before the prior invocation
46 * from one of these contexts completed. sys_bpf() uses the same mechanism
47 * by pinning the task to the current CPU and incrementing the recursion
48 * protection accross the map operation.
50 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
51 * operations like memory allocations (even with GFP_ATOMIC) from atomic
52 * contexts. This is required because even with GFP_ATOMIC the memory
53 * allocator calls into code pathes which acquire locks with long held lock
54 * sections. To ensure the deterministic behaviour these locks are regular
55 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
56 * true atomic contexts on an RT kernel are the low level hardware
57 * handling, scheduling, low level interrupt handling, NMIs etc. None of
58 * these contexts should ever do memory allocations.
60 * As regular device interrupt handlers and soft interrupts are forced into
61 * thread context, the existing code which does
62 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
65 * In theory the BPF locks could be converted to regular spinlocks as well,
66 * but the bucket locks and percpu_freelist locks can be taken from
67 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
68 * atomic contexts even on RT. These mechanisms require preallocated maps,
69 * so there is no need to invoke memory allocations within the lock held
72 * BPF maps which need dynamic allocation are only used from (forced)
73 * thread context on RT and can therefore use regular spinlocks which in
74 * turn allows to invoke memory allocations from the lock held section.
76 * On a non RT kernel this distinction is neither possible nor required.
77 * spinlock maps to raw_spinlock and the extra code is optimized out by the
81 struct hlist_nulls_head head
;
83 raw_spinlock_t raw_lock
;
90 struct bucket
*buckets
;
93 struct pcpu_freelist freelist
;
96 struct htab_elem
*__percpu
*extra_elems
;
97 atomic_t count
; /* number of elements in this hashtable */
98 u32 n_buckets
; /* number of hash buckets */
99 u32 elem_size
; /* size of each element in bytes */
103 /* each htab element is struct htab_elem + key + value */
106 struct hlist_nulls_node hash_node
;
110 struct bpf_htab
*htab
;
111 struct pcpu_freelist_node fnode
;
112 struct htab_elem
*batch_flink
;
118 struct bpf_lru_node lru_node
;
121 char key
[] __aligned(8);
124 static inline bool htab_is_prealloc(const struct bpf_htab
*htab
)
126 return !(htab
->map
.map_flags
& BPF_F_NO_PREALLOC
);
129 static inline bool htab_use_raw_lock(const struct bpf_htab
*htab
)
131 return (!IS_ENABLED(CONFIG_PREEMPT_RT
) || htab_is_prealloc(htab
));
134 static void htab_init_buckets(struct bpf_htab
*htab
)
138 for (i
= 0; i
< htab
->n_buckets
; i
++) {
139 INIT_HLIST_NULLS_HEAD(&htab
->buckets
[i
].head
, i
);
140 if (htab_use_raw_lock(htab
))
141 raw_spin_lock_init(&htab
->buckets
[i
].raw_lock
);
143 spin_lock_init(&htab
->buckets
[i
].lock
);
147 static inline unsigned long htab_lock_bucket(const struct bpf_htab
*htab
,
152 if (htab_use_raw_lock(htab
))
153 raw_spin_lock_irqsave(&b
->raw_lock
, flags
);
155 spin_lock_irqsave(&b
->lock
, flags
);
159 static inline void htab_unlock_bucket(const struct bpf_htab
*htab
,
163 if (htab_use_raw_lock(htab
))
164 raw_spin_unlock_irqrestore(&b
->raw_lock
, flags
);
166 spin_unlock_irqrestore(&b
->lock
, flags
);
169 static bool htab_lru_map_delete_node(void *arg
, struct bpf_lru_node
*node
);
171 static bool htab_is_lru(const struct bpf_htab
*htab
)
173 return htab
->map
.map_type
== BPF_MAP_TYPE_LRU_HASH
||
174 htab
->map
.map_type
== BPF_MAP_TYPE_LRU_PERCPU_HASH
;
177 static bool htab_is_percpu(const struct bpf_htab
*htab
)
179 return htab
->map
.map_type
== BPF_MAP_TYPE_PERCPU_HASH
||
180 htab
->map
.map_type
== BPF_MAP_TYPE_LRU_PERCPU_HASH
;
183 static inline void htab_elem_set_ptr(struct htab_elem
*l
, u32 key_size
,
186 *(void __percpu
**)(l
->key
+ key_size
) = pptr
;
189 static inline void __percpu
*htab_elem_get_ptr(struct htab_elem
*l
, u32 key_size
)
191 return *(void __percpu
**)(l
->key
+ key_size
);
194 static void *fd_htab_map_get_ptr(const struct bpf_map
*map
, struct htab_elem
*l
)
196 return *(void **)(l
->key
+ roundup(map
->key_size
, 8));
199 static struct htab_elem
*get_htab_elem(struct bpf_htab
*htab
, int i
)
201 return (struct htab_elem
*) (htab
->elems
+ i
* htab
->elem_size
);
204 static void htab_free_elems(struct bpf_htab
*htab
)
208 if (!htab_is_percpu(htab
))
211 for (i
= 0; i
< htab
->map
.max_entries
; i
++) {
214 pptr
= htab_elem_get_ptr(get_htab_elem(htab
, i
),
220 bpf_map_area_free(htab
->elems
);
223 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
224 * (bucket_lock). If both locks need to be acquired together, the lock
225 * order is always lru_lock -> bucket_lock and this only happens in
226 * bpf_lru_list.c logic. For example, certain code path of
227 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
228 * will acquire lru_lock first followed by acquiring bucket_lock.
230 * In hashtab.c, to avoid deadlock, lock acquisition of
231 * bucket_lock followed by lru_lock is not allowed. In such cases,
232 * bucket_lock needs to be released first before acquiring lru_lock.
234 static struct htab_elem
*prealloc_lru_pop(struct bpf_htab
*htab
, void *key
,
237 struct bpf_lru_node
*node
= bpf_lru_pop_free(&htab
->lru
, hash
);
241 l
= container_of(node
, struct htab_elem
, lru_node
);
242 memcpy(l
->key
, key
, htab
->map
.key_size
);
249 static int prealloc_init(struct bpf_htab
*htab
)
251 u32 num_entries
= htab
->map
.max_entries
;
252 int err
= -ENOMEM
, i
;
254 if (!htab_is_percpu(htab
) && !htab_is_lru(htab
))
255 num_entries
+= num_possible_cpus();
257 htab
->elems
= bpf_map_area_alloc(htab
->elem_size
* num_entries
,
258 htab
->map
.numa_node
);
262 if (!htab_is_percpu(htab
))
263 goto skip_percpu_elems
;
265 for (i
= 0; i
< num_entries
; i
++) {
266 u32 size
= round_up(htab
->map
.value_size
, 8);
269 pptr
= __alloc_percpu_gfp(size
, 8, GFP_USER
| __GFP_NOWARN
);
272 htab_elem_set_ptr(get_htab_elem(htab
, i
), htab
->map
.key_size
,
278 if (htab_is_lru(htab
))
279 err
= bpf_lru_init(&htab
->lru
,
280 htab
->map
.map_flags
& BPF_F_NO_COMMON_LRU
,
281 offsetof(struct htab_elem
, hash
) -
282 offsetof(struct htab_elem
, lru_node
),
283 htab_lru_map_delete_node
,
286 err
= pcpu_freelist_init(&htab
->freelist
);
291 if (htab_is_lru(htab
))
292 bpf_lru_populate(&htab
->lru
, htab
->elems
,
293 offsetof(struct htab_elem
, lru_node
),
294 htab
->elem_size
, num_entries
);
296 pcpu_freelist_populate(&htab
->freelist
,
297 htab
->elems
+ offsetof(struct htab_elem
, fnode
),
298 htab
->elem_size
, num_entries
);
303 htab_free_elems(htab
);
307 static void prealloc_destroy(struct bpf_htab
*htab
)
309 htab_free_elems(htab
);
311 if (htab_is_lru(htab
))
312 bpf_lru_destroy(&htab
->lru
);
314 pcpu_freelist_destroy(&htab
->freelist
);
317 static int alloc_extra_elems(struct bpf_htab
*htab
)
319 struct htab_elem
*__percpu
*pptr
, *l_new
;
320 struct pcpu_freelist_node
*l
;
323 pptr
= __alloc_percpu_gfp(sizeof(struct htab_elem
*), 8,
324 GFP_USER
| __GFP_NOWARN
);
328 for_each_possible_cpu(cpu
) {
329 l
= pcpu_freelist_pop(&htab
->freelist
);
330 /* pop will succeed, since prealloc_init()
331 * preallocated extra num_possible_cpus elements
333 l_new
= container_of(l
, struct htab_elem
, fnode
);
334 *per_cpu_ptr(pptr
, cpu
) = l_new
;
336 htab
->extra_elems
= pptr
;
340 /* Called from syscall */
341 static int htab_map_alloc_check(union bpf_attr
*attr
)
343 bool percpu
= (attr
->map_type
== BPF_MAP_TYPE_PERCPU_HASH
||
344 attr
->map_type
== BPF_MAP_TYPE_LRU_PERCPU_HASH
);
345 bool lru
= (attr
->map_type
== BPF_MAP_TYPE_LRU_HASH
||
346 attr
->map_type
== BPF_MAP_TYPE_LRU_PERCPU_HASH
);
347 /* percpu_lru means each cpu has its own LRU list.
348 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
349 * the map's value itself is percpu. percpu_lru has
350 * nothing to do with the map's value.
352 bool percpu_lru
= (attr
->map_flags
& BPF_F_NO_COMMON_LRU
);
353 bool prealloc
= !(attr
->map_flags
& BPF_F_NO_PREALLOC
);
354 bool zero_seed
= (attr
->map_flags
& BPF_F_ZERO_SEED
);
355 int numa_node
= bpf_map_attr_numa_node(attr
);
357 BUILD_BUG_ON(offsetof(struct htab_elem
, htab
) !=
358 offsetof(struct htab_elem
, hash_node
.pprev
));
359 BUILD_BUG_ON(offsetof(struct htab_elem
, fnode
.next
) !=
360 offsetof(struct htab_elem
, hash_node
.pprev
));
362 if (lru
&& !bpf_capable())
363 /* LRU implementation is much complicated than other
364 * maps. Hence, limit to CAP_BPF.
368 if (zero_seed
&& !capable(CAP_SYS_ADMIN
))
369 /* Guard against local DoS, and discourage production use. */
372 if (attr
->map_flags
& ~HTAB_CREATE_FLAG_MASK
||
373 !bpf_map_flags_access_ok(attr
->map_flags
))
376 if (!lru
&& percpu_lru
)
379 if (lru
&& !prealloc
)
382 if (numa_node
!= NUMA_NO_NODE
&& (percpu
|| percpu_lru
))
385 /* check sanity of attributes.
386 * value_size == 0 may be allowed in the future to use map as a set
388 if (attr
->max_entries
== 0 || attr
->key_size
== 0 ||
389 attr
->value_size
== 0)
392 if (attr
->key_size
> MAX_BPF_STACK
)
393 /* eBPF programs initialize keys on stack, so they cannot be
394 * larger than max stack size
398 if (attr
->value_size
>= KMALLOC_MAX_SIZE
-
399 MAX_BPF_STACK
- sizeof(struct htab_elem
))
400 /* if value_size is bigger, the user space won't be able to
401 * access the elements via bpf syscall. This check also makes
402 * sure that the elem_size doesn't overflow and it's
403 * kmalloc-able later in htab_map_update_elem()
410 static struct bpf_map
*htab_map_alloc(union bpf_attr
*attr
)
412 bool percpu
= (attr
->map_type
== BPF_MAP_TYPE_PERCPU_HASH
||
413 attr
->map_type
== BPF_MAP_TYPE_LRU_PERCPU_HASH
);
414 bool lru
= (attr
->map_type
== BPF_MAP_TYPE_LRU_HASH
||
415 attr
->map_type
== BPF_MAP_TYPE_LRU_PERCPU_HASH
);
416 /* percpu_lru means each cpu has its own LRU list.
417 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
418 * the map's value itself is percpu. percpu_lru has
419 * nothing to do with the map's value.
421 bool percpu_lru
= (attr
->map_flags
& BPF_F_NO_COMMON_LRU
);
422 bool prealloc
= !(attr
->map_flags
& BPF_F_NO_PREALLOC
);
423 struct bpf_htab
*htab
;
427 htab
= kzalloc(sizeof(*htab
), GFP_USER
);
429 return ERR_PTR(-ENOMEM
);
431 bpf_map_init_from_attr(&htab
->map
, attr
);
434 /* ensure each CPU's lru list has >=1 elements.
435 * since we are at it, make each lru list has the same
436 * number of elements.
438 htab
->map
.max_entries
= roundup(attr
->max_entries
,
439 num_possible_cpus());
440 if (htab
->map
.max_entries
< attr
->max_entries
)
441 htab
->map
.max_entries
= rounddown(attr
->max_entries
,
442 num_possible_cpus());
445 /* hash table size must be power of 2 */
446 htab
->n_buckets
= roundup_pow_of_two(htab
->map
.max_entries
);
448 htab
->elem_size
= sizeof(struct htab_elem
) +
449 round_up(htab
->map
.key_size
, 8);
451 htab
->elem_size
+= sizeof(void *);
453 htab
->elem_size
+= round_up(htab
->map
.value_size
, 8);
456 /* prevent zero size kmalloc and check for u32 overflow */
457 if (htab
->n_buckets
== 0 ||
458 htab
->n_buckets
> U32_MAX
/ sizeof(struct bucket
))
461 cost
= (u64
) htab
->n_buckets
* sizeof(struct bucket
) +
462 (u64
) htab
->elem_size
* htab
->map
.max_entries
;
465 cost
+= (u64
) round_up(htab
->map
.value_size
, 8) *
466 num_possible_cpus() * htab
->map
.max_entries
;
468 cost
+= (u64
) htab
->elem_size
* num_possible_cpus();
470 /* if map size is larger than memlock limit, reject it */
471 err
= bpf_map_charge_init(&htab
->map
.memory
, cost
);
476 htab
->buckets
= bpf_map_area_alloc(htab
->n_buckets
*
477 sizeof(struct bucket
),
478 htab
->map
.numa_node
);
482 if (htab
->map
.map_flags
& BPF_F_ZERO_SEED
)
485 htab
->hashrnd
= get_random_int();
487 htab_init_buckets(htab
);
490 err
= prealloc_init(htab
);
494 if (!percpu
&& !lru
) {
495 /* lru itself can remove the least used element, so
496 * there is no need for an extra elem during map_update.
498 err
= alloc_extra_elems(htab
);
507 prealloc_destroy(htab
);
509 bpf_map_area_free(htab
->buckets
);
511 bpf_map_charge_finish(&htab
->map
.memory
);
517 static inline u32
htab_map_hash(const void *key
, u32 key_len
, u32 hashrnd
)
519 return jhash(key
, key_len
, hashrnd
);
522 static inline struct bucket
*__select_bucket(struct bpf_htab
*htab
, u32 hash
)
524 return &htab
->buckets
[hash
& (htab
->n_buckets
- 1)];
527 static inline struct hlist_nulls_head
*select_bucket(struct bpf_htab
*htab
, u32 hash
)
529 return &__select_bucket(htab
, hash
)->head
;
532 /* this lookup function can only be called with bucket lock taken */
533 static struct htab_elem
*lookup_elem_raw(struct hlist_nulls_head
*head
, u32 hash
,
534 void *key
, u32 key_size
)
536 struct hlist_nulls_node
*n
;
539 hlist_nulls_for_each_entry_rcu(l
, n
, head
, hash_node
)
540 if (l
->hash
== hash
&& !memcmp(&l
->key
, key
, key_size
))
546 /* can be called without bucket lock. it will repeat the loop in
547 * the unlikely event when elements moved from one bucket into another
548 * while link list is being walked
550 static struct htab_elem
*lookup_nulls_elem_raw(struct hlist_nulls_head
*head
,
552 u32 key_size
, u32 n_buckets
)
554 struct hlist_nulls_node
*n
;
558 hlist_nulls_for_each_entry_rcu(l
, n
, head
, hash_node
)
559 if (l
->hash
== hash
&& !memcmp(&l
->key
, key
, key_size
))
562 if (unlikely(get_nulls_value(n
) != (hash
& (n_buckets
- 1))))
568 /* Called from syscall or from eBPF program directly, so
569 * arguments have to match bpf_map_lookup_elem() exactly.
570 * The return value is adjusted by BPF instructions
571 * in htab_map_gen_lookup().
573 static void *__htab_map_lookup_elem(struct bpf_map
*map
, void *key
)
575 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
576 struct hlist_nulls_head
*head
;
580 /* Must be called with rcu_read_lock. */
581 WARN_ON_ONCE(!rcu_read_lock_held());
583 key_size
= map
->key_size
;
585 hash
= htab_map_hash(key
, key_size
, htab
->hashrnd
);
587 head
= select_bucket(htab
, hash
);
589 l
= lookup_nulls_elem_raw(head
, hash
, key
, key_size
, htab
->n_buckets
);
594 static void *htab_map_lookup_elem(struct bpf_map
*map
, void *key
)
596 struct htab_elem
*l
= __htab_map_lookup_elem(map
, key
);
599 return l
->key
+ round_up(map
->key_size
, 8);
604 /* inline bpf_map_lookup_elem() call.
607 * bpf_map_lookup_elem
608 * map->ops->map_lookup_elem
609 * htab_map_lookup_elem
610 * __htab_map_lookup_elem
613 * __htab_map_lookup_elem
615 static u32
htab_map_gen_lookup(struct bpf_map
*map
, struct bpf_insn
*insn_buf
)
617 struct bpf_insn
*insn
= insn_buf
;
618 const int ret
= BPF_REG_0
;
620 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem
,
621 (void *(*)(struct bpf_map
*map
, void *key
))NULL
));
622 *insn
++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem
));
623 *insn
++ = BPF_JMP_IMM(BPF_JEQ
, ret
, 0, 1);
624 *insn
++ = BPF_ALU64_IMM(BPF_ADD
, ret
,
625 offsetof(struct htab_elem
, key
) +
626 round_up(map
->key_size
, 8));
627 return insn
- insn_buf
;
630 static __always_inline
void *__htab_lru_map_lookup_elem(struct bpf_map
*map
,
631 void *key
, const bool mark
)
633 struct htab_elem
*l
= __htab_map_lookup_elem(map
, key
);
637 bpf_lru_node_set_ref(&l
->lru_node
);
638 return l
->key
+ round_up(map
->key_size
, 8);
644 static void *htab_lru_map_lookup_elem(struct bpf_map
*map
, void *key
)
646 return __htab_lru_map_lookup_elem(map
, key
, true);
649 static void *htab_lru_map_lookup_elem_sys(struct bpf_map
*map
, void *key
)
651 return __htab_lru_map_lookup_elem(map
, key
, false);
654 static u32
htab_lru_map_gen_lookup(struct bpf_map
*map
,
655 struct bpf_insn
*insn_buf
)
657 struct bpf_insn
*insn
= insn_buf
;
658 const int ret
= BPF_REG_0
;
659 const int ref_reg
= BPF_REG_1
;
661 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem
,
662 (void *(*)(struct bpf_map
*map
, void *key
))NULL
));
663 *insn
++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem
));
664 *insn
++ = BPF_JMP_IMM(BPF_JEQ
, ret
, 0, 4);
665 *insn
++ = BPF_LDX_MEM(BPF_B
, ref_reg
, ret
,
666 offsetof(struct htab_elem
, lru_node
) +
667 offsetof(struct bpf_lru_node
, ref
));
668 *insn
++ = BPF_JMP_IMM(BPF_JNE
, ref_reg
, 0, 1);
669 *insn
++ = BPF_ST_MEM(BPF_B
, ret
,
670 offsetof(struct htab_elem
, lru_node
) +
671 offsetof(struct bpf_lru_node
, ref
),
673 *insn
++ = BPF_ALU64_IMM(BPF_ADD
, ret
,
674 offsetof(struct htab_elem
, key
) +
675 round_up(map
->key_size
, 8));
676 return insn
- insn_buf
;
679 /* It is called from the bpf_lru_list when the LRU needs to delete
680 * older elements from the htab.
682 static bool htab_lru_map_delete_node(void *arg
, struct bpf_lru_node
*node
)
684 struct bpf_htab
*htab
= (struct bpf_htab
*)arg
;
685 struct htab_elem
*l
= NULL
, *tgt_l
;
686 struct hlist_nulls_head
*head
;
687 struct hlist_nulls_node
*n
;
691 tgt_l
= container_of(node
, struct htab_elem
, lru_node
);
692 b
= __select_bucket(htab
, tgt_l
->hash
);
695 flags
= htab_lock_bucket(htab
, b
);
697 hlist_nulls_for_each_entry_rcu(l
, n
, head
, hash_node
)
699 hlist_nulls_del_rcu(&l
->hash_node
);
703 htab_unlock_bucket(htab
, b
, flags
);
708 /* Called from syscall */
709 static int htab_map_get_next_key(struct bpf_map
*map
, void *key
, void *next_key
)
711 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
712 struct hlist_nulls_head
*head
;
713 struct htab_elem
*l
, *next_l
;
717 WARN_ON_ONCE(!rcu_read_lock_held());
719 key_size
= map
->key_size
;
722 goto find_first_elem
;
724 hash
= htab_map_hash(key
, key_size
, htab
->hashrnd
);
726 head
= select_bucket(htab
, hash
);
729 l
= lookup_nulls_elem_raw(head
, hash
, key
, key_size
, htab
->n_buckets
);
732 goto find_first_elem
;
734 /* key was found, get next key in the same bucket */
735 next_l
= hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l
->hash_node
)),
736 struct htab_elem
, hash_node
);
739 /* if next elem in this hash list is non-zero, just return it */
740 memcpy(next_key
, next_l
->key
, key_size
);
744 /* no more elements in this hash list, go to the next bucket */
745 i
= hash
& (htab
->n_buckets
- 1);
749 /* iterate over buckets */
750 for (; i
< htab
->n_buckets
; i
++) {
751 head
= select_bucket(htab
, i
);
753 /* pick first element in the bucket */
754 next_l
= hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head
)),
755 struct htab_elem
, hash_node
);
757 /* if it's not empty, just return it */
758 memcpy(next_key
, next_l
->key
, key_size
);
763 /* iterated over all buckets and all elements */
767 static void htab_elem_free(struct bpf_htab
*htab
, struct htab_elem
*l
)
769 if (htab
->map
.map_type
== BPF_MAP_TYPE_PERCPU_HASH
)
770 free_percpu(htab_elem_get_ptr(l
, htab
->map
.key_size
));
774 static void htab_elem_free_rcu(struct rcu_head
*head
)
776 struct htab_elem
*l
= container_of(head
, struct htab_elem
, rcu
);
777 struct bpf_htab
*htab
= l
->htab
;
779 htab_elem_free(htab
, l
);
782 static void htab_put_fd_value(struct bpf_htab
*htab
, struct htab_elem
*l
)
784 struct bpf_map
*map
= &htab
->map
;
787 if (map
->ops
->map_fd_put_ptr
) {
788 ptr
= fd_htab_map_get_ptr(map
, l
);
789 map
->ops
->map_fd_put_ptr(ptr
);
793 static void free_htab_elem(struct bpf_htab
*htab
, struct htab_elem
*l
)
795 htab_put_fd_value(htab
, l
);
797 if (htab_is_prealloc(htab
)) {
798 __pcpu_freelist_push(&htab
->freelist
, &l
->fnode
);
800 atomic_dec(&htab
->count
);
802 call_rcu(&l
->rcu
, htab_elem_free_rcu
);
806 static void pcpu_copy_value(struct bpf_htab
*htab
, void __percpu
*pptr
,
807 void *value
, bool onallcpus
)
810 /* copy true value_size bytes */
811 memcpy(this_cpu_ptr(pptr
), value
, htab
->map
.value_size
);
813 u32 size
= round_up(htab
->map
.value_size
, 8);
816 for_each_possible_cpu(cpu
) {
817 bpf_long_memcpy(per_cpu_ptr(pptr
, cpu
),
824 static bool fd_htab_map_needs_adjust(const struct bpf_htab
*htab
)
826 return htab
->map
.map_type
== BPF_MAP_TYPE_HASH_OF_MAPS
&&
830 static struct htab_elem
*alloc_htab_elem(struct bpf_htab
*htab
, void *key
,
831 void *value
, u32 key_size
, u32 hash
,
832 bool percpu
, bool onallcpus
,
833 struct htab_elem
*old_elem
)
835 u32 size
= htab
->map
.value_size
;
836 bool prealloc
= htab_is_prealloc(htab
);
837 struct htab_elem
*l_new
, **pl_new
;
842 /* if we're updating the existing element,
843 * use per-cpu extra elems to avoid freelist_pop/push
845 pl_new
= this_cpu_ptr(htab
->extra_elems
);
847 htab_put_fd_value(htab
, old_elem
);
850 struct pcpu_freelist_node
*l
;
852 l
= __pcpu_freelist_pop(&htab
->freelist
);
854 return ERR_PTR(-E2BIG
);
855 l_new
= container_of(l
, struct htab_elem
, fnode
);
858 if (atomic_inc_return(&htab
->count
) > htab
->map
.max_entries
)
860 /* when map is full and update() is replacing
861 * old element, it's ok to allocate, since
862 * old element will be freed immediately.
863 * Otherwise return an error
865 l_new
= ERR_PTR(-E2BIG
);
868 l_new
= kmalloc_node(htab
->elem_size
, GFP_ATOMIC
| __GFP_NOWARN
,
869 htab
->map
.numa_node
);
871 l_new
= ERR_PTR(-ENOMEM
);
874 check_and_init_map_lock(&htab
->map
,
875 l_new
->key
+ round_up(key_size
, 8));
878 memcpy(l_new
->key
, key
, key_size
);
880 size
= round_up(size
, 8);
882 pptr
= htab_elem_get_ptr(l_new
, key_size
);
884 /* alloc_percpu zero-fills */
885 pptr
= __alloc_percpu_gfp(size
, 8,
886 GFP_ATOMIC
| __GFP_NOWARN
);
889 l_new
= ERR_PTR(-ENOMEM
);
894 pcpu_copy_value(htab
, pptr
, value
, onallcpus
);
897 htab_elem_set_ptr(l_new
, key_size
, pptr
);
898 } else if (fd_htab_map_needs_adjust(htab
)) {
899 size
= round_up(size
, 8);
900 memcpy(l_new
->key
+ round_up(key_size
, 8), value
, size
);
902 copy_map_value(&htab
->map
,
903 l_new
->key
+ round_up(key_size
, 8),
910 atomic_dec(&htab
->count
);
914 static int check_flags(struct bpf_htab
*htab
, struct htab_elem
*l_old
,
917 if (l_old
&& (map_flags
& ~BPF_F_LOCK
) == BPF_NOEXIST
)
918 /* elem already exists */
921 if (!l_old
&& (map_flags
& ~BPF_F_LOCK
) == BPF_EXIST
)
922 /* elem doesn't exist, cannot update it */
928 /* Called from syscall or from eBPF program */
929 static int htab_map_update_elem(struct bpf_map
*map
, void *key
, void *value
,
932 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
933 struct htab_elem
*l_new
= NULL
, *l_old
;
934 struct hlist_nulls_head
*head
;
940 if (unlikely((map_flags
& ~BPF_F_LOCK
) > BPF_EXIST
))
944 WARN_ON_ONCE(!rcu_read_lock_held());
946 key_size
= map
->key_size
;
948 hash
= htab_map_hash(key
, key_size
, htab
->hashrnd
);
950 b
= __select_bucket(htab
, hash
);
953 if (unlikely(map_flags
& BPF_F_LOCK
)) {
954 if (unlikely(!map_value_has_spin_lock(map
)))
956 /* find an element without taking the bucket lock */
957 l_old
= lookup_nulls_elem_raw(head
, hash
, key
, key_size
,
959 ret
= check_flags(htab
, l_old
, map_flags
);
963 /* grab the element lock and update value in place */
964 copy_map_value_locked(map
,
965 l_old
->key
+ round_up(key_size
, 8),
969 /* fall through, grab the bucket lock and lookup again.
970 * 99.9% chance that the element won't be found,
971 * but second lookup under lock has to be done.
975 flags
= htab_lock_bucket(htab
, b
);
977 l_old
= lookup_elem_raw(head
, hash
, key
, key_size
);
979 ret
= check_flags(htab
, l_old
, map_flags
);
983 if (unlikely(l_old
&& (map_flags
& BPF_F_LOCK
))) {
984 /* first lookup without the bucket lock didn't find the element,
985 * but second lookup with the bucket lock found it.
986 * This case is highly unlikely, but has to be dealt with:
987 * grab the element lock in addition to the bucket lock
988 * and update element in place
990 copy_map_value_locked(map
,
991 l_old
->key
+ round_up(key_size
, 8),
997 l_new
= alloc_htab_elem(htab
, key
, value
, key_size
, hash
, false, false,
1000 /* all pre-allocated elements are in use or memory exhausted */
1001 ret
= PTR_ERR(l_new
);
1005 /* add new element to the head of the list, so that
1006 * concurrent search will find it before old elem
1008 hlist_nulls_add_head_rcu(&l_new
->hash_node
, head
);
1010 hlist_nulls_del_rcu(&l_old
->hash_node
);
1011 if (!htab_is_prealloc(htab
))
1012 free_htab_elem(htab
, l_old
);
1016 htab_unlock_bucket(htab
, b
, flags
);
1020 static int htab_lru_map_update_elem(struct bpf_map
*map
, void *key
, void *value
,
1023 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
1024 struct htab_elem
*l_new
, *l_old
= NULL
;
1025 struct hlist_nulls_head
*head
;
1026 unsigned long flags
;
1031 if (unlikely(map_flags
> BPF_EXIST
))
1035 WARN_ON_ONCE(!rcu_read_lock_held());
1037 key_size
= map
->key_size
;
1039 hash
= htab_map_hash(key
, key_size
, htab
->hashrnd
);
1041 b
= __select_bucket(htab
, hash
);
1044 /* For LRU, we need to alloc before taking bucket's
1045 * spinlock because getting free nodes from LRU may need
1046 * to remove older elements from htab and this removal
1047 * operation will need a bucket lock.
1049 l_new
= prealloc_lru_pop(htab
, key
, hash
);
1052 memcpy(l_new
->key
+ round_up(map
->key_size
, 8), value
, map
->value_size
);
1054 flags
= htab_lock_bucket(htab
, b
);
1056 l_old
= lookup_elem_raw(head
, hash
, key
, key_size
);
1058 ret
= check_flags(htab
, l_old
, map_flags
);
1062 /* add new element to the head of the list, so that
1063 * concurrent search will find it before old elem
1065 hlist_nulls_add_head_rcu(&l_new
->hash_node
, head
);
1067 bpf_lru_node_set_ref(&l_new
->lru_node
);
1068 hlist_nulls_del_rcu(&l_old
->hash_node
);
1073 htab_unlock_bucket(htab
, b
, flags
);
1076 bpf_lru_push_free(&htab
->lru
, &l_new
->lru_node
);
1078 bpf_lru_push_free(&htab
->lru
, &l_old
->lru_node
);
1083 static int __htab_percpu_map_update_elem(struct bpf_map
*map
, void *key
,
1084 void *value
, u64 map_flags
,
1087 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
1088 struct htab_elem
*l_new
= NULL
, *l_old
;
1089 struct hlist_nulls_head
*head
;
1090 unsigned long flags
;
1095 if (unlikely(map_flags
> BPF_EXIST
))
1099 WARN_ON_ONCE(!rcu_read_lock_held());
1101 key_size
= map
->key_size
;
1103 hash
= htab_map_hash(key
, key_size
, htab
->hashrnd
);
1105 b
= __select_bucket(htab
, hash
);
1108 flags
= htab_lock_bucket(htab
, b
);
1110 l_old
= lookup_elem_raw(head
, hash
, key
, key_size
);
1112 ret
= check_flags(htab
, l_old
, map_flags
);
1117 /* per-cpu hash map can update value in-place */
1118 pcpu_copy_value(htab
, htab_elem_get_ptr(l_old
, key_size
),
1121 l_new
= alloc_htab_elem(htab
, key
, value
, key_size
,
1122 hash
, true, onallcpus
, NULL
);
1123 if (IS_ERR(l_new
)) {
1124 ret
= PTR_ERR(l_new
);
1127 hlist_nulls_add_head_rcu(&l_new
->hash_node
, head
);
1131 htab_unlock_bucket(htab
, b
, flags
);
1135 static int __htab_lru_percpu_map_update_elem(struct bpf_map
*map
, void *key
,
1136 void *value
, u64 map_flags
,
1139 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
1140 struct htab_elem
*l_new
= NULL
, *l_old
;
1141 struct hlist_nulls_head
*head
;
1142 unsigned long flags
;
1147 if (unlikely(map_flags
> BPF_EXIST
))
1151 WARN_ON_ONCE(!rcu_read_lock_held());
1153 key_size
= map
->key_size
;
1155 hash
= htab_map_hash(key
, key_size
, htab
->hashrnd
);
1157 b
= __select_bucket(htab
, hash
);
1160 /* For LRU, we need to alloc before taking bucket's
1161 * spinlock because LRU's elem alloc may need
1162 * to remove older elem from htab and this removal
1163 * operation will need a bucket lock.
1165 if (map_flags
!= BPF_EXIST
) {
1166 l_new
= prealloc_lru_pop(htab
, key
, hash
);
1171 flags
= htab_lock_bucket(htab
, b
);
1173 l_old
= lookup_elem_raw(head
, hash
, key
, key_size
);
1175 ret
= check_flags(htab
, l_old
, map_flags
);
1180 bpf_lru_node_set_ref(&l_old
->lru_node
);
1182 /* per-cpu hash map can update value in-place */
1183 pcpu_copy_value(htab
, htab_elem_get_ptr(l_old
, key_size
),
1186 pcpu_copy_value(htab
, htab_elem_get_ptr(l_new
, key_size
),
1188 hlist_nulls_add_head_rcu(&l_new
->hash_node
, head
);
1193 htab_unlock_bucket(htab
, b
, flags
);
1195 bpf_lru_push_free(&htab
->lru
, &l_new
->lru_node
);
1199 static int htab_percpu_map_update_elem(struct bpf_map
*map
, void *key
,
1200 void *value
, u64 map_flags
)
1202 return __htab_percpu_map_update_elem(map
, key
, value
, map_flags
, false);
1205 static int htab_lru_percpu_map_update_elem(struct bpf_map
*map
, void *key
,
1206 void *value
, u64 map_flags
)
1208 return __htab_lru_percpu_map_update_elem(map
, key
, value
, map_flags
,
1212 /* Called from syscall or from eBPF program */
1213 static int htab_map_delete_elem(struct bpf_map
*map
, void *key
)
1215 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
1216 struct hlist_nulls_head
*head
;
1218 struct htab_elem
*l
;
1219 unsigned long flags
;
1223 WARN_ON_ONCE(!rcu_read_lock_held());
1225 key_size
= map
->key_size
;
1227 hash
= htab_map_hash(key
, key_size
, htab
->hashrnd
);
1228 b
= __select_bucket(htab
, hash
);
1231 flags
= htab_lock_bucket(htab
, b
);
1233 l
= lookup_elem_raw(head
, hash
, key
, key_size
);
1236 hlist_nulls_del_rcu(&l
->hash_node
);
1237 free_htab_elem(htab
, l
);
1241 htab_unlock_bucket(htab
, b
, flags
);
1245 static int htab_lru_map_delete_elem(struct bpf_map
*map
, void *key
)
1247 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
1248 struct hlist_nulls_head
*head
;
1250 struct htab_elem
*l
;
1251 unsigned long flags
;
1255 WARN_ON_ONCE(!rcu_read_lock_held());
1257 key_size
= map
->key_size
;
1259 hash
= htab_map_hash(key
, key_size
, htab
->hashrnd
);
1260 b
= __select_bucket(htab
, hash
);
1263 flags
= htab_lock_bucket(htab
, b
);
1265 l
= lookup_elem_raw(head
, hash
, key
, key_size
);
1268 hlist_nulls_del_rcu(&l
->hash_node
);
1272 htab_unlock_bucket(htab
, b
, flags
);
1274 bpf_lru_push_free(&htab
->lru
, &l
->lru_node
);
1278 static void delete_all_elements(struct bpf_htab
*htab
)
1282 for (i
= 0; i
< htab
->n_buckets
; i
++) {
1283 struct hlist_nulls_head
*head
= select_bucket(htab
, i
);
1284 struct hlist_nulls_node
*n
;
1285 struct htab_elem
*l
;
1287 hlist_nulls_for_each_entry_safe(l
, n
, head
, hash_node
) {
1288 hlist_nulls_del_rcu(&l
->hash_node
);
1289 htab_elem_free(htab
, l
);
1294 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1295 static void htab_map_free(struct bpf_map
*map
)
1297 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
1299 /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
1300 * so the programs (can be more than one that used this map) were
1301 * disconnected from events. Wait for outstanding critical sections in
1302 * these programs to complete
1306 /* some of free_htab_elem() callbacks for elements of this map may
1307 * not have executed. Wait for them.
1310 if (!htab_is_prealloc(htab
))
1311 delete_all_elements(htab
);
1313 prealloc_destroy(htab
);
1315 free_percpu(htab
->extra_elems
);
1316 bpf_map_area_free(htab
->buckets
);
1320 static void htab_map_seq_show_elem(struct bpf_map
*map
, void *key
,
1327 value
= htab_map_lookup_elem(map
, key
);
1333 btf_type_seq_show(map
->btf
, map
->btf_key_type_id
, key
, m
);
1335 btf_type_seq_show(map
->btf
, map
->btf_value_type_id
, value
, m
);
1342 __htab_map_lookup_and_delete_batch(struct bpf_map
*map
,
1343 const union bpf_attr
*attr
,
1344 union bpf_attr __user
*uattr
,
1345 bool do_delete
, bool is_lru_map
,
1348 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
1349 u32 bucket_cnt
, total
, key_size
, value_size
, roundup_key_size
;
1350 void *keys
= NULL
, *values
= NULL
, *value
, *dst_key
, *dst_val
;
1351 void __user
*uvalues
= u64_to_user_ptr(attr
->batch
.values
);
1352 void __user
*ukeys
= u64_to_user_ptr(attr
->batch
.keys
);
1353 void *ubatch
= u64_to_user_ptr(attr
->batch
.in_batch
);
1354 u32 batch
, max_count
, size
, bucket_size
;
1355 struct htab_elem
*node_to_free
= NULL
;
1356 u64 elem_map_flags
, map_flags
;
1357 struct hlist_nulls_head
*head
;
1358 struct hlist_nulls_node
*n
;
1359 unsigned long flags
= 0;
1360 bool locked
= false;
1361 struct htab_elem
*l
;
1365 elem_map_flags
= attr
->batch
.elem_flags
;
1366 if ((elem_map_flags
& ~BPF_F_LOCK
) ||
1367 ((elem_map_flags
& BPF_F_LOCK
) && !map_value_has_spin_lock(map
)))
1370 map_flags
= attr
->batch
.flags
;
1374 max_count
= attr
->batch
.count
;
1378 if (put_user(0, &uattr
->batch
.count
))
1382 if (ubatch
&& copy_from_user(&batch
, ubatch
, sizeof(batch
)))
1385 if (batch
>= htab
->n_buckets
)
1388 key_size
= htab
->map
.key_size
;
1389 roundup_key_size
= round_up(htab
->map
.key_size
, 8);
1390 value_size
= htab
->map
.value_size
;
1391 size
= round_up(value_size
, 8);
1393 value_size
= size
* num_possible_cpus();
1395 /* while experimenting with hash tables with sizes ranging from 10 to
1396 * 1000, it was observed that a bucket can have upto 5 entries.
1401 /* We cannot do copy_from_user or copy_to_user inside
1402 * the rcu_read_lock. Allocate enough space here.
1404 keys
= kvmalloc(key_size
* bucket_size
, GFP_USER
| __GFP_NOWARN
);
1405 values
= kvmalloc(value_size
* bucket_size
, GFP_USER
| __GFP_NOWARN
);
1406 if (!keys
|| !values
) {
1412 bpf_disable_instrumentation();
1417 b
= &htab
->buckets
[batch
];
1419 /* do not grab the lock unless need it (bucket_cnt > 0). */
1421 flags
= htab_lock_bucket(htab
, b
);
1424 hlist_nulls_for_each_entry_rcu(l
, n
, head
, hash_node
)
1427 if (bucket_cnt
&& !locked
) {
1432 if (bucket_cnt
> (max_count
- total
)) {
1435 /* Note that since bucket_cnt > 0 here, it is implicit
1436 * that the locked was grabbed, so release it.
1438 htab_unlock_bucket(htab
, b
, flags
);
1440 bpf_enable_instrumentation();
1444 if (bucket_cnt
> bucket_size
) {
1445 bucket_size
= bucket_cnt
;
1446 /* Note that since bucket_cnt > 0 here, it is implicit
1447 * that the locked was grabbed, so release it.
1449 htab_unlock_bucket(htab
, b
, flags
);
1451 bpf_enable_instrumentation();
1457 /* Next block is only safe to run if you have grabbed the lock */
1461 hlist_nulls_for_each_entry_safe(l
, n
, head
, hash_node
) {
1462 memcpy(dst_key
, l
->key
, key_size
);
1466 void __percpu
*pptr
;
1468 pptr
= htab_elem_get_ptr(l
, map
->key_size
);
1469 for_each_possible_cpu(cpu
) {
1470 bpf_long_memcpy(dst_val
+ off
,
1471 per_cpu_ptr(pptr
, cpu
), size
);
1475 value
= l
->key
+ roundup_key_size
;
1476 if (elem_map_flags
& BPF_F_LOCK
)
1477 copy_map_value_locked(map
, dst_val
, value
,
1480 copy_map_value(map
, dst_val
, value
);
1481 check_and_init_map_lock(map
, dst_val
);
1484 hlist_nulls_del_rcu(&l
->hash_node
);
1486 /* bpf_lru_push_free() will acquire lru_lock, which
1487 * may cause deadlock. See comments in function
1488 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1489 * after releasing the bucket lock.
1492 l
->batch_flink
= node_to_free
;
1495 free_htab_elem(htab
, l
);
1498 dst_key
+= key_size
;
1499 dst_val
+= value_size
;
1502 htab_unlock_bucket(htab
, b
, flags
);
1505 while (node_to_free
) {
1507 node_to_free
= node_to_free
->batch_flink
;
1508 bpf_lru_push_free(&htab
->lru
, &l
->lru_node
);
1512 /* If we are not copying data, we can go to next bucket and avoid
1513 * unlocking the rcu.
1515 if (!bucket_cnt
&& (batch
+ 1 < htab
->n_buckets
)) {
1521 bpf_enable_instrumentation();
1522 if (bucket_cnt
&& (copy_to_user(ukeys
+ total
* key_size
, keys
,
1523 key_size
* bucket_cnt
) ||
1524 copy_to_user(uvalues
+ total
* value_size
, values
,
1525 value_size
* bucket_cnt
))) {
1530 total
+= bucket_cnt
;
1532 if (batch
>= htab
->n_buckets
) {
1542 /* copy # of entries and next batch */
1543 ubatch
= u64_to_user_ptr(attr
->batch
.out_batch
);
1544 if (copy_to_user(ubatch
, &batch
, sizeof(batch
)) ||
1545 put_user(total
, &uattr
->batch
.count
))
1555 htab_percpu_map_lookup_batch(struct bpf_map
*map
, const union bpf_attr
*attr
,
1556 union bpf_attr __user
*uattr
)
1558 return __htab_map_lookup_and_delete_batch(map
, attr
, uattr
, false,
1563 htab_percpu_map_lookup_and_delete_batch(struct bpf_map
*map
,
1564 const union bpf_attr
*attr
,
1565 union bpf_attr __user
*uattr
)
1567 return __htab_map_lookup_and_delete_batch(map
, attr
, uattr
, true,
1572 htab_map_lookup_batch(struct bpf_map
*map
, const union bpf_attr
*attr
,
1573 union bpf_attr __user
*uattr
)
1575 return __htab_map_lookup_and_delete_batch(map
, attr
, uattr
, false,
1580 htab_map_lookup_and_delete_batch(struct bpf_map
*map
,
1581 const union bpf_attr
*attr
,
1582 union bpf_attr __user
*uattr
)
1584 return __htab_map_lookup_and_delete_batch(map
, attr
, uattr
, true,
1589 htab_lru_percpu_map_lookup_batch(struct bpf_map
*map
,
1590 const union bpf_attr
*attr
,
1591 union bpf_attr __user
*uattr
)
1593 return __htab_map_lookup_and_delete_batch(map
, attr
, uattr
, false,
1598 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map
*map
,
1599 const union bpf_attr
*attr
,
1600 union bpf_attr __user
*uattr
)
1602 return __htab_map_lookup_and_delete_batch(map
, attr
, uattr
, true,
1607 htab_lru_map_lookup_batch(struct bpf_map
*map
, const union bpf_attr
*attr
,
1608 union bpf_attr __user
*uattr
)
1610 return __htab_map_lookup_and_delete_batch(map
, attr
, uattr
, false,
1615 htab_lru_map_lookup_and_delete_batch(struct bpf_map
*map
,
1616 const union bpf_attr
*attr
,
1617 union bpf_attr __user
*uattr
)
1619 return __htab_map_lookup_and_delete_batch(map
, attr
, uattr
, true,
1623 const struct bpf_map_ops htab_map_ops
= {
1624 .map_alloc_check
= htab_map_alloc_check
,
1625 .map_alloc
= htab_map_alloc
,
1626 .map_free
= htab_map_free
,
1627 .map_get_next_key
= htab_map_get_next_key
,
1628 .map_lookup_elem
= htab_map_lookup_elem
,
1629 .map_update_elem
= htab_map_update_elem
,
1630 .map_delete_elem
= htab_map_delete_elem
,
1631 .map_gen_lookup
= htab_map_gen_lookup
,
1632 .map_seq_show_elem
= htab_map_seq_show_elem
,
1636 const struct bpf_map_ops htab_lru_map_ops
= {
1637 .map_alloc_check
= htab_map_alloc_check
,
1638 .map_alloc
= htab_map_alloc
,
1639 .map_free
= htab_map_free
,
1640 .map_get_next_key
= htab_map_get_next_key
,
1641 .map_lookup_elem
= htab_lru_map_lookup_elem
,
1642 .map_lookup_elem_sys_only
= htab_lru_map_lookup_elem_sys
,
1643 .map_update_elem
= htab_lru_map_update_elem
,
1644 .map_delete_elem
= htab_lru_map_delete_elem
,
1645 .map_gen_lookup
= htab_lru_map_gen_lookup
,
1646 .map_seq_show_elem
= htab_map_seq_show_elem
,
1647 BATCH_OPS(htab_lru
),
1650 /* Called from eBPF program */
1651 static void *htab_percpu_map_lookup_elem(struct bpf_map
*map
, void *key
)
1653 struct htab_elem
*l
= __htab_map_lookup_elem(map
, key
);
1656 return this_cpu_ptr(htab_elem_get_ptr(l
, map
->key_size
));
1661 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map
*map
, void *key
)
1663 struct htab_elem
*l
= __htab_map_lookup_elem(map
, key
);
1666 bpf_lru_node_set_ref(&l
->lru_node
);
1667 return this_cpu_ptr(htab_elem_get_ptr(l
, map
->key_size
));
1673 int bpf_percpu_hash_copy(struct bpf_map
*map
, void *key
, void *value
)
1675 struct htab_elem
*l
;
1676 void __percpu
*pptr
;
1681 /* per_cpu areas are zero-filled and bpf programs can only
1682 * access 'value_size' of them, so copying rounded areas
1683 * will not leak any kernel data
1685 size
= round_up(map
->value_size
, 8);
1687 l
= __htab_map_lookup_elem(map
, key
);
1690 /* We do not mark LRU map element here in order to not mess up
1691 * eviction heuristics when user space does a map walk.
1693 pptr
= htab_elem_get_ptr(l
, map
->key_size
);
1694 for_each_possible_cpu(cpu
) {
1695 bpf_long_memcpy(value
+ off
,
1696 per_cpu_ptr(pptr
, cpu
), size
);
1705 int bpf_percpu_hash_update(struct bpf_map
*map
, void *key
, void *value
,
1708 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
1712 if (htab_is_lru(htab
))
1713 ret
= __htab_lru_percpu_map_update_elem(map
, key
, value
,
1716 ret
= __htab_percpu_map_update_elem(map
, key
, value
, map_flags
,
1723 static void htab_percpu_map_seq_show_elem(struct bpf_map
*map
, void *key
,
1726 struct htab_elem
*l
;
1727 void __percpu
*pptr
;
1732 l
= __htab_map_lookup_elem(map
, key
);
1738 btf_type_seq_show(map
->btf
, map
->btf_key_type_id
, key
, m
);
1739 seq_puts(m
, ": {\n");
1740 pptr
= htab_elem_get_ptr(l
, map
->key_size
);
1741 for_each_possible_cpu(cpu
) {
1742 seq_printf(m
, "\tcpu%d: ", cpu
);
1743 btf_type_seq_show(map
->btf
, map
->btf_value_type_id
,
1744 per_cpu_ptr(pptr
, cpu
), m
);
1752 const struct bpf_map_ops htab_percpu_map_ops
= {
1753 .map_alloc_check
= htab_map_alloc_check
,
1754 .map_alloc
= htab_map_alloc
,
1755 .map_free
= htab_map_free
,
1756 .map_get_next_key
= htab_map_get_next_key
,
1757 .map_lookup_elem
= htab_percpu_map_lookup_elem
,
1758 .map_update_elem
= htab_percpu_map_update_elem
,
1759 .map_delete_elem
= htab_map_delete_elem
,
1760 .map_seq_show_elem
= htab_percpu_map_seq_show_elem
,
1761 BATCH_OPS(htab_percpu
),
1764 const struct bpf_map_ops htab_lru_percpu_map_ops
= {
1765 .map_alloc_check
= htab_map_alloc_check
,
1766 .map_alloc
= htab_map_alloc
,
1767 .map_free
= htab_map_free
,
1768 .map_get_next_key
= htab_map_get_next_key
,
1769 .map_lookup_elem
= htab_lru_percpu_map_lookup_elem
,
1770 .map_update_elem
= htab_lru_percpu_map_update_elem
,
1771 .map_delete_elem
= htab_lru_map_delete_elem
,
1772 .map_seq_show_elem
= htab_percpu_map_seq_show_elem
,
1773 BATCH_OPS(htab_lru_percpu
),
1776 static int fd_htab_map_alloc_check(union bpf_attr
*attr
)
1778 if (attr
->value_size
!= sizeof(u32
))
1780 return htab_map_alloc_check(attr
);
1783 static void fd_htab_map_free(struct bpf_map
*map
)
1785 struct bpf_htab
*htab
= container_of(map
, struct bpf_htab
, map
);
1786 struct hlist_nulls_node
*n
;
1787 struct hlist_nulls_head
*head
;
1788 struct htab_elem
*l
;
1791 for (i
= 0; i
< htab
->n_buckets
; i
++) {
1792 head
= select_bucket(htab
, i
);
1794 hlist_nulls_for_each_entry_safe(l
, n
, head
, hash_node
) {
1795 void *ptr
= fd_htab_map_get_ptr(map
, l
);
1797 map
->ops
->map_fd_put_ptr(ptr
);
1804 /* only called from syscall */
1805 int bpf_fd_htab_map_lookup_elem(struct bpf_map
*map
, void *key
, u32
*value
)
1810 if (!map
->ops
->map_fd_sys_lookup_elem
)
1814 ptr
= htab_map_lookup_elem(map
, key
);
1816 *value
= map
->ops
->map_fd_sys_lookup_elem(READ_ONCE(*ptr
));
1824 /* only called from syscall */
1825 int bpf_fd_htab_map_update_elem(struct bpf_map
*map
, struct file
*map_file
,
1826 void *key
, void *value
, u64 map_flags
)
1830 u32 ufd
= *(u32
*)value
;
1832 ptr
= map
->ops
->map_fd_get_ptr(map
, map_file
, ufd
);
1834 return PTR_ERR(ptr
);
1836 ret
= htab_map_update_elem(map
, key
, &ptr
, map_flags
);
1838 map
->ops
->map_fd_put_ptr(ptr
);
1843 static struct bpf_map
*htab_of_map_alloc(union bpf_attr
*attr
)
1845 struct bpf_map
*map
, *inner_map_meta
;
1847 inner_map_meta
= bpf_map_meta_alloc(attr
->inner_map_fd
);
1848 if (IS_ERR(inner_map_meta
))
1849 return inner_map_meta
;
1851 map
= htab_map_alloc(attr
);
1853 bpf_map_meta_free(inner_map_meta
);
1857 map
->inner_map_meta
= inner_map_meta
;
1862 static void *htab_of_map_lookup_elem(struct bpf_map
*map
, void *key
)
1864 struct bpf_map
**inner_map
= htab_map_lookup_elem(map
, key
);
1869 return READ_ONCE(*inner_map
);
1872 static u32
htab_of_map_gen_lookup(struct bpf_map
*map
,
1873 struct bpf_insn
*insn_buf
)
1875 struct bpf_insn
*insn
= insn_buf
;
1876 const int ret
= BPF_REG_0
;
1878 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem
,
1879 (void *(*)(struct bpf_map
*map
, void *key
))NULL
));
1880 *insn
++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem
));
1881 *insn
++ = BPF_JMP_IMM(BPF_JEQ
, ret
, 0, 2);
1882 *insn
++ = BPF_ALU64_IMM(BPF_ADD
, ret
,
1883 offsetof(struct htab_elem
, key
) +
1884 round_up(map
->key_size
, 8));
1885 *insn
++ = BPF_LDX_MEM(BPF_DW
, ret
, ret
, 0);
1887 return insn
- insn_buf
;
1890 static void htab_of_map_free(struct bpf_map
*map
)
1892 bpf_map_meta_free(map
->inner_map_meta
);
1893 fd_htab_map_free(map
);
1896 const struct bpf_map_ops htab_of_maps_map_ops
= {
1897 .map_alloc_check
= fd_htab_map_alloc_check
,
1898 .map_alloc
= htab_of_map_alloc
,
1899 .map_free
= htab_of_map_free
,
1900 .map_get_next_key
= htab_map_get_next_key
,
1901 .map_lookup_elem
= htab_of_map_lookup_elem
,
1902 .map_delete_elem
= htab_map_delete_elem
,
1903 .map_fd_get_ptr
= bpf_map_fd_get_ptr
,
1904 .map_fd_put_ptr
= bpf_map_fd_put_ptr
,
1905 .map_fd_sys_lookup_elem
= bpf_map_fd_sys_lookup_elem
,
1906 .map_gen_lookup
= htab_of_map_gen_lookup
,
1907 .map_check_btf
= map_check_no_btf
,