2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
33 #include <linux/swap.h>
38 * Execute a iomap write on a segment of the mapping that spans a
39 * contiguous range of pages that have identical block mapping state.
41 * This avoids the need to map pages individually, do individual allocations
42 * for each page and most importantly avoid the need for filesystem specific
43 * locking per page. Instead, all the operations are amortised over the entire
44 * range of pages. It is assumed that the filesystems will lock whatever
45 * resources they require in the iomap_begin call, and release them in the
49 iomap_apply(struct inode
*inode
, loff_t pos
, loff_t length
, unsigned flags
,
50 const struct iomap_ops
*ops
, void *data
, iomap_actor_t actor
)
52 struct iomap iomap
= { 0 };
53 loff_t written
= 0, ret
;
56 * Need to map a range from start position for length bytes. This can
57 * span multiple pages - it is only guaranteed to return a range of a
58 * single type of pages (e.g. all into a hole, all mapped or all
59 * unwritten). Failure at this point has nothing to undo.
61 * If allocation is required for this range, reserve the space now so
62 * that the allocation is guaranteed to succeed later on. Once we copy
63 * the data into the page cache pages, then we cannot fail otherwise we
64 * expose transient stale data. If the reserve fails, we can safely
65 * back out at this point as there is nothing to undo.
67 ret
= ops
->iomap_begin(inode
, pos
, length
, flags
, &iomap
);
70 if (WARN_ON(iomap
.offset
> pos
))
72 if (WARN_ON(iomap
.length
== 0))
76 * Cut down the length to the one actually provided by the filesystem,
77 * as it might not be able to give us the whole size that we requested.
79 if (iomap
.offset
+ iomap
.length
< pos
+ length
)
80 length
= iomap
.offset
+ iomap
.length
- pos
;
83 * Now that we have guaranteed that the space allocation will succeed.
84 * we can do the copy-in page by page without having to worry about
85 * failures exposing transient data.
87 written
= actor(inode
, pos
, length
, data
, &iomap
);
90 * Now the data has been copied, commit the range we've copied. This
91 * should not fail unless the filesystem has had a fatal error.
94 ret
= ops
->iomap_end(inode
, pos
, length
,
95 written
> 0 ? written
: 0,
99 return written
? written
: ret
;
103 iomap_sector(struct iomap
*iomap
, loff_t pos
)
105 return (iomap
->addr
+ pos
- iomap
->offset
) >> SECTOR_SHIFT
;
108 static struct iomap_page
*
109 iomap_page_create(struct inode
*inode
, struct page
*page
)
111 struct iomap_page
*iop
= to_iomap_page(page
);
113 if (iop
|| i_blocksize(inode
) == PAGE_SIZE
)
116 iop
= kmalloc(sizeof(*iop
), GFP_NOFS
| __GFP_NOFAIL
);
117 atomic_set(&iop
->read_count
, 0);
118 atomic_set(&iop
->write_count
, 0);
119 bitmap_zero(iop
->uptodate
, PAGE_SIZE
/ SECTOR_SIZE
);
122 * migrate_page_move_mapping() assumes that pages with private data have
123 * their count elevated by 1.
126 set_page_private(page
, (unsigned long)iop
);
127 SetPagePrivate(page
);
132 iomap_page_release(struct page
*page
)
134 struct iomap_page
*iop
= to_iomap_page(page
);
138 WARN_ON_ONCE(atomic_read(&iop
->read_count
));
139 WARN_ON_ONCE(atomic_read(&iop
->write_count
));
140 ClearPagePrivate(page
);
141 set_page_private(page
, 0);
147 * Calculate the range inside the page that we actually need to read.
150 iomap_adjust_read_range(struct inode
*inode
, struct iomap_page
*iop
,
151 loff_t
*pos
, loff_t length
, unsigned *offp
, unsigned *lenp
)
153 loff_t orig_pos
= *pos
;
154 loff_t isize
= i_size_read(inode
);
155 unsigned block_bits
= inode
->i_blkbits
;
156 unsigned block_size
= (1 << block_bits
);
157 unsigned poff
= offset_in_page(*pos
);
158 unsigned plen
= min_t(loff_t
, PAGE_SIZE
- poff
, length
);
159 unsigned first
= poff
>> block_bits
;
160 unsigned last
= (poff
+ plen
- 1) >> block_bits
;
163 * If the block size is smaller than the page size we need to check the
164 * per-block uptodate status and adjust the offset and length if needed
165 * to avoid reading in already uptodate ranges.
170 /* move forward for each leading block marked uptodate */
171 for (i
= first
; i
<= last
; i
++) {
172 if (!test_bit(i
, iop
->uptodate
))
180 /* truncate len if we find any trailing uptodate block(s) */
181 for ( ; i
<= last
; i
++) {
182 if (test_bit(i
, iop
->uptodate
)) {
183 plen
-= (last
- i
+ 1) * block_size
;
191 * If the extent spans the block that contains the i_size we need to
192 * handle both halves separately so that we properly zero data in the
193 * page cache for blocks that are entirely outside of i_size.
195 if (orig_pos
<= isize
&& orig_pos
+ length
> isize
) {
196 unsigned end
= offset_in_page(isize
- 1) >> block_bits
;
198 if (first
<= end
&& last
> end
)
199 plen
-= (last
- end
) * block_size
;
207 iomap_set_range_uptodate(struct page
*page
, unsigned off
, unsigned len
)
209 struct iomap_page
*iop
= to_iomap_page(page
);
210 struct inode
*inode
= page
->mapping
->host
;
211 unsigned first
= off
>> inode
->i_blkbits
;
212 unsigned last
= (off
+ len
- 1) >> inode
->i_blkbits
;
214 bool uptodate
= true;
217 for (i
= 0; i
< PAGE_SIZE
/ i_blocksize(inode
); i
++) {
218 if (i
>= first
&& i
<= last
)
219 set_bit(i
, iop
->uptodate
);
220 else if (!test_bit(i
, iop
->uptodate
))
225 if (uptodate
&& !PageError(page
))
226 SetPageUptodate(page
);
230 iomap_read_finish(struct iomap_page
*iop
, struct page
*page
)
232 if (!iop
|| atomic_dec_and_test(&iop
->read_count
))
237 iomap_read_page_end_io(struct bio_vec
*bvec
, int error
)
239 struct page
*page
= bvec
->bv_page
;
240 struct iomap_page
*iop
= to_iomap_page(page
);
242 if (unlikely(error
)) {
243 ClearPageUptodate(page
);
246 iomap_set_range_uptodate(page
, bvec
->bv_offset
, bvec
->bv_len
);
249 iomap_read_finish(iop
, page
);
253 iomap_read_inline_data(struct inode
*inode
, struct page
*page
,
256 size_t size
= i_size_read(inode
);
259 if (PageUptodate(page
))
263 BUG_ON(size
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
265 addr
= kmap_atomic(page
);
266 memcpy(addr
, iomap
->inline_data
, size
);
267 memset(addr
+ size
, 0, PAGE_SIZE
- size
);
269 SetPageUptodate(page
);
273 iomap_read_end_io(struct bio
*bio
)
275 int error
= blk_status_to_errno(bio
->bi_status
);
276 struct bio_vec
*bvec
;
279 bio_for_each_segment_all(bvec
, bio
, i
)
280 iomap_read_page_end_io(bvec
, error
);
284 struct iomap_readpage_ctx
{
285 struct page
*cur_page
;
286 bool cur_page_in_bio
;
289 struct list_head
*pages
;
293 iomap_readpage_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
296 struct iomap_readpage_ctx
*ctx
= data
;
297 struct page
*page
= ctx
->cur_page
;
298 struct iomap_page
*iop
= iomap_page_create(inode
, page
);
299 bool is_contig
= false;
300 loff_t orig_pos
= pos
;
304 if (iomap
->type
== IOMAP_INLINE
) {
306 iomap_read_inline_data(inode
, page
, iomap
);
310 /* zero post-eof blocks as the page may be mapped */
311 iomap_adjust_read_range(inode
, iop
, &pos
, length
, &poff
, &plen
);
315 if (iomap
->type
!= IOMAP_MAPPED
|| pos
>= i_size_read(inode
)) {
316 zero_user(page
, poff
, plen
);
317 iomap_set_range_uptodate(page
, poff
, plen
);
321 ctx
->cur_page_in_bio
= true;
324 * Try to merge into a previous segment if we can.
326 sector
= iomap_sector(iomap
, pos
);
327 if (ctx
->bio
&& bio_end_sector(ctx
->bio
) == sector
) {
328 if (__bio_try_merge_page(ctx
->bio
, page
, plen
, poff
))
334 * If we start a new segment we need to increase the read count, and we
335 * need to do so before submitting any previous full bio to make sure
336 * that we don't prematurely unlock the page.
339 atomic_inc(&iop
->read_count
);
341 if (!ctx
->bio
|| !is_contig
|| bio_full(ctx
->bio
)) {
342 gfp_t gfp
= mapping_gfp_constraint(page
->mapping
, GFP_KERNEL
);
343 int nr_vecs
= (length
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
346 submit_bio(ctx
->bio
);
348 if (ctx
->is_readahead
) /* same as readahead_gfp_mask */
349 gfp
|= __GFP_NORETRY
| __GFP_NOWARN
;
350 ctx
->bio
= bio_alloc(gfp
, min(BIO_MAX_PAGES
, nr_vecs
));
351 ctx
->bio
->bi_opf
= REQ_OP_READ
;
352 if (ctx
->is_readahead
)
353 ctx
->bio
->bi_opf
|= REQ_RAHEAD
;
354 ctx
->bio
->bi_iter
.bi_sector
= sector
;
355 bio_set_dev(ctx
->bio
, iomap
->bdev
);
356 ctx
->bio
->bi_end_io
= iomap_read_end_io
;
359 __bio_add_page(ctx
->bio
, page
, plen
, poff
);
362 * Move the caller beyond our range so that it keeps making progress.
363 * For that we have to include any leading non-uptodate ranges, but
364 * we can skip trailing ones as they will be handled in the next
367 return pos
- orig_pos
+ plen
;
371 iomap_readpage(struct page
*page
, const struct iomap_ops
*ops
)
373 struct iomap_readpage_ctx ctx
= { .cur_page
= page
};
374 struct inode
*inode
= page
->mapping
->host
;
378 for (poff
= 0; poff
< PAGE_SIZE
; poff
+= ret
) {
379 ret
= iomap_apply(inode
, page_offset(page
) + poff
,
380 PAGE_SIZE
- poff
, 0, ops
, &ctx
,
381 iomap_readpage_actor
);
383 WARN_ON_ONCE(ret
== 0);
391 WARN_ON_ONCE(!ctx
.cur_page_in_bio
);
393 WARN_ON_ONCE(ctx
.cur_page_in_bio
);
398 * Just like mpage_readpages and block_read_full_page we always
399 * return 0 and just mark the page as PageError on errors. This
400 * should be cleaned up all through the stack eventually.
404 EXPORT_SYMBOL_GPL(iomap_readpage
);
407 iomap_next_page(struct inode
*inode
, struct list_head
*pages
, loff_t pos
,
408 loff_t length
, loff_t
*done
)
410 while (!list_empty(pages
)) {
411 struct page
*page
= lru_to_page(pages
);
413 if (page_offset(page
) >= (u64
)pos
+ length
)
416 list_del(&page
->lru
);
417 if (!add_to_page_cache_lru(page
, inode
->i_mapping
, page
->index
,
422 * If we already have a page in the page cache at index we are
423 * done. Upper layers don't care if it is uptodate after the
424 * readpages call itself as every page gets checked again once
435 iomap_readpages_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
436 void *data
, struct iomap
*iomap
)
438 struct iomap_readpage_ctx
*ctx
= data
;
441 for (done
= 0; done
< length
; done
+= ret
) {
442 if (ctx
->cur_page
&& offset_in_page(pos
+ done
) == 0) {
443 if (!ctx
->cur_page_in_bio
)
444 unlock_page(ctx
->cur_page
);
445 put_page(ctx
->cur_page
);
446 ctx
->cur_page
= NULL
;
448 if (!ctx
->cur_page
) {
449 ctx
->cur_page
= iomap_next_page(inode
, ctx
->pages
,
453 ctx
->cur_page_in_bio
= false;
455 ret
= iomap_readpage_actor(inode
, pos
+ done
, length
- done
,
463 iomap_readpages(struct address_space
*mapping
, struct list_head
*pages
,
464 unsigned nr_pages
, const struct iomap_ops
*ops
)
466 struct iomap_readpage_ctx ctx
= {
468 .is_readahead
= true,
470 loff_t pos
= page_offset(list_entry(pages
->prev
, struct page
, lru
));
471 loff_t last
= page_offset(list_entry(pages
->next
, struct page
, lru
));
472 loff_t length
= last
- pos
+ PAGE_SIZE
, ret
= 0;
475 ret
= iomap_apply(mapping
->host
, pos
, length
, 0, ops
,
476 &ctx
, iomap_readpages_actor
);
478 WARN_ON_ONCE(ret
== 0);
489 if (!ctx
.cur_page_in_bio
)
490 unlock_page(ctx
.cur_page
);
491 put_page(ctx
.cur_page
);
495 * Check that we didn't lose a page due to the arcance calling
498 WARN_ON_ONCE(!ret
&& !list_empty(ctx
.pages
));
501 EXPORT_SYMBOL_GPL(iomap_readpages
);
504 * iomap_is_partially_uptodate checks whether blocks within a page are
507 * Returns true if all blocks which correspond to a file portion
508 * we want to read within the page are uptodate.
511 iomap_is_partially_uptodate(struct page
*page
, unsigned long from
,
514 struct iomap_page
*iop
= to_iomap_page(page
);
515 struct inode
*inode
= page
->mapping
->host
;
516 unsigned len
, first
, last
;
519 /* Limit range to one page */
520 len
= min_t(unsigned, PAGE_SIZE
- from
, count
);
522 /* First and last blocks in range within page */
523 first
= from
>> inode
->i_blkbits
;
524 last
= (from
+ len
- 1) >> inode
->i_blkbits
;
527 for (i
= first
; i
<= last
; i
++)
528 if (!test_bit(i
, iop
->uptodate
))
535 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate
);
538 iomap_releasepage(struct page
*page
, gfp_t gfp_mask
)
541 * mm accommodates an old ext3 case where clean pages might not have had
542 * the dirty bit cleared. Thus, it can send actual dirty pages to
543 * ->releasepage() via shrink_active_list(), skip those here.
545 if (PageDirty(page
) || PageWriteback(page
))
547 iomap_page_release(page
);
550 EXPORT_SYMBOL_GPL(iomap_releasepage
);
553 iomap_invalidatepage(struct page
*page
, unsigned int offset
, unsigned int len
)
556 * If we are invalidating the entire page, clear the dirty state from it
557 * and release it to avoid unnecessary buildup of the LRU.
559 if (offset
== 0 && len
== PAGE_SIZE
) {
560 WARN_ON_ONCE(PageWriteback(page
));
561 cancel_dirty_page(page
);
562 iomap_page_release(page
);
565 EXPORT_SYMBOL_GPL(iomap_invalidatepage
);
567 #ifdef CONFIG_MIGRATION
569 iomap_migrate_page(struct address_space
*mapping
, struct page
*newpage
,
570 struct page
*page
, enum migrate_mode mode
)
574 ret
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
575 if (ret
!= MIGRATEPAGE_SUCCESS
)
578 if (page_has_private(page
)) {
579 ClearPagePrivate(page
);
581 set_page_private(newpage
, page_private(page
));
582 set_page_private(page
, 0);
584 SetPagePrivate(newpage
);
587 if (mode
!= MIGRATE_SYNC_NO_COPY
)
588 migrate_page_copy(newpage
, page
);
590 migrate_page_states(newpage
, page
);
591 return MIGRATEPAGE_SUCCESS
;
593 EXPORT_SYMBOL_GPL(iomap_migrate_page
);
594 #endif /* CONFIG_MIGRATION */
597 iomap_write_failed(struct inode
*inode
, loff_t pos
, unsigned len
)
599 loff_t i_size
= i_size_read(inode
);
602 * Only truncate newly allocated pages beyoned EOF, even if the
603 * write started inside the existing inode size.
605 if (pos
+ len
> i_size
)
606 truncate_pagecache_range(inode
, max(pos
, i_size
), pos
+ len
);
610 iomap_read_page_sync(struct inode
*inode
, loff_t block_start
, struct page
*page
,
611 unsigned poff
, unsigned plen
, unsigned from
, unsigned to
,
617 if (iomap
->type
!= IOMAP_MAPPED
|| block_start
>= i_size_read(inode
)) {
618 zero_user_segments(page
, poff
, from
, to
, poff
+ plen
);
619 iomap_set_range_uptodate(page
, poff
, plen
);
623 bio_init(&bio
, &bvec
, 1);
624 bio
.bi_opf
= REQ_OP_READ
;
625 bio
.bi_iter
.bi_sector
= iomap_sector(iomap
, block_start
);
626 bio_set_dev(&bio
, iomap
->bdev
);
627 __bio_add_page(&bio
, page
, plen
, poff
);
628 return submit_bio_wait(&bio
);
632 __iomap_write_begin(struct inode
*inode
, loff_t pos
, unsigned len
,
633 struct page
*page
, struct iomap
*iomap
)
635 struct iomap_page
*iop
= iomap_page_create(inode
, page
);
636 loff_t block_size
= i_blocksize(inode
);
637 loff_t block_start
= pos
& ~(block_size
- 1);
638 loff_t block_end
= (pos
+ len
+ block_size
- 1) & ~(block_size
- 1);
639 unsigned from
= offset_in_page(pos
), to
= from
+ len
, poff
, plen
;
642 if (PageUptodate(page
))
646 iomap_adjust_read_range(inode
, iop
, &block_start
,
647 block_end
- block_start
, &poff
, &plen
);
651 if ((from
> poff
&& from
< poff
+ plen
) ||
652 (to
> poff
&& to
< poff
+ plen
)) {
653 status
= iomap_read_page_sync(inode
, block_start
, page
,
654 poff
, plen
, from
, to
, iomap
);
659 } while ((block_start
+= plen
) < block_end
);
665 iomap_write_begin(struct inode
*inode
, loff_t pos
, unsigned len
, unsigned flags
,
666 struct page
**pagep
, struct iomap
*iomap
)
668 pgoff_t index
= pos
>> PAGE_SHIFT
;
672 BUG_ON(pos
+ len
> iomap
->offset
+ iomap
->length
);
674 if (fatal_signal_pending(current
))
677 page
= grab_cache_page_write_begin(inode
->i_mapping
, index
, flags
);
681 if (iomap
->type
== IOMAP_INLINE
)
682 iomap_read_inline_data(inode
, page
, iomap
);
683 else if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
)
684 status
= __block_write_begin_int(page
, pos
, len
, NULL
, iomap
);
686 status
= __iomap_write_begin(inode
, pos
, len
, page
, iomap
);
687 if (unlikely(status
)) {
692 iomap_write_failed(inode
, pos
, len
);
700 iomap_set_page_dirty(struct page
*page
)
702 struct address_space
*mapping
= page_mapping(page
);
705 if (unlikely(!mapping
))
706 return !TestSetPageDirty(page
);
709 * Lock out page->mem_cgroup migration to keep PageDirty
710 * synchronized with per-memcg dirty page counters.
712 lock_page_memcg(page
);
713 newly_dirty
= !TestSetPageDirty(page
);
715 __set_page_dirty(page
, mapping
, 0);
716 unlock_page_memcg(page
);
719 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
722 EXPORT_SYMBOL_GPL(iomap_set_page_dirty
);
725 __iomap_write_end(struct inode
*inode
, loff_t pos
, unsigned len
,
726 unsigned copied
, struct page
*page
, struct iomap
*iomap
)
728 flush_dcache_page(page
);
731 * The blocks that were entirely written will now be uptodate, so we
732 * don't have to worry about a readpage reading them and overwriting a
733 * partial write. However if we have encountered a short write and only
734 * partially written into a block, it will not be marked uptodate, so a
735 * readpage might come in and destroy our partial write.
737 * Do the simplest thing, and just treat any short write to a non
738 * uptodate page as a zero-length write, and force the caller to redo
741 if (unlikely(copied
< len
&& !PageUptodate(page
))) {
744 iomap_set_range_uptodate(page
, offset_in_page(pos
), len
);
745 iomap_set_page_dirty(page
);
747 return __generic_write_end(inode
, pos
, copied
, page
);
751 iomap_write_end_inline(struct inode
*inode
, struct page
*page
,
752 struct iomap
*iomap
, loff_t pos
, unsigned copied
)
756 WARN_ON_ONCE(!PageUptodate(page
));
757 BUG_ON(pos
+ copied
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
759 addr
= kmap_atomic(page
);
760 memcpy(iomap
->inline_data
+ pos
, addr
+ pos
, copied
);
763 mark_inode_dirty(inode
);
764 __generic_write_end(inode
, pos
, copied
, page
);
769 iomap_write_end(struct inode
*inode
, loff_t pos
, unsigned len
,
770 unsigned copied
, struct page
*page
, struct iomap
*iomap
)
774 if (iomap
->type
== IOMAP_INLINE
) {
775 ret
= iomap_write_end_inline(inode
, page
, iomap
, pos
, copied
);
776 } else if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
) {
777 ret
= generic_write_end(NULL
, inode
->i_mapping
, pos
, len
,
780 ret
= __iomap_write_end(inode
, pos
, len
, copied
, page
, iomap
);
783 if (iomap
->page_done
)
784 iomap
->page_done(inode
, pos
, copied
, page
, iomap
);
787 iomap_write_failed(inode
, pos
, len
);
792 iomap_write_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
795 struct iov_iter
*i
= data
;
798 unsigned int flags
= AOP_FLAG_NOFS
;
802 unsigned long offset
; /* Offset into pagecache page */
803 unsigned long bytes
; /* Bytes to write to page */
804 size_t copied
; /* Bytes copied from user */
806 offset
= offset_in_page(pos
);
807 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
814 * Bring in the user page that we will copy from _first_.
815 * Otherwise there's a nasty deadlock on copying from the
816 * same page as we're writing to, without it being marked
819 * Not only is this an optimisation, but it is also required
820 * to check that the address is actually valid, when atomic
821 * usercopies are used, below.
823 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
828 status
= iomap_write_begin(inode
, pos
, bytes
, flags
, &page
,
830 if (unlikely(status
))
833 if (mapping_writably_mapped(inode
->i_mapping
))
834 flush_dcache_page(page
);
836 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
838 flush_dcache_page(page
);
840 status
= iomap_write_end(inode
, pos
, bytes
, copied
, page
,
842 if (unlikely(status
< 0))
848 iov_iter_advance(i
, copied
);
849 if (unlikely(copied
== 0)) {
851 * If we were unable to copy any data at all, we must
852 * fall back to a single segment length write.
854 * If we didn't fallback here, we could livelock
855 * because not all segments in the iov can be copied at
856 * once without a pagefault.
858 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
859 iov_iter_single_seg_count(i
));
866 balance_dirty_pages_ratelimited(inode
->i_mapping
);
867 } while (iov_iter_count(i
) && length
);
869 return written
? written
: status
;
873 iomap_file_buffered_write(struct kiocb
*iocb
, struct iov_iter
*iter
,
874 const struct iomap_ops
*ops
)
876 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
877 loff_t pos
= iocb
->ki_pos
, ret
= 0, written
= 0;
879 while (iov_iter_count(iter
)) {
880 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
),
881 IOMAP_WRITE
, ops
, iter
, iomap_write_actor
);
888 return written
? written
: ret
;
890 EXPORT_SYMBOL_GPL(iomap_file_buffered_write
);
893 __iomap_read_page(struct inode
*inode
, loff_t offset
)
895 struct address_space
*mapping
= inode
->i_mapping
;
898 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, NULL
);
901 if (!PageUptodate(page
)) {
903 return ERR_PTR(-EIO
);
909 iomap_dirty_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
916 struct page
*page
, *rpage
;
917 unsigned long offset
; /* Offset into pagecache page */
918 unsigned long bytes
; /* Bytes to write to page */
920 offset
= offset_in_page(pos
);
921 bytes
= min_t(loff_t
, PAGE_SIZE
- offset
, length
);
923 rpage
= __iomap_read_page(inode
, pos
);
925 return PTR_ERR(rpage
);
927 status
= iomap_write_begin(inode
, pos
, bytes
,
928 AOP_FLAG_NOFS
, &page
, iomap
);
930 if (unlikely(status
))
933 WARN_ON_ONCE(!PageUptodate(page
));
935 status
= iomap_write_end(inode
, pos
, bytes
, bytes
, page
, iomap
);
936 if (unlikely(status
<= 0)) {
937 if (WARN_ON_ONCE(status
== 0))
948 balance_dirty_pages_ratelimited(inode
->i_mapping
);
955 iomap_file_dirty(struct inode
*inode
, loff_t pos
, loff_t len
,
956 const struct iomap_ops
*ops
)
961 ret
= iomap_apply(inode
, pos
, len
, IOMAP_WRITE
, ops
, NULL
,
971 EXPORT_SYMBOL_GPL(iomap_file_dirty
);
973 static int iomap_zero(struct inode
*inode
, loff_t pos
, unsigned offset
,
974 unsigned bytes
, struct iomap
*iomap
)
979 status
= iomap_write_begin(inode
, pos
, bytes
, AOP_FLAG_NOFS
, &page
,
984 zero_user(page
, offset
, bytes
);
985 mark_page_accessed(page
);
987 return iomap_write_end(inode
, pos
, bytes
, bytes
, page
, iomap
);
990 static int iomap_dax_zero(loff_t pos
, unsigned offset
, unsigned bytes
,
993 return __dax_zero_page_range(iomap
->bdev
, iomap
->dax_dev
,
994 iomap_sector(iomap
, pos
& PAGE_MASK
), offset
, bytes
);
998 iomap_zero_range_actor(struct inode
*inode
, loff_t pos
, loff_t count
,
999 void *data
, struct iomap
*iomap
)
1001 bool *did_zero
= data
;
1005 /* already zeroed? we're done. */
1006 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1010 unsigned offset
, bytes
;
1012 offset
= offset_in_page(pos
);
1013 bytes
= min_t(loff_t
, PAGE_SIZE
- offset
, count
);
1016 status
= iomap_dax_zero(pos
, offset
, bytes
, iomap
);
1018 status
= iomap_zero(inode
, pos
, offset
, bytes
, iomap
);
1027 } while (count
> 0);
1033 iomap_zero_range(struct inode
*inode
, loff_t pos
, loff_t len
, bool *did_zero
,
1034 const struct iomap_ops
*ops
)
1039 ret
= iomap_apply(inode
, pos
, len
, IOMAP_ZERO
,
1040 ops
, did_zero
, iomap_zero_range_actor
);
1050 EXPORT_SYMBOL_GPL(iomap_zero_range
);
1053 iomap_truncate_page(struct inode
*inode
, loff_t pos
, bool *did_zero
,
1054 const struct iomap_ops
*ops
)
1056 unsigned int blocksize
= i_blocksize(inode
);
1057 unsigned int off
= pos
& (blocksize
- 1);
1059 /* Block boundary? Nothing to do */
1062 return iomap_zero_range(inode
, pos
, blocksize
- off
, did_zero
, ops
);
1064 EXPORT_SYMBOL_GPL(iomap_truncate_page
);
1067 iomap_page_mkwrite_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1068 void *data
, struct iomap
*iomap
)
1070 struct page
*page
= data
;
1073 if (iomap
->flags
& IOMAP_F_BUFFER_HEAD
) {
1074 ret
= __block_write_begin_int(page
, pos
, length
, NULL
, iomap
);
1077 block_commit_write(page
, 0, length
);
1079 WARN_ON_ONCE(!PageUptodate(page
));
1080 iomap_page_create(inode
, page
);
1081 set_page_dirty(page
);
1087 int iomap_page_mkwrite(struct vm_fault
*vmf
, const struct iomap_ops
*ops
)
1089 struct page
*page
= vmf
->page
;
1090 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1091 unsigned long length
;
1092 loff_t offset
, size
;
1096 size
= i_size_read(inode
);
1097 if ((page
->mapping
!= inode
->i_mapping
) ||
1098 (page_offset(page
) > size
)) {
1099 /* We overload EFAULT to mean page got truncated */
1104 /* page is wholly or partially inside EOF */
1105 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
1106 length
= offset_in_page(size
);
1110 offset
= page_offset(page
);
1111 while (length
> 0) {
1112 ret
= iomap_apply(inode
, offset
, length
,
1113 IOMAP_WRITE
| IOMAP_FAULT
, ops
, page
,
1114 iomap_page_mkwrite_actor
);
1115 if (unlikely(ret
<= 0))
1121 wait_for_stable_page(page
);
1122 return VM_FAULT_LOCKED
;
1125 return block_page_mkwrite_return(ret
);
1127 EXPORT_SYMBOL_GPL(iomap_page_mkwrite
);
1130 struct fiemap_extent_info
*fi
;
1134 static int iomap_to_fiemap(struct fiemap_extent_info
*fi
,
1135 struct iomap
*iomap
, u32 flags
)
1137 switch (iomap
->type
) {
1141 case IOMAP_DELALLOC
:
1142 flags
|= FIEMAP_EXTENT_DELALLOC
| FIEMAP_EXTENT_UNKNOWN
;
1146 case IOMAP_UNWRITTEN
:
1147 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
1150 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
1154 if (iomap
->flags
& IOMAP_F_MERGED
)
1155 flags
|= FIEMAP_EXTENT_MERGED
;
1156 if (iomap
->flags
& IOMAP_F_SHARED
)
1157 flags
|= FIEMAP_EXTENT_SHARED
;
1159 return fiemap_fill_next_extent(fi
, iomap
->offset
,
1160 iomap
->addr
!= IOMAP_NULL_ADDR
? iomap
->addr
: 0,
1161 iomap
->length
, flags
);
1165 iomap_fiemap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
1166 struct iomap
*iomap
)
1168 struct fiemap_ctx
*ctx
= data
;
1169 loff_t ret
= length
;
1171 if (iomap
->type
== IOMAP_HOLE
)
1174 ret
= iomap_to_fiemap(ctx
->fi
, &ctx
->prev
, 0);
1177 case 0: /* success */
1179 case 1: /* extent array full */
1186 int iomap_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fi
,
1187 loff_t start
, loff_t len
, const struct iomap_ops
*ops
)
1189 struct fiemap_ctx ctx
;
1192 memset(&ctx
, 0, sizeof(ctx
));
1194 ctx
.prev
.type
= IOMAP_HOLE
;
1196 ret
= fiemap_check_flags(fi
, FIEMAP_FLAG_SYNC
);
1200 if (fi
->fi_flags
& FIEMAP_FLAG_SYNC
) {
1201 ret
= filemap_write_and_wait(inode
->i_mapping
);
1207 ret
= iomap_apply(inode
, start
, len
, IOMAP_REPORT
, ops
, &ctx
,
1208 iomap_fiemap_actor
);
1209 /* inode with no (attribute) mapping will give ENOENT */
1221 if (ctx
.prev
.type
!= IOMAP_HOLE
) {
1222 ret
= iomap_to_fiemap(fi
, &ctx
.prev
, FIEMAP_EXTENT_LAST
);
1229 EXPORT_SYMBOL_GPL(iomap_fiemap
);
1232 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1233 * Returns true if found and updates @lastoff to the offset in file.
1236 page_seek_hole_data(struct inode
*inode
, struct page
*page
, loff_t
*lastoff
,
1239 const struct address_space_operations
*ops
= inode
->i_mapping
->a_ops
;
1240 unsigned int bsize
= i_blocksize(inode
), off
;
1241 bool seek_data
= whence
== SEEK_DATA
;
1242 loff_t poff
= page_offset(page
);
1244 if (WARN_ON_ONCE(*lastoff
>= poff
+ PAGE_SIZE
))
1247 if (*lastoff
< poff
) {
1249 * Last offset smaller than the start of the page means we found
1252 if (whence
== SEEK_HOLE
)
1258 * Just check the page unless we can and should check block ranges:
1260 if (bsize
== PAGE_SIZE
|| !ops
->is_partially_uptodate
)
1261 return PageUptodate(page
) == seek_data
;
1264 if (unlikely(page
->mapping
!= inode
->i_mapping
))
1265 goto out_unlock_not_found
;
1267 for (off
= 0; off
< PAGE_SIZE
; off
+= bsize
) {
1268 if (offset_in_page(*lastoff
) >= off
+ bsize
)
1270 if (ops
->is_partially_uptodate(page
, off
, bsize
) == seek_data
) {
1274 *lastoff
= poff
+ off
+ bsize
;
1277 out_unlock_not_found
:
1283 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1285 * Within unwritten extents, the page cache determines which parts are holes
1286 * and which are data: uptodate buffer heads count as data; everything else
1289 * Returns the resulting offset on successs, and -ENOENT otherwise.
1292 page_cache_seek_hole_data(struct inode
*inode
, loff_t offset
, loff_t length
,
1295 pgoff_t index
= offset
>> PAGE_SHIFT
;
1296 pgoff_t end
= DIV_ROUND_UP(offset
+ length
, PAGE_SIZE
);
1297 loff_t lastoff
= offset
;
1298 struct pagevec pvec
;
1303 pagevec_init(&pvec
);
1306 unsigned nr_pages
, i
;
1308 nr_pages
= pagevec_lookup_range(&pvec
, inode
->i_mapping
, &index
,
1313 for (i
= 0; i
< nr_pages
; i
++) {
1314 struct page
*page
= pvec
.pages
[i
];
1316 if (page_seek_hole_data(inode
, page
, &lastoff
, whence
))
1318 lastoff
= page_offset(page
) + PAGE_SIZE
;
1320 pagevec_release(&pvec
);
1321 } while (index
< end
);
1323 /* When no page at lastoff and we are not done, we found a hole. */
1324 if (whence
!= SEEK_HOLE
)
1328 if (lastoff
< offset
+ length
)
1333 pagevec_release(&pvec
);
1339 iomap_seek_hole_actor(struct inode
*inode
, loff_t offset
, loff_t length
,
1340 void *data
, struct iomap
*iomap
)
1342 switch (iomap
->type
) {
1343 case IOMAP_UNWRITTEN
:
1344 offset
= page_cache_seek_hole_data(inode
, offset
, length
,
1350 *(loff_t
*)data
= offset
;
1358 iomap_seek_hole(struct inode
*inode
, loff_t offset
, const struct iomap_ops
*ops
)
1360 loff_t size
= i_size_read(inode
);
1361 loff_t length
= size
- offset
;
1364 /* Nothing to be found before or beyond the end of the file. */
1365 if (offset
< 0 || offset
>= size
)
1368 while (length
> 0) {
1369 ret
= iomap_apply(inode
, offset
, length
, IOMAP_REPORT
, ops
,
1370 &offset
, iomap_seek_hole_actor
);
1382 EXPORT_SYMBOL_GPL(iomap_seek_hole
);
1385 iomap_seek_data_actor(struct inode
*inode
, loff_t offset
, loff_t length
,
1386 void *data
, struct iomap
*iomap
)
1388 switch (iomap
->type
) {
1391 case IOMAP_UNWRITTEN
:
1392 offset
= page_cache_seek_hole_data(inode
, offset
, length
,
1398 *(loff_t
*)data
= offset
;
1404 iomap_seek_data(struct inode
*inode
, loff_t offset
, const struct iomap_ops
*ops
)
1406 loff_t size
= i_size_read(inode
);
1407 loff_t length
= size
- offset
;
1410 /* Nothing to be found before or beyond the end of the file. */
1411 if (offset
< 0 || offset
>= size
)
1414 while (length
> 0) {
1415 ret
= iomap_apply(inode
, offset
, length
, IOMAP_REPORT
, ops
,
1416 &offset
, iomap_seek_data_actor
);
1430 EXPORT_SYMBOL_GPL(iomap_seek_data
);
1433 * Private flags for iomap_dio, must not overlap with the public ones in
1436 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1437 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1438 #define IOMAP_DIO_WRITE (1 << 30)
1439 #define IOMAP_DIO_DIRTY (1 << 31)
1443 iomap_dio_end_io_t
*end_io
;
1449 bool wait_for_completion
;
1452 /* used during submission and for synchronous completion: */
1454 struct iov_iter
*iter
;
1455 struct task_struct
*waiter
;
1456 struct request_queue
*last_queue
;
1460 /* used for aio completion: */
1462 struct work_struct work
;
1467 static ssize_t
iomap_dio_complete(struct iomap_dio
*dio
)
1469 struct kiocb
*iocb
= dio
->iocb
;
1470 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1471 loff_t offset
= iocb
->ki_pos
;
1475 ret
= dio
->end_io(iocb
,
1476 dio
->error
? dio
->error
: dio
->size
,
1484 /* check for short read */
1485 if (offset
+ ret
> dio
->i_size
&&
1486 !(dio
->flags
& IOMAP_DIO_WRITE
))
1487 ret
= dio
->i_size
- offset
;
1488 iocb
->ki_pos
+= ret
;
1492 * Try again to invalidate clean pages which might have been cached by
1493 * non-direct readahead, or faulted in by get_user_pages() if the source
1494 * of the write was an mmap'ed region of the file we're writing. Either
1495 * one is a pretty crazy thing to do, so we don't support it 100%. If
1496 * this invalidation fails, tough, the write still worked...
1498 * And this page cache invalidation has to be after dio->end_io(), as
1499 * some filesystems convert unwritten extents to real allocations in
1500 * end_io() when necessary, otherwise a racing buffer read would cache
1501 * zeros from unwritten extents.
1504 (dio
->flags
& IOMAP_DIO_WRITE
) && inode
->i_mapping
->nrpages
) {
1506 err
= invalidate_inode_pages2_range(inode
->i_mapping
,
1507 offset
>> PAGE_SHIFT
,
1508 (offset
+ dio
->size
- 1) >> PAGE_SHIFT
);
1510 dio_warn_stale_pagecache(iocb
->ki_filp
);
1514 * If this is a DSYNC write, make sure we push it to stable storage now
1515 * that we've written data.
1517 if (ret
> 0 && (dio
->flags
& IOMAP_DIO_NEED_SYNC
))
1518 ret
= generic_write_sync(iocb
, ret
);
1520 inode_dio_end(file_inode(iocb
->ki_filp
));
1526 static void iomap_dio_complete_work(struct work_struct
*work
)
1528 struct iomap_dio
*dio
= container_of(work
, struct iomap_dio
, aio
.work
);
1529 struct kiocb
*iocb
= dio
->iocb
;
1531 iocb
->ki_complete(iocb
, iomap_dio_complete(dio
), 0);
1535 * Set an error in the dio if none is set yet. We have to use cmpxchg
1536 * as the submission context and the completion context(s) can race to
1539 static inline void iomap_dio_set_error(struct iomap_dio
*dio
, int ret
)
1541 cmpxchg(&dio
->error
, 0, ret
);
1544 static void iomap_dio_bio_end_io(struct bio
*bio
)
1546 struct iomap_dio
*dio
= bio
->bi_private
;
1547 bool should_dirty
= (dio
->flags
& IOMAP_DIO_DIRTY
);
1550 iomap_dio_set_error(dio
, blk_status_to_errno(bio
->bi_status
));
1552 if (atomic_dec_and_test(&dio
->ref
)) {
1553 if (dio
->wait_for_completion
) {
1554 struct task_struct
*waiter
= dio
->submit
.waiter
;
1555 WRITE_ONCE(dio
->submit
.waiter
, NULL
);
1556 wake_up_process(waiter
);
1557 } else if (dio
->flags
& IOMAP_DIO_WRITE
) {
1558 struct inode
*inode
= file_inode(dio
->iocb
->ki_filp
);
1560 INIT_WORK(&dio
->aio
.work
, iomap_dio_complete_work
);
1561 queue_work(inode
->i_sb
->s_dio_done_wq
, &dio
->aio
.work
);
1563 iomap_dio_complete_work(&dio
->aio
.work
);
1568 bio_check_pages_dirty(bio
);
1570 struct bio_vec
*bvec
;
1573 bio_for_each_segment_all(bvec
, bio
, i
)
1574 put_page(bvec
->bv_page
);
1580 iomap_dio_zero(struct iomap_dio
*dio
, struct iomap
*iomap
, loff_t pos
,
1583 struct page
*page
= ZERO_PAGE(0);
1586 bio
= bio_alloc(GFP_KERNEL
, 1);
1587 bio_set_dev(bio
, iomap
->bdev
);
1588 bio
->bi_iter
.bi_sector
= iomap_sector(iomap
, pos
);
1589 bio
->bi_private
= dio
;
1590 bio
->bi_end_io
= iomap_dio_bio_end_io
;
1593 __bio_add_page(bio
, page
, len
, 0);
1594 bio_set_op_attrs(bio
, REQ_OP_WRITE
, REQ_SYNC
| REQ_IDLE
);
1596 atomic_inc(&dio
->ref
);
1597 return submit_bio(bio
);
1601 iomap_dio_bio_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1602 struct iomap_dio
*dio
, struct iomap
*iomap
)
1604 unsigned int blkbits
= blksize_bits(bdev_logical_block_size(iomap
->bdev
));
1605 unsigned int fs_block_size
= i_blocksize(inode
), pad
;
1606 unsigned int align
= iov_iter_alignment(dio
->submit
.iter
);
1607 struct iov_iter iter
;
1609 bool need_zeroout
= false;
1610 bool use_fua
= false;
1611 int nr_pages
, ret
= 0;
1614 if ((pos
| length
| align
) & ((1 << blkbits
) - 1))
1617 if (iomap
->type
== IOMAP_UNWRITTEN
) {
1618 dio
->flags
|= IOMAP_DIO_UNWRITTEN
;
1619 need_zeroout
= true;
1622 if (iomap
->flags
& IOMAP_F_SHARED
)
1623 dio
->flags
|= IOMAP_DIO_COW
;
1625 if (iomap
->flags
& IOMAP_F_NEW
) {
1626 need_zeroout
= true;
1627 } else if (iomap
->type
== IOMAP_MAPPED
) {
1629 * Use a FUA write if we need datasync semantics, this is a pure
1630 * data IO that doesn't require any metadata updates (including
1631 * after IO completion such as unwritten extent conversion) and
1632 * the underlying device supports FUA. This allows us to avoid
1633 * cache flushes on IO completion.
1635 if (!(iomap
->flags
& (IOMAP_F_SHARED
|IOMAP_F_DIRTY
)) &&
1636 (dio
->flags
& IOMAP_DIO_WRITE_FUA
) &&
1637 blk_queue_fua(bdev_get_queue(iomap
->bdev
)))
1642 * Operate on a partial iter trimmed to the extent we were called for.
1643 * We'll update the iter in the dio once we're done with this extent.
1645 iter
= *dio
->submit
.iter
;
1646 iov_iter_truncate(&iter
, length
);
1648 nr_pages
= iov_iter_npages(&iter
, BIO_MAX_PAGES
);
1653 /* zero out from the start of the block to the write offset */
1654 pad
= pos
& (fs_block_size
- 1);
1656 iomap_dio_zero(dio
, iomap
, pos
- pad
, pad
);
1662 iov_iter_revert(dio
->submit
.iter
, copied
);
1666 bio
= bio_alloc(GFP_KERNEL
, nr_pages
);
1667 bio_set_dev(bio
, iomap
->bdev
);
1668 bio
->bi_iter
.bi_sector
= iomap_sector(iomap
, pos
);
1669 bio
->bi_write_hint
= dio
->iocb
->ki_hint
;
1670 bio
->bi_ioprio
= dio
->iocb
->ki_ioprio
;
1671 bio
->bi_private
= dio
;
1672 bio
->bi_end_io
= iomap_dio_bio_end_io
;
1674 ret
= bio_iov_iter_get_pages(bio
, &iter
);
1675 if (unlikely(ret
)) {
1677 * We have to stop part way through an IO. We must fall
1678 * through to the sub-block tail zeroing here, otherwise
1679 * this short IO may expose stale data in the tail of
1680 * the block we haven't written data to.
1686 n
= bio
->bi_iter
.bi_size
;
1687 if (dio
->flags
& IOMAP_DIO_WRITE
) {
1688 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_IDLE
;
1690 bio
->bi_opf
|= REQ_FUA
;
1692 dio
->flags
&= ~IOMAP_DIO_WRITE_FUA
;
1693 task_io_account_write(n
);
1695 bio
->bi_opf
= REQ_OP_READ
;
1696 if (dio
->flags
& IOMAP_DIO_DIRTY
)
1697 bio_set_pages_dirty(bio
);
1700 iov_iter_advance(dio
->submit
.iter
, n
);
1706 nr_pages
= iov_iter_npages(&iter
, BIO_MAX_PAGES
);
1708 atomic_inc(&dio
->ref
);
1710 dio
->submit
.last_queue
= bdev_get_queue(iomap
->bdev
);
1711 dio
->submit
.cookie
= submit_bio(bio
);
1715 * We need to zeroout the tail of a sub-block write if the extent type
1716 * requires zeroing or the write extends beyond EOF. If we don't zero
1717 * the block tail in the latter case, we can expose stale data via mmap
1718 * reads of the EOF block.
1722 ((dio
->flags
& IOMAP_DIO_WRITE
) && pos
>= i_size_read(inode
))) {
1723 /* zero out from the end of the write to the end of the block */
1724 pad
= pos
& (fs_block_size
- 1);
1726 iomap_dio_zero(dio
, iomap
, pos
, fs_block_size
- pad
);
1728 return copied
? copied
: ret
;
1732 iomap_dio_hole_actor(loff_t length
, struct iomap_dio
*dio
)
1734 length
= iov_iter_zero(length
, dio
->submit
.iter
);
1735 dio
->size
+= length
;
1740 iomap_dio_inline_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1741 struct iomap_dio
*dio
, struct iomap
*iomap
)
1743 struct iov_iter
*iter
= dio
->submit
.iter
;
1746 BUG_ON(pos
+ length
> PAGE_SIZE
- offset_in_page(iomap
->inline_data
));
1748 if (dio
->flags
& IOMAP_DIO_WRITE
) {
1749 loff_t size
= inode
->i_size
;
1752 memset(iomap
->inline_data
+ size
, 0, pos
- size
);
1753 copied
= copy_from_iter(iomap
->inline_data
+ pos
, length
, iter
);
1755 if (pos
+ copied
> size
)
1756 i_size_write(inode
, pos
+ copied
);
1757 mark_inode_dirty(inode
);
1760 copied
= copy_to_iter(iomap
->inline_data
+ pos
, length
, iter
);
1762 dio
->size
+= copied
;
1767 iomap_dio_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
1768 void *data
, struct iomap
*iomap
)
1770 struct iomap_dio
*dio
= data
;
1772 switch (iomap
->type
) {
1774 if (WARN_ON_ONCE(dio
->flags
& IOMAP_DIO_WRITE
))
1776 return iomap_dio_hole_actor(length
, dio
);
1777 case IOMAP_UNWRITTEN
:
1778 if (!(dio
->flags
& IOMAP_DIO_WRITE
))
1779 return iomap_dio_hole_actor(length
, dio
);
1780 return iomap_dio_bio_actor(inode
, pos
, length
, dio
, iomap
);
1782 return iomap_dio_bio_actor(inode
, pos
, length
, dio
, iomap
);
1784 return iomap_dio_inline_actor(inode
, pos
, length
, dio
, iomap
);
1792 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1793 * is being issued as AIO or not. This allows us to optimise pure data writes
1794 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1795 * REQ_FLUSH post write. This is slightly tricky because a single request here
1796 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1797 * may be pure data writes. In that case, we still need to do a full data sync
1801 iomap_dio_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1802 const struct iomap_ops
*ops
, iomap_dio_end_io_t end_io
)
1804 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1805 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1806 size_t count
= iov_iter_count(iter
);
1807 loff_t pos
= iocb
->ki_pos
, start
= pos
;
1808 loff_t end
= iocb
->ki_pos
+ count
- 1, ret
= 0;
1809 unsigned int flags
= IOMAP_DIRECT
;
1810 bool wait_for_completion
= is_sync_kiocb(iocb
);
1811 struct blk_plug plug
;
1812 struct iomap_dio
*dio
;
1814 lockdep_assert_held(&inode
->i_rwsem
);
1819 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1824 atomic_set(&dio
->ref
, 1);
1826 dio
->i_size
= i_size_read(inode
);
1827 dio
->end_io
= end_io
;
1831 dio
->submit
.iter
= iter
;
1832 dio
->submit
.waiter
= current
;
1833 dio
->submit
.cookie
= BLK_QC_T_NONE
;
1834 dio
->submit
.last_queue
= NULL
;
1836 if (iov_iter_rw(iter
) == READ
) {
1837 if (pos
>= dio
->i_size
)
1840 if (iter
->type
== ITER_IOVEC
)
1841 dio
->flags
|= IOMAP_DIO_DIRTY
;
1843 flags
|= IOMAP_WRITE
;
1844 dio
->flags
|= IOMAP_DIO_WRITE
;
1846 /* for data sync or sync, we need sync completion processing */
1847 if (iocb
->ki_flags
& IOCB_DSYNC
)
1848 dio
->flags
|= IOMAP_DIO_NEED_SYNC
;
1851 * For datasync only writes, we optimistically try using FUA for
1852 * this IO. Any non-FUA write that occurs will clear this flag,
1853 * hence we know before completion whether a cache flush is
1856 if ((iocb
->ki_flags
& (IOCB_DSYNC
| IOCB_SYNC
)) == IOCB_DSYNC
)
1857 dio
->flags
|= IOMAP_DIO_WRITE_FUA
;
1860 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
1861 if (filemap_range_has_page(mapping
, start
, end
)) {
1865 flags
|= IOMAP_NOWAIT
;
1868 ret
= filemap_write_and_wait_range(mapping
, start
, end
);
1873 * Try to invalidate cache pages for the range we're direct
1874 * writing. If this invalidation fails, tough, the write will
1875 * still work, but racing two incompatible write paths is a
1876 * pretty crazy thing to do, so we don't support it 100%.
1878 ret
= invalidate_inode_pages2_range(mapping
,
1879 start
>> PAGE_SHIFT
, end
>> PAGE_SHIFT
);
1881 dio_warn_stale_pagecache(iocb
->ki_filp
);
1884 if (iov_iter_rw(iter
) == WRITE
&& !wait_for_completion
&&
1885 !inode
->i_sb
->s_dio_done_wq
) {
1886 ret
= sb_init_dio_done_wq(inode
->i_sb
);
1891 inode_dio_begin(inode
);
1893 blk_start_plug(&plug
);
1895 ret
= iomap_apply(inode
, pos
, count
, flags
, ops
, dio
,
1898 /* magic error code to fall back to buffered I/O */
1899 if (ret
== -ENOTBLK
) {
1900 wait_for_completion
= true;
1907 if (iov_iter_rw(iter
) == READ
&& pos
>= dio
->i_size
) {
1909 * We only report that we've read data up to i_size.
1910 * Revert iter to a state corresponding to that as
1911 * some callers (such as splice code) rely on it.
1913 iov_iter_revert(iter
, pos
- dio
->i_size
);
1916 } while ((count
= iov_iter_count(iter
)) > 0);
1917 blk_finish_plug(&plug
);
1920 iomap_dio_set_error(dio
, ret
);
1923 * If all the writes we issued were FUA, we don't need to flush the
1924 * cache on IO completion. Clear the sync flag for this case.
1926 if (dio
->flags
& IOMAP_DIO_WRITE_FUA
)
1927 dio
->flags
&= ~IOMAP_DIO_NEED_SYNC
;
1930 * We are about to drop our additional submission reference, which
1931 * might be the last reference to the dio. There are three three
1932 * different ways we can progress here:
1934 * (a) If this is the last reference we will always complete and free
1935 * the dio ourselves.
1936 * (b) If this is not the last reference, and we serve an asynchronous
1937 * iocb, we must never touch the dio after the decrement, the
1938 * I/O completion handler will complete and free it.
1939 * (c) If this is not the last reference, but we serve a synchronous
1940 * iocb, the I/O completion handler will wake us up on the drop
1941 * of the final reference, and we will complete and free it here
1942 * after we got woken by the I/O completion handler.
1944 dio
->wait_for_completion
= wait_for_completion
;
1945 if (!atomic_dec_and_test(&dio
->ref
)) {
1946 if (!wait_for_completion
)
1947 return -EIOCBQUEUED
;
1950 set_current_state(TASK_UNINTERRUPTIBLE
);
1951 if (!READ_ONCE(dio
->submit
.waiter
))
1954 if (!(iocb
->ki_flags
& IOCB_HIPRI
) ||
1955 !dio
->submit
.last_queue
||
1956 !blk_poll(dio
->submit
.last_queue
,
1957 dio
->submit
.cookie
))
1960 __set_current_state(TASK_RUNNING
);
1963 return iomap_dio_complete(dio
);
1969 EXPORT_SYMBOL_GPL(iomap_dio_rw
);
1971 /* Swapfile activation */
1974 struct iomap_swapfile_info
{
1975 struct iomap iomap
; /* accumulated iomap */
1976 struct swap_info_struct
*sis
;
1977 uint64_t lowest_ppage
; /* lowest physical addr seen (pages) */
1978 uint64_t highest_ppage
; /* highest physical addr seen (pages) */
1979 unsigned long nr_pages
; /* number of pages collected */
1980 int nr_extents
; /* extent count */
1984 * Collect physical extents for this swap file. Physical extents reported to
1985 * the swap code must be trimmed to align to a page boundary. The logical
1986 * offset within the file is irrelevant since the swapfile code maps logical
1987 * page numbers of the swap device to the physical page-aligned extents.
1989 static int iomap_swapfile_add_extent(struct iomap_swapfile_info
*isi
)
1991 struct iomap
*iomap
= &isi
->iomap
;
1992 unsigned long nr_pages
;
1993 uint64_t first_ppage
;
1994 uint64_t first_ppage_reported
;
1995 uint64_t next_ppage
;
1999 * Round the start up and the end down so that the physical
2000 * extent aligns to a page boundary.
2002 first_ppage
= ALIGN(iomap
->addr
, PAGE_SIZE
) >> PAGE_SHIFT
;
2003 next_ppage
= ALIGN_DOWN(iomap
->addr
+ iomap
->length
, PAGE_SIZE
) >>
2006 /* Skip too-short physical extents. */
2007 if (first_ppage
>= next_ppage
)
2009 nr_pages
= next_ppage
- first_ppage
;
2012 * Calculate how much swap space we're adding; the first page contains
2013 * the swap header and doesn't count. The mm still wants that first
2014 * page fed to add_swap_extent, however.
2016 first_ppage_reported
= first_ppage
;
2017 if (iomap
->offset
== 0)
2018 first_ppage_reported
++;
2019 if (isi
->lowest_ppage
> first_ppage_reported
)
2020 isi
->lowest_ppage
= first_ppage_reported
;
2021 if (isi
->highest_ppage
< (next_ppage
- 1))
2022 isi
->highest_ppage
= next_ppage
- 1;
2024 /* Add extent, set up for the next call. */
2025 error
= add_swap_extent(isi
->sis
, isi
->nr_pages
, nr_pages
, first_ppage
);
2028 isi
->nr_extents
+= error
;
2029 isi
->nr_pages
+= nr_pages
;
2034 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2035 * swap only cares about contiguous page-aligned physical extents and makes no
2036 * distinction between written and unwritten extents.
2038 static loff_t
iomap_swapfile_activate_actor(struct inode
*inode
, loff_t pos
,
2039 loff_t count
, void *data
, struct iomap
*iomap
)
2041 struct iomap_swapfile_info
*isi
= data
;
2044 switch (iomap
->type
) {
2046 case IOMAP_UNWRITTEN
:
2047 /* Only real or unwritten extents. */
2050 /* No inline data. */
2051 pr_err("swapon: file is inline\n");
2054 pr_err("swapon: file has unallocated extents\n");
2058 /* No uncommitted metadata or shared blocks. */
2059 if (iomap
->flags
& IOMAP_F_DIRTY
) {
2060 pr_err("swapon: file is not committed\n");
2063 if (iomap
->flags
& IOMAP_F_SHARED
) {
2064 pr_err("swapon: file has shared extents\n");
2068 /* Only one bdev per swap file. */
2069 if (iomap
->bdev
!= isi
->sis
->bdev
) {
2070 pr_err("swapon: file is on multiple devices\n");
2074 if (isi
->iomap
.length
== 0) {
2075 /* No accumulated extent, so just store it. */
2076 memcpy(&isi
->iomap
, iomap
, sizeof(isi
->iomap
));
2077 } else if (isi
->iomap
.addr
+ isi
->iomap
.length
== iomap
->addr
) {
2078 /* Append this to the accumulated extent. */
2079 isi
->iomap
.length
+= iomap
->length
;
2081 /* Otherwise, add the retained iomap and store this one. */
2082 error
= iomap_swapfile_add_extent(isi
);
2085 memcpy(&isi
->iomap
, iomap
, sizeof(isi
->iomap
));
2091 * Iterate a swap file's iomaps to construct physical extents that can be
2092 * passed to the swapfile subsystem.
2094 int iomap_swapfile_activate(struct swap_info_struct
*sis
,
2095 struct file
*swap_file
, sector_t
*pagespan
,
2096 const struct iomap_ops
*ops
)
2098 struct iomap_swapfile_info isi
= {
2100 .lowest_ppage
= (sector_t
)-1ULL,
2102 struct address_space
*mapping
= swap_file
->f_mapping
;
2103 struct inode
*inode
= mapping
->host
;
2105 loff_t len
= ALIGN_DOWN(i_size_read(inode
), PAGE_SIZE
);
2109 * Persist all file mapping metadata so that we won't have any
2110 * IOMAP_F_DIRTY iomaps.
2112 ret
= vfs_fsync(swap_file
, 1);
2117 ret
= iomap_apply(inode
, pos
, len
, IOMAP_REPORT
,
2118 ops
, &isi
, iomap_swapfile_activate_actor
);
2126 if (isi
.iomap
.length
) {
2127 ret
= iomap_swapfile_add_extent(&isi
);
2132 *pagespan
= 1 + isi
.highest_ppage
- isi
.lowest_ppage
;
2133 sis
->max
= isi
.nr_pages
;
2134 sis
->pages
= isi
.nr_pages
- 1;
2135 sis
->highest_bit
= isi
.nr_pages
- 1;
2136 return isi
.nr_extents
;
2138 EXPORT_SYMBOL_GPL(iomap_swapfile_activate
);
2139 #endif /* CONFIG_SWAP */
2142 iomap_bmap_actor(struct inode
*inode
, loff_t pos
, loff_t length
,
2143 void *data
, struct iomap
*iomap
)
2145 sector_t
*bno
= data
, addr
;
2147 if (iomap
->type
== IOMAP_MAPPED
) {
2148 addr
= (pos
- iomap
->offset
+ iomap
->addr
) >> inode
->i_blkbits
;
2150 WARN(1, "would truncate bmap result\n");
2157 /* legacy ->bmap interface. 0 is the error return (!) */
2159 iomap_bmap(struct address_space
*mapping
, sector_t bno
,
2160 const struct iomap_ops
*ops
)
2162 struct inode
*inode
= mapping
->host
;
2163 loff_t pos
= bno
<< inode
->i_blkbits
;
2164 unsigned blocksize
= i_blocksize(inode
);
2166 if (filemap_write_and_wait(mapping
))
2170 iomap_apply(inode
, pos
, blocksize
, 0, ops
, &bno
, iomap_bmap_actor
);
2173 EXPORT_SYMBOL_GPL(iomap_bmap
);