2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
32 #include <trace/events/block.h>
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
38 #define BIO_INLINE_VECS 4
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs
[BVEC_POOL_NR
] __read_mostly
= {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES
),
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
55 struct bio_set
*fs_bio_set
;
56 EXPORT_SYMBOL(fs_bio_set
);
59 * Our slab pool management
62 struct kmem_cache
*slab
;
63 unsigned int slab_ref
;
64 unsigned int slab_size
;
67 static DEFINE_MUTEX(bio_slab_lock
);
68 static struct bio_slab
*bio_slabs
;
69 static unsigned int bio_slab_nr
, bio_slab_max
;
71 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
73 unsigned int sz
= sizeof(struct bio
) + extra_size
;
74 struct kmem_cache
*slab
= NULL
;
75 struct bio_slab
*bslab
, *new_bio_slabs
;
76 unsigned int new_bio_slab_max
;
77 unsigned int i
, entry
= -1;
79 mutex_lock(&bio_slab_lock
);
82 while (i
< bio_slab_nr
) {
83 bslab
= &bio_slabs
[i
];
85 if (!bslab
->slab
&& entry
== -1)
87 else if (bslab
->slab_size
== sz
) {
98 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
99 new_bio_slab_max
= bio_slab_max
<< 1;
100 new_bio_slabs
= krealloc(bio_slabs
,
101 new_bio_slab_max
* sizeof(struct bio_slab
),
105 bio_slab_max
= new_bio_slab_max
;
106 bio_slabs
= new_bio_slabs
;
109 entry
= bio_slab_nr
++;
111 bslab
= &bio_slabs
[entry
];
113 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
114 slab
= kmem_cache_create(bslab
->name
, sz
, ARCH_KMALLOC_MINALIGN
,
115 SLAB_HWCACHE_ALIGN
, NULL
);
121 bslab
->slab_size
= sz
;
123 mutex_unlock(&bio_slab_lock
);
127 static void bio_put_slab(struct bio_set
*bs
)
129 struct bio_slab
*bslab
= NULL
;
132 mutex_lock(&bio_slab_lock
);
134 for (i
= 0; i
< bio_slab_nr
; i
++) {
135 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
136 bslab
= &bio_slabs
[i
];
141 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
144 WARN_ON(!bslab
->slab_ref
);
146 if (--bslab
->slab_ref
)
149 kmem_cache_destroy(bslab
->slab
);
153 mutex_unlock(&bio_slab_lock
);
156 unsigned int bvec_nr_vecs(unsigned short idx
)
158 return bvec_slabs
[idx
].nr_vecs
;
161 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned int idx
)
167 BIO_BUG_ON(idx
>= BVEC_POOL_NR
);
169 if (idx
== BVEC_POOL_MAX
) {
170 mempool_free(bv
, pool
);
172 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
174 kmem_cache_free(bvs
->slab
, bv
);
178 struct bio_vec
*bvec_alloc(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
184 * see comment near bvec_array define!
202 case 129 ... BIO_MAX_PAGES
:
210 * idx now points to the pool we want to allocate from. only the
211 * 1-vec entry pool is mempool backed.
213 if (*idx
== BVEC_POOL_MAX
) {
215 bvl
= mempool_alloc(pool
, gfp_mask
);
217 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
218 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
);
221 * Make this allocation restricted and don't dump info on
222 * allocation failures, since we'll fallback to the mempool
223 * in case of failure.
225 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
228 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
229 * is set, retry with the 1-entry mempool
231 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
232 if (unlikely(!bvl
&& (gfp_mask
& __GFP_DIRECT_RECLAIM
))) {
233 *idx
= BVEC_POOL_MAX
;
242 static void __bio_free(struct bio
*bio
)
244 bio_disassociate_task(bio
);
246 if (bio_integrity(bio
))
247 bio_integrity_free(bio
);
250 static void bio_free(struct bio
*bio
)
252 struct bio_set
*bs
= bio
->bi_pool
;
258 bvec_free(bs
->bvec_pool
, bio
->bi_io_vec
, BVEC_POOL_IDX(bio
));
261 * If we have front padding, adjust the bio pointer before freeing
266 mempool_free(p
, bs
->bio_pool
);
268 /* Bio was allocated by bio_kmalloc() */
273 void bio_init(struct bio
*bio
)
275 memset(bio
, 0, sizeof(*bio
));
276 atomic_set(&bio
->__bi_remaining
, 1);
277 atomic_set(&bio
->__bi_cnt
, 1);
279 EXPORT_SYMBOL(bio_init
);
282 * bio_reset - reinitialize a bio
286 * After calling bio_reset(), @bio will be in the same state as a freshly
287 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
288 * preserved are the ones that are initialized by bio_alloc_bioset(). See
289 * comment in struct bio.
291 void bio_reset(struct bio
*bio
)
293 unsigned long flags
= bio
->bi_flags
& (~0UL << BIO_RESET_BITS
);
297 memset(bio
, 0, BIO_RESET_BYTES
);
298 bio
->bi_flags
= flags
;
299 atomic_set(&bio
->__bi_remaining
, 1);
301 EXPORT_SYMBOL(bio_reset
);
303 static struct bio
*__bio_chain_endio(struct bio
*bio
)
305 struct bio
*parent
= bio
->bi_private
;
307 if (!parent
->bi_error
)
308 parent
->bi_error
= bio
->bi_error
;
313 static void bio_chain_endio(struct bio
*bio
)
315 bio_endio(__bio_chain_endio(bio
));
319 * bio_chain - chain bio completions
320 * @bio: the target bio
321 * @parent: the @bio's parent bio
323 * The caller won't have a bi_end_io called when @bio completes - instead,
324 * @parent's bi_end_io won't be called until both @parent and @bio have
325 * completed; the chained bio will also be freed when it completes.
327 * The caller must not set bi_private or bi_end_io in @bio.
329 void bio_chain(struct bio
*bio
, struct bio
*parent
)
331 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
333 bio
->bi_private
= parent
;
334 bio
->bi_end_io
= bio_chain_endio
;
335 bio_inc_remaining(parent
);
337 EXPORT_SYMBOL(bio_chain
);
339 static void bio_alloc_rescue(struct work_struct
*work
)
341 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
345 spin_lock(&bs
->rescue_lock
);
346 bio
= bio_list_pop(&bs
->rescue_list
);
347 spin_unlock(&bs
->rescue_lock
);
352 generic_make_request(bio
);
356 static void punt_bios_to_rescuer(struct bio_set
*bs
)
358 struct bio_list punt
, nopunt
;
362 * In order to guarantee forward progress we must punt only bios that
363 * were allocated from this bio_set; otherwise, if there was a bio on
364 * there for a stacking driver higher up in the stack, processing it
365 * could require allocating bios from this bio_set, and doing that from
366 * our own rescuer would be bad.
368 * Since bio lists are singly linked, pop them all instead of trying to
369 * remove from the middle of the list:
372 bio_list_init(&punt
);
373 bio_list_init(&nopunt
);
375 while ((bio
= bio_list_pop(current
->bio_list
)))
376 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
378 *current
->bio_list
= nopunt
;
380 spin_lock(&bs
->rescue_lock
);
381 bio_list_merge(&bs
->rescue_list
, &punt
);
382 spin_unlock(&bs
->rescue_lock
);
384 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
388 * bio_alloc_bioset - allocate a bio for I/O
389 * @gfp_mask: the GFP_ mask given to the slab allocator
390 * @nr_iovecs: number of iovecs to pre-allocate
391 * @bs: the bio_set to allocate from.
394 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
395 * backed by the @bs's mempool.
397 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
398 * always be able to allocate a bio. This is due to the mempool guarantees.
399 * To make this work, callers must never allocate more than 1 bio at a time
400 * from this pool. Callers that need to allocate more than 1 bio must always
401 * submit the previously allocated bio for IO before attempting to allocate
402 * a new one. Failure to do so can cause deadlocks under memory pressure.
404 * Note that when running under generic_make_request() (i.e. any block
405 * driver), bios are not submitted until after you return - see the code in
406 * generic_make_request() that converts recursion into iteration, to prevent
409 * This would normally mean allocating multiple bios under
410 * generic_make_request() would be susceptible to deadlocks, but we have
411 * deadlock avoidance code that resubmits any blocked bios from a rescuer
414 * However, we do not guarantee forward progress for allocations from other
415 * mempools. Doing multiple allocations from the same mempool under
416 * generic_make_request() should be avoided - instead, use bio_set's front_pad
417 * for per bio allocations.
420 * Pointer to new bio on success, NULL on failure.
422 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, int nr_iovecs
, struct bio_set
*bs
)
424 gfp_t saved_gfp
= gfp_mask
;
426 unsigned inline_vecs
;
427 struct bio_vec
*bvl
= NULL
;
432 if (nr_iovecs
> UIO_MAXIOV
)
435 p
= kmalloc(sizeof(struct bio
) +
436 nr_iovecs
* sizeof(struct bio_vec
),
439 inline_vecs
= nr_iovecs
;
441 /* should not use nobvec bioset for nr_iovecs > 0 */
442 if (WARN_ON_ONCE(!bs
->bvec_pool
&& nr_iovecs
> 0))
445 * generic_make_request() converts recursion to iteration; this
446 * means if we're running beneath it, any bios we allocate and
447 * submit will not be submitted (and thus freed) until after we
450 * This exposes us to a potential deadlock if we allocate
451 * multiple bios from the same bio_set() while running
452 * underneath generic_make_request(). If we were to allocate
453 * multiple bios (say a stacking block driver that was splitting
454 * bios), we would deadlock if we exhausted the mempool's
457 * We solve this, and guarantee forward progress, with a rescuer
458 * workqueue per bio_set. If we go to allocate and there are
459 * bios on current->bio_list, we first try the allocation
460 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
461 * bios we would be blocking to the rescuer workqueue before
462 * we retry with the original gfp_flags.
465 if (current
->bio_list
&& !bio_list_empty(current
->bio_list
))
466 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
468 p
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
469 if (!p
&& gfp_mask
!= saved_gfp
) {
470 punt_bios_to_rescuer(bs
);
471 gfp_mask
= saved_gfp
;
472 p
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
475 front_pad
= bs
->front_pad
;
476 inline_vecs
= BIO_INLINE_VECS
;
485 if (nr_iovecs
> inline_vecs
) {
486 unsigned long idx
= 0;
488 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, bs
->bvec_pool
);
489 if (!bvl
&& gfp_mask
!= saved_gfp
) {
490 punt_bios_to_rescuer(bs
);
491 gfp_mask
= saved_gfp
;
492 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, bs
->bvec_pool
);
498 bio
->bi_flags
|= idx
<< BVEC_POOL_OFFSET
;
499 } else if (nr_iovecs
) {
500 bvl
= bio
->bi_inline_vecs
;
504 bio
->bi_max_vecs
= nr_iovecs
;
505 bio
->bi_io_vec
= bvl
;
509 mempool_free(p
, bs
->bio_pool
);
512 EXPORT_SYMBOL(bio_alloc_bioset
);
514 void zero_fill_bio(struct bio
*bio
)
518 struct bvec_iter iter
;
520 bio_for_each_segment(bv
, bio
, iter
) {
521 char *data
= bvec_kmap_irq(&bv
, &flags
);
522 memset(data
, 0, bv
.bv_len
);
523 flush_dcache_page(bv
.bv_page
);
524 bvec_kunmap_irq(data
, &flags
);
527 EXPORT_SYMBOL(zero_fill_bio
);
530 * bio_put - release a reference to a bio
531 * @bio: bio to release reference to
534 * Put a reference to a &struct bio, either one you have gotten with
535 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
537 void bio_put(struct bio
*bio
)
539 if (!bio_flagged(bio
, BIO_REFFED
))
542 BIO_BUG_ON(!atomic_read(&bio
->__bi_cnt
));
547 if (atomic_dec_and_test(&bio
->__bi_cnt
))
551 EXPORT_SYMBOL(bio_put
);
553 inline int bio_phys_segments(struct request_queue
*q
, struct bio
*bio
)
555 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
556 blk_recount_segments(q
, bio
);
558 return bio
->bi_phys_segments
;
560 EXPORT_SYMBOL(bio_phys_segments
);
563 * __bio_clone_fast - clone a bio that shares the original bio's biovec
564 * @bio: destination bio
565 * @bio_src: bio to clone
567 * Clone a &bio. Caller will own the returned bio, but not
568 * the actual data it points to. Reference count of returned
571 * Caller must ensure that @bio_src is not freed before @bio.
573 void __bio_clone_fast(struct bio
*bio
, struct bio
*bio_src
)
575 BUG_ON(bio
->bi_pool
&& BVEC_POOL_IDX(bio
));
578 * most users will be overriding ->bi_bdev with a new target,
579 * so we don't set nor calculate new physical/hw segment counts here
581 bio
->bi_bdev
= bio_src
->bi_bdev
;
582 bio_set_flag(bio
, BIO_CLONED
);
583 bio
->bi_opf
= bio_src
->bi_opf
;
584 bio
->bi_iter
= bio_src
->bi_iter
;
585 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
587 bio_clone_blkcg_association(bio
, bio_src
);
589 EXPORT_SYMBOL(__bio_clone_fast
);
592 * bio_clone_fast - clone a bio that shares the original bio's biovec
594 * @gfp_mask: allocation priority
595 * @bs: bio_set to allocate from
597 * Like __bio_clone_fast, only also allocates the returned bio
599 struct bio
*bio_clone_fast(struct bio
*bio
, gfp_t gfp_mask
, struct bio_set
*bs
)
603 b
= bio_alloc_bioset(gfp_mask
, 0, bs
);
607 __bio_clone_fast(b
, bio
);
609 if (bio_integrity(bio
)) {
612 ret
= bio_integrity_clone(b
, bio
, gfp_mask
);
622 EXPORT_SYMBOL(bio_clone_fast
);
625 * bio_clone_bioset - clone a bio
626 * @bio_src: bio to clone
627 * @gfp_mask: allocation priority
628 * @bs: bio_set to allocate from
630 * Clone bio. Caller will own the returned bio, but not the actual data it
631 * points to. Reference count of returned bio will be one.
633 struct bio
*bio_clone_bioset(struct bio
*bio_src
, gfp_t gfp_mask
,
636 struct bvec_iter iter
;
641 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
642 * bio_src->bi_io_vec to bio->bi_io_vec.
644 * We can't do that anymore, because:
646 * - The point of cloning the biovec is to produce a bio with a biovec
647 * the caller can modify: bi_idx and bi_bvec_done should be 0.
649 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
650 * we tried to clone the whole thing bio_alloc_bioset() would fail.
651 * But the clone should succeed as long as the number of biovecs we
652 * actually need to allocate is fewer than BIO_MAX_PAGES.
654 * - Lastly, bi_vcnt should not be looked at or relied upon by code
655 * that does not own the bio - reason being drivers don't use it for
656 * iterating over the biovec anymore, so expecting it to be kept up
657 * to date (i.e. for clones that share the parent biovec) is just
658 * asking for trouble and would force extra work on
659 * __bio_clone_fast() anyways.
662 bio
= bio_alloc_bioset(gfp_mask
, bio_segments(bio_src
), bs
);
665 bio
->bi_bdev
= bio_src
->bi_bdev
;
666 bio
->bi_opf
= bio_src
->bi_opf
;
667 bio
->bi_iter
.bi_sector
= bio_src
->bi_iter
.bi_sector
;
668 bio
->bi_iter
.bi_size
= bio_src
->bi_iter
.bi_size
;
670 if (bio_op(bio
) == REQ_OP_DISCARD
)
671 goto integrity_clone
;
673 if (bio_op(bio
) == REQ_OP_WRITE_SAME
) {
674 bio
->bi_io_vec
[bio
->bi_vcnt
++] = bio_src
->bi_io_vec
[0];
675 goto integrity_clone
;
678 bio_for_each_segment(bv
, bio_src
, iter
)
679 bio
->bi_io_vec
[bio
->bi_vcnt
++] = bv
;
682 if (bio_integrity(bio_src
)) {
685 ret
= bio_integrity_clone(bio
, bio_src
, gfp_mask
);
692 bio_clone_blkcg_association(bio
, bio_src
);
696 EXPORT_SYMBOL(bio_clone_bioset
);
699 * bio_add_pc_page - attempt to add page to bio
700 * @q: the target queue
701 * @bio: destination bio
703 * @len: vec entry length
704 * @offset: vec entry offset
706 * Attempt to add a page to the bio_vec maplist. This can fail for a
707 * number of reasons, such as the bio being full or target block device
708 * limitations. The target block device must allow bio's up to PAGE_SIZE,
709 * so it is always possible to add a single page to an empty bio.
711 * This should only be used by REQ_PC bios.
713 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
, struct page
714 *page
, unsigned int len
, unsigned int offset
)
716 int retried_segments
= 0;
717 struct bio_vec
*bvec
;
720 * cloned bio must not modify vec list
722 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
725 if (((bio
->bi_iter
.bi_size
+ len
) >> 9) > queue_max_hw_sectors(q
))
729 * For filesystems with a blocksize smaller than the pagesize
730 * we will often be called with the same page as last time and
731 * a consecutive offset. Optimize this special case.
733 if (bio
->bi_vcnt
> 0) {
734 struct bio_vec
*prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
736 if (page
== prev
->bv_page
&&
737 offset
== prev
->bv_offset
+ prev
->bv_len
) {
739 bio
->bi_iter
.bi_size
+= len
;
744 * If the queue doesn't support SG gaps and adding this
745 * offset would create a gap, disallow it.
747 if (bvec_gap_to_prev(q
, prev
, offset
))
751 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
755 * setup the new entry, we might clear it again later if we
756 * cannot add the page
758 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
759 bvec
->bv_page
= page
;
761 bvec
->bv_offset
= offset
;
763 bio
->bi_phys_segments
++;
764 bio
->bi_iter
.bi_size
+= len
;
767 * Perform a recount if the number of segments is greater
768 * than queue_max_segments(q).
771 while (bio
->bi_phys_segments
> queue_max_segments(q
)) {
773 if (retried_segments
)
776 retried_segments
= 1;
777 blk_recount_segments(q
, bio
);
780 /* If we may be able to merge these biovecs, force a recount */
781 if (bio
->bi_vcnt
> 1 && (BIOVEC_PHYS_MERGEABLE(bvec
-1, bvec
)))
782 bio_clear_flag(bio
, BIO_SEG_VALID
);
788 bvec
->bv_page
= NULL
;
792 bio
->bi_iter
.bi_size
-= len
;
793 blk_recount_segments(q
, bio
);
796 EXPORT_SYMBOL(bio_add_pc_page
);
799 * bio_add_page - attempt to add page to bio
800 * @bio: destination bio
802 * @len: vec entry length
803 * @offset: vec entry offset
805 * Attempt to add a page to the bio_vec maplist. This will only fail
806 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
808 int bio_add_page(struct bio
*bio
, struct page
*page
,
809 unsigned int len
, unsigned int offset
)
814 * cloned bio must not modify vec list
816 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
820 * For filesystems with a blocksize smaller than the pagesize
821 * we will often be called with the same page as last time and
822 * a consecutive offset. Optimize this special case.
824 if (bio
->bi_vcnt
> 0) {
825 bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
827 if (page
== bv
->bv_page
&&
828 offset
== bv
->bv_offset
+ bv
->bv_len
) {
834 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
837 bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
840 bv
->bv_offset
= offset
;
844 bio
->bi_iter
.bi_size
+= len
;
847 EXPORT_SYMBOL(bio_add_page
);
849 struct submit_bio_ret
{
850 struct completion event
;
854 static void submit_bio_wait_endio(struct bio
*bio
)
856 struct submit_bio_ret
*ret
= bio
->bi_private
;
858 ret
->error
= bio
->bi_error
;
859 complete(&ret
->event
);
863 * submit_bio_wait - submit a bio, and wait until it completes
864 * @bio: The &struct bio which describes the I/O
866 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
867 * bio_endio() on failure.
869 int submit_bio_wait(struct bio
*bio
)
871 struct submit_bio_ret ret
;
873 init_completion(&ret
.event
);
874 bio
->bi_private
= &ret
;
875 bio
->bi_end_io
= submit_bio_wait_endio
;
876 bio
->bi_opf
|= REQ_SYNC
;
878 wait_for_completion_io(&ret
.event
);
882 EXPORT_SYMBOL(submit_bio_wait
);
885 * bio_advance - increment/complete a bio by some number of bytes
886 * @bio: bio to advance
887 * @bytes: number of bytes to complete
889 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
890 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
891 * be updated on the last bvec as well.
893 * @bio will then represent the remaining, uncompleted portion of the io.
895 void bio_advance(struct bio
*bio
, unsigned bytes
)
897 if (bio_integrity(bio
))
898 bio_integrity_advance(bio
, bytes
);
900 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
902 EXPORT_SYMBOL(bio_advance
);
905 * bio_alloc_pages - allocates a single page for each bvec in a bio
906 * @bio: bio to allocate pages for
907 * @gfp_mask: flags for allocation
909 * Allocates pages up to @bio->bi_vcnt.
911 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
914 int bio_alloc_pages(struct bio
*bio
, gfp_t gfp_mask
)
919 bio_for_each_segment_all(bv
, bio
, i
) {
920 bv
->bv_page
= alloc_page(gfp_mask
);
922 while (--bv
>= bio
->bi_io_vec
)
923 __free_page(bv
->bv_page
);
930 EXPORT_SYMBOL(bio_alloc_pages
);
933 * bio_copy_data - copy contents of data buffers from one chain of bios to
935 * @src: source bio list
936 * @dst: destination bio list
938 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
939 * @src and @dst as linked lists of bios.
941 * Stops when it reaches the end of either @src or @dst - that is, copies
942 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
944 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
946 struct bvec_iter src_iter
, dst_iter
;
947 struct bio_vec src_bv
, dst_bv
;
951 src_iter
= src
->bi_iter
;
952 dst_iter
= dst
->bi_iter
;
955 if (!src_iter
.bi_size
) {
960 src_iter
= src
->bi_iter
;
963 if (!dst_iter
.bi_size
) {
968 dst_iter
= dst
->bi_iter
;
971 src_bv
= bio_iter_iovec(src
, src_iter
);
972 dst_bv
= bio_iter_iovec(dst
, dst_iter
);
974 bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
976 src_p
= kmap_atomic(src_bv
.bv_page
);
977 dst_p
= kmap_atomic(dst_bv
.bv_page
);
979 memcpy(dst_p
+ dst_bv
.bv_offset
,
980 src_p
+ src_bv
.bv_offset
,
983 kunmap_atomic(dst_p
);
984 kunmap_atomic(src_p
);
986 bio_advance_iter(src
, &src_iter
, bytes
);
987 bio_advance_iter(dst
, &dst_iter
, bytes
);
990 EXPORT_SYMBOL(bio_copy_data
);
992 struct bio_map_data
{
994 struct iov_iter iter
;
998 static struct bio_map_data
*bio_alloc_map_data(unsigned int iov_count
,
1001 if (iov_count
> UIO_MAXIOV
)
1004 return kmalloc(sizeof(struct bio_map_data
) +
1005 sizeof(struct iovec
) * iov_count
, gfp_mask
);
1009 * bio_copy_from_iter - copy all pages from iov_iter to bio
1010 * @bio: The &struct bio which describes the I/O as destination
1011 * @iter: iov_iter as source
1013 * Copy all pages from iov_iter to bio.
1014 * Returns 0 on success, or error on failure.
1016 static int bio_copy_from_iter(struct bio
*bio
, struct iov_iter iter
)
1019 struct bio_vec
*bvec
;
1021 bio_for_each_segment_all(bvec
, bio
, i
) {
1024 ret
= copy_page_from_iter(bvec
->bv_page
,
1029 if (!iov_iter_count(&iter
))
1032 if (ret
< bvec
->bv_len
)
1040 * bio_copy_to_iter - copy all pages from bio to iov_iter
1041 * @bio: The &struct bio which describes the I/O as source
1042 * @iter: iov_iter as destination
1044 * Copy all pages from bio to iov_iter.
1045 * Returns 0 on success, or error on failure.
1047 static int bio_copy_to_iter(struct bio
*bio
, struct iov_iter iter
)
1050 struct bio_vec
*bvec
;
1052 bio_for_each_segment_all(bvec
, bio
, i
) {
1055 ret
= copy_page_to_iter(bvec
->bv_page
,
1060 if (!iov_iter_count(&iter
))
1063 if (ret
< bvec
->bv_len
)
1070 static void bio_free_pages(struct bio
*bio
)
1072 struct bio_vec
*bvec
;
1075 bio_for_each_segment_all(bvec
, bio
, i
)
1076 __free_page(bvec
->bv_page
);
1080 * bio_uncopy_user - finish previously mapped bio
1081 * @bio: bio being terminated
1083 * Free pages allocated from bio_copy_user_iov() and write back data
1084 * to user space in case of a read.
1086 int bio_uncopy_user(struct bio
*bio
)
1088 struct bio_map_data
*bmd
= bio
->bi_private
;
1091 if (!bio_flagged(bio
, BIO_NULL_MAPPED
)) {
1093 * if we're in a workqueue, the request is orphaned, so
1094 * don't copy into a random user address space, just free
1095 * and return -EINTR so user space doesn't expect any data.
1099 else if (bio_data_dir(bio
) == READ
)
1100 ret
= bio_copy_to_iter(bio
, bmd
->iter
);
1101 if (bmd
->is_our_pages
)
1102 bio_free_pages(bio
);
1110 * bio_copy_user_iov - copy user data to bio
1111 * @q: destination block queue
1112 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1113 * @iter: iovec iterator
1114 * @gfp_mask: memory allocation flags
1116 * Prepares and returns a bio for indirect user io, bouncing data
1117 * to/from kernel pages as necessary. Must be paired with
1118 * call bio_uncopy_user() on io completion.
1120 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
1121 struct rq_map_data
*map_data
,
1122 const struct iov_iter
*iter
,
1125 struct bio_map_data
*bmd
;
1130 unsigned int len
= iter
->count
;
1131 unsigned int offset
= map_data
? offset_in_page(map_data
->offset
) : 0;
1133 for (i
= 0; i
< iter
->nr_segs
; i
++) {
1134 unsigned long uaddr
;
1136 unsigned long start
;
1138 uaddr
= (unsigned long) iter
->iov
[i
].iov_base
;
1139 end
= (uaddr
+ iter
->iov
[i
].iov_len
+ PAGE_SIZE
- 1)
1141 start
= uaddr
>> PAGE_SHIFT
;
1147 return ERR_PTR(-EINVAL
);
1149 nr_pages
+= end
- start
;
1155 bmd
= bio_alloc_map_data(iter
->nr_segs
, gfp_mask
);
1157 return ERR_PTR(-ENOMEM
);
1160 * We need to do a deep copy of the iov_iter including the iovecs.
1161 * The caller provided iov might point to an on-stack or otherwise
1164 bmd
->is_our_pages
= map_data
? 0 : 1;
1165 memcpy(bmd
->iov
, iter
->iov
, sizeof(struct iovec
) * iter
->nr_segs
);
1166 iov_iter_init(&bmd
->iter
, iter
->type
, bmd
->iov
,
1167 iter
->nr_segs
, iter
->count
);
1170 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1174 if (iter
->type
& WRITE
)
1175 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1180 nr_pages
= 1 << map_data
->page_order
;
1181 i
= map_data
->offset
/ PAGE_SIZE
;
1184 unsigned int bytes
= PAGE_SIZE
;
1192 if (i
== map_data
->nr_entries
* nr_pages
) {
1197 page
= map_data
->pages
[i
/ nr_pages
];
1198 page
+= (i
% nr_pages
);
1202 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1209 if (bio_add_pc_page(q
, bio
, page
, bytes
, offset
) < bytes
)
1222 if (((iter
->type
& WRITE
) && (!map_data
|| !map_data
->null_mapped
)) ||
1223 (map_data
&& map_data
->from_user
)) {
1224 ret
= bio_copy_from_iter(bio
, *iter
);
1229 bio
->bi_private
= bmd
;
1233 bio_free_pages(bio
);
1237 return ERR_PTR(ret
);
1241 * bio_map_user_iov - map user iovec into bio
1242 * @q: the struct request_queue for the bio
1243 * @iter: iovec iterator
1244 * @gfp_mask: memory allocation flags
1246 * Map the user space address into a bio suitable for io to a block
1247 * device. Returns an error pointer in case of error.
1249 struct bio
*bio_map_user_iov(struct request_queue
*q
,
1250 const struct iov_iter
*iter
,
1255 struct page
**pages
;
1262 iov_for_each(iov
, i
, *iter
) {
1263 unsigned long uaddr
= (unsigned long) iov
.iov_base
;
1264 unsigned long len
= iov
.iov_len
;
1265 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1266 unsigned long start
= uaddr
>> PAGE_SHIFT
;
1272 return ERR_PTR(-EINVAL
);
1274 nr_pages
+= end
- start
;
1276 * buffer must be aligned to at least hardsector size for now
1278 if (uaddr
& queue_dma_alignment(q
))
1279 return ERR_PTR(-EINVAL
);
1283 return ERR_PTR(-EINVAL
);
1285 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1287 return ERR_PTR(-ENOMEM
);
1290 pages
= kcalloc(nr_pages
, sizeof(struct page
*), gfp_mask
);
1294 iov_for_each(iov
, i
, *iter
) {
1295 unsigned long uaddr
= (unsigned long) iov
.iov_base
;
1296 unsigned long len
= iov
.iov_len
;
1297 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1298 unsigned long start
= uaddr
>> PAGE_SHIFT
;
1299 const int local_nr_pages
= end
- start
;
1300 const int page_limit
= cur_page
+ local_nr_pages
;
1302 ret
= get_user_pages_fast(uaddr
, local_nr_pages
,
1303 (iter
->type
& WRITE
) != WRITE
,
1305 if (ret
< local_nr_pages
) {
1310 offset
= offset_in_page(uaddr
);
1311 for (j
= cur_page
; j
< page_limit
; j
++) {
1312 unsigned int bytes
= PAGE_SIZE
- offset
;
1323 if (bio_add_pc_page(q
, bio
, pages
[j
], bytes
, offset
) <
1333 * release the pages we didn't map into the bio, if any
1335 while (j
< page_limit
)
1336 put_page(pages
[j
++]);
1342 * set data direction, and check if mapped pages need bouncing
1344 if (iter
->type
& WRITE
)
1345 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1347 bio_set_flag(bio
, BIO_USER_MAPPED
);
1350 * subtle -- if __bio_map_user() ended up bouncing a bio,
1351 * it would normally disappear when its bi_end_io is run.
1352 * however, we need it for the unmap, so grab an extra
1359 for (j
= 0; j
< nr_pages
; j
++) {
1367 return ERR_PTR(ret
);
1370 static void __bio_unmap_user(struct bio
*bio
)
1372 struct bio_vec
*bvec
;
1376 * make sure we dirty pages we wrote to
1378 bio_for_each_segment_all(bvec
, bio
, i
) {
1379 if (bio_data_dir(bio
) == READ
)
1380 set_page_dirty_lock(bvec
->bv_page
);
1382 put_page(bvec
->bv_page
);
1389 * bio_unmap_user - unmap a bio
1390 * @bio: the bio being unmapped
1392 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1393 * a process context.
1395 * bio_unmap_user() may sleep.
1397 void bio_unmap_user(struct bio
*bio
)
1399 __bio_unmap_user(bio
);
1403 static void bio_map_kern_endio(struct bio
*bio
)
1409 * bio_map_kern - map kernel address into bio
1410 * @q: the struct request_queue for the bio
1411 * @data: pointer to buffer to map
1412 * @len: length in bytes
1413 * @gfp_mask: allocation flags for bio allocation
1415 * Map the kernel address into a bio suitable for io to a block
1416 * device. Returns an error pointer in case of error.
1418 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1421 unsigned long kaddr
= (unsigned long)data
;
1422 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1423 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1424 const int nr_pages
= end
- start
;
1428 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1430 return ERR_PTR(-ENOMEM
);
1432 offset
= offset_in_page(kaddr
);
1433 for (i
= 0; i
< nr_pages
; i
++) {
1434 unsigned int bytes
= PAGE_SIZE
- offset
;
1442 if (bio_add_pc_page(q
, bio
, virt_to_page(data
), bytes
,
1444 /* we don't support partial mappings */
1446 return ERR_PTR(-EINVAL
);
1454 bio
->bi_end_io
= bio_map_kern_endio
;
1457 EXPORT_SYMBOL(bio_map_kern
);
1459 static void bio_copy_kern_endio(struct bio
*bio
)
1461 bio_free_pages(bio
);
1465 static void bio_copy_kern_endio_read(struct bio
*bio
)
1467 char *p
= bio
->bi_private
;
1468 struct bio_vec
*bvec
;
1471 bio_for_each_segment_all(bvec
, bio
, i
) {
1472 memcpy(p
, page_address(bvec
->bv_page
), bvec
->bv_len
);
1476 bio_copy_kern_endio(bio
);
1480 * bio_copy_kern - copy kernel address into bio
1481 * @q: the struct request_queue for the bio
1482 * @data: pointer to buffer to copy
1483 * @len: length in bytes
1484 * @gfp_mask: allocation flags for bio and page allocation
1485 * @reading: data direction is READ
1487 * copy the kernel address into a bio suitable for io to a block
1488 * device. Returns an error pointer in case of error.
1490 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1491 gfp_t gfp_mask
, int reading
)
1493 unsigned long kaddr
= (unsigned long)data
;
1494 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1495 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1504 return ERR_PTR(-EINVAL
);
1506 nr_pages
= end
- start
;
1507 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1509 return ERR_PTR(-ENOMEM
);
1513 unsigned int bytes
= PAGE_SIZE
;
1518 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1523 memcpy(page_address(page
), p
, bytes
);
1525 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
1533 bio
->bi_end_io
= bio_copy_kern_endio_read
;
1534 bio
->bi_private
= data
;
1536 bio
->bi_end_io
= bio_copy_kern_endio
;
1537 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1543 bio_free_pages(bio
);
1545 return ERR_PTR(-ENOMEM
);
1549 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1550 * for performing direct-IO in BIOs.
1552 * The problem is that we cannot run set_page_dirty() from interrupt context
1553 * because the required locks are not interrupt-safe. So what we can do is to
1554 * mark the pages dirty _before_ performing IO. And in interrupt context,
1555 * check that the pages are still dirty. If so, fine. If not, redirty them
1556 * in process context.
1558 * We special-case compound pages here: normally this means reads into hugetlb
1559 * pages. The logic in here doesn't really work right for compound pages
1560 * because the VM does not uniformly chase down the head page in all cases.
1561 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1562 * handle them at all. So we skip compound pages here at an early stage.
1564 * Note that this code is very hard to test under normal circumstances because
1565 * direct-io pins the pages with get_user_pages(). This makes
1566 * is_page_cache_freeable return false, and the VM will not clean the pages.
1567 * But other code (eg, flusher threads) could clean the pages if they are mapped
1570 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1571 * deferred bio dirtying paths.
1575 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1577 void bio_set_pages_dirty(struct bio
*bio
)
1579 struct bio_vec
*bvec
;
1582 bio_for_each_segment_all(bvec
, bio
, i
) {
1583 struct page
*page
= bvec
->bv_page
;
1585 if (page
&& !PageCompound(page
))
1586 set_page_dirty_lock(page
);
1590 static void bio_release_pages(struct bio
*bio
)
1592 struct bio_vec
*bvec
;
1595 bio_for_each_segment_all(bvec
, bio
, i
) {
1596 struct page
*page
= bvec
->bv_page
;
1604 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1605 * If they are, then fine. If, however, some pages are clean then they must
1606 * have been written out during the direct-IO read. So we take another ref on
1607 * the BIO and the offending pages and re-dirty the pages in process context.
1609 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1610 * here on. It will run one put_page() against each page and will run one
1611 * bio_put() against the BIO.
1614 static void bio_dirty_fn(struct work_struct
*work
);
1616 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1617 static DEFINE_SPINLOCK(bio_dirty_lock
);
1618 static struct bio
*bio_dirty_list
;
1621 * This runs in process context
1623 static void bio_dirty_fn(struct work_struct
*work
)
1625 unsigned long flags
;
1628 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1629 bio
= bio_dirty_list
;
1630 bio_dirty_list
= NULL
;
1631 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1634 struct bio
*next
= bio
->bi_private
;
1636 bio_set_pages_dirty(bio
);
1637 bio_release_pages(bio
);
1643 void bio_check_pages_dirty(struct bio
*bio
)
1645 struct bio_vec
*bvec
;
1646 int nr_clean_pages
= 0;
1649 bio_for_each_segment_all(bvec
, bio
, i
) {
1650 struct page
*page
= bvec
->bv_page
;
1652 if (PageDirty(page
) || PageCompound(page
)) {
1654 bvec
->bv_page
= NULL
;
1660 if (nr_clean_pages
) {
1661 unsigned long flags
;
1663 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1664 bio
->bi_private
= bio_dirty_list
;
1665 bio_dirty_list
= bio
;
1666 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1667 schedule_work(&bio_dirty_work
);
1673 void generic_start_io_acct(int rw
, unsigned long sectors
,
1674 struct hd_struct
*part
)
1676 int cpu
= part_stat_lock();
1678 part_round_stats(cpu
, part
);
1679 part_stat_inc(cpu
, part
, ios
[rw
]);
1680 part_stat_add(cpu
, part
, sectors
[rw
], sectors
);
1681 part_inc_in_flight(part
, rw
);
1685 EXPORT_SYMBOL(generic_start_io_acct
);
1687 void generic_end_io_acct(int rw
, struct hd_struct
*part
,
1688 unsigned long start_time
)
1690 unsigned long duration
= jiffies
- start_time
;
1691 int cpu
= part_stat_lock();
1693 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1694 part_round_stats(cpu
, part
);
1695 part_dec_in_flight(part
, rw
);
1699 EXPORT_SYMBOL(generic_end_io_acct
);
1701 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1702 void bio_flush_dcache_pages(struct bio
*bi
)
1704 struct bio_vec bvec
;
1705 struct bvec_iter iter
;
1707 bio_for_each_segment(bvec
, bi
, iter
)
1708 flush_dcache_page(bvec
.bv_page
);
1710 EXPORT_SYMBOL(bio_flush_dcache_pages
);
1713 static inline bool bio_remaining_done(struct bio
*bio
)
1716 * If we're not chaining, then ->__bi_remaining is always 1 and
1717 * we always end io on the first invocation.
1719 if (!bio_flagged(bio
, BIO_CHAIN
))
1722 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1724 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1725 bio_clear_flag(bio
, BIO_CHAIN
);
1733 * bio_endio - end I/O on a bio
1737 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1738 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1739 * bio unless they own it and thus know that it has an end_io function.
1741 void bio_endio(struct bio
*bio
)
1744 if (!bio_remaining_done(bio
))
1748 * Need to have a real endio function for chained bios, otherwise
1749 * various corner cases will break (like stacking block devices that
1750 * save/restore bi_end_io) - however, we want to avoid unbounded
1751 * recursion and blowing the stack. Tail call optimization would
1752 * handle this, but compiling with frame pointers also disables
1753 * gcc's sibling call optimization.
1755 if (bio
->bi_end_io
== bio_chain_endio
) {
1756 bio
= __bio_chain_endio(bio
);
1761 bio
->bi_end_io(bio
);
1763 EXPORT_SYMBOL(bio_endio
);
1766 * bio_split - split a bio
1767 * @bio: bio to split
1768 * @sectors: number of sectors to split from the front of @bio
1770 * @bs: bio set to allocate from
1772 * Allocates and returns a new bio which represents @sectors from the start of
1773 * @bio, and updates @bio to represent the remaining sectors.
1775 * Unless this is a discard request the newly allocated bio will point
1776 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1777 * @bio is not freed before the split.
1779 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1780 gfp_t gfp
, struct bio_set
*bs
)
1782 struct bio
*split
= NULL
;
1784 BUG_ON(sectors
<= 0);
1785 BUG_ON(sectors
>= bio_sectors(bio
));
1788 * Discards need a mutable bio_vec to accommodate the payload
1789 * required by the DSM TRIM and UNMAP commands.
1791 if (bio_op(bio
) == REQ_OP_DISCARD
)
1792 split
= bio_clone_bioset(bio
, gfp
, bs
);
1794 split
= bio_clone_fast(bio
, gfp
, bs
);
1799 split
->bi_iter
.bi_size
= sectors
<< 9;
1801 if (bio_integrity(split
))
1802 bio_integrity_trim(split
, 0, sectors
);
1804 bio_advance(bio
, split
->bi_iter
.bi_size
);
1808 EXPORT_SYMBOL(bio_split
);
1811 * bio_trim - trim a bio
1813 * @offset: number of sectors to trim from the front of @bio
1814 * @size: size we want to trim @bio to, in sectors
1816 void bio_trim(struct bio
*bio
, int offset
, int size
)
1818 /* 'bio' is a cloned bio which we need to trim to match
1819 * the given offset and size.
1823 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1826 bio_clear_flag(bio
, BIO_SEG_VALID
);
1828 bio_advance(bio
, offset
<< 9);
1830 bio
->bi_iter
.bi_size
= size
;
1832 EXPORT_SYMBOL_GPL(bio_trim
);
1835 * create memory pools for biovec's in a bio_set.
1836 * use the global biovec slabs created for general use.
1838 mempool_t
*biovec_create_pool(int pool_entries
)
1840 struct biovec_slab
*bp
= bvec_slabs
+ BVEC_POOL_MAX
;
1842 return mempool_create_slab_pool(pool_entries
, bp
->slab
);
1845 void bioset_free(struct bio_set
*bs
)
1847 if (bs
->rescue_workqueue
)
1848 destroy_workqueue(bs
->rescue_workqueue
);
1851 mempool_destroy(bs
->bio_pool
);
1854 mempool_destroy(bs
->bvec_pool
);
1856 bioset_integrity_free(bs
);
1861 EXPORT_SYMBOL(bioset_free
);
1863 static struct bio_set
*__bioset_create(unsigned int pool_size
,
1864 unsigned int front_pad
,
1865 bool create_bvec_pool
)
1867 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1870 bs
= kzalloc(sizeof(*bs
), GFP_KERNEL
);
1874 bs
->front_pad
= front_pad
;
1876 spin_lock_init(&bs
->rescue_lock
);
1877 bio_list_init(&bs
->rescue_list
);
1878 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
1880 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
1881 if (!bs
->bio_slab
) {
1886 bs
->bio_pool
= mempool_create_slab_pool(pool_size
, bs
->bio_slab
);
1890 if (create_bvec_pool
) {
1891 bs
->bvec_pool
= biovec_create_pool(pool_size
);
1896 bs
->rescue_workqueue
= alloc_workqueue("bioset", WQ_MEM_RECLAIM
, 0);
1897 if (!bs
->rescue_workqueue
)
1907 * bioset_create - Create a bio_set
1908 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1909 * @front_pad: Number of bytes to allocate in front of the returned bio
1912 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1913 * to ask for a number of bytes to be allocated in front of the bio.
1914 * Front pad allocation is useful for embedding the bio inside
1915 * another structure, to avoid allocating extra data to go with the bio.
1916 * Note that the bio must be embedded at the END of that structure always,
1917 * or things will break badly.
1919 struct bio_set
*bioset_create(unsigned int pool_size
, unsigned int front_pad
)
1921 return __bioset_create(pool_size
, front_pad
, true);
1923 EXPORT_SYMBOL(bioset_create
);
1926 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1927 * @pool_size: Number of bio to cache in the mempool
1928 * @front_pad: Number of bytes to allocate in front of the returned bio
1931 * Same functionality as bioset_create() except that mempool is not
1932 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1934 struct bio_set
*bioset_create_nobvec(unsigned int pool_size
, unsigned int front_pad
)
1936 return __bioset_create(pool_size
, front_pad
, false);
1938 EXPORT_SYMBOL(bioset_create_nobvec
);
1940 #ifdef CONFIG_BLK_CGROUP
1943 * bio_associate_blkcg - associate a bio with the specified blkcg
1945 * @blkcg_css: css of the blkcg to associate
1947 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1948 * treat @bio as if it were issued by a task which belongs to the blkcg.
1950 * This function takes an extra reference of @blkcg_css which will be put
1951 * when @bio is released. The caller must own @bio and is responsible for
1952 * synchronizing calls to this function.
1954 int bio_associate_blkcg(struct bio
*bio
, struct cgroup_subsys_state
*blkcg_css
)
1956 if (unlikely(bio
->bi_css
))
1959 bio
->bi_css
= blkcg_css
;
1962 EXPORT_SYMBOL_GPL(bio_associate_blkcg
);
1965 * bio_associate_current - associate a bio with %current
1968 * Associate @bio with %current if it hasn't been associated yet. Block
1969 * layer will treat @bio as if it were issued by %current no matter which
1970 * task actually issues it.
1972 * This function takes an extra reference of @task's io_context and blkcg
1973 * which will be put when @bio is released. The caller must own @bio,
1974 * ensure %current->io_context exists, and is responsible for synchronizing
1975 * calls to this function.
1977 int bio_associate_current(struct bio
*bio
)
1979 struct io_context
*ioc
;
1984 ioc
= current
->io_context
;
1988 get_io_context_active(ioc
);
1990 bio
->bi_css
= task_get_css(current
, io_cgrp_id
);
1993 EXPORT_SYMBOL_GPL(bio_associate_current
);
1996 * bio_disassociate_task - undo bio_associate_current()
1999 void bio_disassociate_task(struct bio
*bio
)
2002 put_io_context(bio
->bi_ioc
);
2006 css_put(bio
->bi_css
);
2012 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2013 * @dst: destination bio
2016 void bio_clone_blkcg_association(struct bio
*dst
, struct bio
*src
)
2019 WARN_ON(bio_associate_blkcg(dst
, src
->bi_css
));
2022 #endif /* CONFIG_BLK_CGROUP */
2024 static void __init
biovec_init_slabs(void)
2028 for (i
= 0; i
< BVEC_POOL_NR
; i
++) {
2030 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
2032 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
2037 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
2038 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
2039 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2043 static int __init
init_bio(void)
2047 bio_slabs
= kzalloc(bio_slab_max
* sizeof(struct bio_slab
), GFP_KERNEL
);
2049 panic("bio: can't allocate bios\n");
2051 bio_integrity_init();
2052 biovec_init_slabs();
2054 fs_bio_set
= bioset_create(BIO_POOL_SIZE
, 0);
2056 panic("bio: can't allocate bios\n");
2058 if (bioset_integrity_create(fs_bio_set
, BIO_POOL_SIZE
))
2059 panic("bio: can't create integrity pool\n");
2063 subsys_initcall(init_bio
);