proc: test /proc/thread-self symlink
[linux/fpc-iii.git] / block / blk-wbt.c
blob1d94a20374fcbf2108edd4d54927ad4b0d5c4647
1 /*
2 * buffered writeback throttling. loosely based on CoDel. We can't drop
3 * packets for IO scheduling, so the logic is something like this:
5 * - Monitor latencies in a defined window of time.
6 * - If the minimum latency in the above window exceeds some target, increment
7 * scaling step and scale down queue depth by a factor of 2x. The monitoring
8 * window is then shrunk to 100 / sqrt(scaling step + 1).
9 * - For any window where we don't have solid data on what the latencies
10 * look like, retain status quo.
11 * - If latencies look good, decrement scaling step.
12 * - If we're only doing writes, allow the scaling step to go negative. This
13 * will temporarily boost write performance, snapping back to a stable
14 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
15 * positive scaling steps where we shrink the monitoring window, a negative
16 * scaling step retains the default step==0 window size.
18 * Copyright (C) 2016 Jens Axboe
21 #include <linux/kernel.h>
22 #include <linux/blk_types.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 #include <linux/swap.h>
27 #include "blk-wbt.h"
28 #include "blk-rq-qos.h"
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/wbt.h>
33 static inline void wbt_clear_state(struct request *rq)
35 rq->wbt_flags = 0;
38 static inline enum wbt_flags wbt_flags(struct request *rq)
40 return rq->wbt_flags;
43 static inline bool wbt_is_tracked(struct request *rq)
45 return rq->wbt_flags & WBT_TRACKED;
48 static inline bool wbt_is_read(struct request *rq)
50 return rq->wbt_flags & WBT_READ;
53 enum {
55 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
56 * from here depending on device stats
58 RWB_DEF_DEPTH = 16,
61 * 100msec window
63 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
66 * Disregard stats, if we don't meet this minimum
68 RWB_MIN_WRITE_SAMPLES = 3,
71 * If we have this number of consecutive windows with not enough
72 * information to scale up or down, scale up.
74 RWB_UNKNOWN_BUMP = 5,
77 static inline bool rwb_enabled(struct rq_wb *rwb)
79 return rwb && rwb->wb_normal != 0;
82 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
84 if (rwb_enabled(rwb)) {
85 const unsigned long cur = jiffies;
87 if (cur != *var)
88 *var = cur;
93 * If a task was rate throttled in balance_dirty_pages() within the last
94 * second or so, use that to indicate a higher cleaning rate.
96 static bool wb_recent_wait(struct rq_wb *rwb)
98 struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb;
100 return time_before(jiffies, wb->dirty_sleep + HZ);
103 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
104 enum wbt_flags wb_acct)
106 if (wb_acct & WBT_KSWAPD)
107 return &rwb->rq_wait[WBT_RWQ_KSWAPD];
108 else if (wb_acct & WBT_DISCARD)
109 return &rwb->rq_wait[WBT_RWQ_DISCARD];
111 return &rwb->rq_wait[WBT_RWQ_BG];
114 static void rwb_wake_all(struct rq_wb *rwb)
116 int i;
118 for (i = 0; i < WBT_NUM_RWQ; i++) {
119 struct rq_wait *rqw = &rwb->rq_wait[i];
121 if (waitqueue_active(&rqw->wait))
122 wake_up_all(&rqw->wait);
126 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
128 struct rq_wb *rwb = RQWB(rqos);
129 struct rq_wait *rqw;
130 int inflight, limit;
132 if (!(wb_acct & WBT_TRACKED))
133 return;
135 rqw = get_rq_wait(rwb, wb_acct);
136 inflight = atomic_dec_return(&rqw->inflight);
139 * wbt got disabled with IO in flight. Wake up any potential
140 * waiters, we don't have to do more than that.
142 if (unlikely(!rwb_enabled(rwb))) {
143 rwb_wake_all(rwb);
144 return;
148 * For discards, our limit is always the background. For writes, if
149 * the device does write back caching, drop further down before we
150 * wake people up.
152 if (wb_acct & WBT_DISCARD)
153 limit = rwb->wb_background;
154 else if (rwb->wc && !wb_recent_wait(rwb))
155 limit = 0;
156 else
157 limit = rwb->wb_normal;
160 * Don't wake anyone up if we are above the normal limit.
162 if (inflight && inflight >= limit)
163 return;
165 if (waitqueue_active(&rqw->wait)) {
166 int diff = limit - inflight;
168 if (!inflight || diff >= rwb->wb_background / 2)
169 wake_up(&rqw->wait);
174 * Called on completion of a request. Note that it's also called when
175 * a request is merged, when the request gets freed.
177 static void wbt_done(struct rq_qos *rqos, struct request *rq)
179 struct rq_wb *rwb = RQWB(rqos);
181 if (!wbt_is_tracked(rq)) {
182 if (rwb->sync_cookie == rq) {
183 rwb->sync_issue = 0;
184 rwb->sync_cookie = NULL;
187 if (wbt_is_read(rq))
188 wb_timestamp(rwb, &rwb->last_comp);
189 } else {
190 WARN_ON_ONCE(rq == rwb->sync_cookie);
191 __wbt_done(rqos, wbt_flags(rq));
193 wbt_clear_state(rq);
196 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
199 * We need at least one read sample, and a minimum of
200 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
201 * that it's writes impacting us, and not just some sole read on
202 * a device that is in a lower power state.
204 return (stat[READ].nr_samples >= 1 &&
205 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
208 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
210 u64 now, issue = READ_ONCE(rwb->sync_issue);
212 if (!issue || !rwb->sync_cookie)
213 return 0;
215 now = ktime_to_ns(ktime_get());
216 return now - issue;
219 enum {
220 LAT_OK = 1,
221 LAT_UNKNOWN,
222 LAT_UNKNOWN_WRITES,
223 LAT_EXCEEDED,
226 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
228 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
229 struct rq_depth *rqd = &rwb->rq_depth;
230 u64 thislat;
233 * If our stored sync issue exceeds the window size, or it
234 * exceeds our min target AND we haven't logged any entries,
235 * flag the latency as exceeded. wbt works off completion latencies,
236 * but for a flooded device, a single sync IO can take a long time
237 * to complete after being issued. If this time exceeds our
238 * monitoring window AND we didn't see any other completions in that
239 * window, then count that sync IO as a violation of the latency.
241 thislat = rwb_sync_issue_lat(rwb);
242 if (thislat > rwb->cur_win_nsec ||
243 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
244 trace_wbt_lat(bdi, thislat);
245 return LAT_EXCEEDED;
249 * No read/write mix, if stat isn't valid
251 if (!stat_sample_valid(stat)) {
253 * If we had writes in this stat window and the window is
254 * current, we're only doing writes. If a task recently
255 * waited or still has writes in flights, consider us doing
256 * just writes as well.
258 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
259 wbt_inflight(rwb))
260 return LAT_UNKNOWN_WRITES;
261 return LAT_UNKNOWN;
265 * If the 'min' latency exceeds our target, step down.
267 if (stat[READ].min > rwb->min_lat_nsec) {
268 trace_wbt_lat(bdi, stat[READ].min);
269 trace_wbt_stat(bdi, stat);
270 return LAT_EXCEEDED;
273 if (rqd->scale_step)
274 trace_wbt_stat(bdi, stat);
276 return LAT_OK;
279 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
281 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
282 struct rq_depth *rqd = &rwb->rq_depth;
284 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
285 rwb->wb_background, rwb->wb_normal, rqd->max_depth);
288 static void calc_wb_limits(struct rq_wb *rwb)
290 if (rwb->min_lat_nsec == 0) {
291 rwb->wb_normal = rwb->wb_background = 0;
292 } else if (rwb->rq_depth.max_depth <= 2) {
293 rwb->wb_normal = rwb->rq_depth.max_depth;
294 rwb->wb_background = 1;
295 } else {
296 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
297 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
301 static void scale_up(struct rq_wb *rwb)
303 rq_depth_scale_up(&rwb->rq_depth);
304 calc_wb_limits(rwb);
305 rwb->unknown_cnt = 0;
306 rwb_trace_step(rwb, "scale up");
309 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
311 rq_depth_scale_down(&rwb->rq_depth, hard_throttle);
312 calc_wb_limits(rwb);
313 rwb->unknown_cnt = 0;
314 rwb_wake_all(rwb);
315 rwb_trace_step(rwb, "scale down");
318 static void rwb_arm_timer(struct rq_wb *rwb)
320 struct rq_depth *rqd = &rwb->rq_depth;
322 if (rqd->scale_step > 0) {
324 * We should speed this up, using some variant of a fast
325 * integer inverse square root calculation. Since we only do
326 * this for every window expiration, it's not a huge deal,
327 * though.
329 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
330 int_sqrt((rqd->scale_step + 1) << 8));
331 } else {
333 * For step < 0, we don't want to increase/decrease the
334 * window size.
336 rwb->cur_win_nsec = rwb->win_nsec;
339 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
342 static void wb_timer_fn(struct blk_stat_callback *cb)
344 struct rq_wb *rwb = cb->data;
345 struct rq_depth *rqd = &rwb->rq_depth;
346 unsigned int inflight = wbt_inflight(rwb);
347 int status;
349 status = latency_exceeded(rwb, cb->stat);
351 trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step,
352 inflight);
355 * If we exceeded the latency target, step down. If we did not,
356 * step one level up. If we don't know enough to say either exceeded
357 * or ok, then don't do anything.
359 switch (status) {
360 case LAT_EXCEEDED:
361 scale_down(rwb, true);
362 break;
363 case LAT_OK:
364 scale_up(rwb);
365 break;
366 case LAT_UNKNOWN_WRITES:
368 * We started a the center step, but don't have a valid
369 * read/write sample, but we do have writes going on.
370 * Allow step to go negative, to increase write perf.
372 scale_up(rwb);
373 break;
374 case LAT_UNKNOWN:
375 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
376 break;
378 * We get here when previously scaled reduced depth, and we
379 * currently don't have a valid read/write sample. For that
380 * case, slowly return to center state (step == 0).
382 if (rqd->scale_step > 0)
383 scale_up(rwb);
384 else if (rqd->scale_step < 0)
385 scale_down(rwb, false);
386 break;
387 default:
388 break;
392 * Re-arm timer, if we have IO in flight
394 if (rqd->scale_step || inflight)
395 rwb_arm_timer(rwb);
398 static void __wbt_update_limits(struct rq_wb *rwb)
400 struct rq_depth *rqd = &rwb->rq_depth;
402 rqd->scale_step = 0;
403 rqd->scaled_max = false;
405 rq_depth_calc_max_depth(rqd);
406 calc_wb_limits(rwb);
408 rwb_wake_all(rwb);
411 void wbt_update_limits(struct request_queue *q)
413 struct rq_qos *rqos = wbt_rq_qos(q);
414 if (!rqos)
415 return;
416 __wbt_update_limits(RQWB(rqos));
419 u64 wbt_get_min_lat(struct request_queue *q)
421 struct rq_qos *rqos = wbt_rq_qos(q);
422 if (!rqos)
423 return 0;
424 return RQWB(rqos)->min_lat_nsec;
427 void wbt_set_min_lat(struct request_queue *q, u64 val)
429 struct rq_qos *rqos = wbt_rq_qos(q);
430 if (!rqos)
431 return;
432 RQWB(rqos)->min_lat_nsec = val;
433 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
434 __wbt_update_limits(RQWB(rqos));
438 static bool close_io(struct rq_wb *rwb)
440 const unsigned long now = jiffies;
442 return time_before(now, rwb->last_issue + HZ / 10) ||
443 time_before(now, rwb->last_comp + HZ / 10);
446 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
448 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
450 unsigned int limit;
452 if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
453 return rwb->wb_background;
456 * At this point we know it's a buffered write. If this is
457 * kswapd trying to free memory, or REQ_SYNC is set, then
458 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
459 * that. If the write is marked as a background write, then use
460 * the idle limit, or go to normal if we haven't had competing
461 * IO for a bit.
463 if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
464 limit = rwb->rq_depth.max_depth;
465 else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
467 * If less than 100ms since we completed unrelated IO,
468 * limit us to half the depth for background writeback.
470 limit = rwb->wb_background;
471 } else
472 limit = rwb->wb_normal;
474 return limit;
478 * Block if we will exceed our limit, or if we are currently waiting for
479 * the timer to kick off queuing again.
481 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
482 unsigned long rw, spinlock_t *lock)
483 __releases(lock)
484 __acquires(lock)
486 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
487 DECLARE_WAITQUEUE(wait, current);
490 * inc it here even if disabled, since we'll dec it at completion.
491 * this only happens if the task was sleeping in __wbt_wait(),
492 * and someone turned it off at the same time.
494 if (!rwb_enabled(rwb)) {
495 atomic_inc(&rqw->inflight);
496 return;
499 if (!waitqueue_active(&rqw->wait)
500 && rq_wait_inc_below(rqw, get_limit(rwb, rw)))
501 return;
503 add_wait_queue_exclusive(&rqw->wait, &wait);
504 do {
505 set_current_state(TASK_UNINTERRUPTIBLE);
507 if (!rwb_enabled(rwb)) {
508 atomic_inc(&rqw->inflight);
509 break;
512 if (rq_wait_inc_below(rqw, get_limit(rwb, rw)))
513 break;
515 if (lock) {
516 spin_unlock_irq(lock);
517 io_schedule();
518 spin_lock_irq(lock);
519 } else
520 io_schedule();
521 } while (1);
523 __set_current_state(TASK_RUNNING);
524 remove_wait_queue(&rqw->wait, &wait);
527 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
529 switch (bio_op(bio)) {
530 case REQ_OP_WRITE:
532 * Don't throttle WRITE_ODIRECT
534 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
535 (REQ_SYNC | REQ_IDLE))
536 return false;
537 /* fallthrough */
538 case REQ_OP_DISCARD:
539 return true;
540 default:
541 return false;
545 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
547 enum wbt_flags flags = 0;
549 if (bio_op(bio) == REQ_OP_READ) {
550 flags = WBT_READ;
551 } else if (wbt_should_throttle(rwb, bio)) {
552 if (current_is_kswapd())
553 flags |= WBT_KSWAPD;
554 if (bio_op(bio) == REQ_OP_DISCARD)
555 flags |= WBT_DISCARD;
556 flags |= WBT_TRACKED;
558 return flags;
561 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
563 struct rq_wb *rwb = RQWB(rqos);
564 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
565 __wbt_done(rqos, flags);
569 * Returns true if the IO request should be accounted, false if not.
570 * May sleep, if we have exceeded the writeback limits. Caller can pass
571 * in an irq held spinlock, if it holds one when calling this function.
572 * If we do sleep, we'll release and re-grab it.
574 static void wbt_wait(struct rq_qos *rqos, struct bio *bio, spinlock_t *lock)
576 struct rq_wb *rwb = RQWB(rqos);
577 enum wbt_flags flags;
579 if (!rwb_enabled(rwb))
580 return;
582 flags = bio_to_wbt_flags(rwb, bio);
584 if (!wbt_should_throttle(rwb, bio)) {
585 if (flags & WBT_READ)
586 wb_timestamp(rwb, &rwb->last_issue);
587 return;
590 if (current_is_kswapd())
591 flags |= WBT_KSWAPD;
592 if (bio_op(bio) == REQ_OP_DISCARD)
593 flags |= WBT_DISCARD;
595 __wbt_wait(rwb, flags, bio->bi_opf, lock);
597 if (!blk_stat_is_active(rwb->cb))
598 rwb_arm_timer(rwb);
601 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
603 struct rq_wb *rwb = RQWB(rqos);
604 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
607 void wbt_issue(struct rq_qos *rqos, struct request *rq)
609 struct rq_wb *rwb = RQWB(rqos);
611 if (!rwb_enabled(rwb))
612 return;
615 * Track sync issue, in case it takes a long time to complete. Allows us
616 * to react quicker, if a sync IO takes a long time to complete. Note
617 * that this is just a hint. The request can go away when it completes,
618 * so it's important we never dereference it. We only use the address to
619 * compare with, which is why we store the sync_issue time locally.
621 if (wbt_is_read(rq) && !rwb->sync_issue) {
622 rwb->sync_cookie = rq;
623 rwb->sync_issue = rq->io_start_time_ns;
627 void wbt_requeue(struct rq_qos *rqos, struct request *rq)
629 struct rq_wb *rwb = RQWB(rqos);
630 if (!rwb_enabled(rwb))
631 return;
632 if (rq == rwb->sync_cookie) {
633 rwb->sync_issue = 0;
634 rwb->sync_cookie = NULL;
638 void wbt_set_queue_depth(struct request_queue *q, unsigned int depth)
640 struct rq_qos *rqos = wbt_rq_qos(q);
641 if (rqos) {
642 RQWB(rqos)->rq_depth.queue_depth = depth;
643 __wbt_update_limits(RQWB(rqos));
647 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
649 struct rq_qos *rqos = wbt_rq_qos(q);
650 if (rqos)
651 RQWB(rqos)->wc = write_cache_on;
655 * Enable wbt if defaults are configured that way
657 void wbt_enable_default(struct request_queue *q)
659 struct rq_qos *rqos = wbt_rq_qos(q);
660 /* Throttling already enabled? */
661 if (rqos)
662 return;
664 /* Queue not registered? Maybe shutting down... */
665 if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
666 return;
668 if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) ||
669 (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ)))
670 wbt_init(q);
672 EXPORT_SYMBOL_GPL(wbt_enable_default);
674 u64 wbt_default_latency_nsec(struct request_queue *q)
677 * We default to 2msec for non-rotational storage, and 75msec
678 * for rotational storage.
680 if (blk_queue_nonrot(q))
681 return 2000000ULL;
682 else
683 return 75000000ULL;
686 static int wbt_data_dir(const struct request *rq)
688 const int op = req_op(rq);
690 if (op == REQ_OP_READ)
691 return READ;
692 else if (op_is_write(op))
693 return WRITE;
695 /* don't account */
696 return -1;
699 static void wbt_exit(struct rq_qos *rqos)
701 struct rq_wb *rwb = RQWB(rqos);
702 struct request_queue *q = rqos->q;
704 blk_stat_remove_callback(q, rwb->cb);
705 blk_stat_free_callback(rwb->cb);
706 kfree(rwb);
710 * Disable wbt, if enabled by default.
712 void wbt_disable_default(struct request_queue *q)
714 struct rq_qos *rqos = wbt_rq_qos(q);
715 struct rq_wb *rwb;
716 if (!rqos)
717 return;
718 rwb = RQWB(rqos);
719 if (rwb->enable_state == WBT_STATE_ON_DEFAULT)
720 rwb->wb_normal = 0;
722 EXPORT_SYMBOL_GPL(wbt_disable_default);
725 static struct rq_qos_ops wbt_rqos_ops = {
726 .throttle = wbt_wait,
727 .issue = wbt_issue,
728 .track = wbt_track,
729 .requeue = wbt_requeue,
730 .done = wbt_done,
731 .cleanup = wbt_cleanup,
732 .exit = wbt_exit,
735 int wbt_init(struct request_queue *q)
737 struct rq_wb *rwb;
738 int i;
740 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
741 if (!rwb)
742 return -ENOMEM;
744 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
745 if (!rwb->cb) {
746 kfree(rwb);
747 return -ENOMEM;
750 for (i = 0; i < WBT_NUM_RWQ; i++)
751 rq_wait_init(&rwb->rq_wait[i]);
753 rwb->rqos.id = RQ_QOS_WBT;
754 rwb->rqos.ops = &wbt_rqos_ops;
755 rwb->rqos.q = q;
756 rwb->last_comp = rwb->last_issue = jiffies;
757 rwb->win_nsec = RWB_WINDOW_NSEC;
758 rwb->enable_state = WBT_STATE_ON_DEFAULT;
759 rwb->wc = 1;
760 rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
761 __wbt_update_limits(rwb);
764 * Assign rwb and add the stats callback.
766 rq_qos_add(q, &rwb->rqos);
767 blk_stat_add_callback(q, rwb->cb);
769 rwb->min_lat_nsec = wbt_default_latency_nsec(q);
771 wbt_set_queue_depth(q, blk_queue_depth(q));
772 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
774 return 0;