proc: test /proc/thread-self symlink
[linux/fpc-iii.git] / virt / kvm / arm / arm.c
blob108250e4d37640846c36c991420eafe3d4cbb18a
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <trace/events/kvm.h>
34 #include <kvm/arm_pmu.h>
35 #include <kvm/arm_psci.h>
37 #define CREATE_TRACE_POINTS
38 #include "trace.h"
40 #include <linux/uaccess.h>
41 #include <asm/ptrace.h>
42 #include <asm/mman.h>
43 #include <asm/tlbflush.h>
44 #include <asm/cacheflush.h>
45 #include <asm/cpufeature.h>
46 #include <asm/virt.h>
47 #include <asm/kvm_arm.h>
48 #include <asm/kvm_asm.h>
49 #include <asm/kvm_mmu.h>
50 #include <asm/kvm_emulate.h>
51 #include <asm/kvm_coproc.h>
52 #include <asm/sections.h>
54 #ifdef REQUIRES_VIRT
55 __asm__(".arch_extension virt");
56 #endif
58 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
59 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61 /* Per-CPU variable containing the currently running vcpu. */
62 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64 /* The VMID used in the VTTBR */
65 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
66 static u32 kvm_next_vmid;
67 static unsigned int kvm_vmid_bits __read_mostly;
68 static DEFINE_RWLOCK(kvm_vmid_lock);
70 static bool vgic_present;
72 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
79 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
81 /**
82 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
83 * Must be called from non-preemptible context
85 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 return __this_cpu_read(kvm_arm_running_vcpu);
90 /**
91 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 return &kvm_arm_running_vcpu;
98 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
103 int kvm_arch_hardware_setup(void)
105 return 0;
108 void kvm_arch_check_processor_compat(void *rtn)
110 *(int *)rtn = 0;
115 * kvm_arch_init_vm - initializes a VM data structure
116 * @kvm: pointer to the KVM struct
118 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 int ret, cpu;
122 if (type)
123 return -EINVAL;
125 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
126 if (!kvm->arch.last_vcpu_ran)
127 return -ENOMEM;
129 for_each_possible_cpu(cpu)
130 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
132 ret = kvm_alloc_stage2_pgd(kvm);
133 if (ret)
134 goto out_fail_alloc;
136 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
137 if (ret)
138 goto out_free_stage2_pgd;
140 kvm_vgic_early_init(kvm);
142 /* Mark the initial VMID generation invalid */
143 kvm->arch.vmid_gen = 0;
145 /* The maximum number of VCPUs is limited by the host's GIC model */
146 kvm->arch.max_vcpus = vgic_present ?
147 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149 return ret;
150 out_free_stage2_pgd:
151 kvm_free_stage2_pgd(kvm);
152 out_fail_alloc:
153 free_percpu(kvm->arch.last_vcpu_ran);
154 kvm->arch.last_vcpu_ran = NULL;
155 return ret;
158 bool kvm_arch_has_vcpu_debugfs(void)
160 return false;
163 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
165 return 0;
168 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 return VM_FAULT_SIGBUS;
175 * kvm_arch_destroy_vm - destroy the VM data structure
176 * @kvm: pointer to the KVM struct
178 void kvm_arch_destroy_vm(struct kvm *kvm)
180 int i;
182 kvm_vgic_destroy(kvm);
184 free_percpu(kvm->arch.last_vcpu_ran);
185 kvm->arch.last_vcpu_ran = NULL;
187 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
188 if (kvm->vcpus[i]) {
189 kvm_arch_vcpu_free(kvm->vcpus[i]);
190 kvm->vcpus[i] = NULL;
193 atomic_set(&kvm->online_vcpus, 0);
196 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 int r;
199 switch (ext) {
200 case KVM_CAP_IRQCHIP:
201 r = vgic_present;
202 break;
203 case KVM_CAP_IOEVENTFD:
204 case KVM_CAP_DEVICE_CTRL:
205 case KVM_CAP_USER_MEMORY:
206 case KVM_CAP_SYNC_MMU:
207 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
208 case KVM_CAP_ONE_REG:
209 case KVM_CAP_ARM_PSCI:
210 case KVM_CAP_ARM_PSCI_0_2:
211 case KVM_CAP_READONLY_MEM:
212 case KVM_CAP_MP_STATE:
213 case KVM_CAP_IMMEDIATE_EXIT:
214 r = 1;
215 break;
216 case KVM_CAP_ARM_SET_DEVICE_ADDR:
217 r = 1;
218 break;
219 case KVM_CAP_NR_VCPUS:
220 r = num_online_cpus();
221 break;
222 case KVM_CAP_MAX_VCPUS:
223 r = KVM_MAX_VCPUS;
224 break;
225 case KVM_CAP_NR_MEMSLOTS:
226 r = KVM_USER_MEM_SLOTS;
227 break;
228 case KVM_CAP_MSI_DEVID:
229 if (!kvm)
230 r = -EINVAL;
231 else
232 r = kvm->arch.vgic.msis_require_devid;
233 break;
234 case KVM_CAP_ARM_USER_IRQ:
236 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
237 * (bump this number if adding more devices)
239 r = 1;
240 break;
241 default:
242 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
243 break;
245 return r;
248 long kvm_arch_dev_ioctl(struct file *filp,
249 unsigned int ioctl, unsigned long arg)
251 return -EINVAL;
254 struct kvm *kvm_arch_alloc_vm(void)
256 if (!has_vhe())
257 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
259 return vzalloc(sizeof(struct kvm));
262 void kvm_arch_free_vm(struct kvm *kvm)
264 if (!has_vhe())
265 kfree(kvm);
266 else
267 vfree(kvm);
270 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
272 int err;
273 struct kvm_vcpu *vcpu;
275 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
276 err = -EBUSY;
277 goto out;
280 if (id >= kvm->arch.max_vcpus) {
281 err = -EINVAL;
282 goto out;
285 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
286 if (!vcpu) {
287 err = -ENOMEM;
288 goto out;
291 err = kvm_vcpu_init(vcpu, kvm, id);
292 if (err)
293 goto free_vcpu;
295 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
296 if (err)
297 goto vcpu_uninit;
299 return vcpu;
300 vcpu_uninit:
301 kvm_vcpu_uninit(vcpu);
302 free_vcpu:
303 kmem_cache_free(kvm_vcpu_cache, vcpu);
304 out:
305 return ERR_PTR(err);
308 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
312 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
314 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
315 static_branch_dec(&userspace_irqchip_in_use);
317 kvm_mmu_free_memory_caches(vcpu);
318 kvm_timer_vcpu_terminate(vcpu);
319 kvm_pmu_vcpu_destroy(vcpu);
320 kvm_vcpu_uninit(vcpu);
321 kmem_cache_free(kvm_vcpu_cache, vcpu);
324 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
326 kvm_arch_vcpu_free(vcpu);
329 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
331 return kvm_timer_is_pending(vcpu);
334 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
336 kvm_timer_schedule(vcpu);
337 kvm_vgic_v4_enable_doorbell(vcpu);
340 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
342 kvm_timer_unschedule(vcpu);
343 kvm_vgic_v4_disable_doorbell(vcpu);
346 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
348 /* Force users to call KVM_ARM_VCPU_INIT */
349 vcpu->arch.target = -1;
350 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
352 /* Set up the timer */
353 kvm_timer_vcpu_init(vcpu);
355 kvm_arm_reset_debug_ptr(vcpu);
357 return kvm_vgic_vcpu_init(vcpu);
360 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
362 int *last_ran;
364 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
367 * We might get preempted before the vCPU actually runs, but
368 * over-invalidation doesn't affect correctness.
370 if (*last_ran != vcpu->vcpu_id) {
371 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
372 *last_ran = vcpu->vcpu_id;
375 vcpu->cpu = cpu;
376 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
378 kvm_arm_set_running_vcpu(vcpu);
379 kvm_vgic_load(vcpu);
380 kvm_timer_vcpu_load(vcpu);
381 kvm_vcpu_load_sysregs(vcpu);
382 kvm_arch_vcpu_load_fp(vcpu);
385 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
387 kvm_arch_vcpu_put_fp(vcpu);
388 kvm_vcpu_put_sysregs(vcpu);
389 kvm_timer_vcpu_put(vcpu);
390 kvm_vgic_put(vcpu);
392 vcpu->cpu = -1;
394 kvm_arm_set_running_vcpu(NULL);
397 static void vcpu_power_off(struct kvm_vcpu *vcpu)
399 vcpu->arch.power_off = true;
400 kvm_make_request(KVM_REQ_SLEEP, vcpu);
401 kvm_vcpu_kick(vcpu);
404 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
405 struct kvm_mp_state *mp_state)
407 if (vcpu->arch.power_off)
408 mp_state->mp_state = KVM_MP_STATE_STOPPED;
409 else
410 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
412 return 0;
415 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
416 struct kvm_mp_state *mp_state)
418 int ret = 0;
420 switch (mp_state->mp_state) {
421 case KVM_MP_STATE_RUNNABLE:
422 vcpu->arch.power_off = false;
423 break;
424 case KVM_MP_STATE_STOPPED:
425 vcpu_power_off(vcpu);
426 break;
427 default:
428 ret = -EINVAL;
431 return ret;
435 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
436 * @v: The VCPU pointer
438 * If the guest CPU is not waiting for interrupts or an interrupt line is
439 * asserted, the CPU is by definition runnable.
441 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
443 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
444 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
445 && !v->arch.power_off && !v->arch.pause);
448 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
450 return vcpu_mode_priv(vcpu);
453 /* Just ensure a guest exit from a particular CPU */
454 static void exit_vm_noop(void *info)
458 void force_vm_exit(const cpumask_t *mask)
460 preempt_disable();
461 smp_call_function_many(mask, exit_vm_noop, NULL, true);
462 preempt_enable();
466 * need_new_vmid_gen - check that the VMID is still valid
467 * @kvm: The VM's VMID to check
469 * return true if there is a new generation of VMIDs being used
471 * The hardware supports only 256 values with the value zero reserved for the
472 * host, so we check if an assigned value belongs to a previous generation,
473 * which which requires us to assign a new value. If we're the first to use a
474 * VMID for the new generation, we must flush necessary caches and TLBs on all
475 * CPUs.
477 static bool need_new_vmid_gen(struct kvm *kvm)
479 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
483 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
484 * @kvm The guest that we are about to run
486 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
487 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
488 * caches and TLBs.
490 static void update_vttbr(struct kvm *kvm)
492 phys_addr_t pgd_phys;
493 u64 vmid;
494 bool new_gen;
496 read_lock(&kvm_vmid_lock);
497 new_gen = need_new_vmid_gen(kvm);
498 read_unlock(&kvm_vmid_lock);
500 if (!new_gen)
501 return;
503 write_lock(&kvm_vmid_lock);
506 * We need to re-check the vmid_gen here to ensure that if another vcpu
507 * already allocated a valid vmid for this vm, then this vcpu should
508 * use the same vmid.
510 if (!need_new_vmid_gen(kvm)) {
511 write_unlock(&kvm_vmid_lock);
512 return;
515 /* First user of a new VMID generation? */
516 if (unlikely(kvm_next_vmid == 0)) {
517 atomic64_inc(&kvm_vmid_gen);
518 kvm_next_vmid = 1;
521 * On SMP we know no other CPUs can use this CPU's or each
522 * other's VMID after force_vm_exit returns since the
523 * kvm_vmid_lock blocks them from reentry to the guest.
525 force_vm_exit(cpu_all_mask);
527 * Now broadcast TLB + ICACHE invalidation over the inner
528 * shareable domain to make sure all data structures are
529 * clean.
531 kvm_call_hyp(__kvm_flush_vm_context);
534 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
535 kvm->arch.vmid = kvm_next_vmid;
536 kvm_next_vmid++;
537 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
539 /* update vttbr to be used with the new vmid */
540 pgd_phys = virt_to_phys(kvm->arch.pgd);
541 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
542 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
543 kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
545 write_unlock(&kvm_vmid_lock);
548 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
550 struct kvm *kvm = vcpu->kvm;
551 int ret = 0;
553 if (likely(vcpu->arch.has_run_once))
554 return 0;
556 vcpu->arch.has_run_once = true;
558 if (likely(irqchip_in_kernel(kvm))) {
560 * Map the VGIC hardware resources before running a vcpu the
561 * first time on this VM.
563 if (unlikely(!vgic_ready(kvm))) {
564 ret = kvm_vgic_map_resources(kvm);
565 if (ret)
566 return ret;
568 } else {
570 * Tell the rest of the code that there are userspace irqchip
571 * VMs in the wild.
573 static_branch_inc(&userspace_irqchip_in_use);
576 ret = kvm_timer_enable(vcpu);
577 if (ret)
578 return ret;
580 ret = kvm_arm_pmu_v3_enable(vcpu);
582 return ret;
585 bool kvm_arch_intc_initialized(struct kvm *kvm)
587 return vgic_initialized(kvm);
590 void kvm_arm_halt_guest(struct kvm *kvm)
592 int i;
593 struct kvm_vcpu *vcpu;
595 kvm_for_each_vcpu(i, vcpu, kvm)
596 vcpu->arch.pause = true;
597 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
600 void kvm_arm_resume_guest(struct kvm *kvm)
602 int i;
603 struct kvm_vcpu *vcpu;
605 kvm_for_each_vcpu(i, vcpu, kvm) {
606 vcpu->arch.pause = false;
607 swake_up_one(kvm_arch_vcpu_wq(vcpu));
611 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
613 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
615 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
616 (!vcpu->arch.pause)));
618 if (vcpu->arch.power_off || vcpu->arch.pause) {
619 /* Awaken to handle a signal, request we sleep again later. */
620 kvm_make_request(KVM_REQ_SLEEP, vcpu);
624 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
626 return vcpu->arch.target >= 0;
629 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
631 if (kvm_request_pending(vcpu)) {
632 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
633 vcpu_req_sleep(vcpu);
636 * Clear IRQ_PENDING requests that were made to guarantee
637 * that a VCPU sees new virtual interrupts.
639 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
644 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
645 * @vcpu: The VCPU pointer
646 * @run: The kvm_run structure pointer used for userspace state exchange
648 * This function is called through the VCPU_RUN ioctl called from user space. It
649 * will execute VM code in a loop until the time slice for the process is used
650 * or some emulation is needed from user space in which case the function will
651 * return with return value 0 and with the kvm_run structure filled in with the
652 * required data for the requested emulation.
654 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
656 int ret;
658 if (unlikely(!kvm_vcpu_initialized(vcpu)))
659 return -ENOEXEC;
661 ret = kvm_vcpu_first_run_init(vcpu);
662 if (ret)
663 return ret;
665 if (run->exit_reason == KVM_EXIT_MMIO) {
666 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
667 if (ret)
668 return ret;
669 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
670 return 0;
673 if (run->immediate_exit)
674 return -EINTR;
676 vcpu_load(vcpu);
678 kvm_sigset_activate(vcpu);
680 ret = 1;
681 run->exit_reason = KVM_EXIT_UNKNOWN;
682 while (ret > 0) {
684 * Check conditions before entering the guest
686 cond_resched();
688 update_vttbr(vcpu->kvm);
690 check_vcpu_requests(vcpu);
693 * Preparing the interrupts to be injected also
694 * involves poking the GIC, which must be done in a
695 * non-preemptible context.
697 preempt_disable();
699 kvm_pmu_flush_hwstate(vcpu);
701 local_irq_disable();
703 kvm_vgic_flush_hwstate(vcpu);
706 * Exit if we have a signal pending so that we can deliver the
707 * signal to user space.
709 if (signal_pending(current)) {
710 ret = -EINTR;
711 run->exit_reason = KVM_EXIT_INTR;
715 * If we're using a userspace irqchip, then check if we need
716 * to tell a userspace irqchip about timer or PMU level
717 * changes and if so, exit to userspace (the actual level
718 * state gets updated in kvm_timer_update_run and
719 * kvm_pmu_update_run below).
721 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
722 if (kvm_timer_should_notify_user(vcpu) ||
723 kvm_pmu_should_notify_user(vcpu)) {
724 ret = -EINTR;
725 run->exit_reason = KVM_EXIT_INTR;
730 * Ensure we set mode to IN_GUEST_MODE after we disable
731 * interrupts and before the final VCPU requests check.
732 * See the comment in kvm_vcpu_exiting_guest_mode() and
733 * Documentation/virtual/kvm/vcpu-requests.rst
735 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
737 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
738 kvm_request_pending(vcpu)) {
739 vcpu->mode = OUTSIDE_GUEST_MODE;
740 isb(); /* Ensure work in x_flush_hwstate is committed */
741 kvm_pmu_sync_hwstate(vcpu);
742 if (static_branch_unlikely(&userspace_irqchip_in_use))
743 kvm_timer_sync_hwstate(vcpu);
744 kvm_vgic_sync_hwstate(vcpu);
745 local_irq_enable();
746 preempt_enable();
747 continue;
750 kvm_arm_setup_debug(vcpu);
752 /**************************************************************
753 * Enter the guest
755 trace_kvm_entry(*vcpu_pc(vcpu));
756 guest_enter_irqoff();
758 if (has_vhe()) {
759 kvm_arm_vhe_guest_enter();
760 ret = kvm_vcpu_run_vhe(vcpu);
761 kvm_arm_vhe_guest_exit();
762 } else {
763 ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
766 vcpu->mode = OUTSIDE_GUEST_MODE;
767 vcpu->stat.exits++;
769 * Back from guest
770 *************************************************************/
772 kvm_arm_clear_debug(vcpu);
775 * We must sync the PMU state before the vgic state so
776 * that the vgic can properly sample the updated state of the
777 * interrupt line.
779 kvm_pmu_sync_hwstate(vcpu);
782 * Sync the vgic state before syncing the timer state because
783 * the timer code needs to know if the virtual timer
784 * interrupts are active.
786 kvm_vgic_sync_hwstate(vcpu);
789 * Sync the timer hardware state before enabling interrupts as
790 * we don't want vtimer interrupts to race with syncing the
791 * timer virtual interrupt state.
793 if (static_branch_unlikely(&userspace_irqchip_in_use))
794 kvm_timer_sync_hwstate(vcpu);
796 kvm_arch_vcpu_ctxsync_fp(vcpu);
799 * We may have taken a host interrupt in HYP mode (ie
800 * while executing the guest). This interrupt is still
801 * pending, as we haven't serviced it yet!
803 * We're now back in SVC mode, with interrupts
804 * disabled. Enabling the interrupts now will have
805 * the effect of taking the interrupt again, in SVC
806 * mode this time.
808 local_irq_enable();
811 * We do local_irq_enable() before calling guest_exit() so
812 * that if a timer interrupt hits while running the guest we
813 * account that tick as being spent in the guest. We enable
814 * preemption after calling guest_exit() so that if we get
815 * preempted we make sure ticks after that is not counted as
816 * guest time.
818 guest_exit();
819 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
821 /* Exit types that need handling before we can be preempted */
822 handle_exit_early(vcpu, run, ret);
824 preempt_enable();
826 ret = handle_exit(vcpu, run, ret);
829 /* Tell userspace about in-kernel device output levels */
830 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
831 kvm_timer_update_run(vcpu);
832 kvm_pmu_update_run(vcpu);
835 kvm_sigset_deactivate(vcpu);
837 vcpu_put(vcpu);
838 return ret;
841 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
843 int bit_index;
844 bool set;
845 unsigned long *hcr;
847 if (number == KVM_ARM_IRQ_CPU_IRQ)
848 bit_index = __ffs(HCR_VI);
849 else /* KVM_ARM_IRQ_CPU_FIQ */
850 bit_index = __ffs(HCR_VF);
852 hcr = vcpu_hcr(vcpu);
853 if (level)
854 set = test_and_set_bit(bit_index, hcr);
855 else
856 set = test_and_clear_bit(bit_index, hcr);
859 * If we didn't change anything, no need to wake up or kick other CPUs
861 if (set == level)
862 return 0;
865 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
866 * trigger a world-switch round on the running physical CPU to set the
867 * virtual IRQ/FIQ fields in the HCR appropriately.
869 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
870 kvm_vcpu_kick(vcpu);
872 return 0;
875 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
876 bool line_status)
878 u32 irq = irq_level->irq;
879 unsigned int irq_type, vcpu_idx, irq_num;
880 int nrcpus = atomic_read(&kvm->online_vcpus);
881 struct kvm_vcpu *vcpu = NULL;
882 bool level = irq_level->level;
884 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
885 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
886 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
888 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
890 switch (irq_type) {
891 case KVM_ARM_IRQ_TYPE_CPU:
892 if (irqchip_in_kernel(kvm))
893 return -ENXIO;
895 if (vcpu_idx >= nrcpus)
896 return -EINVAL;
898 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
899 if (!vcpu)
900 return -EINVAL;
902 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
903 return -EINVAL;
905 return vcpu_interrupt_line(vcpu, irq_num, level);
906 case KVM_ARM_IRQ_TYPE_PPI:
907 if (!irqchip_in_kernel(kvm))
908 return -ENXIO;
910 if (vcpu_idx >= nrcpus)
911 return -EINVAL;
913 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
914 if (!vcpu)
915 return -EINVAL;
917 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
918 return -EINVAL;
920 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
921 case KVM_ARM_IRQ_TYPE_SPI:
922 if (!irqchip_in_kernel(kvm))
923 return -ENXIO;
925 if (irq_num < VGIC_NR_PRIVATE_IRQS)
926 return -EINVAL;
928 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
931 return -EINVAL;
934 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
935 const struct kvm_vcpu_init *init)
937 unsigned int i;
938 int phys_target = kvm_target_cpu();
940 if (init->target != phys_target)
941 return -EINVAL;
944 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
945 * use the same target.
947 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
948 return -EINVAL;
950 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
951 for (i = 0; i < sizeof(init->features) * 8; i++) {
952 bool set = (init->features[i / 32] & (1 << (i % 32)));
954 if (set && i >= KVM_VCPU_MAX_FEATURES)
955 return -ENOENT;
958 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
959 * use the same feature set.
961 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
962 test_bit(i, vcpu->arch.features) != set)
963 return -EINVAL;
965 if (set)
966 set_bit(i, vcpu->arch.features);
969 vcpu->arch.target = phys_target;
971 /* Now we know what it is, we can reset it. */
972 return kvm_reset_vcpu(vcpu);
976 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
977 struct kvm_vcpu_init *init)
979 int ret;
981 ret = kvm_vcpu_set_target(vcpu, init);
982 if (ret)
983 return ret;
986 * Ensure a rebooted VM will fault in RAM pages and detect if the
987 * guest MMU is turned off and flush the caches as needed.
989 if (vcpu->arch.has_run_once)
990 stage2_unmap_vm(vcpu->kvm);
992 vcpu_reset_hcr(vcpu);
995 * Handle the "start in power-off" case.
997 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
998 vcpu_power_off(vcpu);
999 else
1000 vcpu->arch.power_off = false;
1002 return 0;
1005 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1006 struct kvm_device_attr *attr)
1008 int ret = -ENXIO;
1010 switch (attr->group) {
1011 default:
1012 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1013 break;
1016 return ret;
1019 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1020 struct kvm_device_attr *attr)
1022 int ret = -ENXIO;
1024 switch (attr->group) {
1025 default:
1026 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1027 break;
1030 return ret;
1033 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1034 struct kvm_device_attr *attr)
1036 int ret = -ENXIO;
1038 switch (attr->group) {
1039 default:
1040 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1041 break;
1044 return ret;
1047 long kvm_arch_vcpu_ioctl(struct file *filp,
1048 unsigned int ioctl, unsigned long arg)
1050 struct kvm_vcpu *vcpu = filp->private_data;
1051 void __user *argp = (void __user *)arg;
1052 struct kvm_device_attr attr;
1053 long r;
1055 switch (ioctl) {
1056 case KVM_ARM_VCPU_INIT: {
1057 struct kvm_vcpu_init init;
1059 r = -EFAULT;
1060 if (copy_from_user(&init, argp, sizeof(init)))
1061 break;
1063 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1064 break;
1066 case KVM_SET_ONE_REG:
1067 case KVM_GET_ONE_REG: {
1068 struct kvm_one_reg reg;
1070 r = -ENOEXEC;
1071 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1072 break;
1074 r = -EFAULT;
1075 if (copy_from_user(&reg, argp, sizeof(reg)))
1076 break;
1078 if (ioctl == KVM_SET_ONE_REG)
1079 r = kvm_arm_set_reg(vcpu, &reg);
1080 else
1081 r = kvm_arm_get_reg(vcpu, &reg);
1082 break;
1084 case KVM_GET_REG_LIST: {
1085 struct kvm_reg_list __user *user_list = argp;
1086 struct kvm_reg_list reg_list;
1087 unsigned n;
1089 r = -ENOEXEC;
1090 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1091 break;
1093 r = -EFAULT;
1094 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1095 break;
1096 n = reg_list.n;
1097 reg_list.n = kvm_arm_num_regs(vcpu);
1098 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1099 break;
1100 r = -E2BIG;
1101 if (n < reg_list.n)
1102 break;
1103 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1104 break;
1106 case KVM_SET_DEVICE_ATTR: {
1107 r = -EFAULT;
1108 if (copy_from_user(&attr, argp, sizeof(attr)))
1109 break;
1110 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1111 break;
1113 case KVM_GET_DEVICE_ATTR: {
1114 r = -EFAULT;
1115 if (copy_from_user(&attr, argp, sizeof(attr)))
1116 break;
1117 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1118 break;
1120 case KVM_HAS_DEVICE_ATTR: {
1121 r = -EFAULT;
1122 if (copy_from_user(&attr, argp, sizeof(attr)))
1123 break;
1124 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1125 break;
1127 default:
1128 r = -EINVAL;
1131 return r;
1135 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1136 * @kvm: kvm instance
1137 * @log: slot id and address to which we copy the log
1139 * Steps 1-4 below provide general overview of dirty page logging. See
1140 * kvm_get_dirty_log_protect() function description for additional details.
1142 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1143 * always flush the TLB (step 4) even if previous step failed and the dirty
1144 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1145 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1146 * writes will be marked dirty for next log read.
1148 * 1. Take a snapshot of the bit and clear it if needed.
1149 * 2. Write protect the corresponding page.
1150 * 3. Copy the snapshot to the userspace.
1151 * 4. Flush TLB's if needed.
1153 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1155 bool is_dirty = false;
1156 int r;
1158 mutex_lock(&kvm->slots_lock);
1160 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1162 if (is_dirty)
1163 kvm_flush_remote_tlbs(kvm);
1165 mutex_unlock(&kvm->slots_lock);
1166 return r;
1169 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1170 struct kvm_arm_device_addr *dev_addr)
1172 unsigned long dev_id, type;
1174 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1175 KVM_ARM_DEVICE_ID_SHIFT;
1176 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1177 KVM_ARM_DEVICE_TYPE_SHIFT;
1179 switch (dev_id) {
1180 case KVM_ARM_DEVICE_VGIC_V2:
1181 if (!vgic_present)
1182 return -ENXIO;
1183 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1184 default:
1185 return -ENODEV;
1189 long kvm_arch_vm_ioctl(struct file *filp,
1190 unsigned int ioctl, unsigned long arg)
1192 struct kvm *kvm = filp->private_data;
1193 void __user *argp = (void __user *)arg;
1195 switch (ioctl) {
1196 case KVM_CREATE_IRQCHIP: {
1197 int ret;
1198 if (!vgic_present)
1199 return -ENXIO;
1200 mutex_lock(&kvm->lock);
1201 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1202 mutex_unlock(&kvm->lock);
1203 return ret;
1205 case KVM_ARM_SET_DEVICE_ADDR: {
1206 struct kvm_arm_device_addr dev_addr;
1208 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1209 return -EFAULT;
1210 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1212 case KVM_ARM_PREFERRED_TARGET: {
1213 int err;
1214 struct kvm_vcpu_init init;
1216 err = kvm_vcpu_preferred_target(&init);
1217 if (err)
1218 return err;
1220 if (copy_to_user(argp, &init, sizeof(init)))
1221 return -EFAULT;
1223 return 0;
1225 default:
1226 return -EINVAL;
1230 static void cpu_init_hyp_mode(void *dummy)
1232 phys_addr_t pgd_ptr;
1233 unsigned long hyp_stack_ptr;
1234 unsigned long stack_page;
1235 unsigned long vector_ptr;
1237 /* Switch from the HYP stub to our own HYP init vector */
1238 __hyp_set_vectors(kvm_get_idmap_vector());
1240 pgd_ptr = kvm_mmu_get_httbr();
1241 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1242 hyp_stack_ptr = stack_page + PAGE_SIZE;
1243 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1245 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1246 __cpu_init_stage2();
1248 kvm_arm_init_debug();
1251 static void cpu_hyp_reset(void)
1253 if (!is_kernel_in_hyp_mode())
1254 __hyp_reset_vectors();
1257 static void cpu_hyp_reinit(void)
1259 cpu_hyp_reset();
1261 if (is_kernel_in_hyp_mode()) {
1263 * __cpu_init_stage2() is safe to call even if the PM
1264 * event was cancelled before the CPU was reset.
1266 __cpu_init_stage2();
1267 kvm_timer_init_vhe();
1268 } else {
1269 cpu_init_hyp_mode(NULL);
1272 if (vgic_present)
1273 kvm_vgic_init_cpu_hardware();
1276 static void _kvm_arch_hardware_enable(void *discard)
1278 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1279 cpu_hyp_reinit();
1280 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1284 int kvm_arch_hardware_enable(void)
1286 _kvm_arch_hardware_enable(NULL);
1287 return 0;
1290 static void _kvm_arch_hardware_disable(void *discard)
1292 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1293 cpu_hyp_reset();
1294 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1298 void kvm_arch_hardware_disable(void)
1300 _kvm_arch_hardware_disable(NULL);
1303 #ifdef CONFIG_CPU_PM
1304 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1305 unsigned long cmd,
1306 void *v)
1309 * kvm_arm_hardware_enabled is left with its old value over
1310 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1311 * re-enable hyp.
1313 switch (cmd) {
1314 case CPU_PM_ENTER:
1315 if (__this_cpu_read(kvm_arm_hardware_enabled))
1317 * don't update kvm_arm_hardware_enabled here
1318 * so that the hardware will be re-enabled
1319 * when we resume. See below.
1321 cpu_hyp_reset();
1323 return NOTIFY_OK;
1324 case CPU_PM_ENTER_FAILED:
1325 case CPU_PM_EXIT:
1326 if (__this_cpu_read(kvm_arm_hardware_enabled))
1327 /* The hardware was enabled before suspend. */
1328 cpu_hyp_reinit();
1330 return NOTIFY_OK;
1332 default:
1333 return NOTIFY_DONE;
1337 static struct notifier_block hyp_init_cpu_pm_nb = {
1338 .notifier_call = hyp_init_cpu_pm_notifier,
1341 static void __init hyp_cpu_pm_init(void)
1343 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1345 static void __init hyp_cpu_pm_exit(void)
1347 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1349 #else
1350 static inline void hyp_cpu_pm_init(void)
1353 static inline void hyp_cpu_pm_exit(void)
1356 #endif
1358 static int init_common_resources(void)
1360 /* set size of VMID supported by CPU */
1361 kvm_vmid_bits = kvm_get_vmid_bits();
1362 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1364 return 0;
1367 static int init_subsystems(void)
1369 int err = 0;
1372 * Enable hardware so that subsystem initialisation can access EL2.
1374 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1377 * Register CPU lower-power notifier
1379 hyp_cpu_pm_init();
1382 * Init HYP view of VGIC
1384 err = kvm_vgic_hyp_init();
1385 switch (err) {
1386 case 0:
1387 vgic_present = true;
1388 break;
1389 case -ENODEV:
1390 case -ENXIO:
1391 vgic_present = false;
1392 err = 0;
1393 break;
1394 default:
1395 goto out;
1399 * Init HYP architected timer support
1401 err = kvm_timer_hyp_init(vgic_present);
1402 if (err)
1403 goto out;
1405 kvm_perf_init();
1406 kvm_coproc_table_init();
1408 out:
1409 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1411 return err;
1414 static void teardown_hyp_mode(void)
1416 int cpu;
1418 free_hyp_pgds();
1419 for_each_possible_cpu(cpu)
1420 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1421 hyp_cpu_pm_exit();
1425 * Inits Hyp-mode on all online CPUs
1427 static int init_hyp_mode(void)
1429 int cpu;
1430 int err = 0;
1433 * Allocate Hyp PGD and setup Hyp identity mapping
1435 err = kvm_mmu_init();
1436 if (err)
1437 goto out_err;
1440 * Allocate stack pages for Hypervisor-mode
1442 for_each_possible_cpu(cpu) {
1443 unsigned long stack_page;
1445 stack_page = __get_free_page(GFP_KERNEL);
1446 if (!stack_page) {
1447 err = -ENOMEM;
1448 goto out_err;
1451 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1455 * Map the Hyp-code called directly from the host
1457 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1458 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1459 if (err) {
1460 kvm_err("Cannot map world-switch code\n");
1461 goto out_err;
1464 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1465 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1466 if (err) {
1467 kvm_err("Cannot map rodata section\n");
1468 goto out_err;
1471 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1472 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1473 if (err) {
1474 kvm_err("Cannot map bss section\n");
1475 goto out_err;
1478 err = kvm_map_vectors();
1479 if (err) {
1480 kvm_err("Cannot map vectors\n");
1481 goto out_err;
1485 * Map the Hyp stack pages
1487 for_each_possible_cpu(cpu) {
1488 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1489 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1490 PAGE_HYP);
1492 if (err) {
1493 kvm_err("Cannot map hyp stack\n");
1494 goto out_err;
1498 for_each_possible_cpu(cpu) {
1499 kvm_cpu_context_t *cpu_ctxt;
1501 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1502 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1504 if (err) {
1505 kvm_err("Cannot map host CPU state: %d\n", err);
1506 goto out_err;
1510 err = hyp_map_aux_data();
1511 if (err)
1512 kvm_err("Cannot map host auxilary data: %d\n", err);
1514 return 0;
1516 out_err:
1517 teardown_hyp_mode();
1518 kvm_err("error initializing Hyp mode: %d\n", err);
1519 return err;
1522 static void check_kvm_target_cpu(void *ret)
1524 *(int *)ret = kvm_target_cpu();
1527 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1529 struct kvm_vcpu *vcpu;
1530 int i;
1532 mpidr &= MPIDR_HWID_BITMASK;
1533 kvm_for_each_vcpu(i, vcpu, kvm) {
1534 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1535 return vcpu;
1537 return NULL;
1540 bool kvm_arch_has_irq_bypass(void)
1542 return true;
1545 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1546 struct irq_bypass_producer *prod)
1548 struct kvm_kernel_irqfd *irqfd =
1549 container_of(cons, struct kvm_kernel_irqfd, consumer);
1551 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1552 &irqfd->irq_entry);
1554 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1555 struct irq_bypass_producer *prod)
1557 struct kvm_kernel_irqfd *irqfd =
1558 container_of(cons, struct kvm_kernel_irqfd, consumer);
1560 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1561 &irqfd->irq_entry);
1564 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1566 struct kvm_kernel_irqfd *irqfd =
1567 container_of(cons, struct kvm_kernel_irqfd, consumer);
1569 kvm_arm_halt_guest(irqfd->kvm);
1572 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1574 struct kvm_kernel_irqfd *irqfd =
1575 container_of(cons, struct kvm_kernel_irqfd, consumer);
1577 kvm_arm_resume_guest(irqfd->kvm);
1581 * Initialize Hyp-mode and memory mappings on all CPUs.
1583 int kvm_arch_init(void *opaque)
1585 int err;
1586 int ret, cpu;
1587 bool in_hyp_mode;
1589 if (!is_hyp_mode_available()) {
1590 kvm_info("HYP mode not available\n");
1591 return -ENODEV;
1594 if (!kvm_arch_check_sve_has_vhe()) {
1595 kvm_pr_unimpl("SVE system without VHE unsupported. Broken cpu?");
1596 return -ENODEV;
1599 for_each_online_cpu(cpu) {
1600 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1601 if (ret < 0) {
1602 kvm_err("Error, CPU %d not supported!\n", cpu);
1603 return -ENODEV;
1607 err = init_common_resources();
1608 if (err)
1609 return err;
1611 in_hyp_mode = is_kernel_in_hyp_mode();
1613 if (!in_hyp_mode) {
1614 err = init_hyp_mode();
1615 if (err)
1616 goto out_err;
1619 err = init_subsystems();
1620 if (err)
1621 goto out_hyp;
1623 if (in_hyp_mode)
1624 kvm_info("VHE mode initialized successfully\n");
1625 else
1626 kvm_info("Hyp mode initialized successfully\n");
1628 return 0;
1630 out_hyp:
1631 if (!in_hyp_mode)
1632 teardown_hyp_mode();
1633 out_err:
1634 return err;
1637 /* NOP: Compiling as a module not supported */
1638 void kvm_arch_exit(void)
1640 kvm_perf_teardown();
1643 static int arm_init(void)
1645 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1646 return rc;
1649 module_init(arm_init);