proc: test /proc/thread-self symlink
[linux/fpc-iii.git] / virt / kvm / arm / vgic / vgic-its.c
blob4ed79c939fb447188d0a2bc7c740e85e1d82135c
1 /*
2 * GICv3 ITS emulation
4 * Copyright (C) 2015,2016 ARM Ltd.
5 * Author: Andre Przywara <andre.przywara@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26 #include <linux/list_sort.h>
28 #include <linux/irqchip/arm-gic-v3.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
34 #include "vgic.h"
35 #include "vgic-mmio.h"
37 static int vgic_its_save_tables_v0(struct vgic_its *its);
38 static int vgic_its_restore_tables_v0(struct vgic_its *its);
39 static int vgic_its_commit_v0(struct vgic_its *its);
40 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41 struct kvm_vcpu *filter_vcpu, bool needs_inv);
44 * Creates a new (reference to a) struct vgic_irq for a given LPI.
45 * If this LPI is already mapped on another ITS, we increase its refcount
46 * and return a pointer to the existing structure.
47 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
48 * This function returns a pointer to the _unlocked_ structure.
50 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
51 struct kvm_vcpu *vcpu)
53 struct vgic_dist *dist = &kvm->arch.vgic;
54 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55 unsigned long flags;
56 int ret;
58 /* In this case there is no put, since we keep the reference. */
59 if (irq)
60 return irq;
62 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
63 if (!irq)
64 return ERR_PTR(-ENOMEM);
66 INIT_LIST_HEAD(&irq->lpi_list);
67 INIT_LIST_HEAD(&irq->ap_list);
68 spin_lock_init(&irq->irq_lock);
70 irq->config = VGIC_CONFIG_EDGE;
71 kref_init(&irq->refcount);
72 irq->intid = intid;
73 irq->target_vcpu = vcpu;
75 spin_lock_irqsave(&dist->lpi_list_lock, flags);
78 * There could be a race with another vgic_add_lpi(), so we need to
79 * check that we don't add a second list entry with the same LPI.
81 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
82 if (oldirq->intid != intid)
83 continue;
85 /* Someone was faster with adding this LPI, lets use that. */
86 kfree(irq);
87 irq = oldirq;
90 * This increases the refcount, the caller is expected to
91 * call vgic_put_irq() on the returned pointer once it's
92 * finished with the IRQ.
94 vgic_get_irq_kref(irq);
96 goto out_unlock;
99 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
100 dist->lpi_list_count++;
102 out_unlock:
103 spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
106 * We "cache" the configuration table entries in our struct vgic_irq's.
107 * However we only have those structs for mapped IRQs, so we read in
108 * the respective config data from memory here upon mapping the LPI.
110 ret = update_lpi_config(kvm, irq, NULL, false);
111 if (ret)
112 return ERR_PTR(ret);
114 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
115 if (ret)
116 return ERR_PTR(ret);
118 return irq;
121 struct its_device {
122 struct list_head dev_list;
124 /* the head for the list of ITTEs */
125 struct list_head itt_head;
126 u32 num_eventid_bits;
127 gpa_t itt_addr;
128 u32 device_id;
131 #define COLLECTION_NOT_MAPPED ((u32)~0)
133 struct its_collection {
134 struct list_head coll_list;
136 u32 collection_id;
137 u32 target_addr;
140 #define its_is_collection_mapped(coll) ((coll) && \
141 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
143 struct its_ite {
144 struct list_head ite_list;
146 struct vgic_irq *irq;
147 struct its_collection *collection;
148 u32 event_id;
152 * struct vgic_its_abi - ITS abi ops and settings
153 * @cte_esz: collection table entry size
154 * @dte_esz: device table entry size
155 * @ite_esz: interrupt translation table entry size
156 * @save tables: save the ITS tables into guest RAM
157 * @restore_tables: restore the ITS internal structs from tables
158 * stored in guest RAM
159 * @commit: initialize the registers which expose the ABI settings,
160 * especially the entry sizes
162 struct vgic_its_abi {
163 int cte_esz;
164 int dte_esz;
165 int ite_esz;
166 int (*save_tables)(struct vgic_its *its);
167 int (*restore_tables)(struct vgic_its *its);
168 int (*commit)(struct vgic_its *its);
171 static const struct vgic_its_abi its_table_abi_versions[] = {
172 [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
173 .save_tables = vgic_its_save_tables_v0,
174 .restore_tables = vgic_its_restore_tables_v0,
175 .commit = vgic_its_commit_v0,
179 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
181 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
183 return &its_table_abi_versions[its->abi_rev];
186 int vgic_its_set_abi(struct vgic_its *its, int rev)
188 const struct vgic_its_abi *abi;
190 its->abi_rev = rev;
191 abi = vgic_its_get_abi(its);
192 return abi->commit(its);
196 * Find and returns a device in the device table for an ITS.
197 * Must be called with the its_lock mutex held.
199 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
201 struct its_device *device;
203 list_for_each_entry(device, &its->device_list, dev_list)
204 if (device_id == device->device_id)
205 return device;
207 return NULL;
211 * Find and returns an interrupt translation table entry (ITTE) for a given
212 * Device ID/Event ID pair on an ITS.
213 * Must be called with the its_lock mutex held.
215 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
216 u32 event_id)
218 struct its_device *device;
219 struct its_ite *ite;
221 device = find_its_device(its, device_id);
222 if (device == NULL)
223 return NULL;
225 list_for_each_entry(ite, &device->itt_head, ite_list)
226 if (ite->event_id == event_id)
227 return ite;
229 return NULL;
232 /* To be used as an iterator this macro misses the enclosing parentheses */
233 #define for_each_lpi_its(dev, ite, its) \
234 list_for_each_entry(dev, &(its)->device_list, dev_list) \
235 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
238 * We only implement 48 bits of PA at the moment, although the ITS
239 * supports more. Let's be restrictive here.
241 #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
242 #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
244 #define GIC_LPI_OFFSET 8192
246 #define VITS_TYPER_IDBITS 16
247 #define VITS_TYPER_DEVBITS 16
248 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
249 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
252 * Finds and returns a collection in the ITS collection table.
253 * Must be called with the its_lock mutex held.
255 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
257 struct its_collection *collection;
259 list_for_each_entry(collection, &its->collection_list, coll_list) {
260 if (coll_id == collection->collection_id)
261 return collection;
264 return NULL;
267 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
268 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
271 * Reads the configuration data for a given LPI from guest memory and
272 * updates the fields in struct vgic_irq.
273 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
274 * VCPU. Unconditionally applies if filter_vcpu is NULL.
276 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
277 struct kvm_vcpu *filter_vcpu, bool needs_inv)
279 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
280 u8 prop;
281 int ret;
282 unsigned long flags;
284 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
285 &prop, 1);
287 if (ret)
288 return ret;
290 spin_lock_irqsave(&irq->irq_lock, flags);
292 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
293 irq->priority = LPI_PROP_PRIORITY(prop);
294 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
296 if (!irq->hw) {
297 vgic_queue_irq_unlock(kvm, irq, flags);
298 return 0;
302 spin_unlock_irqrestore(&irq->irq_lock, flags);
304 if (irq->hw)
305 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
307 return 0;
311 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
312 * enumerate those LPIs without holding any lock.
313 * Returns their number and puts the kmalloc'ed array into intid_ptr.
315 static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
317 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
318 struct vgic_irq *irq;
319 unsigned long flags;
320 u32 *intids;
321 int irq_count, i = 0;
324 * There is an obvious race between allocating the array and LPIs
325 * being mapped/unmapped. If we ended up here as a result of a
326 * command, we're safe (locks are held, preventing another
327 * command). If coming from another path (such as enabling LPIs),
328 * we must be careful not to overrun the array.
330 irq_count = READ_ONCE(dist->lpi_list_count);
331 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
332 if (!intids)
333 return -ENOMEM;
335 spin_lock_irqsave(&dist->lpi_list_lock, flags);
336 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
337 if (i == irq_count)
338 break;
339 /* We don't need to "get" the IRQ, as we hold the list lock. */
340 if (irq->target_vcpu != vcpu)
341 continue;
342 intids[i++] = irq->intid;
344 spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
346 *intid_ptr = intids;
347 return i;
350 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
352 int ret = 0;
353 unsigned long flags;
355 spin_lock_irqsave(&irq->irq_lock, flags);
356 irq->target_vcpu = vcpu;
357 spin_unlock_irqrestore(&irq->irq_lock, flags);
359 if (irq->hw) {
360 struct its_vlpi_map map;
362 ret = its_get_vlpi(irq->host_irq, &map);
363 if (ret)
364 return ret;
366 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
368 ret = its_map_vlpi(irq->host_irq, &map);
371 return ret;
375 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
376 * is targeting) to the VGIC's view, which deals with target VCPUs.
377 * Needs to be called whenever either the collection for a LPIs has
378 * changed or the collection itself got retargeted.
380 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
382 struct kvm_vcpu *vcpu;
384 if (!its_is_collection_mapped(ite->collection))
385 return;
387 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
388 update_affinity(ite->irq, vcpu);
392 * Updates the target VCPU for every LPI targeting this collection.
393 * Must be called with the its_lock mutex held.
395 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
396 struct its_collection *coll)
398 struct its_device *device;
399 struct its_ite *ite;
401 for_each_lpi_its(device, ite, its) {
402 if (!ite->collection || coll != ite->collection)
403 continue;
405 update_affinity_ite(kvm, ite);
409 static u32 max_lpis_propbaser(u64 propbaser)
411 int nr_idbits = (propbaser & 0x1f) + 1;
413 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
417 * Sync the pending table pending bit of LPIs targeting @vcpu
418 * with our own data structures. This relies on the LPI being
419 * mapped before.
421 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
423 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
424 struct vgic_irq *irq;
425 int last_byte_offset = -1;
426 int ret = 0;
427 u32 *intids;
428 int nr_irqs, i;
429 unsigned long flags;
430 u8 pendmask;
432 nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
433 if (nr_irqs < 0)
434 return nr_irqs;
436 for (i = 0; i < nr_irqs; i++) {
437 int byte_offset, bit_nr;
439 byte_offset = intids[i] / BITS_PER_BYTE;
440 bit_nr = intids[i] % BITS_PER_BYTE;
443 * For contiguously allocated LPIs chances are we just read
444 * this very same byte in the last iteration. Reuse that.
446 if (byte_offset != last_byte_offset) {
447 ret = kvm_read_guest_lock(vcpu->kvm,
448 pendbase + byte_offset,
449 &pendmask, 1);
450 if (ret) {
451 kfree(intids);
452 return ret;
454 last_byte_offset = byte_offset;
457 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
458 spin_lock_irqsave(&irq->irq_lock, flags);
459 irq->pending_latch = pendmask & (1U << bit_nr);
460 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
461 vgic_put_irq(vcpu->kvm, irq);
464 kfree(intids);
466 return ret;
469 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
470 struct vgic_its *its,
471 gpa_t addr, unsigned int len)
473 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
474 u64 reg = GITS_TYPER_PLPIS;
477 * We use linear CPU numbers for redistributor addressing,
478 * so GITS_TYPER.PTA is 0.
479 * Also we force all PROPBASER registers to be the same, so
480 * CommonLPIAff is 0 as well.
481 * To avoid memory waste in the guest, we keep the number of IDBits and
482 * DevBits low - as least for the time being.
484 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
485 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
486 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
488 return extract_bytes(reg, addr & 7, len);
491 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
492 struct vgic_its *its,
493 gpa_t addr, unsigned int len)
495 u32 val;
497 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
498 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
499 return val;
502 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
503 struct vgic_its *its,
504 gpa_t addr, unsigned int len,
505 unsigned long val)
507 u32 rev = GITS_IIDR_REV(val);
509 if (rev >= NR_ITS_ABIS)
510 return -EINVAL;
511 return vgic_its_set_abi(its, rev);
514 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
515 struct vgic_its *its,
516 gpa_t addr, unsigned int len)
518 switch (addr & 0xffff) {
519 case GITS_PIDR0:
520 return 0x92; /* part number, bits[7:0] */
521 case GITS_PIDR1:
522 return 0xb4; /* part number, bits[11:8] */
523 case GITS_PIDR2:
524 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
525 case GITS_PIDR4:
526 return 0x40; /* This is a 64K software visible page */
527 /* The following are the ID registers for (any) GIC. */
528 case GITS_CIDR0:
529 return 0x0d;
530 case GITS_CIDR1:
531 return 0xf0;
532 case GITS_CIDR2:
533 return 0x05;
534 case GITS_CIDR3:
535 return 0xb1;
538 return 0;
541 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
542 u32 devid, u32 eventid, struct vgic_irq **irq)
544 struct kvm_vcpu *vcpu;
545 struct its_ite *ite;
547 if (!its->enabled)
548 return -EBUSY;
550 ite = find_ite(its, devid, eventid);
551 if (!ite || !its_is_collection_mapped(ite->collection))
552 return E_ITS_INT_UNMAPPED_INTERRUPT;
554 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
555 if (!vcpu)
556 return E_ITS_INT_UNMAPPED_INTERRUPT;
558 if (!vcpu->arch.vgic_cpu.lpis_enabled)
559 return -EBUSY;
561 *irq = ite->irq;
562 return 0;
565 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
567 u64 address;
568 struct kvm_io_device *kvm_io_dev;
569 struct vgic_io_device *iodev;
571 if (!vgic_has_its(kvm))
572 return ERR_PTR(-ENODEV);
574 if (!(msi->flags & KVM_MSI_VALID_DEVID))
575 return ERR_PTR(-EINVAL);
577 address = (u64)msi->address_hi << 32 | msi->address_lo;
579 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
580 if (!kvm_io_dev)
581 return ERR_PTR(-EINVAL);
583 if (kvm_io_dev->ops != &kvm_io_gic_ops)
584 return ERR_PTR(-EINVAL);
586 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
587 if (iodev->iodev_type != IODEV_ITS)
588 return ERR_PTR(-EINVAL);
590 return iodev->its;
594 * Find the target VCPU and the LPI number for a given devid/eventid pair
595 * and make this IRQ pending, possibly injecting it.
596 * Must be called with the its_lock mutex held.
597 * Returns 0 on success, a positive error value for any ITS mapping
598 * related errors and negative error values for generic errors.
600 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
601 u32 devid, u32 eventid)
603 struct vgic_irq *irq = NULL;
604 unsigned long flags;
605 int err;
607 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
608 if (err)
609 return err;
611 if (irq->hw)
612 return irq_set_irqchip_state(irq->host_irq,
613 IRQCHIP_STATE_PENDING, true);
615 spin_lock_irqsave(&irq->irq_lock, flags);
616 irq->pending_latch = true;
617 vgic_queue_irq_unlock(kvm, irq, flags);
619 return 0;
623 * Queries the KVM IO bus framework to get the ITS pointer from the given
624 * doorbell address.
625 * We then call vgic_its_trigger_msi() with the decoded data.
626 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
628 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
630 struct vgic_its *its;
631 int ret;
633 its = vgic_msi_to_its(kvm, msi);
634 if (IS_ERR(its))
635 return PTR_ERR(its);
637 mutex_lock(&its->its_lock);
638 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
639 mutex_unlock(&its->its_lock);
641 if (ret < 0)
642 return ret;
645 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
646 * if the guest has blocked the MSI. So we map any LPI mapping
647 * related error to that.
649 if (ret)
650 return 0;
651 else
652 return 1;
655 /* Requires the its_lock to be held. */
656 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
658 list_del(&ite->ite_list);
660 /* This put matches the get in vgic_add_lpi. */
661 if (ite->irq) {
662 if (ite->irq->hw)
663 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
665 vgic_put_irq(kvm, ite->irq);
668 kfree(ite);
671 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
673 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
676 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
677 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
678 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
679 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
680 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
681 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
682 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
683 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
684 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
687 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
688 * Must be called with the its_lock mutex held.
690 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
691 u64 *its_cmd)
693 u32 device_id = its_cmd_get_deviceid(its_cmd);
694 u32 event_id = its_cmd_get_id(its_cmd);
695 struct its_ite *ite;
698 ite = find_ite(its, device_id, event_id);
699 if (ite && ite->collection) {
701 * Though the spec talks about removing the pending state, we
702 * don't bother here since we clear the ITTE anyway and the
703 * pending state is a property of the ITTE struct.
705 its_free_ite(kvm, ite);
706 return 0;
709 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
713 * The MOVI command moves an ITTE to a different collection.
714 * Must be called with the its_lock mutex held.
716 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
717 u64 *its_cmd)
719 u32 device_id = its_cmd_get_deviceid(its_cmd);
720 u32 event_id = its_cmd_get_id(its_cmd);
721 u32 coll_id = its_cmd_get_collection(its_cmd);
722 struct kvm_vcpu *vcpu;
723 struct its_ite *ite;
724 struct its_collection *collection;
726 ite = find_ite(its, device_id, event_id);
727 if (!ite)
728 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
730 if (!its_is_collection_mapped(ite->collection))
731 return E_ITS_MOVI_UNMAPPED_COLLECTION;
733 collection = find_collection(its, coll_id);
734 if (!its_is_collection_mapped(collection))
735 return E_ITS_MOVI_UNMAPPED_COLLECTION;
737 ite->collection = collection;
738 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
740 return update_affinity(ite->irq, vcpu);
744 * Check whether an ID can be stored into the corresponding guest table.
745 * For a direct table this is pretty easy, but gets a bit nasty for
746 * indirect tables. We check whether the resulting guest physical address
747 * is actually valid (covered by a memslot and guest accessible).
748 * For this we have to read the respective first level entry.
750 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
751 gpa_t *eaddr)
753 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
754 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
755 int esz = GITS_BASER_ENTRY_SIZE(baser);
756 int index;
757 gfn_t gfn;
759 switch (type) {
760 case GITS_BASER_TYPE_DEVICE:
761 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
762 return false;
763 break;
764 case GITS_BASER_TYPE_COLLECTION:
765 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
766 if (id >= BIT_ULL(16))
767 return false;
768 break;
769 default:
770 return false;
773 if (!(baser & GITS_BASER_INDIRECT)) {
774 phys_addr_t addr;
776 if (id >= (l1_tbl_size / esz))
777 return false;
779 addr = BASER_ADDRESS(baser) + id * esz;
780 gfn = addr >> PAGE_SHIFT;
782 if (eaddr)
783 *eaddr = addr;
784 return kvm_is_visible_gfn(its->dev->kvm, gfn);
787 /* calculate and check the index into the 1st level */
788 index = id / (SZ_64K / esz);
789 if (index >= (l1_tbl_size / sizeof(u64)))
790 return false;
792 /* Each 1st level entry is represented by a 64-bit value. */
793 if (kvm_read_guest_lock(its->dev->kvm,
794 BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
795 &indirect_ptr, sizeof(indirect_ptr)))
796 return false;
798 indirect_ptr = le64_to_cpu(indirect_ptr);
800 /* check the valid bit of the first level entry */
801 if (!(indirect_ptr & BIT_ULL(63)))
802 return false;
805 * Mask the guest physical address and calculate the frame number.
806 * Any address beyond our supported 48 bits of PA will be caught
807 * by the actual check in the final step.
809 indirect_ptr &= GENMASK_ULL(51, 16);
811 /* Find the address of the actual entry */
812 index = id % (SZ_64K / esz);
813 indirect_ptr += index * esz;
814 gfn = indirect_ptr >> PAGE_SHIFT;
816 if (eaddr)
817 *eaddr = indirect_ptr;
818 return kvm_is_visible_gfn(its->dev->kvm, gfn);
821 static int vgic_its_alloc_collection(struct vgic_its *its,
822 struct its_collection **colp,
823 u32 coll_id)
825 struct its_collection *collection;
827 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
828 return E_ITS_MAPC_COLLECTION_OOR;
830 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
831 if (!collection)
832 return -ENOMEM;
834 collection->collection_id = coll_id;
835 collection->target_addr = COLLECTION_NOT_MAPPED;
837 list_add_tail(&collection->coll_list, &its->collection_list);
838 *colp = collection;
840 return 0;
843 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
845 struct its_collection *collection;
846 struct its_device *device;
847 struct its_ite *ite;
850 * Clearing the mapping for that collection ID removes the
851 * entry from the list. If there wasn't any before, we can
852 * go home early.
854 collection = find_collection(its, coll_id);
855 if (!collection)
856 return;
858 for_each_lpi_its(device, ite, its)
859 if (ite->collection &&
860 ite->collection->collection_id == coll_id)
861 ite->collection = NULL;
863 list_del(&collection->coll_list);
864 kfree(collection);
867 /* Must be called with its_lock mutex held */
868 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
869 struct its_collection *collection,
870 u32 event_id)
872 struct its_ite *ite;
874 ite = kzalloc(sizeof(*ite), GFP_KERNEL);
875 if (!ite)
876 return ERR_PTR(-ENOMEM);
878 ite->event_id = event_id;
879 ite->collection = collection;
881 list_add_tail(&ite->ite_list, &device->itt_head);
882 return ite;
886 * The MAPTI and MAPI commands map LPIs to ITTEs.
887 * Must be called with its_lock mutex held.
889 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
890 u64 *its_cmd)
892 u32 device_id = its_cmd_get_deviceid(its_cmd);
893 u32 event_id = its_cmd_get_id(its_cmd);
894 u32 coll_id = its_cmd_get_collection(its_cmd);
895 struct its_ite *ite;
896 struct kvm_vcpu *vcpu = NULL;
897 struct its_device *device;
898 struct its_collection *collection, *new_coll = NULL;
899 struct vgic_irq *irq;
900 int lpi_nr;
902 device = find_its_device(its, device_id);
903 if (!device)
904 return E_ITS_MAPTI_UNMAPPED_DEVICE;
906 if (event_id >= BIT_ULL(device->num_eventid_bits))
907 return E_ITS_MAPTI_ID_OOR;
909 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
910 lpi_nr = its_cmd_get_physical_id(its_cmd);
911 else
912 lpi_nr = event_id;
913 if (lpi_nr < GIC_LPI_OFFSET ||
914 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
915 return E_ITS_MAPTI_PHYSICALID_OOR;
917 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
918 if (find_ite(its, device_id, event_id))
919 return 0;
921 collection = find_collection(its, coll_id);
922 if (!collection) {
923 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
924 if (ret)
925 return ret;
926 new_coll = collection;
929 ite = vgic_its_alloc_ite(device, collection, event_id);
930 if (IS_ERR(ite)) {
931 if (new_coll)
932 vgic_its_free_collection(its, coll_id);
933 return PTR_ERR(ite);
936 if (its_is_collection_mapped(collection))
937 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
939 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
940 if (IS_ERR(irq)) {
941 if (new_coll)
942 vgic_its_free_collection(its, coll_id);
943 its_free_ite(kvm, ite);
944 return PTR_ERR(irq);
946 ite->irq = irq;
948 return 0;
951 /* Requires the its_lock to be held. */
952 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
954 struct its_ite *ite, *temp;
957 * The spec says that unmapping a device with still valid
958 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
959 * since we cannot leave the memory unreferenced.
961 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
962 its_free_ite(kvm, ite);
964 list_del(&device->dev_list);
965 kfree(device);
968 /* its lock must be held */
969 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
971 struct its_device *cur, *temp;
973 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
974 vgic_its_free_device(kvm, cur);
977 /* its lock must be held */
978 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
980 struct its_collection *cur, *temp;
982 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
983 vgic_its_free_collection(its, cur->collection_id);
986 /* Must be called with its_lock mutex held */
987 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
988 u32 device_id, gpa_t itt_addr,
989 u8 num_eventid_bits)
991 struct its_device *device;
993 device = kzalloc(sizeof(*device), GFP_KERNEL);
994 if (!device)
995 return ERR_PTR(-ENOMEM);
997 device->device_id = device_id;
998 device->itt_addr = itt_addr;
999 device->num_eventid_bits = num_eventid_bits;
1000 INIT_LIST_HEAD(&device->itt_head);
1002 list_add_tail(&device->dev_list, &its->device_list);
1003 return device;
1007 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1008 * Must be called with the its_lock mutex held.
1010 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1011 u64 *its_cmd)
1013 u32 device_id = its_cmd_get_deviceid(its_cmd);
1014 bool valid = its_cmd_get_validbit(its_cmd);
1015 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1016 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1017 struct its_device *device;
1019 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1020 return E_ITS_MAPD_DEVICE_OOR;
1022 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1023 return E_ITS_MAPD_ITTSIZE_OOR;
1025 device = find_its_device(its, device_id);
1028 * The spec says that calling MAPD on an already mapped device
1029 * invalidates all cached data for this device. We implement this
1030 * by removing the mapping and re-establishing it.
1032 if (device)
1033 vgic_its_free_device(kvm, device);
1036 * The spec does not say whether unmapping a not-mapped device
1037 * is an error, so we are done in any case.
1039 if (!valid)
1040 return 0;
1042 device = vgic_its_alloc_device(its, device_id, itt_addr,
1043 num_eventid_bits);
1045 return PTR_ERR_OR_ZERO(device);
1049 * The MAPC command maps collection IDs to redistributors.
1050 * Must be called with the its_lock mutex held.
1052 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1053 u64 *its_cmd)
1055 u16 coll_id;
1056 u32 target_addr;
1057 struct its_collection *collection;
1058 bool valid;
1060 valid = its_cmd_get_validbit(its_cmd);
1061 coll_id = its_cmd_get_collection(its_cmd);
1062 target_addr = its_cmd_get_target_addr(its_cmd);
1064 if (target_addr >= atomic_read(&kvm->online_vcpus))
1065 return E_ITS_MAPC_PROCNUM_OOR;
1067 if (!valid) {
1068 vgic_its_free_collection(its, coll_id);
1069 } else {
1070 collection = find_collection(its, coll_id);
1072 if (!collection) {
1073 int ret;
1075 ret = vgic_its_alloc_collection(its, &collection,
1076 coll_id);
1077 if (ret)
1078 return ret;
1079 collection->target_addr = target_addr;
1080 } else {
1081 collection->target_addr = target_addr;
1082 update_affinity_collection(kvm, its, collection);
1086 return 0;
1090 * The CLEAR command removes the pending state for a particular LPI.
1091 * Must be called with the its_lock mutex held.
1093 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1094 u64 *its_cmd)
1096 u32 device_id = its_cmd_get_deviceid(its_cmd);
1097 u32 event_id = its_cmd_get_id(its_cmd);
1098 struct its_ite *ite;
1101 ite = find_ite(its, device_id, event_id);
1102 if (!ite)
1103 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1105 ite->irq->pending_latch = false;
1107 if (ite->irq->hw)
1108 return irq_set_irqchip_state(ite->irq->host_irq,
1109 IRQCHIP_STATE_PENDING, false);
1111 return 0;
1115 * The INV command syncs the configuration bits from the memory table.
1116 * Must be called with the its_lock mutex held.
1118 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1119 u64 *its_cmd)
1121 u32 device_id = its_cmd_get_deviceid(its_cmd);
1122 u32 event_id = its_cmd_get_id(its_cmd);
1123 struct its_ite *ite;
1126 ite = find_ite(its, device_id, event_id);
1127 if (!ite)
1128 return E_ITS_INV_UNMAPPED_INTERRUPT;
1130 return update_lpi_config(kvm, ite->irq, NULL, true);
1134 * The INVALL command requests flushing of all IRQ data in this collection.
1135 * Find the VCPU mapped to that collection, then iterate over the VM's list
1136 * of mapped LPIs and update the configuration for each IRQ which targets
1137 * the specified vcpu. The configuration will be read from the in-memory
1138 * configuration table.
1139 * Must be called with the its_lock mutex held.
1141 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1142 u64 *its_cmd)
1144 u32 coll_id = its_cmd_get_collection(its_cmd);
1145 struct its_collection *collection;
1146 struct kvm_vcpu *vcpu;
1147 struct vgic_irq *irq;
1148 u32 *intids;
1149 int irq_count, i;
1151 collection = find_collection(its, coll_id);
1152 if (!its_is_collection_mapped(collection))
1153 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1155 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1157 irq_count = vgic_copy_lpi_list(vcpu, &intids);
1158 if (irq_count < 0)
1159 return irq_count;
1161 for (i = 0; i < irq_count; i++) {
1162 irq = vgic_get_irq(kvm, NULL, intids[i]);
1163 if (!irq)
1164 continue;
1165 update_lpi_config(kvm, irq, vcpu, false);
1166 vgic_put_irq(kvm, irq);
1169 kfree(intids);
1171 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1172 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1174 return 0;
1178 * The MOVALL command moves the pending state of all IRQs targeting one
1179 * redistributor to another. We don't hold the pending state in the VCPUs,
1180 * but in the IRQs instead, so there is really not much to do for us here.
1181 * However the spec says that no IRQ must target the old redistributor
1182 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1183 * This command affects all LPIs in the system that target that redistributor.
1185 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1186 u64 *its_cmd)
1188 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1189 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1190 struct kvm_vcpu *vcpu1, *vcpu2;
1191 struct vgic_irq *irq;
1192 u32 *intids;
1193 int irq_count, i;
1195 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1196 target2_addr >= atomic_read(&kvm->online_vcpus))
1197 return E_ITS_MOVALL_PROCNUM_OOR;
1199 if (target1_addr == target2_addr)
1200 return 0;
1202 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1203 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1205 irq_count = vgic_copy_lpi_list(vcpu1, &intids);
1206 if (irq_count < 0)
1207 return irq_count;
1209 for (i = 0; i < irq_count; i++) {
1210 irq = vgic_get_irq(kvm, NULL, intids[i]);
1212 update_affinity(irq, vcpu2);
1214 vgic_put_irq(kvm, irq);
1217 kfree(intids);
1218 return 0;
1222 * The INT command injects the LPI associated with that DevID/EvID pair.
1223 * Must be called with the its_lock mutex held.
1225 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1226 u64 *its_cmd)
1228 u32 msi_data = its_cmd_get_id(its_cmd);
1229 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1231 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1235 * This function is called with the its_cmd lock held, but the ITS data
1236 * structure lock dropped.
1238 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1239 u64 *its_cmd)
1241 int ret = -ENODEV;
1243 mutex_lock(&its->its_lock);
1244 switch (its_cmd_get_command(its_cmd)) {
1245 case GITS_CMD_MAPD:
1246 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1247 break;
1248 case GITS_CMD_MAPC:
1249 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1250 break;
1251 case GITS_CMD_MAPI:
1252 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1253 break;
1254 case GITS_CMD_MAPTI:
1255 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1256 break;
1257 case GITS_CMD_MOVI:
1258 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1259 break;
1260 case GITS_CMD_DISCARD:
1261 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1262 break;
1263 case GITS_CMD_CLEAR:
1264 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1265 break;
1266 case GITS_CMD_MOVALL:
1267 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1268 break;
1269 case GITS_CMD_INT:
1270 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1271 break;
1272 case GITS_CMD_INV:
1273 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1274 break;
1275 case GITS_CMD_INVALL:
1276 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1277 break;
1278 case GITS_CMD_SYNC:
1279 /* we ignore this command: we are in sync all of the time */
1280 ret = 0;
1281 break;
1283 mutex_unlock(&its->its_lock);
1285 return ret;
1288 static u64 vgic_sanitise_its_baser(u64 reg)
1290 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1291 GITS_BASER_SHAREABILITY_SHIFT,
1292 vgic_sanitise_shareability);
1293 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1294 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1295 vgic_sanitise_inner_cacheability);
1296 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1297 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1298 vgic_sanitise_outer_cacheability);
1300 /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1301 reg &= ~GENMASK_ULL(15, 12);
1303 /* We support only one (ITS) page size: 64K */
1304 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1306 return reg;
1309 static u64 vgic_sanitise_its_cbaser(u64 reg)
1311 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1312 GITS_CBASER_SHAREABILITY_SHIFT,
1313 vgic_sanitise_shareability);
1314 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1315 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1316 vgic_sanitise_inner_cacheability);
1317 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1318 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1319 vgic_sanitise_outer_cacheability);
1322 * Sanitise the physical address to be 64k aligned.
1323 * Also limit the physical addresses to 48 bits.
1325 reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1327 return reg;
1330 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1331 struct vgic_its *its,
1332 gpa_t addr, unsigned int len)
1334 return extract_bytes(its->cbaser, addr & 7, len);
1337 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1338 gpa_t addr, unsigned int len,
1339 unsigned long val)
1341 /* When GITS_CTLR.Enable is 1, this register is RO. */
1342 if (its->enabled)
1343 return;
1345 mutex_lock(&its->cmd_lock);
1346 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1347 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1348 its->creadr = 0;
1350 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1351 * it to CREADR to make sure we start with an empty command buffer.
1353 its->cwriter = its->creadr;
1354 mutex_unlock(&its->cmd_lock);
1357 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1358 #define ITS_CMD_SIZE 32
1359 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1361 /* Must be called with the cmd_lock held. */
1362 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1364 gpa_t cbaser;
1365 u64 cmd_buf[4];
1367 /* Commands are only processed when the ITS is enabled. */
1368 if (!its->enabled)
1369 return;
1371 cbaser = CBASER_ADDRESS(its->cbaser);
1373 while (its->cwriter != its->creadr) {
1374 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1375 cmd_buf, ITS_CMD_SIZE);
1377 * If kvm_read_guest() fails, this could be due to the guest
1378 * programming a bogus value in CBASER or something else going
1379 * wrong from which we cannot easily recover.
1380 * According to section 6.3.2 in the GICv3 spec we can just
1381 * ignore that command then.
1383 if (!ret)
1384 vgic_its_handle_command(kvm, its, cmd_buf);
1386 its->creadr += ITS_CMD_SIZE;
1387 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1388 its->creadr = 0;
1393 * By writing to CWRITER the guest announces new commands to be processed.
1394 * To avoid any races in the first place, we take the its_cmd lock, which
1395 * protects our ring buffer variables, so that there is only one user
1396 * per ITS handling commands at a given time.
1398 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1399 gpa_t addr, unsigned int len,
1400 unsigned long val)
1402 u64 reg;
1404 if (!its)
1405 return;
1407 mutex_lock(&its->cmd_lock);
1409 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1410 reg = ITS_CMD_OFFSET(reg);
1411 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1412 mutex_unlock(&its->cmd_lock);
1413 return;
1415 its->cwriter = reg;
1417 vgic_its_process_commands(kvm, its);
1419 mutex_unlock(&its->cmd_lock);
1422 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1423 struct vgic_its *its,
1424 gpa_t addr, unsigned int len)
1426 return extract_bytes(its->cwriter, addr & 0x7, len);
1429 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1430 struct vgic_its *its,
1431 gpa_t addr, unsigned int len)
1433 return extract_bytes(its->creadr, addr & 0x7, len);
1436 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1437 struct vgic_its *its,
1438 gpa_t addr, unsigned int len,
1439 unsigned long val)
1441 u32 cmd_offset;
1442 int ret = 0;
1444 mutex_lock(&its->cmd_lock);
1446 if (its->enabled) {
1447 ret = -EBUSY;
1448 goto out;
1451 cmd_offset = ITS_CMD_OFFSET(val);
1452 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1453 ret = -EINVAL;
1454 goto out;
1457 its->creadr = cmd_offset;
1458 out:
1459 mutex_unlock(&its->cmd_lock);
1460 return ret;
1463 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1464 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1465 struct vgic_its *its,
1466 gpa_t addr, unsigned int len)
1468 u64 reg;
1470 switch (BASER_INDEX(addr)) {
1471 case 0:
1472 reg = its->baser_device_table;
1473 break;
1474 case 1:
1475 reg = its->baser_coll_table;
1476 break;
1477 default:
1478 reg = 0;
1479 break;
1482 return extract_bytes(reg, addr & 7, len);
1485 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1486 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1487 struct vgic_its *its,
1488 gpa_t addr, unsigned int len,
1489 unsigned long val)
1491 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1492 u64 entry_size, table_type;
1493 u64 reg, *regptr, clearbits = 0;
1495 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1496 if (its->enabled)
1497 return;
1499 switch (BASER_INDEX(addr)) {
1500 case 0:
1501 regptr = &its->baser_device_table;
1502 entry_size = abi->dte_esz;
1503 table_type = GITS_BASER_TYPE_DEVICE;
1504 break;
1505 case 1:
1506 regptr = &its->baser_coll_table;
1507 entry_size = abi->cte_esz;
1508 table_type = GITS_BASER_TYPE_COLLECTION;
1509 clearbits = GITS_BASER_INDIRECT;
1510 break;
1511 default:
1512 return;
1515 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1516 reg &= ~GITS_BASER_RO_MASK;
1517 reg &= ~clearbits;
1519 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1520 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1521 reg = vgic_sanitise_its_baser(reg);
1523 *regptr = reg;
1525 if (!(reg & GITS_BASER_VALID)) {
1526 /* Take the its_lock to prevent a race with a save/restore */
1527 mutex_lock(&its->its_lock);
1528 switch (table_type) {
1529 case GITS_BASER_TYPE_DEVICE:
1530 vgic_its_free_device_list(kvm, its);
1531 break;
1532 case GITS_BASER_TYPE_COLLECTION:
1533 vgic_its_free_collection_list(kvm, its);
1534 break;
1536 mutex_unlock(&its->its_lock);
1540 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1541 struct vgic_its *its,
1542 gpa_t addr, unsigned int len)
1544 u32 reg = 0;
1546 mutex_lock(&its->cmd_lock);
1547 if (its->creadr == its->cwriter)
1548 reg |= GITS_CTLR_QUIESCENT;
1549 if (its->enabled)
1550 reg |= GITS_CTLR_ENABLE;
1551 mutex_unlock(&its->cmd_lock);
1553 return reg;
1556 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1557 gpa_t addr, unsigned int len,
1558 unsigned long val)
1560 mutex_lock(&its->cmd_lock);
1563 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1564 * device/collection BASER are invalid
1566 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1567 (!(its->baser_device_table & GITS_BASER_VALID) ||
1568 !(its->baser_coll_table & GITS_BASER_VALID) ||
1569 !(its->cbaser & GITS_CBASER_VALID)))
1570 goto out;
1572 its->enabled = !!(val & GITS_CTLR_ENABLE);
1575 * Try to process any pending commands. This function bails out early
1576 * if the ITS is disabled or no commands have been queued.
1578 vgic_its_process_commands(kvm, its);
1580 out:
1581 mutex_unlock(&its->cmd_lock);
1584 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1586 .reg_offset = off, \
1587 .len = length, \
1588 .access_flags = acc, \
1589 .its_read = rd, \
1590 .its_write = wr, \
1593 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1595 .reg_offset = off, \
1596 .len = length, \
1597 .access_flags = acc, \
1598 .its_read = rd, \
1599 .its_write = wr, \
1600 .uaccess_its_write = uwr, \
1603 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1604 gpa_t addr, unsigned int len, unsigned long val)
1606 /* Ignore */
1609 static struct vgic_register_region its_registers[] = {
1610 REGISTER_ITS_DESC(GITS_CTLR,
1611 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1612 VGIC_ACCESS_32bit),
1613 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1614 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1615 vgic_mmio_uaccess_write_its_iidr, 4,
1616 VGIC_ACCESS_32bit),
1617 REGISTER_ITS_DESC(GITS_TYPER,
1618 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1619 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1620 REGISTER_ITS_DESC(GITS_CBASER,
1621 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1622 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1623 REGISTER_ITS_DESC(GITS_CWRITER,
1624 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1625 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1626 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1627 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1628 vgic_mmio_uaccess_write_its_creadr, 8,
1629 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1630 REGISTER_ITS_DESC(GITS_BASER,
1631 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1632 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1633 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1634 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1635 VGIC_ACCESS_32bit),
1638 /* This is called on setting the LPI enable bit in the redistributor. */
1639 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1641 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1642 its_sync_lpi_pending_table(vcpu);
1645 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1646 u64 addr)
1648 struct vgic_io_device *iodev = &its->iodev;
1649 int ret;
1651 mutex_lock(&kvm->slots_lock);
1652 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1653 ret = -EBUSY;
1654 goto out;
1657 its->vgic_its_base = addr;
1658 iodev->regions = its_registers;
1659 iodev->nr_regions = ARRAY_SIZE(its_registers);
1660 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1662 iodev->base_addr = its->vgic_its_base;
1663 iodev->iodev_type = IODEV_ITS;
1664 iodev->its = its;
1665 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1666 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1667 out:
1668 mutex_unlock(&kvm->slots_lock);
1670 return ret;
1673 #define INITIAL_BASER_VALUE \
1674 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1675 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1676 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1677 GITS_BASER_PAGE_SIZE_64K)
1679 #define INITIAL_PROPBASER_VALUE \
1680 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1681 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1682 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1684 static int vgic_its_create(struct kvm_device *dev, u32 type)
1686 struct vgic_its *its;
1688 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1689 return -ENODEV;
1691 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1692 if (!its)
1693 return -ENOMEM;
1695 if (vgic_initialized(dev->kvm)) {
1696 int ret = vgic_v4_init(dev->kvm);
1697 if (ret < 0) {
1698 kfree(its);
1699 return ret;
1703 mutex_init(&its->its_lock);
1704 mutex_init(&its->cmd_lock);
1706 its->vgic_its_base = VGIC_ADDR_UNDEF;
1708 INIT_LIST_HEAD(&its->device_list);
1709 INIT_LIST_HEAD(&its->collection_list);
1711 dev->kvm->arch.vgic.msis_require_devid = true;
1712 dev->kvm->arch.vgic.has_its = true;
1713 its->enabled = false;
1714 its->dev = dev;
1716 its->baser_device_table = INITIAL_BASER_VALUE |
1717 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1718 its->baser_coll_table = INITIAL_BASER_VALUE |
1719 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1720 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1722 dev->private = its;
1724 return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1727 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1729 struct kvm *kvm = kvm_dev->kvm;
1730 struct vgic_its *its = kvm_dev->private;
1732 mutex_lock(&its->its_lock);
1734 vgic_its_free_device_list(kvm, its);
1735 vgic_its_free_collection_list(kvm, its);
1737 mutex_unlock(&its->its_lock);
1738 kfree(its);
1741 int vgic_its_has_attr_regs(struct kvm_device *dev,
1742 struct kvm_device_attr *attr)
1744 const struct vgic_register_region *region;
1745 gpa_t offset = attr->attr;
1746 int align;
1748 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1750 if (offset & align)
1751 return -EINVAL;
1753 region = vgic_find_mmio_region(its_registers,
1754 ARRAY_SIZE(its_registers),
1755 offset);
1756 if (!region)
1757 return -ENXIO;
1759 return 0;
1762 int vgic_its_attr_regs_access(struct kvm_device *dev,
1763 struct kvm_device_attr *attr,
1764 u64 *reg, bool is_write)
1766 const struct vgic_register_region *region;
1767 struct vgic_its *its;
1768 gpa_t addr, offset;
1769 unsigned int len;
1770 int align, ret = 0;
1772 its = dev->private;
1773 offset = attr->attr;
1776 * Although the spec supports upper/lower 32-bit accesses to
1777 * 64-bit ITS registers, the userspace ABI requires 64-bit
1778 * accesses to all 64-bit wide registers. We therefore only
1779 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1780 * registers
1782 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1783 align = 0x3;
1784 else
1785 align = 0x7;
1787 if (offset & align)
1788 return -EINVAL;
1790 mutex_lock(&dev->kvm->lock);
1792 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1793 ret = -ENXIO;
1794 goto out;
1797 region = vgic_find_mmio_region(its_registers,
1798 ARRAY_SIZE(its_registers),
1799 offset);
1800 if (!region) {
1801 ret = -ENXIO;
1802 goto out;
1805 if (!lock_all_vcpus(dev->kvm)) {
1806 ret = -EBUSY;
1807 goto out;
1810 addr = its->vgic_its_base + offset;
1812 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1814 if (is_write) {
1815 if (region->uaccess_its_write)
1816 ret = region->uaccess_its_write(dev->kvm, its, addr,
1817 len, *reg);
1818 else
1819 region->its_write(dev->kvm, its, addr, len, *reg);
1820 } else {
1821 *reg = region->its_read(dev->kvm, its, addr, len);
1823 unlock_all_vcpus(dev->kvm);
1824 out:
1825 mutex_unlock(&dev->kvm->lock);
1826 return ret;
1829 static u32 compute_next_devid_offset(struct list_head *h,
1830 struct its_device *dev)
1832 struct its_device *next;
1833 u32 next_offset;
1835 if (list_is_last(&dev->dev_list, h))
1836 return 0;
1837 next = list_next_entry(dev, dev_list);
1838 next_offset = next->device_id - dev->device_id;
1840 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1843 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1845 struct its_ite *next;
1846 u32 next_offset;
1848 if (list_is_last(&ite->ite_list, h))
1849 return 0;
1850 next = list_next_entry(ite, ite_list);
1851 next_offset = next->event_id - ite->event_id;
1853 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1857 * entry_fn_t - Callback called on a table entry restore path
1858 * @its: its handle
1859 * @id: id of the entry
1860 * @entry: pointer to the entry
1861 * @opaque: pointer to an opaque data
1863 * Return: < 0 on error, 0 if last element was identified, id offset to next
1864 * element otherwise
1866 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1867 void *opaque);
1870 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1871 * to each entry
1873 * @its: its handle
1874 * @base: base gpa of the table
1875 * @size: size of the table in bytes
1876 * @esz: entry size in bytes
1877 * @start_id: the ID of the first entry in the table
1878 * (non zero for 2d level tables)
1879 * @fn: function to apply on each entry
1881 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1882 * (the last element may not be found on second level tables)
1884 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
1885 int start_id, entry_fn_t fn, void *opaque)
1887 struct kvm *kvm = its->dev->kvm;
1888 unsigned long len = size;
1889 int id = start_id;
1890 gpa_t gpa = base;
1891 char entry[esz];
1892 int ret;
1894 memset(entry, 0, esz);
1896 while (len > 0) {
1897 int next_offset;
1898 size_t byte_offset;
1900 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
1901 if (ret)
1902 return ret;
1904 next_offset = fn(its, id, entry, opaque);
1905 if (next_offset <= 0)
1906 return next_offset;
1908 byte_offset = next_offset * esz;
1909 id += next_offset;
1910 gpa += byte_offset;
1911 len -= byte_offset;
1913 return 1;
1917 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1919 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1920 struct its_ite *ite, gpa_t gpa, int ite_esz)
1922 struct kvm *kvm = its->dev->kvm;
1923 u32 next_offset;
1924 u64 val;
1926 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1927 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1928 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1929 ite->collection->collection_id;
1930 val = cpu_to_le64(val);
1931 return kvm_write_guest(kvm, gpa, &val, ite_esz);
1935 * vgic_its_restore_ite - restore an interrupt translation entry
1936 * @event_id: id used for indexing
1937 * @ptr: pointer to the ITE entry
1938 * @opaque: pointer to the its_device
1940 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1941 void *ptr, void *opaque)
1943 struct its_device *dev = (struct its_device *)opaque;
1944 struct its_collection *collection;
1945 struct kvm *kvm = its->dev->kvm;
1946 struct kvm_vcpu *vcpu = NULL;
1947 u64 val;
1948 u64 *p = (u64 *)ptr;
1949 struct vgic_irq *irq;
1950 u32 coll_id, lpi_id;
1951 struct its_ite *ite;
1952 u32 offset;
1954 val = *p;
1956 val = le64_to_cpu(val);
1958 coll_id = val & KVM_ITS_ITE_ICID_MASK;
1959 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1961 if (!lpi_id)
1962 return 1; /* invalid entry, no choice but to scan next entry */
1964 if (lpi_id < VGIC_MIN_LPI)
1965 return -EINVAL;
1967 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1968 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1969 return -EINVAL;
1971 collection = find_collection(its, coll_id);
1972 if (!collection)
1973 return -EINVAL;
1975 ite = vgic_its_alloc_ite(dev, collection, event_id);
1976 if (IS_ERR(ite))
1977 return PTR_ERR(ite);
1979 if (its_is_collection_mapped(collection))
1980 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1982 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1983 if (IS_ERR(irq))
1984 return PTR_ERR(irq);
1985 ite->irq = irq;
1987 return offset;
1990 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1991 struct list_head *b)
1993 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
1994 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
1996 if (itea->event_id < iteb->event_id)
1997 return -1;
1998 else
1999 return 1;
2002 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2004 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2005 gpa_t base = device->itt_addr;
2006 struct its_ite *ite;
2007 int ret;
2008 int ite_esz = abi->ite_esz;
2010 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2012 list_for_each_entry(ite, &device->itt_head, ite_list) {
2013 gpa_t gpa = base + ite->event_id * ite_esz;
2016 * If an LPI carries the HW bit, this means that this
2017 * interrupt is controlled by GICv4, and we do not
2018 * have direct access to that state. Let's simply fail
2019 * the save operation...
2021 if (ite->irq->hw)
2022 return -EACCES;
2024 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2025 if (ret)
2026 return ret;
2028 return 0;
2032 * vgic_its_restore_itt - restore the ITT of a device
2034 * @its: its handle
2035 * @dev: device handle
2037 * Return 0 on success, < 0 on error
2039 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2041 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2042 gpa_t base = dev->itt_addr;
2043 int ret;
2044 int ite_esz = abi->ite_esz;
2045 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2047 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2048 vgic_its_restore_ite, dev);
2050 /* scan_its_table returns +1 if all ITEs are invalid */
2051 if (ret > 0)
2052 ret = 0;
2054 return ret;
2058 * vgic_its_save_dte - Save a device table entry at a given GPA
2060 * @its: ITS handle
2061 * @dev: ITS device
2062 * @ptr: GPA
2064 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2065 gpa_t ptr, int dte_esz)
2067 struct kvm *kvm = its->dev->kvm;
2068 u64 val, itt_addr_field;
2069 u32 next_offset;
2071 itt_addr_field = dev->itt_addr >> 8;
2072 next_offset = compute_next_devid_offset(&its->device_list, dev);
2073 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2074 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2075 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2076 (dev->num_eventid_bits - 1));
2077 val = cpu_to_le64(val);
2078 return kvm_write_guest(kvm, ptr, &val, dte_esz);
2082 * vgic_its_restore_dte - restore a device table entry
2084 * @its: its handle
2085 * @id: device id the DTE corresponds to
2086 * @ptr: kernel VA where the 8 byte DTE is located
2087 * @opaque: unused
2089 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2090 * next dte otherwise
2092 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2093 void *ptr, void *opaque)
2095 struct its_device *dev;
2096 gpa_t itt_addr;
2097 u8 num_eventid_bits;
2098 u64 entry = *(u64 *)ptr;
2099 bool valid;
2100 u32 offset;
2101 int ret;
2103 entry = le64_to_cpu(entry);
2105 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2106 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2107 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2108 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2110 if (!valid)
2111 return 1;
2113 /* dte entry is valid */
2114 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2116 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2117 if (IS_ERR(dev))
2118 return PTR_ERR(dev);
2120 ret = vgic_its_restore_itt(its, dev);
2121 if (ret) {
2122 vgic_its_free_device(its->dev->kvm, dev);
2123 return ret;
2126 return offset;
2129 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2130 struct list_head *b)
2132 struct its_device *deva = container_of(a, struct its_device, dev_list);
2133 struct its_device *devb = container_of(b, struct its_device, dev_list);
2135 if (deva->device_id < devb->device_id)
2136 return -1;
2137 else
2138 return 1;
2142 * vgic_its_save_device_tables - Save the device table and all ITT
2143 * into guest RAM
2145 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2146 * returns the GPA of the device entry
2148 static int vgic_its_save_device_tables(struct vgic_its *its)
2150 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2151 u64 baser = its->baser_device_table;
2152 struct its_device *dev;
2153 int dte_esz = abi->dte_esz;
2155 if (!(baser & GITS_BASER_VALID))
2156 return 0;
2158 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2160 list_for_each_entry(dev, &its->device_list, dev_list) {
2161 int ret;
2162 gpa_t eaddr;
2164 if (!vgic_its_check_id(its, baser,
2165 dev->device_id, &eaddr))
2166 return -EINVAL;
2168 ret = vgic_its_save_itt(its, dev);
2169 if (ret)
2170 return ret;
2172 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2173 if (ret)
2174 return ret;
2176 return 0;
2180 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2182 * @its: its handle
2183 * @id: index of the entry in the L1 table
2184 * @addr: kernel VA
2185 * @opaque: unused
2187 * L1 table entries are scanned by steps of 1 entry
2188 * Return < 0 if error, 0 if last dte was found when scanning the L2
2189 * table, +1 otherwise (meaning next L1 entry must be scanned)
2191 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2192 void *opaque)
2194 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2195 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2196 u64 entry = *(u64 *)addr;
2197 int dte_esz = abi->dte_esz;
2198 gpa_t gpa;
2199 int ret;
2201 entry = le64_to_cpu(entry);
2203 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2204 return 1;
2206 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2208 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2209 l2_start_id, vgic_its_restore_dte, NULL);
2211 return ret;
2215 * vgic_its_restore_device_tables - Restore the device table and all ITT
2216 * from guest RAM to internal data structs
2218 static int vgic_its_restore_device_tables(struct vgic_its *its)
2220 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2221 u64 baser = its->baser_device_table;
2222 int l1_esz, ret;
2223 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2224 gpa_t l1_gpa;
2226 if (!(baser & GITS_BASER_VALID))
2227 return 0;
2229 l1_gpa = BASER_ADDRESS(baser);
2231 if (baser & GITS_BASER_INDIRECT) {
2232 l1_esz = GITS_LVL1_ENTRY_SIZE;
2233 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2234 handle_l1_dte, NULL);
2235 } else {
2236 l1_esz = abi->dte_esz;
2237 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2238 vgic_its_restore_dte, NULL);
2241 /* scan_its_table returns +1 if all entries are invalid */
2242 if (ret > 0)
2243 ret = 0;
2245 return ret;
2248 static int vgic_its_save_cte(struct vgic_its *its,
2249 struct its_collection *collection,
2250 gpa_t gpa, int esz)
2252 u64 val;
2254 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2255 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2256 collection->collection_id);
2257 val = cpu_to_le64(val);
2258 return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2261 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2263 struct its_collection *collection;
2264 struct kvm *kvm = its->dev->kvm;
2265 u32 target_addr, coll_id;
2266 u64 val;
2267 int ret;
2269 BUG_ON(esz > sizeof(val));
2270 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2271 if (ret)
2272 return ret;
2273 val = le64_to_cpu(val);
2274 if (!(val & KVM_ITS_CTE_VALID_MASK))
2275 return 0;
2277 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2278 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2280 if (target_addr >= atomic_read(&kvm->online_vcpus))
2281 return -EINVAL;
2283 collection = find_collection(its, coll_id);
2284 if (collection)
2285 return -EEXIST;
2286 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2287 if (ret)
2288 return ret;
2289 collection->target_addr = target_addr;
2290 return 1;
2294 * vgic_its_save_collection_table - Save the collection table into
2295 * guest RAM
2297 static int vgic_its_save_collection_table(struct vgic_its *its)
2299 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2300 u64 baser = its->baser_coll_table;
2301 gpa_t gpa = BASER_ADDRESS(baser);
2302 struct its_collection *collection;
2303 u64 val;
2304 size_t max_size, filled = 0;
2305 int ret, cte_esz = abi->cte_esz;
2307 if (!(baser & GITS_BASER_VALID))
2308 return 0;
2310 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2312 list_for_each_entry(collection, &its->collection_list, coll_list) {
2313 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2314 if (ret)
2315 return ret;
2316 gpa += cte_esz;
2317 filled += cte_esz;
2320 if (filled == max_size)
2321 return 0;
2324 * table is not fully filled, add a last dummy element
2325 * with valid bit unset
2327 val = 0;
2328 BUG_ON(cte_esz > sizeof(val));
2329 ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2330 return ret;
2334 * vgic_its_restore_collection_table - reads the collection table
2335 * in guest memory and restores the ITS internal state. Requires the
2336 * BASER registers to be restored before.
2338 static int vgic_its_restore_collection_table(struct vgic_its *its)
2340 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2341 u64 baser = its->baser_coll_table;
2342 int cte_esz = abi->cte_esz;
2343 size_t max_size, read = 0;
2344 gpa_t gpa;
2345 int ret;
2347 if (!(baser & GITS_BASER_VALID))
2348 return 0;
2350 gpa = BASER_ADDRESS(baser);
2352 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2354 while (read < max_size) {
2355 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2356 if (ret <= 0)
2357 break;
2358 gpa += cte_esz;
2359 read += cte_esz;
2362 if (ret > 0)
2363 return 0;
2365 return ret;
2369 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2370 * according to v0 ABI
2372 static int vgic_its_save_tables_v0(struct vgic_its *its)
2374 int ret;
2376 ret = vgic_its_save_device_tables(its);
2377 if (ret)
2378 return ret;
2380 return vgic_its_save_collection_table(its);
2384 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2385 * to internal data structs according to V0 ABI
2388 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2390 int ret;
2392 ret = vgic_its_restore_collection_table(its);
2393 if (ret)
2394 return ret;
2396 return vgic_its_restore_device_tables(its);
2399 static int vgic_its_commit_v0(struct vgic_its *its)
2401 const struct vgic_its_abi *abi;
2403 abi = vgic_its_get_abi(its);
2404 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2405 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2407 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2408 << GITS_BASER_ENTRY_SIZE_SHIFT);
2410 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2411 << GITS_BASER_ENTRY_SIZE_SHIFT);
2412 return 0;
2415 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2417 /* We need to keep the ABI specific field values */
2418 its->baser_coll_table &= ~GITS_BASER_VALID;
2419 its->baser_device_table &= ~GITS_BASER_VALID;
2420 its->cbaser = 0;
2421 its->creadr = 0;
2422 its->cwriter = 0;
2423 its->enabled = 0;
2424 vgic_its_free_device_list(kvm, its);
2425 vgic_its_free_collection_list(kvm, its);
2428 static int vgic_its_has_attr(struct kvm_device *dev,
2429 struct kvm_device_attr *attr)
2431 switch (attr->group) {
2432 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2433 switch (attr->attr) {
2434 case KVM_VGIC_ITS_ADDR_TYPE:
2435 return 0;
2437 break;
2438 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2439 switch (attr->attr) {
2440 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2441 return 0;
2442 case KVM_DEV_ARM_ITS_CTRL_RESET:
2443 return 0;
2444 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2445 return 0;
2446 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2447 return 0;
2449 break;
2450 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2451 return vgic_its_has_attr_regs(dev, attr);
2453 return -ENXIO;
2456 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2458 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2459 int ret = 0;
2461 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2462 return 0;
2464 mutex_lock(&kvm->lock);
2465 mutex_lock(&its->its_lock);
2467 if (!lock_all_vcpus(kvm)) {
2468 mutex_unlock(&its->its_lock);
2469 mutex_unlock(&kvm->lock);
2470 return -EBUSY;
2473 switch (attr) {
2474 case KVM_DEV_ARM_ITS_CTRL_RESET:
2475 vgic_its_reset(kvm, its);
2476 break;
2477 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2478 ret = abi->save_tables(its);
2479 break;
2480 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2481 ret = abi->restore_tables(its);
2482 break;
2485 unlock_all_vcpus(kvm);
2486 mutex_unlock(&its->its_lock);
2487 mutex_unlock(&kvm->lock);
2488 return ret;
2491 static int vgic_its_set_attr(struct kvm_device *dev,
2492 struct kvm_device_attr *attr)
2494 struct vgic_its *its = dev->private;
2495 int ret;
2497 switch (attr->group) {
2498 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2499 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2500 unsigned long type = (unsigned long)attr->attr;
2501 u64 addr;
2503 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2504 return -ENODEV;
2506 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2507 return -EFAULT;
2509 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2510 addr, SZ_64K);
2511 if (ret)
2512 return ret;
2514 return vgic_register_its_iodev(dev->kvm, its, addr);
2516 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2517 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2518 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2519 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2520 u64 reg;
2522 if (get_user(reg, uaddr))
2523 return -EFAULT;
2525 return vgic_its_attr_regs_access(dev, attr, &reg, true);
2528 return -ENXIO;
2531 static int vgic_its_get_attr(struct kvm_device *dev,
2532 struct kvm_device_attr *attr)
2534 switch (attr->group) {
2535 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2536 struct vgic_its *its = dev->private;
2537 u64 addr = its->vgic_its_base;
2538 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2539 unsigned long type = (unsigned long)attr->attr;
2541 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2542 return -ENODEV;
2544 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2545 return -EFAULT;
2546 break;
2548 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2549 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2550 u64 reg;
2551 int ret;
2553 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2554 if (ret)
2555 return ret;
2556 return put_user(reg, uaddr);
2558 default:
2559 return -ENXIO;
2562 return 0;
2565 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2566 .name = "kvm-arm-vgic-its",
2567 .create = vgic_its_create,
2568 .destroy = vgic_its_destroy,
2569 .set_attr = vgic_its_set_attr,
2570 .get_attr = vgic_its_get_attr,
2571 .has_attr = vgic_its_has_attr,
2574 int kvm_vgic_register_its_device(void)
2576 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2577 KVM_DEV_TYPE_ARM_VGIC_ITS);