proc: test /proc/thread-self symlink
[linux/fpc-iii.git] / virt / kvm / arm / vgic / vgic-v3.c
blobcdce653e3c47fb31b9eb0ccf73c3bebd830d8496
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License version 2 as
4 * published by the Free Software Foundation.
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
11 * You should have received a copy of the GNU General Public License
12 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 #include <linux/irqchip/arm-gic-v3.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/arm_vgic.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/kvm_mmu.h>
21 #include <asm/kvm_asm.h>
23 #include "vgic.h"
25 static bool group0_trap;
26 static bool group1_trap;
27 static bool common_trap;
28 static bool gicv4_enable;
30 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
32 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
34 cpuif->vgic_hcr |= ICH_HCR_UIE;
37 static bool lr_signals_eoi_mi(u64 lr_val)
39 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
40 !(lr_val & ICH_LR_HW);
43 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
45 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
46 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
47 u32 model = vcpu->kvm->arch.vgic.vgic_model;
48 int lr;
49 unsigned long flags;
51 cpuif->vgic_hcr &= ~ICH_HCR_UIE;
53 for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
54 u64 val = cpuif->vgic_lr[lr];
55 u32 intid, cpuid;
56 struct vgic_irq *irq;
57 bool is_v2_sgi = false;
59 cpuid = val & GICH_LR_PHYSID_CPUID;
60 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
62 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
63 intid = val & ICH_LR_VIRTUAL_ID_MASK;
64 } else {
65 intid = val & GICH_LR_VIRTUALID;
66 is_v2_sgi = vgic_irq_is_sgi(intid);
69 /* Notify fds when the guest EOI'ed a level-triggered IRQ */
70 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
71 kvm_notify_acked_irq(vcpu->kvm, 0,
72 intid - VGIC_NR_PRIVATE_IRQS);
74 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
75 if (!irq) /* An LPI could have been unmapped. */
76 continue;
78 spin_lock_irqsave(&irq->irq_lock, flags);
80 /* Always preserve the active bit */
81 irq->active = !!(val & ICH_LR_ACTIVE_BIT);
83 if (irq->active && is_v2_sgi)
84 irq->active_source = cpuid;
86 /* Edge is the only case where we preserve the pending bit */
87 if (irq->config == VGIC_CONFIG_EDGE &&
88 (val & ICH_LR_PENDING_BIT)) {
89 irq->pending_latch = true;
91 if (is_v2_sgi)
92 irq->source |= (1 << cpuid);
96 * Clear soft pending state when level irqs have been acked.
98 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
99 irq->pending_latch = false;
102 * Level-triggered mapped IRQs are special because we only
103 * observe rising edges as input to the VGIC.
105 * If the guest never acked the interrupt we have to sample
106 * the physical line and set the line level, because the
107 * device state could have changed or we simply need to
108 * process the still pending interrupt later.
110 * If this causes us to lower the level, we have to also clear
111 * the physical active state, since we will otherwise never be
112 * told when the interrupt becomes asserted again.
114 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
115 irq->line_level = vgic_get_phys_line_level(irq);
117 if (!irq->line_level)
118 vgic_irq_set_phys_active(irq, false);
121 spin_unlock_irqrestore(&irq->irq_lock, flags);
122 vgic_put_irq(vcpu->kvm, irq);
125 vgic_cpu->used_lrs = 0;
128 /* Requires the irq to be locked already */
129 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
131 u32 model = vcpu->kvm->arch.vgic.vgic_model;
132 u64 val = irq->intid;
133 bool allow_pending = true, is_v2_sgi;
135 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
136 model == KVM_DEV_TYPE_ARM_VGIC_V2);
138 if (irq->active) {
139 val |= ICH_LR_ACTIVE_BIT;
140 if (is_v2_sgi)
141 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
142 if (vgic_irq_is_multi_sgi(irq)) {
143 allow_pending = false;
144 val |= ICH_LR_EOI;
148 if (irq->hw) {
149 val |= ICH_LR_HW;
150 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
152 * Never set pending+active on a HW interrupt, as the
153 * pending state is kept at the physical distributor
154 * level.
156 if (irq->active)
157 allow_pending = false;
158 } else {
159 if (irq->config == VGIC_CONFIG_LEVEL) {
160 val |= ICH_LR_EOI;
163 * Software resampling doesn't work very well
164 * if we allow P+A, so let's not do that.
166 if (irq->active)
167 allow_pending = false;
171 if (allow_pending && irq_is_pending(irq)) {
172 val |= ICH_LR_PENDING_BIT;
174 if (irq->config == VGIC_CONFIG_EDGE)
175 irq->pending_latch = false;
177 if (vgic_irq_is_sgi(irq->intid) &&
178 model == KVM_DEV_TYPE_ARM_VGIC_V2) {
179 u32 src = ffs(irq->source);
181 BUG_ON(!src);
182 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
183 irq->source &= ~(1 << (src - 1));
184 if (irq->source) {
185 irq->pending_latch = true;
186 val |= ICH_LR_EOI;
192 * Level-triggered mapped IRQs are special because we only observe
193 * rising edges as input to the VGIC. We therefore lower the line
194 * level here, so that we can take new virtual IRQs. See
195 * vgic_v3_fold_lr_state for more info.
197 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
198 irq->line_level = false;
201 * We currently only support Group1 interrupts, which is a
202 * known defect. This needs to be addressed at some point.
204 if (model == KVM_DEV_TYPE_ARM_VGIC_V3)
205 val |= ICH_LR_GROUP;
207 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
209 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
212 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
214 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
217 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
219 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
220 u32 model = vcpu->kvm->arch.vgic.vgic_model;
221 u32 vmcr;
223 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
224 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
225 ICH_VMCR_ACK_CTL_MASK;
226 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
227 ICH_VMCR_FIQ_EN_MASK;
228 } else {
230 * When emulating GICv3 on GICv3 with SRE=1 on the
231 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
233 vmcr = ICH_VMCR_FIQ_EN_MASK;
236 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
237 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
238 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
239 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
240 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
241 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
242 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
244 cpu_if->vgic_vmcr = vmcr;
247 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
249 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
250 u32 model = vcpu->kvm->arch.vgic.vgic_model;
251 u32 vmcr;
253 vmcr = cpu_if->vgic_vmcr;
255 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
256 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
257 ICH_VMCR_ACK_CTL_SHIFT;
258 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
259 ICH_VMCR_FIQ_EN_SHIFT;
260 } else {
262 * When emulating GICv3 on GICv3 with SRE=1 on the
263 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
265 vmcrp->fiqen = 1;
266 vmcrp->ackctl = 0;
269 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
270 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
271 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
272 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
273 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
274 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
275 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
278 #define INITIAL_PENDBASER_VALUE \
279 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
280 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
281 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
283 void vgic_v3_enable(struct kvm_vcpu *vcpu)
285 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
288 * By forcing VMCR to zero, the GIC will restore the binary
289 * points to their reset values. Anything else resets to zero
290 * anyway.
292 vgic_v3->vgic_vmcr = 0;
295 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
296 * way, so we force SRE to 1 to demonstrate this to the guest.
297 * Also, we don't support any form of IRQ/FIQ bypass.
298 * This goes with the spec allowing the value to be RAO/WI.
300 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
301 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
302 ICC_SRE_EL1_DFB |
303 ICC_SRE_EL1_SRE);
304 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
305 } else {
306 vgic_v3->vgic_sre = 0;
309 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
310 ICH_VTR_ID_BITS_MASK) >>
311 ICH_VTR_ID_BITS_SHIFT;
312 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
313 ICH_VTR_PRI_BITS_MASK) >>
314 ICH_VTR_PRI_BITS_SHIFT) + 1;
316 /* Get the show on the road... */
317 vgic_v3->vgic_hcr = ICH_HCR_EN;
318 if (group0_trap)
319 vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
320 if (group1_trap)
321 vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
322 if (common_trap)
323 vgic_v3->vgic_hcr |= ICH_HCR_TC;
326 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
328 struct kvm_vcpu *vcpu;
329 int byte_offset, bit_nr;
330 gpa_t pendbase, ptr;
331 bool status;
332 u8 val;
333 int ret;
334 unsigned long flags;
336 retry:
337 vcpu = irq->target_vcpu;
338 if (!vcpu)
339 return 0;
341 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
343 byte_offset = irq->intid / BITS_PER_BYTE;
344 bit_nr = irq->intid % BITS_PER_BYTE;
345 ptr = pendbase + byte_offset;
347 ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
348 if (ret)
349 return ret;
351 status = val & (1 << bit_nr);
353 spin_lock_irqsave(&irq->irq_lock, flags);
354 if (irq->target_vcpu != vcpu) {
355 spin_unlock_irqrestore(&irq->irq_lock, flags);
356 goto retry;
358 irq->pending_latch = status;
359 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
361 if (status) {
362 /* clear consumed data */
363 val &= ~(1 << bit_nr);
364 ret = kvm_write_guest(kvm, ptr, &val, 1);
365 if (ret)
366 return ret;
368 return 0;
372 * vgic_its_save_pending_tables - Save the pending tables into guest RAM
373 * kvm lock and all vcpu lock must be held
375 int vgic_v3_save_pending_tables(struct kvm *kvm)
377 struct vgic_dist *dist = &kvm->arch.vgic;
378 int last_byte_offset = -1;
379 struct vgic_irq *irq;
380 int ret;
381 u8 val;
383 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
384 int byte_offset, bit_nr;
385 struct kvm_vcpu *vcpu;
386 gpa_t pendbase, ptr;
387 bool stored;
389 vcpu = irq->target_vcpu;
390 if (!vcpu)
391 continue;
393 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
395 byte_offset = irq->intid / BITS_PER_BYTE;
396 bit_nr = irq->intid % BITS_PER_BYTE;
397 ptr = pendbase + byte_offset;
399 if (byte_offset != last_byte_offset) {
400 ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
401 if (ret)
402 return ret;
403 last_byte_offset = byte_offset;
406 stored = val & (1U << bit_nr);
407 if (stored == irq->pending_latch)
408 continue;
410 if (irq->pending_latch)
411 val |= 1 << bit_nr;
412 else
413 val &= ~(1 << bit_nr);
415 ret = kvm_write_guest(kvm, ptr, &val, 1);
416 if (ret)
417 return ret;
419 return 0;
423 * vgic_v3_rdist_overlap - check if a region overlaps with any
424 * existing redistributor region
426 * @kvm: kvm handle
427 * @base: base of the region
428 * @size: size of region
430 * Return: true if there is an overlap
432 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
434 struct vgic_dist *d = &kvm->arch.vgic;
435 struct vgic_redist_region *rdreg;
437 list_for_each_entry(rdreg, &d->rd_regions, list) {
438 if ((base + size > rdreg->base) &&
439 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
440 return true;
442 return false;
446 * Check for overlapping regions and for regions crossing the end of memory
447 * for base addresses which have already been set.
449 bool vgic_v3_check_base(struct kvm *kvm)
451 struct vgic_dist *d = &kvm->arch.vgic;
452 struct vgic_redist_region *rdreg;
454 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
455 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
456 return false;
458 list_for_each_entry(rdreg, &d->rd_regions, list) {
459 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
460 rdreg->base)
461 return false;
464 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
465 return true;
467 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
468 KVM_VGIC_V3_DIST_SIZE);
472 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
473 * which has free space to put a new rdist region.
475 * @rd_regions: redistributor region list head
477 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
478 * Stride between redistributors is 0 and regions are filled in the index order.
480 * Return: the redist region handle, if any, that has space to map a new rdist
481 * region.
483 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
485 struct vgic_redist_region *rdreg;
487 list_for_each_entry(rdreg, rd_regions, list) {
488 if (!vgic_v3_redist_region_full(rdreg))
489 return rdreg;
491 return NULL;
494 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
495 u32 index)
497 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
498 struct vgic_redist_region *rdreg;
500 list_for_each_entry(rdreg, rd_regions, list) {
501 if (rdreg->index == index)
502 return rdreg;
504 return NULL;
508 int vgic_v3_map_resources(struct kvm *kvm)
510 struct vgic_dist *dist = &kvm->arch.vgic;
511 struct kvm_vcpu *vcpu;
512 int ret = 0;
513 int c;
515 if (vgic_ready(kvm))
516 goto out;
518 kvm_for_each_vcpu(c, vcpu, kvm) {
519 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
521 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
522 kvm_debug("vcpu %d redistributor base not set\n", c);
523 ret = -ENXIO;
524 goto out;
528 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
529 kvm_err("Need to set vgic distributor addresses first\n");
530 ret = -ENXIO;
531 goto out;
534 if (!vgic_v3_check_base(kvm)) {
535 kvm_err("VGIC redist and dist frames overlap\n");
536 ret = -EINVAL;
537 goto out;
541 * For a VGICv3 we require the userland to explicitly initialize
542 * the VGIC before we need to use it.
544 if (!vgic_initialized(kvm)) {
545 ret = -EBUSY;
546 goto out;
549 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
550 if (ret) {
551 kvm_err("Unable to register VGICv3 dist MMIO regions\n");
552 goto out;
555 dist->ready = true;
557 out:
558 return ret;
561 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
563 static int __init early_group0_trap_cfg(char *buf)
565 return strtobool(buf, &group0_trap);
567 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
569 static int __init early_group1_trap_cfg(char *buf)
571 return strtobool(buf, &group1_trap);
573 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
575 static int __init early_common_trap_cfg(char *buf)
577 return strtobool(buf, &common_trap);
579 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
581 static int __init early_gicv4_enable(char *buf)
583 return strtobool(buf, &gicv4_enable);
585 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
588 * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
589 * @node: pointer to the DT node
591 * Returns 0 if a GICv3 has been found, returns an error code otherwise
593 int vgic_v3_probe(const struct gic_kvm_info *info)
595 u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
596 int ret;
599 * The ListRegs field is 5 bits, but there is a architectural
600 * maximum of 16 list registers. Just ignore bit 4...
602 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
603 kvm_vgic_global_state.can_emulate_gicv2 = false;
604 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
606 /* GICv4 support? */
607 if (info->has_v4) {
608 kvm_vgic_global_state.has_gicv4 = gicv4_enable;
609 kvm_info("GICv4 support %sabled\n",
610 gicv4_enable ? "en" : "dis");
613 if (!info->vcpu.start) {
614 kvm_info("GICv3: no GICV resource entry\n");
615 kvm_vgic_global_state.vcpu_base = 0;
616 } else if (!PAGE_ALIGNED(info->vcpu.start)) {
617 pr_warn("GICV physical address 0x%llx not page aligned\n",
618 (unsigned long long)info->vcpu.start);
619 kvm_vgic_global_state.vcpu_base = 0;
620 } else {
621 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
622 kvm_vgic_global_state.can_emulate_gicv2 = true;
623 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
624 if (ret) {
625 kvm_err("Cannot register GICv2 KVM device.\n");
626 return ret;
628 kvm_info("vgic-v2@%llx\n", info->vcpu.start);
630 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
631 if (ret) {
632 kvm_err("Cannot register GICv3 KVM device.\n");
633 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
634 return ret;
637 if (kvm_vgic_global_state.vcpu_base == 0)
638 kvm_info("disabling GICv2 emulation\n");
640 #ifdef CONFIG_ARM64
641 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
642 group0_trap = true;
643 group1_trap = true;
645 #endif
647 if (group0_trap || group1_trap || common_trap) {
648 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
649 group0_trap ? "G0" : "",
650 group1_trap ? "G1" : "",
651 common_trap ? "C" : "");
652 static_branch_enable(&vgic_v3_cpuif_trap);
655 kvm_vgic_global_state.vctrl_base = NULL;
656 kvm_vgic_global_state.type = VGIC_V3;
657 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
659 return 0;
662 void vgic_v3_load(struct kvm_vcpu *vcpu)
664 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
667 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
668 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
669 * VMCR_EL2 save/restore in the world switch.
671 if (likely(cpu_if->vgic_sre))
672 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
674 kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
676 if (has_vhe())
677 __vgic_v3_activate_traps(vcpu);
680 void vgic_v3_put(struct kvm_vcpu *vcpu)
682 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
684 if (likely(cpu_if->vgic_sre))
685 cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
687 kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
689 if (has_vhe())
690 __vgic_v3_deactivate_traps(vcpu);