ARM: imx_v4_v5_defconfig: Select ULPI support
[linux/fpc-iii.git] / block / blk-throttle.c
blob82282e6fdcf82cb1b662c1eac468e8de71d6826d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum = 8;
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum = 32;
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39 static struct blkcg_policy blkcg_policy_throtl;
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
45 * To implement hierarchical throttling, throtl_grps form a tree and bios
46 * are dispatched upwards level by level until they reach the top and get
47 * issued. When dispatching bios from the children and local group at each
48 * level, if the bios are dispatched into a single bio_list, there's a risk
49 * of a local or child group which can queue many bios at once filling up
50 * the list starving others.
52 * To avoid such starvation, dispatched bios are queued separately
53 * according to where they came from. When they are again dispatched to
54 * the parent, they're popped in round-robin order so that no single source
55 * hogs the dispatch window.
57 * throtl_qnode is used to keep the queued bios separated by their sources.
58 * Bios are queued to throtl_qnode which in turn is queued to
59 * throtl_service_queue and then dispatched in round-robin order.
61 * It's also used to track the reference counts on blkg's. A qnode always
62 * belongs to a throtl_grp and gets queued on itself or the parent, so
63 * incrementing the reference of the associated throtl_grp when a qnode is
64 * queued and decrementing when dequeued is enough to keep the whole blkg
65 * tree pinned while bios are in flight.
67 struct throtl_qnode {
68 struct list_head node; /* service_queue->queued[] */
69 struct bio_list bios; /* queued bios */
70 struct throtl_grp *tg; /* tg this qnode belongs to */
73 struct throtl_service_queue {
74 struct throtl_service_queue *parent_sq; /* the parent service_queue */
77 * Bios queued directly to this service_queue or dispatched from
78 * children throtl_grp's.
80 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
81 unsigned int nr_queued[2]; /* number of queued bios */
84 * RB tree of active children throtl_grp's, which are sorted by
85 * their ->disptime.
87 struct rb_root pending_tree; /* RB tree of active tgs */
88 struct rb_node *first_pending; /* first node in the tree */
89 unsigned int nr_pending; /* # queued in the tree */
90 unsigned long first_pending_disptime; /* disptime of the first tg */
91 struct timer_list pending_timer; /* fires on first_pending_disptime */
94 enum tg_state_flags {
95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
101 enum {
102 LIMIT_LOW,
103 LIMIT_MAX,
104 LIMIT_CNT,
107 struct throtl_grp {
108 /* must be the first member */
109 struct blkg_policy_data pd;
111 /* active throtl group service_queue member */
112 struct rb_node rb_node;
114 /* throtl_data this group belongs to */
115 struct throtl_data *td;
117 /* this group's service queue */
118 struct throtl_service_queue service_queue;
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
126 * qnode_on_self.
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
136 unsigned long disptime;
138 unsigned int flags;
140 /* are there any throtl rules between this group and td? */
141 bool has_rules[2];
143 /* internally used bytes per second rate limits */
144 uint64_t bps[2][LIMIT_CNT];
145 /* user configured bps limits */
146 uint64_t bps_conf[2][LIMIT_CNT];
148 /* internally used IOPS limits */
149 unsigned int iops[2][LIMIT_CNT];
150 /* user configured IOPS limits */
151 unsigned int iops_conf[2][LIMIT_CNT];
153 /* Number of bytes disptached in current slice */
154 uint64_t bytes_disp[2];
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp[2];
158 unsigned long last_low_overflow_time[2];
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
163 unsigned long last_check_time;
165 unsigned long latency_target; /* us */
166 unsigned long latency_target_conf; /* us */
167 /* When did we start a new slice */
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
171 unsigned long last_finish_time; /* ns / 1024 */
172 unsigned long checked_last_finish_time; /* ns / 1024 */
173 unsigned long avg_idletime; /* ns / 1024 */
174 unsigned long idletime_threshold; /* us */
175 unsigned long idletime_threshold_conf; /* us */
177 unsigned int bio_cnt; /* total bios */
178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time;
182 /* We measure latency for request size from <= 4k to >= 1M */
183 #define LATENCY_BUCKET_SIZE 9
185 struct latency_bucket {
186 unsigned long total_latency; /* ns / 1024 */
187 int samples;
190 struct avg_latency_bucket {
191 unsigned long latency; /* ns / 1024 */
192 bool valid;
195 struct throtl_data
197 /* service tree for active throtl groups */
198 struct throtl_service_queue service_queue;
200 struct request_queue *queue;
202 /* Total Number of queued bios on READ and WRITE lists */
203 unsigned int nr_queued[2];
205 unsigned int throtl_slice;
207 /* Work for dispatching throttled bios */
208 struct work_struct dispatch_work;
209 unsigned int limit_index;
210 bool limit_valid[LIMIT_CNT];
212 unsigned long low_upgrade_time;
213 unsigned long low_downgrade_time;
215 unsigned int scale;
217 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
218 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
219 struct latency_bucket __percpu *latency_buckets[2];
220 unsigned long last_calculate_time;
221 unsigned long filtered_latency;
223 bool track_bio_latency;
226 static void throtl_pending_timer_fn(struct timer_list *t);
228 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
230 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
233 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
235 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
238 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
240 return pd_to_blkg(&tg->pd);
244 * sq_to_tg - return the throl_grp the specified service queue belongs to
245 * @sq: the throtl_service_queue of interest
247 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
248 * embedded in throtl_data, %NULL is returned.
250 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
252 if (sq && sq->parent_sq)
253 return container_of(sq, struct throtl_grp, service_queue);
254 else
255 return NULL;
259 * sq_to_td - return throtl_data the specified service queue belongs to
260 * @sq: the throtl_service_queue of interest
262 * A service_queue can be embedded in either a throtl_grp or throtl_data.
263 * Determine the associated throtl_data accordingly and return it.
265 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
267 struct throtl_grp *tg = sq_to_tg(sq);
269 if (tg)
270 return tg->td;
271 else
272 return container_of(sq, struct throtl_data, service_queue);
276 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
277 * make the IO dispatch more smooth.
278 * Scale up: linearly scale up according to lapsed time since upgrade. For
279 * every throtl_slice, the limit scales up 1/2 .low limit till the
280 * limit hits .max limit
281 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
283 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
285 /* arbitrary value to avoid too big scale */
286 if (td->scale < 4096 && time_after_eq(jiffies,
287 td->low_upgrade_time + td->scale * td->throtl_slice))
288 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
290 return low + (low >> 1) * td->scale;
293 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
295 struct blkcg_gq *blkg = tg_to_blkg(tg);
296 struct throtl_data *td;
297 uint64_t ret;
299 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
300 return U64_MAX;
302 td = tg->td;
303 ret = tg->bps[rw][td->limit_index];
304 if (ret == 0 && td->limit_index == LIMIT_LOW) {
305 /* intermediate node or iops isn't 0 */
306 if (!list_empty(&blkg->blkcg->css.children) ||
307 tg->iops[rw][td->limit_index])
308 return U64_MAX;
309 else
310 return MIN_THROTL_BPS;
313 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
314 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
315 uint64_t adjusted;
317 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
318 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
320 return ret;
323 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
325 struct blkcg_gq *blkg = tg_to_blkg(tg);
326 struct throtl_data *td;
327 unsigned int ret;
329 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
330 return UINT_MAX;
332 td = tg->td;
333 ret = tg->iops[rw][td->limit_index];
334 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
335 /* intermediate node or bps isn't 0 */
336 if (!list_empty(&blkg->blkcg->css.children) ||
337 tg->bps[rw][td->limit_index])
338 return UINT_MAX;
339 else
340 return MIN_THROTL_IOPS;
343 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
344 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
345 uint64_t adjusted;
347 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
348 if (adjusted > UINT_MAX)
349 adjusted = UINT_MAX;
350 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
352 return ret;
355 #define request_bucket_index(sectors) \
356 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
359 * throtl_log - log debug message via blktrace
360 * @sq: the service_queue being reported
361 * @fmt: printf format string
362 * @args: printf args
364 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
365 * throtl_grp; otherwise, just "throtl".
367 #define throtl_log(sq, fmt, args...) do { \
368 struct throtl_grp *__tg = sq_to_tg((sq)); \
369 struct throtl_data *__td = sq_to_td((sq)); \
371 (void)__td; \
372 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
373 break; \
374 if ((__tg)) { \
375 blk_add_cgroup_trace_msg(__td->queue, \
376 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 } else { \
378 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
380 } while (0)
382 static inline unsigned int throtl_bio_data_size(struct bio *bio)
384 /* assume it's one sector */
385 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
386 return 512;
387 return bio->bi_iter.bi_size;
390 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
392 INIT_LIST_HEAD(&qn->node);
393 bio_list_init(&qn->bios);
394 qn->tg = tg;
398 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
399 * @bio: bio being added
400 * @qn: qnode to add bio to
401 * @queued: the service_queue->queued[] list @qn belongs to
403 * Add @bio to @qn and put @qn on @queued if it's not already on.
404 * @qn->tg's reference count is bumped when @qn is activated. See the
405 * comment on top of throtl_qnode definition for details.
407 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
408 struct list_head *queued)
410 bio_list_add(&qn->bios, bio);
411 if (list_empty(&qn->node)) {
412 list_add_tail(&qn->node, queued);
413 blkg_get(tg_to_blkg(qn->tg));
418 * throtl_peek_queued - peek the first bio on a qnode list
419 * @queued: the qnode list to peek
421 static struct bio *throtl_peek_queued(struct list_head *queued)
423 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
424 struct bio *bio;
426 if (list_empty(queued))
427 return NULL;
429 bio = bio_list_peek(&qn->bios);
430 WARN_ON_ONCE(!bio);
431 return bio;
435 * throtl_pop_queued - pop the first bio form a qnode list
436 * @queued: the qnode list to pop a bio from
437 * @tg_to_put: optional out argument for throtl_grp to put
439 * Pop the first bio from the qnode list @queued. After popping, the first
440 * qnode is removed from @queued if empty or moved to the end of @queued so
441 * that the popping order is round-robin.
443 * When the first qnode is removed, its associated throtl_grp should be put
444 * too. If @tg_to_put is NULL, this function automatically puts it;
445 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
446 * responsible for putting it.
448 static struct bio *throtl_pop_queued(struct list_head *queued,
449 struct throtl_grp **tg_to_put)
451 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
452 struct bio *bio;
454 if (list_empty(queued))
455 return NULL;
457 bio = bio_list_pop(&qn->bios);
458 WARN_ON_ONCE(!bio);
460 if (bio_list_empty(&qn->bios)) {
461 list_del_init(&qn->node);
462 if (tg_to_put)
463 *tg_to_put = qn->tg;
464 else
465 blkg_put(tg_to_blkg(qn->tg));
466 } else {
467 list_move_tail(&qn->node, queued);
470 return bio;
473 /* init a service_queue, assumes the caller zeroed it */
474 static void throtl_service_queue_init(struct throtl_service_queue *sq)
476 INIT_LIST_HEAD(&sq->queued[0]);
477 INIT_LIST_HEAD(&sq->queued[1]);
478 sq->pending_tree = RB_ROOT;
479 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
482 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
484 struct throtl_grp *tg;
485 int rw;
487 tg = kzalloc_node(sizeof(*tg), gfp, node);
488 if (!tg)
489 return NULL;
491 throtl_service_queue_init(&tg->service_queue);
493 for (rw = READ; rw <= WRITE; rw++) {
494 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
495 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
498 RB_CLEAR_NODE(&tg->rb_node);
499 tg->bps[READ][LIMIT_MAX] = U64_MAX;
500 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
501 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
502 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
503 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
504 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
505 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
506 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
507 /* LIMIT_LOW will have default value 0 */
509 tg->latency_target = DFL_LATENCY_TARGET;
510 tg->latency_target_conf = DFL_LATENCY_TARGET;
511 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
512 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
514 return &tg->pd;
517 static void throtl_pd_init(struct blkg_policy_data *pd)
519 struct throtl_grp *tg = pd_to_tg(pd);
520 struct blkcg_gq *blkg = tg_to_blkg(tg);
521 struct throtl_data *td = blkg->q->td;
522 struct throtl_service_queue *sq = &tg->service_queue;
525 * If on the default hierarchy, we switch to properly hierarchical
526 * behavior where limits on a given throtl_grp are applied to the
527 * whole subtree rather than just the group itself. e.g. If 16M
528 * read_bps limit is set on the root group, the whole system can't
529 * exceed 16M for the device.
531 * If not on the default hierarchy, the broken flat hierarchy
532 * behavior is retained where all throtl_grps are treated as if
533 * they're all separate root groups right below throtl_data.
534 * Limits of a group don't interact with limits of other groups
535 * regardless of the position of the group in the hierarchy.
537 sq->parent_sq = &td->service_queue;
538 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
539 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
540 tg->td = td;
544 * Set has_rules[] if @tg or any of its parents have limits configured.
545 * This doesn't require walking up to the top of the hierarchy as the
546 * parent's has_rules[] is guaranteed to be correct.
548 static void tg_update_has_rules(struct throtl_grp *tg)
550 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
551 struct throtl_data *td = tg->td;
552 int rw;
554 for (rw = READ; rw <= WRITE; rw++)
555 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
556 (td->limit_valid[td->limit_index] &&
557 (tg_bps_limit(tg, rw) != U64_MAX ||
558 tg_iops_limit(tg, rw) != UINT_MAX));
561 static void throtl_pd_online(struct blkg_policy_data *pd)
563 struct throtl_grp *tg = pd_to_tg(pd);
565 * We don't want new groups to escape the limits of its ancestors.
566 * Update has_rules[] after a new group is brought online.
568 tg_update_has_rules(tg);
571 static void blk_throtl_update_limit_valid(struct throtl_data *td)
573 struct cgroup_subsys_state *pos_css;
574 struct blkcg_gq *blkg;
575 bool low_valid = false;
577 rcu_read_lock();
578 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
579 struct throtl_grp *tg = blkg_to_tg(blkg);
581 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
582 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
583 low_valid = true;
585 rcu_read_unlock();
587 td->limit_valid[LIMIT_LOW] = low_valid;
590 static void throtl_upgrade_state(struct throtl_data *td);
591 static void throtl_pd_offline(struct blkg_policy_data *pd)
593 struct throtl_grp *tg = pd_to_tg(pd);
595 tg->bps[READ][LIMIT_LOW] = 0;
596 tg->bps[WRITE][LIMIT_LOW] = 0;
597 tg->iops[READ][LIMIT_LOW] = 0;
598 tg->iops[WRITE][LIMIT_LOW] = 0;
600 blk_throtl_update_limit_valid(tg->td);
602 if (!tg->td->limit_valid[tg->td->limit_index])
603 throtl_upgrade_state(tg->td);
606 static void throtl_pd_free(struct blkg_policy_data *pd)
608 struct throtl_grp *tg = pd_to_tg(pd);
610 del_timer_sync(&tg->service_queue.pending_timer);
611 kfree(tg);
614 static struct throtl_grp *
615 throtl_rb_first(struct throtl_service_queue *parent_sq)
617 /* Service tree is empty */
618 if (!parent_sq->nr_pending)
619 return NULL;
621 if (!parent_sq->first_pending)
622 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
624 if (parent_sq->first_pending)
625 return rb_entry_tg(parent_sq->first_pending);
627 return NULL;
630 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
632 rb_erase(n, root);
633 RB_CLEAR_NODE(n);
636 static void throtl_rb_erase(struct rb_node *n,
637 struct throtl_service_queue *parent_sq)
639 if (parent_sq->first_pending == n)
640 parent_sq->first_pending = NULL;
641 rb_erase_init(n, &parent_sq->pending_tree);
642 --parent_sq->nr_pending;
645 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
647 struct throtl_grp *tg;
649 tg = throtl_rb_first(parent_sq);
650 if (!tg)
651 return;
653 parent_sq->first_pending_disptime = tg->disptime;
656 static void tg_service_queue_add(struct throtl_grp *tg)
658 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
659 struct rb_node **node = &parent_sq->pending_tree.rb_node;
660 struct rb_node *parent = NULL;
661 struct throtl_grp *__tg;
662 unsigned long key = tg->disptime;
663 int left = 1;
665 while (*node != NULL) {
666 parent = *node;
667 __tg = rb_entry_tg(parent);
669 if (time_before(key, __tg->disptime))
670 node = &parent->rb_left;
671 else {
672 node = &parent->rb_right;
673 left = 0;
677 if (left)
678 parent_sq->first_pending = &tg->rb_node;
680 rb_link_node(&tg->rb_node, parent, node);
681 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
684 static void __throtl_enqueue_tg(struct throtl_grp *tg)
686 tg_service_queue_add(tg);
687 tg->flags |= THROTL_TG_PENDING;
688 tg->service_queue.parent_sq->nr_pending++;
691 static void throtl_enqueue_tg(struct throtl_grp *tg)
693 if (!(tg->flags & THROTL_TG_PENDING))
694 __throtl_enqueue_tg(tg);
697 static void __throtl_dequeue_tg(struct throtl_grp *tg)
699 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
700 tg->flags &= ~THROTL_TG_PENDING;
703 static void throtl_dequeue_tg(struct throtl_grp *tg)
705 if (tg->flags & THROTL_TG_PENDING)
706 __throtl_dequeue_tg(tg);
709 /* Call with queue lock held */
710 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
711 unsigned long expires)
713 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716 * Since we are adjusting the throttle limit dynamically, the sleep
717 * time calculated according to previous limit might be invalid. It's
718 * possible the cgroup sleep time is very long and no other cgroups
719 * have IO running so notify the limit changes. Make sure the cgroup
720 * doesn't sleep too long to avoid the missed notification.
722 if (time_after(expires, max_expire))
723 expires = max_expire;
724 mod_timer(&sq->pending_timer, expires);
725 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
726 expires - jiffies, jiffies);
730 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
731 * @sq: the service_queue to schedule dispatch for
732 * @force: force scheduling
734 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
735 * dispatch time of the first pending child. Returns %true if either timer
736 * is armed or there's no pending child left. %false if the current
737 * dispatch window is still open and the caller should continue
738 * dispatching.
740 * If @force is %true, the dispatch timer is always scheduled and this
741 * function is guaranteed to return %true. This is to be used when the
742 * caller can't dispatch itself and needs to invoke pending_timer
743 * unconditionally. Note that forced scheduling is likely to induce short
744 * delay before dispatch starts even if @sq->first_pending_disptime is not
745 * in the future and thus shouldn't be used in hot paths.
747 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
748 bool force)
750 /* any pending children left? */
751 if (!sq->nr_pending)
752 return true;
754 update_min_dispatch_time(sq);
756 /* is the next dispatch time in the future? */
757 if (force || time_after(sq->first_pending_disptime, jiffies)) {
758 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
759 return true;
762 /* tell the caller to continue dispatching */
763 return false;
766 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
767 bool rw, unsigned long start)
769 tg->bytes_disp[rw] = 0;
770 tg->io_disp[rw] = 0;
773 * Previous slice has expired. We must have trimmed it after last
774 * bio dispatch. That means since start of last slice, we never used
775 * that bandwidth. Do try to make use of that bandwidth while giving
776 * credit.
778 if (time_after_eq(start, tg->slice_start[rw]))
779 tg->slice_start[rw] = start;
781 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
782 throtl_log(&tg->service_queue,
783 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
784 rw == READ ? 'R' : 'W', tg->slice_start[rw],
785 tg->slice_end[rw], jiffies);
788 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
790 tg->bytes_disp[rw] = 0;
791 tg->io_disp[rw] = 0;
792 tg->slice_start[rw] = jiffies;
793 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
794 throtl_log(&tg->service_queue,
795 "[%c] new slice start=%lu end=%lu jiffies=%lu",
796 rw == READ ? 'R' : 'W', tg->slice_start[rw],
797 tg->slice_end[rw], jiffies);
800 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
801 unsigned long jiffy_end)
803 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
807 unsigned long jiffy_end)
809 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
810 throtl_log(&tg->service_queue,
811 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
812 rw == READ ? 'R' : 'W', tg->slice_start[rw],
813 tg->slice_end[rw], jiffies);
816 /* Determine if previously allocated or extended slice is complete or not */
817 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
819 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
820 return false;
822 return true;
825 /* Trim the used slices and adjust slice start accordingly */
826 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
828 unsigned long nr_slices, time_elapsed, io_trim;
829 u64 bytes_trim, tmp;
831 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
834 * If bps are unlimited (-1), then time slice don't get
835 * renewed. Don't try to trim the slice if slice is used. A new
836 * slice will start when appropriate.
838 if (throtl_slice_used(tg, rw))
839 return;
842 * A bio has been dispatched. Also adjust slice_end. It might happen
843 * that initially cgroup limit was very low resulting in high
844 * slice_end, but later limit was bumped up and bio was dispached
845 * sooner, then we need to reduce slice_end. A high bogus slice_end
846 * is bad because it does not allow new slice to start.
849 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
851 time_elapsed = jiffies - tg->slice_start[rw];
853 nr_slices = time_elapsed / tg->td->throtl_slice;
855 if (!nr_slices)
856 return;
857 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
858 do_div(tmp, HZ);
859 bytes_trim = tmp;
861 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
864 if (!bytes_trim && !io_trim)
865 return;
867 if (tg->bytes_disp[rw] >= bytes_trim)
868 tg->bytes_disp[rw] -= bytes_trim;
869 else
870 tg->bytes_disp[rw] = 0;
872 if (tg->io_disp[rw] >= io_trim)
873 tg->io_disp[rw] -= io_trim;
874 else
875 tg->io_disp[rw] = 0;
877 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
879 throtl_log(&tg->service_queue,
880 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
881 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
882 tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
886 unsigned long *wait)
888 bool rw = bio_data_dir(bio);
889 unsigned int io_allowed;
890 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
891 u64 tmp;
893 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
895 /* Slice has just started. Consider one slice interval */
896 if (!jiffy_elapsed)
897 jiffy_elapsed_rnd = tg->td->throtl_slice;
899 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
902 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
903 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
904 * will allow dispatch after 1 second and after that slice should
905 * have been trimmed.
908 tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
909 do_div(tmp, HZ);
911 if (tmp > UINT_MAX)
912 io_allowed = UINT_MAX;
913 else
914 io_allowed = tmp;
916 if (tg->io_disp[rw] + 1 <= io_allowed) {
917 if (wait)
918 *wait = 0;
919 return true;
922 /* Calc approx time to dispatch */
923 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
925 if (jiffy_wait > jiffy_elapsed)
926 jiffy_wait = jiffy_wait - jiffy_elapsed;
927 else
928 jiffy_wait = 1;
930 if (wait)
931 *wait = jiffy_wait;
932 return false;
935 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
936 unsigned long *wait)
938 bool rw = bio_data_dir(bio);
939 u64 bytes_allowed, extra_bytes, tmp;
940 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
941 unsigned int bio_size = throtl_bio_data_size(bio);
943 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
945 /* Slice has just started. Consider one slice interval */
946 if (!jiffy_elapsed)
947 jiffy_elapsed_rnd = tg->td->throtl_slice;
949 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
951 tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
952 do_div(tmp, HZ);
953 bytes_allowed = tmp;
955 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
956 if (wait)
957 *wait = 0;
958 return true;
961 /* Calc approx time to dispatch */
962 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
963 jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
965 if (!jiffy_wait)
966 jiffy_wait = 1;
969 * This wait time is without taking into consideration the rounding
970 * up we did. Add that time also.
972 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
973 if (wait)
974 *wait = jiffy_wait;
975 return false;
979 * Returns whether one can dispatch a bio or not. Also returns approx number
980 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
982 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
983 unsigned long *wait)
985 bool rw = bio_data_dir(bio);
986 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
989 * Currently whole state machine of group depends on first bio
990 * queued in the group bio list. So one should not be calling
991 * this function with a different bio if there are other bios
992 * queued.
994 BUG_ON(tg->service_queue.nr_queued[rw] &&
995 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
997 /* If tg->bps = -1, then BW is unlimited */
998 if (tg_bps_limit(tg, rw) == U64_MAX &&
999 tg_iops_limit(tg, rw) == UINT_MAX) {
1000 if (wait)
1001 *wait = 0;
1002 return true;
1006 * If previous slice expired, start a new one otherwise renew/extend
1007 * existing slice to make sure it is at least throtl_slice interval
1008 * long since now. New slice is started only for empty throttle group.
1009 * If there is queued bio, that means there should be an active
1010 * slice and it should be extended instead.
1012 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1013 throtl_start_new_slice(tg, rw);
1014 else {
1015 if (time_before(tg->slice_end[rw],
1016 jiffies + tg->td->throtl_slice))
1017 throtl_extend_slice(tg, rw,
1018 jiffies + tg->td->throtl_slice);
1021 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
1022 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1023 if (wait)
1024 *wait = 0;
1025 return true;
1028 max_wait = max(bps_wait, iops_wait);
1030 if (wait)
1031 *wait = max_wait;
1033 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1034 throtl_extend_slice(tg, rw, jiffies + max_wait);
1036 return false;
1039 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1041 bool rw = bio_data_dir(bio);
1042 unsigned int bio_size = throtl_bio_data_size(bio);
1044 /* Charge the bio to the group */
1045 tg->bytes_disp[rw] += bio_size;
1046 tg->io_disp[rw]++;
1047 tg->last_bytes_disp[rw] += bio_size;
1048 tg->last_io_disp[rw]++;
1051 * BIO_THROTTLED is used to prevent the same bio to be throttled
1052 * more than once as a throttled bio will go through blk-throtl the
1053 * second time when it eventually gets issued. Set it when a bio
1054 * is being charged to a tg.
1056 if (!bio_flagged(bio, BIO_THROTTLED))
1057 bio_set_flag(bio, BIO_THROTTLED);
1061 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1062 * @bio: bio to add
1063 * @qn: qnode to use
1064 * @tg: the target throtl_grp
1066 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1067 * tg->qnode_on_self[] is used.
1069 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1070 struct throtl_grp *tg)
1072 struct throtl_service_queue *sq = &tg->service_queue;
1073 bool rw = bio_data_dir(bio);
1075 if (!qn)
1076 qn = &tg->qnode_on_self[rw];
1079 * If @tg doesn't currently have any bios queued in the same
1080 * direction, queueing @bio can change when @tg should be
1081 * dispatched. Mark that @tg was empty. This is automatically
1082 * cleaered on the next tg_update_disptime().
1084 if (!sq->nr_queued[rw])
1085 tg->flags |= THROTL_TG_WAS_EMPTY;
1087 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1089 sq->nr_queued[rw]++;
1090 throtl_enqueue_tg(tg);
1093 static void tg_update_disptime(struct throtl_grp *tg)
1095 struct throtl_service_queue *sq = &tg->service_queue;
1096 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1097 struct bio *bio;
1099 bio = throtl_peek_queued(&sq->queued[READ]);
1100 if (bio)
1101 tg_may_dispatch(tg, bio, &read_wait);
1103 bio = throtl_peek_queued(&sq->queued[WRITE]);
1104 if (bio)
1105 tg_may_dispatch(tg, bio, &write_wait);
1107 min_wait = min(read_wait, write_wait);
1108 disptime = jiffies + min_wait;
1110 /* Update dispatch time */
1111 throtl_dequeue_tg(tg);
1112 tg->disptime = disptime;
1113 throtl_enqueue_tg(tg);
1115 /* see throtl_add_bio_tg() */
1116 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1119 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1120 struct throtl_grp *parent_tg, bool rw)
1122 if (throtl_slice_used(parent_tg, rw)) {
1123 throtl_start_new_slice_with_credit(parent_tg, rw,
1124 child_tg->slice_start[rw]);
1129 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1131 struct throtl_service_queue *sq = &tg->service_queue;
1132 struct throtl_service_queue *parent_sq = sq->parent_sq;
1133 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1134 struct throtl_grp *tg_to_put = NULL;
1135 struct bio *bio;
1138 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1139 * from @tg may put its reference and @parent_sq might end up
1140 * getting released prematurely. Remember the tg to put and put it
1141 * after @bio is transferred to @parent_sq.
1143 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1144 sq->nr_queued[rw]--;
1146 throtl_charge_bio(tg, bio);
1149 * If our parent is another tg, we just need to transfer @bio to
1150 * the parent using throtl_add_bio_tg(). If our parent is
1151 * @td->service_queue, @bio is ready to be issued. Put it on its
1152 * bio_lists[] and decrease total number queued. The caller is
1153 * responsible for issuing these bios.
1155 if (parent_tg) {
1156 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1157 start_parent_slice_with_credit(tg, parent_tg, rw);
1158 } else {
1159 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1160 &parent_sq->queued[rw]);
1161 BUG_ON(tg->td->nr_queued[rw] <= 0);
1162 tg->td->nr_queued[rw]--;
1165 throtl_trim_slice(tg, rw);
1167 if (tg_to_put)
1168 blkg_put(tg_to_blkg(tg_to_put));
1171 static int throtl_dispatch_tg(struct throtl_grp *tg)
1173 struct throtl_service_queue *sq = &tg->service_queue;
1174 unsigned int nr_reads = 0, nr_writes = 0;
1175 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1176 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1177 struct bio *bio;
1179 /* Try to dispatch 75% READS and 25% WRITES */
1181 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1182 tg_may_dispatch(tg, bio, NULL)) {
1184 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1185 nr_reads++;
1187 if (nr_reads >= max_nr_reads)
1188 break;
1191 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1192 tg_may_dispatch(tg, bio, NULL)) {
1194 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1195 nr_writes++;
1197 if (nr_writes >= max_nr_writes)
1198 break;
1201 return nr_reads + nr_writes;
1204 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1206 unsigned int nr_disp = 0;
1208 while (1) {
1209 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1210 struct throtl_service_queue *sq;
1212 if (!tg)
1213 break;
1215 if (time_before(jiffies, tg->disptime))
1216 break;
1218 throtl_dequeue_tg(tg);
1220 nr_disp += throtl_dispatch_tg(tg);
1222 sq = &tg->service_queue;
1223 if (sq->nr_queued[0] || sq->nr_queued[1])
1224 tg_update_disptime(tg);
1226 if (nr_disp >= throtl_quantum)
1227 break;
1230 return nr_disp;
1233 static bool throtl_can_upgrade(struct throtl_data *td,
1234 struct throtl_grp *this_tg);
1236 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1237 * @arg: the throtl_service_queue being serviced
1239 * This timer is armed when a child throtl_grp with active bio's become
1240 * pending and queued on the service_queue's pending_tree and expires when
1241 * the first child throtl_grp should be dispatched. This function
1242 * dispatches bio's from the children throtl_grps to the parent
1243 * service_queue.
1245 * If the parent's parent is another throtl_grp, dispatching is propagated
1246 * by either arming its pending_timer or repeating dispatch directly. If
1247 * the top-level service_tree is reached, throtl_data->dispatch_work is
1248 * kicked so that the ready bio's are issued.
1250 static void throtl_pending_timer_fn(struct timer_list *t)
1252 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1253 struct throtl_grp *tg = sq_to_tg(sq);
1254 struct throtl_data *td = sq_to_td(sq);
1255 struct request_queue *q = td->queue;
1256 struct throtl_service_queue *parent_sq;
1257 bool dispatched;
1258 int ret;
1260 spin_lock_irq(q->queue_lock);
1261 if (throtl_can_upgrade(td, NULL))
1262 throtl_upgrade_state(td);
1264 again:
1265 parent_sq = sq->parent_sq;
1266 dispatched = false;
1268 while (true) {
1269 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1270 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1271 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1273 ret = throtl_select_dispatch(sq);
1274 if (ret) {
1275 throtl_log(sq, "bios disp=%u", ret);
1276 dispatched = true;
1279 if (throtl_schedule_next_dispatch(sq, false))
1280 break;
1282 /* this dispatch windows is still open, relax and repeat */
1283 spin_unlock_irq(q->queue_lock);
1284 cpu_relax();
1285 spin_lock_irq(q->queue_lock);
1288 if (!dispatched)
1289 goto out_unlock;
1291 if (parent_sq) {
1292 /* @parent_sq is another throl_grp, propagate dispatch */
1293 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1294 tg_update_disptime(tg);
1295 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1296 /* window is already open, repeat dispatching */
1297 sq = parent_sq;
1298 tg = sq_to_tg(sq);
1299 goto again;
1302 } else {
1303 /* reached the top-level, queue issueing */
1304 queue_work(kthrotld_workqueue, &td->dispatch_work);
1306 out_unlock:
1307 spin_unlock_irq(q->queue_lock);
1311 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1312 * @work: work item being executed
1314 * This function is queued for execution when bio's reach the bio_lists[]
1315 * of throtl_data->service_queue. Those bio's are ready and issued by this
1316 * function.
1318 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1320 struct throtl_data *td = container_of(work, struct throtl_data,
1321 dispatch_work);
1322 struct throtl_service_queue *td_sq = &td->service_queue;
1323 struct request_queue *q = td->queue;
1324 struct bio_list bio_list_on_stack;
1325 struct bio *bio;
1326 struct blk_plug plug;
1327 int rw;
1329 bio_list_init(&bio_list_on_stack);
1331 spin_lock_irq(q->queue_lock);
1332 for (rw = READ; rw <= WRITE; rw++)
1333 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1334 bio_list_add(&bio_list_on_stack, bio);
1335 spin_unlock_irq(q->queue_lock);
1337 if (!bio_list_empty(&bio_list_on_stack)) {
1338 blk_start_plug(&plug);
1339 while((bio = bio_list_pop(&bio_list_on_stack)))
1340 generic_make_request(bio);
1341 blk_finish_plug(&plug);
1345 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1346 int off)
1348 struct throtl_grp *tg = pd_to_tg(pd);
1349 u64 v = *(u64 *)((void *)tg + off);
1351 if (v == U64_MAX)
1352 return 0;
1353 return __blkg_prfill_u64(sf, pd, v);
1356 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1357 int off)
1359 struct throtl_grp *tg = pd_to_tg(pd);
1360 unsigned int v = *(unsigned int *)((void *)tg + off);
1362 if (v == UINT_MAX)
1363 return 0;
1364 return __blkg_prfill_u64(sf, pd, v);
1367 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1369 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1370 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1371 return 0;
1374 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1376 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1377 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1378 return 0;
1381 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1383 struct throtl_service_queue *sq = &tg->service_queue;
1384 struct cgroup_subsys_state *pos_css;
1385 struct blkcg_gq *blkg;
1387 throtl_log(&tg->service_queue,
1388 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1389 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1390 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1393 * Update has_rules[] flags for the updated tg's subtree. A tg is
1394 * considered to have rules if either the tg itself or any of its
1395 * ancestors has rules. This identifies groups without any
1396 * restrictions in the whole hierarchy and allows them to bypass
1397 * blk-throttle.
1399 blkg_for_each_descendant_pre(blkg, pos_css,
1400 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1401 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1402 struct throtl_grp *parent_tg;
1404 tg_update_has_rules(this_tg);
1405 /* ignore root/second level */
1406 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1407 !blkg->parent->parent)
1408 continue;
1409 parent_tg = blkg_to_tg(blkg->parent);
1411 * make sure all children has lower idle time threshold and
1412 * higher latency target
1414 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1415 parent_tg->idletime_threshold);
1416 this_tg->latency_target = max(this_tg->latency_target,
1417 parent_tg->latency_target);
1421 * We're already holding queue_lock and know @tg is valid. Let's
1422 * apply the new config directly.
1424 * Restart the slices for both READ and WRITES. It might happen
1425 * that a group's limit are dropped suddenly and we don't want to
1426 * account recently dispatched IO with new low rate.
1428 throtl_start_new_slice(tg, 0);
1429 throtl_start_new_slice(tg, 1);
1431 if (tg->flags & THROTL_TG_PENDING) {
1432 tg_update_disptime(tg);
1433 throtl_schedule_next_dispatch(sq->parent_sq, true);
1437 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1438 char *buf, size_t nbytes, loff_t off, bool is_u64)
1440 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1441 struct blkg_conf_ctx ctx;
1442 struct throtl_grp *tg;
1443 int ret;
1444 u64 v;
1446 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1447 if (ret)
1448 return ret;
1450 ret = -EINVAL;
1451 if (sscanf(ctx.body, "%llu", &v) != 1)
1452 goto out_finish;
1453 if (!v)
1454 v = U64_MAX;
1456 tg = blkg_to_tg(ctx.blkg);
1458 if (is_u64)
1459 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1460 else
1461 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1463 tg_conf_updated(tg, false);
1464 ret = 0;
1465 out_finish:
1466 blkg_conf_finish(&ctx);
1467 return ret ?: nbytes;
1470 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1471 char *buf, size_t nbytes, loff_t off)
1473 return tg_set_conf(of, buf, nbytes, off, true);
1476 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1477 char *buf, size_t nbytes, loff_t off)
1479 return tg_set_conf(of, buf, nbytes, off, false);
1482 static struct cftype throtl_legacy_files[] = {
1484 .name = "throttle.read_bps_device",
1485 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1486 .seq_show = tg_print_conf_u64,
1487 .write = tg_set_conf_u64,
1490 .name = "throttle.write_bps_device",
1491 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1492 .seq_show = tg_print_conf_u64,
1493 .write = tg_set_conf_u64,
1496 .name = "throttle.read_iops_device",
1497 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1498 .seq_show = tg_print_conf_uint,
1499 .write = tg_set_conf_uint,
1502 .name = "throttle.write_iops_device",
1503 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1504 .seq_show = tg_print_conf_uint,
1505 .write = tg_set_conf_uint,
1508 .name = "throttle.io_service_bytes",
1509 .private = (unsigned long)&blkcg_policy_throtl,
1510 .seq_show = blkg_print_stat_bytes,
1513 .name = "throttle.io_service_bytes_recursive",
1514 .private = (unsigned long)&blkcg_policy_throtl,
1515 .seq_show = blkg_print_stat_bytes_recursive,
1518 .name = "throttle.io_serviced",
1519 .private = (unsigned long)&blkcg_policy_throtl,
1520 .seq_show = blkg_print_stat_ios,
1523 .name = "throttle.io_serviced_recursive",
1524 .private = (unsigned long)&blkcg_policy_throtl,
1525 .seq_show = blkg_print_stat_ios_recursive,
1527 { } /* terminate */
1530 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1531 int off)
1533 struct throtl_grp *tg = pd_to_tg(pd);
1534 const char *dname = blkg_dev_name(pd->blkg);
1535 char bufs[4][21] = { "max", "max", "max", "max" };
1536 u64 bps_dft;
1537 unsigned int iops_dft;
1538 char idle_time[26] = "";
1539 char latency_time[26] = "";
1541 if (!dname)
1542 return 0;
1544 if (off == LIMIT_LOW) {
1545 bps_dft = 0;
1546 iops_dft = 0;
1547 } else {
1548 bps_dft = U64_MAX;
1549 iops_dft = UINT_MAX;
1552 if (tg->bps_conf[READ][off] == bps_dft &&
1553 tg->bps_conf[WRITE][off] == bps_dft &&
1554 tg->iops_conf[READ][off] == iops_dft &&
1555 tg->iops_conf[WRITE][off] == iops_dft &&
1556 (off != LIMIT_LOW ||
1557 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1558 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1559 return 0;
1561 if (tg->bps_conf[READ][off] != U64_MAX)
1562 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1563 tg->bps_conf[READ][off]);
1564 if (tg->bps_conf[WRITE][off] != U64_MAX)
1565 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1566 tg->bps_conf[WRITE][off]);
1567 if (tg->iops_conf[READ][off] != UINT_MAX)
1568 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1569 tg->iops_conf[READ][off]);
1570 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1571 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1572 tg->iops_conf[WRITE][off]);
1573 if (off == LIMIT_LOW) {
1574 if (tg->idletime_threshold_conf == ULONG_MAX)
1575 strcpy(idle_time, " idle=max");
1576 else
1577 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1578 tg->idletime_threshold_conf);
1580 if (tg->latency_target_conf == ULONG_MAX)
1581 strcpy(latency_time, " latency=max");
1582 else
1583 snprintf(latency_time, sizeof(latency_time),
1584 " latency=%lu", tg->latency_target_conf);
1587 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1588 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1589 latency_time);
1590 return 0;
1593 static int tg_print_limit(struct seq_file *sf, void *v)
1595 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1596 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1597 return 0;
1600 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1601 char *buf, size_t nbytes, loff_t off)
1603 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1604 struct blkg_conf_ctx ctx;
1605 struct throtl_grp *tg;
1606 u64 v[4];
1607 unsigned long idle_time;
1608 unsigned long latency_time;
1609 int ret;
1610 int index = of_cft(of)->private;
1612 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1613 if (ret)
1614 return ret;
1616 tg = blkg_to_tg(ctx.blkg);
1618 v[0] = tg->bps_conf[READ][index];
1619 v[1] = tg->bps_conf[WRITE][index];
1620 v[2] = tg->iops_conf[READ][index];
1621 v[3] = tg->iops_conf[WRITE][index];
1623 idle_time = tg->idletime_threshold_conf;
1624 latency_time = tg->latency_target_conf;
1625 while (true) {
1626 char tok[27]; /* wiops=18446744073709551616 */
1627 char *p;
1628 u64 val = U64_MAX;
1629 int len;
1631 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1632 break;
1633 if (tok[0] == '\0')
1634 break;
1635 ctx.body += len;
1637 ret = -EINVAL;
1638 p = tok;
1639 strsep(&p, "=");
1640 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1641 goto out_finish;
1643 ret = -ERANGE;
1644 if (!val)
1645 goto out_finish;
1647 ret = -EINVAL;
1648 if (!strcmp(tok, "rbps"))
1649 v[0] = val;
1650 else if (!strcmp(tok, "wbps"))
1651 v[1] = val;
1652 else if (!strcmp(tok, "riops"))
1653 v[2] = min_t(u64, val, UINT_MAX);
1654 else if (!strcmp(tok, "wiops"))
1655 v[3] = min_t(u64, val, UINT_MAX);
1656 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1657 idle_time = val;
1658 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1659 latency_time = val;
1660 else
1661 goto out_finish;
1664 tg->bps_conf[READ][index] = v[0];
1665 tg->bps_conf[WRITE][index] = v[1];
1666 tg->iops_conf[READ][index] = v[2];
1667 tg->iops_conf[WRITE][index] = v[3];
1669 if (index == LIMIT_MAX) {
1670 tg->bps[READ][index] = v[0];
1671 tg->bps[WRITE][index] = v[1];
1672 tg->iops[READ][index] = v[2];
1673 tg->iops[WRITE][index] = v[3];
1675 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1676 tg->bps_conf[READ][LIMIT_MAX]);
1677 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1678 tg->bps_conf[WRITE][LIMIT_MAX]);
1679 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1680 tg->iops_conf[READ][LIMIT_MAX]);
1681 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1682 tg->iops_conf[WRITE][LIMIT_MAX]);
1683 tg->idletime_threshold_conf = idle_time;
1684 tg->latency_target_conf = latency_time;
1686 /* force user to configure all settings for low limit */
1687 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1688 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1689 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1690 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1691 tg->bps[READ][LIMIT_LOW] = 0;
1692 tg->bps[WRITE][LIMIT_LOW] = 0;
1693 tg->iops[READ][LIMIT_LOW] = 0;
1694 tg->iops[WRITE][LIMIT_LOW] = 0;
1695 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1696 tg->latency_target = DFL_LATENCY_TARGET;
1697 } else if (index == LIMIT_LOW) {
1698 tg->idletime_threshold = tg->idletime_threshold_conf;
1699 tg->latency_target = tg->latency_target_conf;
1702 blk_throtl_update_limit_valid(tg->td);
1703 if (tg->td->limit_valid[LIMIT_LOW]) {
1704 if (index == LIMIT_LOW)
1705 tg->td->limit_index = LIMIT_LOW;
1706 } else
1707 tg->td->limit_index = LIMIT_MAX;
1708 tg_conf_updated(tg, index == LIMIT_LOW &&
1709 tg->td->limit_valid[LIMIT_LOW]);
1710 ret = 0;
1711 out_finish:
1712 blkg_conf_finish(&ctx);
1713 return ret ?: nbytes;
1716 static struct cftype throtl_files[] = {
1717 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1719 .name = "low",
1720 .flags = CFTYPE_NOT_ON_ROOT,
1721 .seq_show = tg_print_limit,
1722 .write = tg_set_limit,
1723 .private = LIMIT_LOW,
1725 #endif
1727 .name = "max",
1728 .flags = CFTYPE_NOT_ON_ROOT,
1729 .seq_show = tg_print_limit,
1730 .write = tg_set_limit,
1731 .private = LIMIT_MAX,
1733 { } /* terminate */
1736 static void throtl_shutdown_wq(struct request_queue *q)
1738 struct throtl_data *td = q->td;
1740 cancel_work_sync(&td->dispatch_work);
1743 static struct blkcg_policy blkcg_policy_throtl = {
1744 .dfl_cftypes = throtl_files,
1745 .legacy_cftypes = throtl_legacy_files,
1747 .pd_alloc_fn = throtl_pd_alloc,
1748 .pd_init_fn = throtl_pd_init,
1749 .pd_online_fn = throtl_pd_online,
1750 .pd_offline_fn = throtl_pd_offline,
1751 .pd_free_fn = throtl_pd_free,
1754 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1756 unsigned long rtime = jiffies, wtime = jiffies;
1758 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1759 rtime = tg->last_low_overflow_time[READ];
1760 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1761 wtime = tg->last_low_overflow_time[WRITE];
1762 return min(rtime, wtime);
1765 /* tg should not be an intermediate node */
1766 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1768 struct throtl_service_queue *parent_sq;
1769 struct throtl_grp *parent = tg;
1770 unsigned long ret = __tg_last_low_overflow_time(tg);
1772 while (true) {
1773 parent_sq = parent->service_queue.parent_sq;
1774 parent = sq_to_tg(parent_sq);
1775 if (!parent)
1776 break;
1779 * The parent doesn't have low limit, it always reaches low
1780 * limit. Its overflow time is useless for children
1782 if (!parent->bps[READ][LIMIT_LOW] &&
1783 !parent->iops[READ][LIMIT_LOW] &&
1784 !parent->bps[WRITE][LIMIT_LOW] &&
1785 !parent->iops[WRITE][LIMIT_LOW])
1786 continue;
1787 if (time_after(__tg_last_low_overflow_time(parent), ret))
1788 ret = __tg_last_low_overflow_time(parent);
1790 return ret;
1793 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1796 * cgroup is idle if:
1797 * - single idle is too long, longer than a fixed value (in case user
1798 * configure a too big threshold) or 4 times of idletime threshold
1799 * - average think time is more than threshold
1800 * - IO latency is largely below threshold
1802 unsigned long time;
1803 bool ret;
1805 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1806 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1807 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1808 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1809 tg->avg_idletime > tg->idletime_threshold ||
1810 (tg->latency_target && tg->bio_cnt &&
1811 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1812 throtl_log(&tg->service_queue,
1813 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1814 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1815 tg->bio_cnt, ret, tg->td->scale);
1816 return ret;
1819 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1821 struct throtl_service_queue *sq = &tg->service_queue;
1822 bool read_limit, write_limit;
1825 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1826 * reaches), it's ok to upgrade to next limit
1828 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1829 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1830 if (!read_limit && !write_limit)
1831 return true;
1832 if (read_limit && sq->nr_queued[READ] &&
1833 (!write_limit || sq->nr_queued[WRITE]))
1834 return true;
1835 if (write_limit && sq->nr_queued[WRITE] &&
1836 (!read_limit || sq->nr_queued[READ]))
1837 return true;
1839 if (time_after_eq(jiffies,
1840 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1841 throtl_tg_is_idle(tg))
1842 return true;
1843 return false;
1846 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1848 while (true) {
1849 if (throtl_tg_can_upgrade(tg))
1850 return true;
1851 tg = sq_to_tg(tg->service_queue.parent_sq);
1852 if (!tg || !tg_to_blkg(tg)->parent)
1853 return false;
1855 return false;
1858 static bool throtl_can_upgrade(struct throtl_data *td,
1859 struct throtl_grp *this_tg)
1861 struct cgroup_subsys_state *pos_css;
1862 struct blkcg_gq *blkg;
1864 if (td->limit_index != LIMIT_LOW)
1865 return false;
1867 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1868 return false;
1870 rcu_read_lock();
1871 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1872 struct throtl_grp *tg = blkg_to_tg(blkg);
1874 if (tg == this_tg)
1875 continue;
1876 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1877 continue;
1878 if (!throtl_hierarchy_can_upgrade(tg)) {
1879 rcu_read_unlock();
1880 return false;
1883 rcu_read_unlock();
1884 return true;
1887 static void throtl_upgrade_check(struct throtl_grp *tg)
1889 unsigned long now = jiffies;
1891 if (tg->td->limit_index != LIMIT_LOW)
1892 return;
1894 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1895 return;
1897 tg->last_check_time = now;
1899 if (!time_after_eq(now,
1900 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1901 return;
1903 if (throtl_can_upgrade(tg->td, NULL))
1904 throtl_upgrade_state(tg->td);
1907 static void throtl_upgrade_state(struct throtl_data *td)
1909 struct cgroup_subsys_state *pos_css;
1910 struct blkcg_gq *blkg;
1912 throtl_log(&td->service_queue, "upgrade to max");
1913 td->limit_index = LIMIT_MAX;
1914 td->low_upgrade_time = jiffies;
1915 td->scale = 0;
1916 rcu_read_lock();
1917 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1918 struct throtl_grp *tg = blkg_to_tg(blkg);
1919 struct throtl_service_queue *sq = &tg->service_queue;
1921 tg->disptime = jiffies - 1;
1922 throtl_select_dispatch(sq);
1923 throtl_schedule_next_dispatch(sq, true);
1925 rcu_read_unlock();
1926 throtl_select_dispatch(&td->service_queue);
1927 throtl_schedule_next_dispatch(&td->service_queue, true);
1928 queue_work(kthrotld_workqueue, &td->dispatch_work);
1931 static void throtl_downgrade_state(struct throtl_data *td, int new)
1933 td->scale /= 2;
1935 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1936 if (td->scale) {
1937 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1938 return;
1941 td->limit_index = new;
1942 td->low_downgrade_time = jiffies;
1945 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1947 struct throtl_data *td = tg->td;
1948 unsigned long now = jiffies;
1951 * If cgroup is below low limit, consider downgrade and throttle other
1952 * cgroups
1954 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1955 time_after_eq(now, tg_last_low_overflow_time(tg) +
1956 td->throtl_slice) &&
1957 (!throtl_tg_is_idle(tg) ||
1958 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1959 return true;
1960 return false;
1963 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1965 while (true) {
1966 if (!throtl_tg_can_downgrade(tg))
1967 return false;
1968 tg = sq_to_tg(tg->service_queue.parent_sq);
1969 if (!tg || !tg_to_blkg(tg)->parent)
1970 break;
1972 return true;
1975 static void throtl_downgrade_check(struct throtl_grp *tg)
1977 uint64_t bps;
1978 unsigned int iops;
1979 unsigned long elapsed_time;
1980 unsigned long now = jiffies;
1982 if (tg->td->limit_index != LIMIT_MAX ||
1983 !tg->td->limit_valid[LIMIT_LOW])
1984 return;
1985 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1986 return;
1987 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1988 return;
1990 elapsed_time = now - tg->last_check_time;
1991 tg->last_check_time = now;
1993 if (time_before(now, tg_last_low_overflow_time(tg) +
1994 tg->td->throtl_slice))
1995 return;
1997 if (tg->bps[READ][LIMIT_LOW]) {
1998 bps = tg->last_bytes_disp[READ] * HZ;
1999 do_div(bps, elapsed_time);
2000 if (bps >= tg->bps[READ][LIMIT_LOW])
2001 tg->last_low_overflow_time[READ] = now;
2004 if (tg->bps[WRITE][LIMIT_LOW]) {
2005 bps = tg->last_bytes_disp[WRITE] * HZ;
2006 do_div(bps, elapsed_time);
2007 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2008 tg->last_low_overflow_time[WRITE] = now;
2011 if (tg->iops[READ][LIMIT_LOW]) {
2012 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2013 if (iops >= tg->iops[READ][LIMIT_LOW])
2014 tg->last_low_overflow_time[READ] = now;
2017 if (tg->iops[WRITE][LIMIT_LOW]) {
2018 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2019 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2020 tg->last_low_overflow_time[WRITE] = now;
2024 * If cgroup is below low limit, consider downgrade and throttle other
2025 * cgroups
2027 if (throtl_hierarchy_can_downgrade(tg))
2028 throtl_downgrade_state(tg->td, LIMIT_LOW);
2030 tg->last_bytes_disp[READ] = 0;
2031 tg->last_bytes_disp[WRITE] = 0;
2032 tg->last_io_disp[READ] = 0;
2033 tg->last_io_disp[WRITE] = 0;
2036 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2038 unsigned long now = ktime_get_ns() >> 10;
2039 unsigned long last_finish_time = tg->last_finish_time;
2041 if (now <= last_finish_time || last_finish_time == 0 ||
2042 last_finish_time == tg->checked_last_finish_time)
2043 return;
2045 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2046 tg->checked_last_finish_time = last_finish_time;
2049 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2050 static void throtl_update_latency_buckets(struct throtl_data *td)
2052 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2053 int i, cpu, rw;
2054 unsigned long last_latency[2] = { 0 };
2055 unsigned long latency[2];
2057 if (!blk_queue_nonrot(td->queue))
2058 return;
2059 if (time_before(jiffies, td->last_calculate_time + HZ))
2060 return;
2061 td->last_calculate_time = jiffies;
2063 memset(avg_latency, 0, sizeof(avg_latency));
2064 for (rw = READ; rw <= WRITE; rw++) {
2065 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2066 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2068 for_each_possible_cpu(cpu) {
2069 struct latency_bucket *bucket;
2071 /* this isn't race free, but ok in practice */
2072 bucket = per_cpu_ptr(td->latency_buckets[rw],
2073 cpu);
2074 tmp->total_latency += bucket[i].total_latency;
2075 tmp->samples += bucket[i].samples;
2076 bucket[i].total_latency = 0;
2077 bucket[i].samples = 0;
2080 if (tmp->samples >= 32) {
2081 int samples = tmp->samples;
2083 latency[rw] = tmp->total_latency;
2085 tmp->total_latency = 0;
2086 tmp->samples = 0;
2087 latency[rw] /= samples;
2088 if (latency[rw] == 0)
2089 continue;
2090 avg_latency[rw][i].latency = latency[rw];
2095 for (rw = READ; rw <= WRITE; rw++) {
2096 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2097 if (!avg_latency[rw][i].latency) {
2098 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2099 td->avg_buckets[rw][i].latency =
2100 last_latency[rw];
2101 continue;
2104 if (!td->avg_buckets[rw][i].valid)
2105 latency[rw] = avg_latency[rw][i].latency;
2106 else
2107 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2108 avg_latency[rw][i].latency) >> 3;
2110 td->avg_buckets[rw][i].latency = max(latency[rw],
2111 last_latency[rw]);
2112 td->avg_buckets[rw][i].valid = true;
2113 last_latency[rw] = td->avg_buckets[rw][i].latency;
2117 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2118 throtl_log(&td->service_queue,
2119 "Latency bucket %d: read latency=%ld, read valid=%d, "
2120 "write latency=%ld, write valid=%d", i,
2121 td->avg_buckets[READ][i].latency,
2122 td->avg_buckets[READ][i].valid,
2123 td->avg_buckets[WRITE][i].latency,
2124 td->avg_buckets[WRITE][i].valid);
2126 #else
2127 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2130 #endif
2132 static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
2134 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2135 if (bio->bi_css) {
2136 if (bio->bi_cg_private)
2137 blkg_put(tg_to_blkg(bio->bi_cg_private));
2138 bio->bi_cg_private = tg;
2139 blkg_get(tg_to_blkg(tg));
2141 bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2142 #endif
2145 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2146 struct bio *bio)
2148 struct throtl_qnode *qn = NULL;
2149 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2150 struct throtl_service_queue *sq;
2151 bool rw = bio_data_dir(bio);
2152 bool throttled = false;
2153 struct throtl_data *td = tg->td;
2155 WARN_ON_ONCE(!rcu_read_lock_held());
2157 /* see throtl_charge_bio() */
2158 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2159 goto out;
2161 spin_lock_irq(q->queue_lock);
2163 throtl_update_latency_buckets(td);
2165 if (unlikely(blk_queue_bypass(q)))
2166 goto out_unlock;
2168 blk_throtl_assoc_bio(tg, bio);
2169 blk_throtl_update_idletime(tg);
2171 sq = &tg->service_queue;
2173 again:
2174 while (true) {
2175 if (tg->last_low_overflow_time[rw] == 0)
2176 tg->last_low_overflow_time[rw] = jiffies;
2177 throtl_downgrade_check(tg);
2178 throtl_upgrade_check(tg);
2179 /* throtl is FIFO - if bios are already queued, should queue */
2180 if (sq->nr_queued[rw])
2181 break;
2183 /* if above limits, break to queue */
2184 if (!tg_may_dispatch(tg, bio, NULL)) {
2185 tg->last_low_overflow_time[rw] = jiffies;
2186 if (throtl_can_upgrade(td, tg)) {
2187 throtl_upgrade_state(td);
2188 goto again;
2190 break;
2193 /* within limits, let's charge and dispatch directly */
2194 throtl_charge_bio(tg, bio);
2197 * We need to trim slice even when bios are not being queued
2198 * otherwise it might happen that a bio is not queued for
2199 * a long time and slice keeps on extending and trim is not
2200 * called for a long time. Now if limits are reduced suddenly
2201 * we take into account all the IO dispatched so far at new
2202 * low rate and * newly queued IO gets a really long dispatch
2203 * time.
2205 * So keep on trimming slice even if bio is not queued.
2207 throtl_trim_slice(tg, rw);
2210 * @bio passed through this layer without being throttled.
2211 * Climb up the ladder. If we''re already at the top, it
2212 * can be executed directly.
2214 qn = &tg->qnode_on_parent[rw];
2215 sq = sq->parent_sq;
2216 tg = sq_to_tg(sq);
2217 if (!tg)
2218 goto out_unlock;
2221 /* out-of-limit, queue to @tg */
2222 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2223 rw == READ ? 'R' : 'W',
2224 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2225 tg_bps_limit(tg, rw),
2226 tg->io_disp[rw], tg_iops_limit(tg, rw),
2227 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2229 tg->last_low_overflow_time[rw] = jiffies;
2231 td->nr_queued[rw]++;
2232 throtl_add_bio_tg(bio, qn, tg);
2233 throttled = true;
2236 * Update @tg's dispatch time and force schedule dispatch if @tg
2237 * was empty before @bio. The forced scheduling isn't likely to
2238 * cause undue delay as @bio is likely to be dispatched directly if
2239 * its @tg's disptime is not in the future.
2241 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2242 tg_update_disptime(tg);
2243 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2246 out_unlock:
2247 spin_unlock_irq(q->queue_lock);
2248 out:
2249 bio_set_flag(bio, BIO_THROTTLED);
2251 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2252 if (throttled || !td->track_bio_latency)
2253 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2254 #endif
2255 return throttled;
2258 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2259 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2260 int op, unsigned long time)
2262 struct latency_bucket *latency;
2263 int index;
2265 if (!td || td->limit_index != LIMIT_LOW ||
2266 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2267 !blk_queue_nonrot(td->queue))
2268 return;
2270 index = request_bucket_index(size);
2272 latency = get_cpu_ptr(td->latency_buckets[op]);
2273 latency[index].total_latency += time;
2274 latency[index].samples++;
2275 put_cpu_ptr(td->latency_buckets[op]);
2278 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2280 struct request_queue *q = rq->q;
2281 struct throtl_data *td = q->td;
2283 throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2286 void blk_throtl_bio_endio(struct bio *bio)
2288 struct throtl_grp *tg;
2289 u64 finish_time_ns;
2290 unsigned long finish_time;
2291 unsigned long start_time;
2292 unsigned long lat;
2293 int rw = bio_data_dir(bio);
2295 tg = bio->bi_cg_private;
2296 if (!tg)
2297 return;
2298 bio->bi_cg_private = NULL;
2300 finish_time_ns = ktime_get_ns();
2301 tg->last_finish_time = finish_time_ns >> 10;
2303 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2304 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2305 if (!start_time || finish_time <= start_time) {
2306 blkg_put(tg_to_blkg(tg));
2307 return;
2310 lat = finish_time - start_time;
2311 /* this is only for bio based driver */
2312 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2313 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2314 bio_op(bio), lat);
2316 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2317 int bucket;
2318 unsigned int threshold;
2320 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2321 threshold = tg->td->avg_buckets[rw][bucket].latency +
2322 tg->latency_target;
2323 if (lat > threshold)
2324 tg->bad_bio_cnt++;
2326 * Not race free, could get wrong count, which means cgroups
2327 * will be throttled
2329 tg->bio_cnt++;
2332 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2333 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2334 tg->bio_cnt /= 2;
2335 tg->bad_bio_cnt /= 2;
2338 blkg_put(tg_to_blkg(tg));
2340 #endif
2343 * Dispatch all bios from all children tg's queued on @parent_sq. On
2344 * return, @parent_sq is guaranteed to not have any active children tg's
2345 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2347 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2349 struct throtl_grp *tg;
2351 while ((tg = throtl_rb_first(parent_sq))) {
2352 struct throtl_service_queue *sq = &tg->service_queue;
2353 struct bio *bio;
2355 throtl_dequeue_tg(tg);
2357 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2358 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2359 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2360 tg_dispatch_one_bio(tg, bio_data_dir(bio));
2365 * blk_throtl_drain - drain throttled bios
2366 * @q: request_queue to drain throttled bios for
2368 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2370 void blk_throtl_drain(struct request_queue *q)
2371 __releases(q->queue_lock) __acquires(q->queue_lock)
2373 struct throtl_data *td = q->td;
2374 struct blkcg_gq *blkg;
2375 struct cgroup_subsys_state *pos_css;
2376 struct bio *bio;
2377 int rw;
2379 queue_lockdep_assert_held(q);
2380 rcu_read_lock();
2383 * Drain each tg while doing post-order walk on the blkg tree, so
2384 * that all bios are propagated to td->service_queue. It'd be
2385 * better to walk service_queue tree directly but blkg walk is
2386 * easier.
2388 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2389 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2391 /* finally, transfer bios from top-level tg's into the td */
2392 tg_drain_bios(&td->service_queue);
2394 rcu_read_unlock();
2395 spin_unlock_irq(q->queue_lock);
2397 /* all bios now should be in td->service_queue, issue them */
2398 for (rw = READ; rw <= WRITE; rw++)
2399 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2400 NULL)))
2401 generic_make_request(bio);
2403 spin_lock_irq(q->queue_lock);
2406 int blk_throtl_init(struct request_queue *q)
2408 struct throtl_data *td;
2409 int ret;
2411 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2412 if (!td)
2413 return -ENOMEM;
2414 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2415 LATENCY_BUCKET_SIZE, __alignof__(u64));
2416 if (!td->latency_buckets[READ]) {
2417 kfree(td);
2418 return -ENOMEM;
2420 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2421 LATENCY_BUCKET_SIZE, __alignof__(u64));
2422 if (!td->latency_buckets[WRITE]) {
2423 free_percpu(td->latency_buckets[READ]);
2424 kfree(td);
2425 return -ENOMEM;
2428 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2429 throtl_service_queue_init(&td->service_queue);
2431 q->td = td;
2432 td->queue = q;
2434 td->limit_valid[LIMIT_MAX] = true;
2435 td->limit_index = LIMIT_MAX;
2436 td->low_upgrade_time = jiffies;
2437 td->low_downgrade_time = jiffies;
2439 /* activate policy */
2440 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2441 if (ret) {
2442 free_percpu(td->latency_buckets[READ]);
2443 free_percpu(td->latency_buckets[WRITE]);
2444 kfree(td);
2446 return ret;
2449 void blk_throtl_exit(struct request_queue *q)
2451 BUG_ON(!q->td);
2452 throtl_shutdown_wq(q);
2453 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2454 free_percpu(q->td->latency_buckets[READ]);
2455 free_percpu(q->td->latency_buckets[WRITE]);
2456 kfree(q->td);
2459 void blk_throtl_register_queue(struct request_queue *q)
2461 struct throtl_data *td;
2462 int i;
2464 td = q->td;
2465 BUG_ON(!td);
2467 if (blk_queue_nonrot(q)) {
2468 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2469 td->filtered_latency = LATENCY_FILTERED_SSD;
2470 } else {
2471 td->throtl_slice = DFL_THROTL_SLICE_HD;
2472 td->filtered_latency = LATENCY_FILTERED_HD;
2473 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2474 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2475 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2478 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2479 /* if no low limit, use previous default */
2480 td->throtl_slice = DFL_THROTL_SLICE_HD;
2481 #endif
2483 td->track_bio_latency = !queue_is_rq_based(q);
2484 if (!td->track_bio_latency)
2485 blk_stat_enable_accounting(q);
2488 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2489 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2491 if (!q->td)
2492 return -EINVAL;
2493 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2496 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2497 const char *page, size_t count)
2499 unsigned long v;
2500 unsigned long t;
2502 if (!q->td)
2503 return -EINVAL;
2504 if (kstrtoul(page, 10, &v))
2505 return -EINVAL;
2506 t = msecs_to_jiffies(v);
2507 if (t == 0 || t > MAX_THROTL_SLICE)
2508 return -EINVAL;
2509 q->td->throtl_slice = t;
2510 return count;
2512 #endif
2514 static int __init throtl_init(void)
2516 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2517 if (!kthrotld_workqueue)
2518 panic("Failed to create kthrotld\n");
2520 return blkcg_policy_register(&blkcg_policy_throtl);
2523 module_init(throtl_init);