1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
26 static DEFINE_SPINLOCK(dbg_lock
);
28 static const char *get_key_fmt(int fmt
)
31 case UBIFS_SIMPLE_KEY_FMT
:
34 return "unknown/invalid format";
38 static const char *get_key_hash(int hash
)
41 case UBIFS_KEY_HASH_R5
:
43 case UBIFS_KEY_HASH_TEST
:
46 return "unknown/invalid name hash";
50 static const char *get_key_type(int type
)
64 return "unknown/invalid key";
68 static const char *get_dent_type(int type
)
81 case UBIFS_ITYPE_FIFO
:
83 case UBIFS_ITYPE_SOCK
:
86 return "unknown/invalid type";
90 const char *dbg_snprintf_key(const struct ubifs_info
*c
,
91 const union ubifs_key
*key
, char *buffer
, int len
)
94 int type
= key_type(c
, key
);
96 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
99 len
-= snprintf(p
, len
, "(%lu, %s)",
100 (unsigned long)key_inum(c
, key
),
105 len
-= snprintf(p
, len
, "(%lu, %s, %#08x)",
106 (unsigned long)key_inum(c
, key
),
107 get_key_type(type
), key_hash(c
, key
));
110 len
-= snprintf(p
, len
, "(%lu, %s, %u)",
111 (unsigned long)key_inum(c
, key
),
112 get_key_type(type
), key_block(c
, key
));
115 len
-= snprintf(p
, len
, "(%lu, %s)",
116 (unsigned long)key_inum(c
, key
),
120 len
-= snprintf(p
, len
, "(bad key type: %#08x, %#08x)",
121 key
->u32
[0], key
->u32
[1]);
124 len
-= snprintf(p
, len
, "bad key format %d", c
->key_fmt
);
125 ubifs_assert(c
, len
> 0);
129 const char *dbg_ntype(int type
)
133 return "padding node";
135 return "superblock node";
137 return "master node";
139 return "reference node";
142 case UBIFS_DENT_NODE
:
143 return "direntry node";
144 case UBIFS_XENT_NODE
:
145 return "xentry node";
146 case UBIFS_DATA_NODE
:
148 case UBIFS_TRUN_NODE
:
149 return "truncate node";
151 return "indexing node";
153 return "commit start node";
154 case UBIFS_ORPH_NODE
:
155 return "orphan node";
156 case UBIFS_AUTH_NODE
:
159 return "unknown node";
163 static const char *dbg_gtype(int type
)
166 case UBIFS_NO_NODE_GROUP
:
167 return "no node group";
168 case UBIFS_IN_NODE_GROUP
:
169 return "in node group";
170 case UBIFS_LAST_OF_NODE_GROUP
:
171 return "last of node group";
177 const char *dbg_cstate(int cmt_state
)
181 return "commit resting";
182 case COMMIT_BACKGROUND
:
183 return "background commit requested";
184 case COMMIT_REQUIRED
:
185 return "commit required";
186 case COMMIT_RUNNING_BACKGROUND
:
187 return "BACKGROUND commit running";
188 case COMMIT_RUNNING_REQUIRED
:
189 return "commit running and required";
191 return "broken commit";
193 return "unknown commit state";
197 const char *dbg_jhead(int jhead
)
207 return "unknown journal head";
211 static void dump_ch(const struct ubifs_ch
*ch
)
213 pr_err("\tmagic %#x\n", le32_to_cpu(ch
->magic
));
214 pr_err("\tcrc %#x\n", le32_to_cpu(ch
->crc
));
215 pr_err("\tnode_type %d (%s)\n", ch
->node_type
,
216 dbg_ntype(ch
->node_type
));
217 pr_err("\tgroup_type %d (%s)\n", ch
->group_type
,
218 dbg_gtype(ch
->group_type
));
219 pr_err("\tsqnum %llu\n",
220 (unsigned long long)le64_to_cpu(ch
->sqnum
));
221 pr_err("\tlen %u\n", le32_to_cpu(ch
->len
));
224 void ubifs_dump_inode(struct ubifs_info
*c
, const struct inode
*inode
)
226 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
227 struct fscrypt_name nm
= {0};
229 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
232 pr_err("Dump in-memory inode:");
233 pr_err("\tinode %lu\n", inode
->i_ino
);
234 pr_err("\tsize %llu\n",
235 (unsigned long long)i_size_read(inode
));
236 pr_err("\tnlink %u\n", inode
->i_nlink
);
237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode
));
238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode
));
239 pr_err("\tatime %u.%u\n",
240 (unsigned int)inode
->i_atime
.tv_sec
,
241 (unsigned int)inode
->i_atime
.tv_nsec
);
242 pr_err("\tmtime %u.%u\n",
243 (unsigned int)inode
->i_mtime
.tv_sec
,
244 (unsigned int)inode
->i_mtime
.tv_nsec
);
245 pr_err("\tctime %u.%u\n",
246 (unsigned int)inode
->i_ctime
.tv_sec
,
247 (unsigned int)inode
->i_ctime
.tv_nsec
);
248 pr_err("\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
249 pr_err("\txattr_size %u\n", ui
->xattr_size
);
250 pr_err("\txattr_cnt %u\n", ui
->xattr_cnt
);
251 pr_err("\txattr_names %u\n", ui
->xattr_names
);
252 pr_err("\tdirty %u\n", ui
->dirty
);
253 pr_err("\txattr %u\n", ui
->xattr
);
254 pr_err("\tbulk_read %u\n", ui
->bulk_read
);
255 pr_err("\tsynced_i_size %llu\n",
256 (unsigned long long)ui
->synced_i_size
);
257 pr_err("\tui_size %llu\n",
258 (unsigned long long)ui
->ui_size
);
259 pr_err("\tflags %d\n", ui
->flags
);
260 pr_err("\tcompr_type %d\n", ui
->compr_type
);
261 pr_err("\tlast_page_read %lu\n", ui
->last_page_read
);
262 pr_err("\tread_in_a_row %lu\n", ui
->read_in_a_row
);
263 pr_err("\tdata_len %d\n", ui
->data_len
);
265 if (!S_ISDIR(inode
->i_mode
))
268 pr_err("List of directory entries:\n");
269 ubifs_assert(c
, !mutex_is_locked(&c
->tnc_mutex
));
271 lowest_dent_key(c
, &key
, inode
->i_ino
);
273 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
275 if (PTR_ERR(dent
) != -ENOENT
)
276 pr_err("error %ld\n", PTR_ERR(dent
));
280 pr_err("\t%d: inode %llu, type %s, len %d\n",
281 count
++, (unsigned long long) le64_to_cpu(dent
->inum
),
282 get_dent_type(dent
->type
),
283 le16_to_cpu(dent
->nlen
));
285 fname_name(&nm
) = dent
->name
;
286 fname_len(&nm
) = le16_to_cpu(dent
->nlen
);
289 key_read(c
, &dent
->key
, &key
);
294 void ubifs_dump_node(const struct ubifs_info
*c
, const void *node
)
298 const struct ubifs_ch
*ch
= node
;
299 char key_buf
[DBG_KEY_BUF_LEN
];
301 /* If the magic is incorrect, just hexdump the first bytes */
302 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ
);
304 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 32, 1,
305 (void *)node
, UBIFS_CH_SZ
, 1);
309 spin_lock(&dbg_lock
);
312 switch (ch
->node_type
) {
315 const struct ubifs_pad_node
*pad
= node
;
317 pr_err("\tpad_len %u\n", le32_to_cpu(pad
->pad_len
));
322 const struct ubifs_sb_node
*sup
= node
;
323 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
325 pr_err("\tkey_hash %d (%s)\n",
326 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
327 pr_err("\tkey_fmt %d (%s)\n",
328 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
329 pr_err("\tflags %#x\n", sup_flags
);
330 pr_err("\tbig_lpt %u\n",
331 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
332 pr_err("\tspace_fixup %u\n",
333 !!(sup_flags
& UBIFS_FLG_SPACE_FIXUP
));
334 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup
->min_io_size
));
335 pr_err("\tleb_size %u\n", le32_to_cpu(sup
->leb_size
));
336 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup
->leb_cnt
));
337 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup
->max_leb_cnt
));
338 pr_err("\tmax_bud_bytes %llu\n",
339 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
340 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup
->log_lebs
));
341 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup
->lpt_lebs
));
342 pr_err("\torph_lebs %u\n", le32_to_cpu(sup
->orph_lebs
));
343 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup
->jhead_cnt
));
344 pr_err("\tfanout %u\n", le32_to_cpu(sup
->fanout
));
345 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup
->lsave_cnt
));
346 pr_err("\tdefault_compr %u\n",
347 (int)le16_to_cpu(sup
->default_compr
));
348 pr_err("\trp_size %llu\n",
349 (unsigned long long)le64_to_cpu(sup
->rp_size
));
350 pr_err("\trp_uid %u\n", le32_to_cpu(sup
->rp_uid
));
351 pr_err("\trp_gid %u\n", le32_to_cpu(sup
->rp_gid
));
352 pr_err("\tfmt_version %u\n", le32_to_cpu(sup
->fmt_version
));
353 pr_err("\ttime_gran %u\n", le32_to_cpu(sup
->time_gran
));
354 pr_err("\tUUID %pUB\n", sup
->uuid
);
359 const struct ubifs_mst_node
*mst
= node
;
361 pr_err("\thighest_inum %llu\n",
362 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
363 pr_err("\tcommit number %llu\n",
364 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
365 pr_err("\tflags %#x\n", le32_to_cpu(mst
->flags
));
366 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst
->log_lnum
));
367 pr_err("\troot_lnum %u\n", le32_to_cpu(mst
->root_lnum
));
368 pr_err("\troot_offs %u\n", le32_to_cpu(mst
->root_offs
));
369 pr_err("\troot_len %u\n", le32_to_cpu(mst
->root_len
));
370 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst
->gc_lnum
));
371 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst
->ihead_lnum
));
372 pr_err("\tihead_offs %u\n", le32_to_cpu(mst
->ihead_offs
));
373 pr_err("\tindex_size %llu\n",
374 (unsigned long long)le64_to_cpu(mst
->index_size
));
375 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst
->lpt_lnum
));
376 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst
->lpt_offs
));
377 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst
->nhead_lnum
));
378 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst
->nhead_offs
));
379 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst
->ltab_lnum
));
380 pr_err("\tltab_offs %u\n", le32_to_cpu(mst
->ltab_offs
));
381 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst
->lsave_lnum
));
382 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst
->lsave_offs
));
383 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst
->lscan_lnum
));
384 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst
->leb_cnt
));
385 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst
->empty_lebs
));
386 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst
->idx_lebs
));
387 pr_err("\ttotal_free %llu\n",
388 (unsigned long long)le64_to_cpu(mst
->total_free
));
389 pr_err("\ttotal_dirty %llu\n",
390 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
391 pr_err("\ttotal_used %llu\n",
392 (unsigned long long)le64_to_cpu(mst
->total_used
));
393 pr_err("\ttotal_dead %llu\n",
394 (unsigned long long)le64_to_cpu(mst
->total_dead
));
395 pr_err("\ttotal_dark %llu\n",
396 (unsigned long long)le64_to_cpu(mst
->total_dark
));
401 const struct ubifs_ref_node
*ref
= node
;
403 pr_err("\tlnum %u\n", le32_to_cpu(ref
->lnum
));
404 pr_err("\toffs %u\n", le32_to_cpu(ref
->offs
));
405 pr_err("\tjhead %u\n", le32_to_cpu(ref
->jhead
));
410 const struct ubifs_ino_node
*ino
= node
;
412 key_read(c
, &ino
->key
, &key
);
414 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
415 pr_err("\tcreat_sqnum %llu\n",
416 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
417 pr_err("\tsize %llu\n",
418 (unsigned long long)le64_to_cpu(ino
->size
));
419 pr_err("\tnlink %u\n", le32_to_cpu(ino
->nlink
));
420 pr_err("\tatime %lld.%u\n",
421 (long long)le64_to_cpu(ino
->atime_sec
),
422 le32_to_cpu(ino
->atime_nsec
));
423 pr_err("\tmtime %lld.%u\n",
424 (long long)le64_to_cpu(ino
->mtime_sec
),
425 le32_to_cpu(ino
->mtime_nsec
));
426 pr_err("\tctime %lld.%u\n",
427 (long long)le64_to_cpu(ino
->ctime_sec
),
428 le32_to_cpu(ino
->ctime_nsec
));
429 pr_err("\tuid %u\n", le32_to_cpu(ino
->uid
));
430 pr_err("\tgid %u\n", le32_to_cpu(ino
->gid
));
431 pr_err("\tmode %u\n", le32_to_cpu(ino
->mode
));
432 pr_err("\tflags %#x\n", le32_to_cpu(ino
->flags
));
433 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino
->xattr_cnt
));
434 pr_err("\txattr_size %u\n", le32_to_cpu(ino
->xattr_size
));
435 pr_err("\txattr_names %u\n", le32_to_cpu(ino
->xattr_names
));
436 pr_err("\tcompr_type %#x\n",
437 (int)le16_to_cpu(ino
->compr_type
));
438 pr_err("\tdata len %u\n", le32_to_cpu(ino
->data_len
));
441 case UBIFS_DENT_NODE
:
442 case UBIFS_XENT_NODE
:
444 const struct ubifs_dent_node
*dent
= node
;
445 int nlen
= le16_to_cpu(dent
->nlen
);
447 key_read(c
, &dent
->key
, &key
);
449 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
450 pr_err("\tinum %llu\n",
451 (unsigned long long)le64_to_cpu(dent
->inum
));
452 pr_err("\ttype %d\n", (int)dent
->type
);
453 pr_err("\tnlen %d\n", nlen
);
456 if (nlen
> UBIFS_MAX_NLEN
)
457 pr_err("(bad name length, not printing, bad or corrupted node)");
459 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
460 pr_cont("%c", isprint(dent
->name
[i
]) ?
461 dent
->name
[i
] : '?');
467 case UBIFS_DATA_NODE
:
469 const struct ubifs_data_node
*dn
= node
;
470 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
472 key_read(c
, &dn
->key
, &key
);
474 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
475 pr_err("\tsize %u\n", le32_to_cpu(dn
->size
));
476 pr_err("\tcompr_typ %d\n",
477 (int)le16_to_cpu(dn
->compr_type
));
478 pr_err("\tdata size %d\n", dlen
);
480 print_hex_dump(KERN_ERR
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
481 (void *)&dn
->data
, dlen
, 0);
484 case UBIFS_TRUN_NODE
:
486 const struct ubifs_trun_node
*trun
= node
;
488 pr_err("\tinum %u\n", le32_to_cpu(trun
->inum
));
489 pr_err("\told_size %llu\n",
490 (unsigned long long)le64_to_cpu(trun
->old_size
));
491 pr_err("\tnew_size %llu\n",
492 (unsigned long long)le64_to_cpu(trun
->new_size
));
497 const struct ubifs_idx_node
*idx
= node
;
499 n
= le16_to_cpu(idx
->child_cnt
);
500 pr_err("\tchild_cnt %d\n", n
);
501 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx
->level
));
502 pr_err("\tBranches:\n");
504 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
505 const struct ubifs_branch
*br
;
507 br
= ubifs_idx_branch(c
, idx
, i
);
508 key_read(c
, &br
->key
, &key
);
509 pr_err("\t%d: LEB %d:%d len %d key %s\n",
510 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
511 le32_to_cpu(br
->len
),
512 dbg_snprintf_key(c
, &key
, key_buf
,
519 case UBIFS_ORPH_NODE
:
521 const struct ubifs_orph_node
*orph
= node
;
523 pr_err("\tcommit number %llu\n",
525 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
526 pr_err("\tlast node flag %llu\n",
527 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
528 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
529 pr_err("\t%d orphan inode numbers:\n", n
);
530 for (i
= 0; i
< n
; i
++)
531 pr_err("\t ino %llu\n",
532 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
535 case UBIFS_AUTH_NODE
:
540 pr_err("node type %d was not recognized\n",
543 spin_unlock(&dbg_lock
);
546 void ubifs_dump_budget_req(const struct ubifs_budget_req
*req
)
548 spin_lock(&dbg_lock
);
549 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
550 req
->new_ino
, req
->dirtied_ino
);
551 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
552 req
->new_ino_d
, req
->dirtied_ino_d
);
553 pr_err("\tnew_page %d, dirtied_page %d\n",
554 req
->new_page
, req
->dirtied_page
);
555 pr_err("\tnew_dent %d, mod_dent %d\n",
556 req
->new_dent
, req
->mod_dent
);
557 pr_err("\tidx_growth %d\n", req
->idx_growth
);
558 pr_err("\tdata_growth %d dd_growth %d\n",
559 req
->data_growth
, req
->dd_growth
);
560 spin_unlock(&dbg_lock
);
563 void ubifs_dump_lstats(const struct ubifs_lp_stats
*lst
)
565 spin_lock(&dbg_lock
);
566 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
567 current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
568 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
569 lst
->taken_empty_lebs
, lst
->total_free
, lst
->total_dirty
);
570 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
571 lst
->total_used
, lst
->total_dark
, lst
->total_dead
);
572 spin_unlock(&dbg_lock
);
575 void ubifs_dump_budg(struct ubifs_info
*c
, const struct ubifs_budg_info
*bi
)
579 struct ubifs_bud
*bud
;
580 struct ubifs_gced_idx_leb
*idx_gc
;
581 long long available
, outstanding
, free
;
583 spin_lock(&c
->space_lock
);
584 spin_lock(&dbg_lock
);
585 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
586 current
->pid
, bi
->data_growth
+ bi
->dd_growth
,
587 bi
->data_growth
+ bi
->dd_growth
+ bi
->idx_growth
);
588 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
589 bi
->data_growth
, bi
->dd_growth
, bi
->idx_growth
);
590 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
591 bi
->min_idx_lebs
, bi
->old_idx_sz
, bi
->uncommitted_idx
);
592 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
593 bi
->page_budget
, bi
->inode_budget
, bi
->dent_budget
);
594 pr_err("\tnospace %u, nospace_rp %u\n", bi
->nospace
, bi
->nospace_rp
);
595 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
596 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
600 * If we are dumping saved budgeting data, do not print
601 * additional information which is about the current state, not
602 * the old one which corresponded to the saved budgeting data.
606 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
607 c
->freeable_cnt
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
608 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
609 atomic_long_read(&c
->dirty_pg_cnt
),
610 atomic_long_read(&c
->dirty_zn_cnt
),
611 atomic_long_read(&c
->clean_zn_cnt
));
612 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c
->gc_lnum
, c
->ihead_lnum
);
614 /* If we are in R/O mode, journal heads do not exist */
616 for (i
= 0; i
< c
->jhead_cnt
; i
++)
617 pr_err("\tjhead %s\t LEB %d\n",
618 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
619 c
->jheads
[i
].wbuf
.lnum
);
620 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
621 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
622 pr_err("\tbud LEB %d\n", bud
->lnum
);
624 list_for_each_entry(bud
, &c
->old_buds
, list
)
625 pr_err("\told bud LEB %d\n", bud
->lnum
);
626 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
627 pr_err("\tGC'ed idx LEB %d unmap %d\n",
628 idx_gc
->lnum
, idx_gc
->unmap
);
629 pr_err("\tcommit state %d\n", c
->cmt_state
);
631 /* Print budgeting predictions */
632 available
= ubifs_calc_available(c
, c
->bi
.min_idx_lebs
);
633 outstanding
= c
->bi
.data_growth
+ c
->bi
.dd_growth
;
634 free
= ubifs_get_free_space_nolock(c
);
635 pr_err("Budgeting predictions:\n");
636 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
637 available
, outstanding
, free
);
639 spin_unlock(&dbg_lock
);
640 spin_unlock(&c
->space_lock
);
643 void ubifs_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
645 int i
, spc
, dark
= 0, dead
= 0;
647 struct ubifs_bud
*bud
;
649 spc
= lp
->free
+ lp
->dirty
;
650 if (spc
< c
->dead_wm
)
653 dark
= ubifs_calc_dark(c
, spc
);
655 if (lp
->flags
& LPROPS_INDEX
)
656 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
657 lp
->lnum
, lp
->free
, lp
->dirty
, c
->leb_size
- spc
, spc
,
660 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
661 lp
->lnum
, lp
->free
, lp
->dirty
, c
->leb_size
- spc
, spc
,
662 dark
, dead
, (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
664 if (lp
->flags
& LPROPS_TAKEN
) {
665 if (lp
->flags
& LPROPS_INDEX
)
666 pr_cont("index, taken");
672 if (lp
->flags
& LPROPS_INDEX
) {
673 switch (lp
->flags
& LPROPS_CAT_MASK
) {
674 case LPROPS_DIRTY_IDX
:
677 case LPROPS_FRDI_IDX
:
678 s
= "freeable index";
684 switch (lp
->flags
& LPROPS_CAT_MASK
) {
686 s
= "not categorized";
697 case LPROPS_FREEABLE
:
708 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
709 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
710 if (bud
->lnum
== lp
->lnum
) {
712 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
714 * Note, if we are in R/O mode or in the middle
715 * of mounting/re-mounting, the write-buffers do
719 lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
720 pr_cont(", jhead %s", dbg_jhead(i
));
725 pr_cont(", bud of jhead %s",
726 dbg_jhead(bud
->jhead
));
729 if (lp
->lnum
== c
->gc_lnum
)
734 void ubifs_dump_lprops(struct ubifs_info
*c
)
737 struct ubifs_lprops lp
;
738 struct ubifs_lp_stats lst
;
740 pr_err("(pid %d) start dumping LEB properties\n", current
->pid
);
741 ubifs_get_lp_stats(c
, &lst
);
742 ubifs_dump_lstats(&lst
);
744 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
745 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
747 ubifs_err(c
, "cannot read lprops for LEB %d", lnum
);
751 ubifs_dump_lprop(c
, &lp
);
753 pr_err("(pid %d) finish dumping LEB properties\n", current
->pid
);
756 void ubifs_dump_lpt_info(struct ubifs_info
*c
)
760 spin_lock(&dbg_lock
);
761 pr_err("(pid %d) dumping LPT information\n", current
->pid
);
762 pr_err("\tlpt_sz: %lld\n", c
->lpt_sz
);
763 pr_err("\tpnode_sz: %d\n", c
->pnode_sz
);
764 pr_err("\tnnode_sz: %d\n", c
->nnode_sz
);
765 pr_err("\tltab_sz: %d\n", c
->ltab_sz
);
766 pr_err("\tlsave_sz: %d\n", c
->lsave_sz
);
767 pr_err("\tbig_lpt: %d\n", c
->big_lpt
);
768 pr_err("\tlpt_hght: %d\n", c
->lpt_hght
);
769 pr_err("\tpnode_cnt: %d\n", c
->pnode_cnt
);
770 pr_err("\tnnode_cnt: %d\n", c
->nnode_cnt
);
771 pr_err("\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
772 pr_err("\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
773 pr_err("\tlsave_cnt: %d\n", c
->lsave_cnt
);
774 pr_err("\tspace_bits: %d\n", c
->space_bits
);
775 pr_err("\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
776 pr_err("\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
777 pr_err("\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
778 pr_err("\tpcnt_bits: %d\n", c
->pcnt_bits
);
779 pr_err("\tlnum_bits: %d\n", c
->lnum_bits
);
780 pr_err("\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
781 pr_err("\tLPT head is at %d:%d\n",
782 c
->nhead_lnum
, c
->nhead_offs
);
783 pr_err("\tLPT ltab is at %d:%d\n", c
->ltab_lnum
, c
->ltab_offs
);
785 pr_err("\tLPT lsave is at %d:%d\n",
786 c
->lsave_lnum
, c
->lsave_offs
);
787 for (i
= 0; i
< c
->lpt_lebs
; i
++)
788 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
789 i
+ c
->lpt_first
, c
->ltab
[i
].free
, c
->ltab
[i
].dirty
,
790 c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
791 spin_unlock(&dbg_lock
);
794 void ubifs_dump_sleb(const struct ubifs_info
*c
,
795 const struct ubifs_scan_leb
*sleb
, int offs
)
797 struct ubifs_scan_node
*snod
;
799 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
800 current
->pid
, sleb
->lnum
, offs
);
802 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
804 pr_err("Dumping node at LEB %d:%d len %d\n",
805 sleb
->lnum
, snod
->offs
, snod
->len
);
806 ubifs_dump_node(c
, snod
->node
);
810 void ubifs_dump_leb(const struct ubifs_info
*c
, int lnum
)
812 struct ubifs_scan_leb
*sleb
;
813 struct ubifs_scan_node
*snod
;
816 pr_err("(pid %d) start dumping LEB %d\n", current
->pid
, lnum
);
818 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
820 ubifs_err(c
, "cannot allocate memory for dumping LEB %d", lnum
);
824 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
826 ubifs_err(c
, "scan error %d", (int)PTR_ERR(sleb
));
830 pr_err("LEB %d has %d nodes ending at %d\n", lnum
,
831 sleb
->nodes_cnt
, sleb
->endpt
);
833 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
835 pr_err("Dumping node at LEB %d:%d len %d\n", lnum
,
836 snod
->offs
, snod
->len
);
837 ubifs_dump_node(c
, snod
->node
);
840 pr_err("(pid %d) finish dumping LEB %d\n", current
->pid
, lnum
);
841 ubifs_scan_destroy(sleb
);
848 void ubifs_dump_znode(const struct ubifs_info
*c
,
849 const struct ubifs_znode
*znode
)
852 const struct ubifs_zbranch
*zbr
;
853 char key_buf
[DBG_KEY_BUF_LEN
];
855 spin_lock(&dbg_lock
);
857 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
861 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
862 znode
, zbr
->lnum
, zbr
->offs
, zbr
->len
, znode
->parent
, znode
->iip
,
863 znode
->level
, znode
->child_cnt
, znode
->flags
);
865 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
866 spin_unlock(&dbg_lock
);
870 pr_err("zbranches:\n");
871 for (n
= 0; n
< znode
->child_cnt
; n
++) {
872 zbr
= &znode
->zbranch
[n
];
873 if (znode
->level
> 0)
874 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
875 n
, zbr
->znode
, zbr
->lnum
, zbr
->offs
, zbr
->len
,
876 dbg_snprintf_key(c
, &zbr
->key
, key_buf
,
879 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
880 n
, zbr
->znode
, zbr
->lnum
, zbr
->offs
, zbr
->len
,
881 dbg_snprintf_key(c
, &zbr
->key
, key_buf
,
884 spin_unlock(&dbg_lock
);
887 void ubifs_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
891 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
892 current
->pid
, cat
, heap
->cnt
);
893 for (i
= 0; i
< heap
->cnt
; i
++) {
894 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
896 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
897 i
, lprops
->lnum
, lprops
->hpos
, lprops
->free
,
898 lprops
->dirty
, lprops
->flags
);
900 pr_err("(pid %d) finish dumping heap\n", current
->pid
);
903 void ubifs_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
904 struct ubifs_nnode
*parent
, int iip
)
908 pr_err("(pid %d) dumping pnode:\n", current
->pid
);
909 pr_err("\taddress %zx parent %zx cnext %zx\n",
910 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
911 pr_err("\tflags %lu iip %d level %d num %d\n",
912 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
913 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
914 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
916 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
917 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
921 void ubifs_dump_tnc(struct ubifs_info
*c
)
923 struct ubifs_znode
*znode
;
927 pr_err("(pid %d) start dumping TNC tree\n", current
->pid
);
928 znode
= ubifs_tnc_levelorder_next(c
, c
->zroot
.znode
, NULL
);
929 level
= znode
->level
;
930 pr_err("== Level %d ==\n", level
);
932 if (level
!= znode
->level
) {
933 level
= znode
->level
;
934 pr_err("== Level %d ==\n", level
);
936 ubifs_dump_znode(c
, znode
);
937 znode
= ubifs_tnc_levelorder_next(c
, c
->zroot
.znode
, znode
);
939 pr_err("(pid %d) finish dumping TNC tree\n", current
->pid
);
942 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
945 ubifs_dump_znode(c
, znode
);
950 * ubifs_dump_index - dump the on-flash index.
951 * @c: UBIFS file-system description object
953 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
954 * which dumps only in-memory znodes and does not read znodes which from flash.
956 void ubifs_dump_index(struct ubifs_info
*c
)
958 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
962 * dbg_save_space_info - save information about flash space.
963 * @c: UBIFS file-system description object
965 * This function saves information about UBIFS free space, dirty space, etc, in
966 * order to check it later.
968 void dbg_save_space_info(struct ubifs_info
*c
)
970 struct ubifs_debug_info
*d
= c
->dbg
;
973 spin_lock(&c
->space_lock
);
974 memcpy(&d
->saved_lst
, &c
->lst
, sizeof(struct ubifs_lp_stats
));
975 memcpy(&d
->saved_bi
, &c
->bi
, sizeof(struct ubifs_budg_info
));
976 d
->saved_idx_gc_cnt
= c
->idx_gc_cnt
;
979 * We use a dirty hack here and zero out @c->freeable_cnt, because it
980 * affects the free space calculations, and UBIFS might not know about
981 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
982 * only when we read their lprops, and we do this only lazily, upon the
983 * need. So at any given point of time @c->freeable_cnt might be not
986 * Just one example about the issue we hit when we did not zero
988 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
989 * amount of free space in @d->saved_free
990 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
991 * information from flash, where we cache LEBs from various
992 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
993 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
994 * -> 'ubifs_get_pnode()' -> 'update_cats()'
995 * -> 'ubifs_add_to_cat()').
996 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
998 * 4. We calculate the amount of free space when the re-mount is
999 * finished in 'dbg_check_space_info()' and it does not match
1002 freeable_cnt
= c
->freeable_cnt
;
1003 c
->freeable_cnt
= 0;
1004 d
->saved_free
= ubifs_get_free_space_nolock(c
);
1005 c
->freeable_cnt
= freeable_cnt
;
1006 spin_unlock(&c
->space_lock
);
1010 * dbg_check_space_info - check flash space information.
1011 * @c: UBIFS file-system description object
1013 * This function compares current flash space information with the information
1014 * which was saved when the 'dbg_save_space_info()' function was called.
1015 * Returns zero if the information has not changed, and %-EINVAL it it has
1018 int dbg_check_space_info(struct ubifs_info
*c
)
1020 struct ubifs_debug_info
*d
= c
->dbg
;
1021 struct ubifs_lp_stats lst
;
1025 spin_lock(&c
->space_lock
);
1026 freeable_cnt
= c
->freeable_cnt
;
1027 c
->freeable_cnt
= 0;
1028 free
= ubifs_get_free_space_nolock(c
);
1029 c
->freeable_cnt
= freeable_cnt
;
1030 spin_unlock(&c
->space_lock
);
1032 if (free
!= d
->saved_free
) {
1033 ubifs_err(c
, "free space changed from %lld to %lld",
1034 d
->saved_free
, free
);
1041 ubifs_msg(c
, "saved lprops statistics dump");
1042 ubifs_dump_lstats(&d
->saved_lst
);
1043 ubifs_msg(c
, "saved budgeting info dump");
1044 ubifs_dump_budg(c
, &d
->saved_bi
);
1045 ubifs_msg(c
, "saved idx_gc_cnt %d", d
->saved_idx_gc_cnt
);
1046 ubifs_msg(c
, "current lprops statistics dump");
1047 ubifs_get_lp_stats(c
, &lst
);
1048 ubifs_dump_lstats(&lst
);
1049 ubifs_msg(c
, "current budgeting info dump");
1050 ubifs_dump_budg(c
, &c
->bi
);
1056 * dbg_check_synced_i_size - check synchronized inode size.
1057 * @c: UBIFS file-system description object
1058 * @inode: inode to check
1060 * If inode is clean, synchronized inode size has to be equivalent to current
1061 * inode size. This function has to be called only for locked inodes (@i_mutex
1062 * has to be locked). Returns %0 if synchronized inode size if correct, and
1065 int dbg_check_synced_i_size(const struct ubifs_info
*c
, struct inode
*inode
)
1068 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1070 if (!dbg_is_chk_gen(c
))
1072 if (!S_ISREG(inode
->i_mode
))
1075 mutex_lock(&ui
->ui_mutex
);
1076 spin_lock(&ui
->ui_lock
);
1077 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1078 ubifs_err(c
, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079 ui
->ui_size
, ui
->synced_i_size
);
1080 ubifs_err(c
, "i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1081 inode
->i_mode
, i_size_read(inode
));
1085 spin_unlock(&ui
->ui_lock
);
1086 mutex_unlock(&ui
->ui_mutex
);
1091 * dbg_check_dir - check directory inode size and link count.
1092 * @c: UBIFS file-system description object
1093 * @dir: the directory to calculate size for
1094 * @size: the result is returned here
1096 * This function makes sure that directory size and link count are correct.
1097 * Returns zero in case of success and a negative error code in case of
1100 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101 * calling this function.
1103 int dbg_check_dir(struct ubifs_info
*c
, const struct inode
*dir
)
1105 unsigned int nlink
= 2;
1106 union ubifs_key key
;
1107 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1108 struct fscrypt_name nm
= {0};
1109 loff_t size
= UBIFS_INO_NODE_SZ
;
1111 if (!dbg_is_chk_gen(c
))
1114 if (!S_ISDIR(dir
->i_mode
))
1117 lowest_dent_key(c
, &key
, dir
->i_ino
);
1121 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1123 err
= PTR_ERR(dent
);
1129 fname_name(&nm
) = dent
->name
;
1130 fname_len(&nm
) = le16_to_cpu(dent
->nlen
);
1131 size
+= CALC_DENT_SIZE(fname_len(&nm
));
1132 if (dent
->type
== UBIFS_ITYPE_DIR
)
1136 key_read(c
, &dent
->key
, &key
);
1140 if (i_size_read(dir
) != size
) {
1141 ubifs_err(c
, "directory inode %lu has size %llu, but calculated size is %llu",
1142 dir
->i_ino
, (unsigned long long)i_size_read(dir
),
1143 (unsigned long long)size
);
1144 ubifs_dump_inode(c
, dir
);
1148 if (dir
->i_nlink
!= nlink
) {
1149 ubifs_err(c
, "directory inode %lu has nlink %u, but calculated nlink is %u",
1150 dir
->i_ino
, dir
->i_nlink
, nlink
);
1151 ubifs_dump_inode(c
, dir
);
1160 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161 * @c: UBIFS file-system description object
1162 * @zbr1: first zbranch
1163 * @zbr2: following zbranch
1165 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166 * names of the direntries/xentries which are referred by the keys. This
1167 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168 * sure the name of direntry/xentry referred by @zbr1 is less than
1169 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170 * and a negative error code in case of failure.
1172 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1173 struct ubifs_zbranch
*zbr2
)
1175 int err
, nlen1
, nlen2
, cmp
;
1176 struct ubifs_dent_node
*dent1
, *dent2
;
1177 union ubifs_key key
;
1178 char key_buf
[DBG_KEY_BUF_LEN
];
1180 ubifs_assert(c
, !keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1181 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1184 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1190 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1193 err
= ubifs_validate_entry(c
, dent1
);
1197 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1200 err
= ubifs_validate_entry(c
, dent2
);
1204 /* Make sure node keys are the same as in zbranch */
1206 key_read(c
, &dent1
->key
, &key
);
1207 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1208 ubifs_err(c
, "1st entry at %d:%d has key %s", zbr1
->lnum
,
1209 zbr1
->offs
, dbg_snprintf_key(c
, &key
, key_buf
,
1211 ubifs_err(c
, "but it should have key %s according to tnc",
1212 dbg_snprintf_key(c
, &zbr1
->key
, key_buf
,
1214 ubifs_dump_node(c
, dent1
);
1218 key_read(c
, &dent2
->key
, &key
);
1219 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1220 ubifs_err(c
, "2nd entry at %d:%d has key %s", zbr1
->lnum
,
1221 zbr1
->offs
, dbg_snprintf_key(c
, &key
, key_buf
,
1223 ubifs_err(c
, "but it should have key %s according to tnc",
1224 dbg_snprintf_key(c
, &zbr2
->key
, key_buf
,
1226 ubifs_dump_node(c
, dent2
);
1230 nlen1
= le16_to_cpu(dent1
->nlen
);
1231 nlen2
= le16_to_cpu(dent2
->nlen
);
1233 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1234 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1238 if (cmp
== 0 && nlen1
== nlen2
)
1239 ubifs_err(c
, "2 xent/dent nodes with the same name");
1241 ubifs_err(c
, "bad order of colliding key %s",
1242 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
1244 ubifs_msg(c
, "first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1245 ubifs_dump_node(c
, dent1
);
1246 ubifs_msg(c
, "second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1247 ubifs_dump_node(c
, dent2
);
1256 * dbg_check_znode - check if znode is all right.
1257 * @c: UBIFS file-system description object
1258 * @zbr: zbranch which points to this znode
1260 * This function makes sure that znode referred to by @zbr is all right.
1261 * Returns zero if it is, and %-EINVAL if it is not.
1263 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1265 struct ubifs_znode
*znode
= zbr
->znode
;
1266 struct ubifs_znode
*zp
= znode
->parent
;
1269 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1273 if (znode
->level
< 0) {
1277 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1283 /* Only dirty zbranch may have no on-flash nodes */
1284 if (!ubifs_zn_dirty(znode
)) {
1289 if (ubifs_zn_dirty(znode
)) {
1291 * If znode is dirty, its parent has to be dirty as well. The
1292 * order of the operation is important, so we have to have
1296 if (zp
&& !ubifs_zn_dirty(zp
)) {
1298 * The dirty flag is atomic and is cleared outside the
1299 * TNC mutex, so znode's dirty flag may now have
1300 * been cleared. The child is always cleared before the
1301 * parent, so we just need to check again.
1304 if (ubifs_zn_dirty(znode
)) {
1312 const union ubifs_key
*min
, *max
;
1314 if (znode
->level
!= zp
->level
- 1) {
1319 /* Make sure the 'parent' pointer in our znode is correct */
1320 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1322 /* This zbranch does not exist in the parent */
1327 if (znode
->iip
>= zp
->child_cnt
) {
1332 if (znode
->iip
!= n
) {
1333 /* This may happen only in case of collisions */
1334 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1335 &zp
->zbranch
[znode
->iip
].key
)) {
1343 * Make sure that the first key in our znode is greater than or
1344 * equal to the key in the pointing zbranch.
1347 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1353 if (n
+ 1 < zp
->child_cnt
) {
1354 max
= &zp
->zbranch
[n
+ 1].key
;
1357 * Make sure the last key in our znode is less or
1358 * equivalent than the key in the zbranch which goes
1359 * after our pointing zbranch.
1361 cmp
= keys_cmp(c
, max
,
1362 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1369 /* This may only be root znode */
1370 if (zbr
!= &c
->zroot
) {
1377 * Make sure that next key is greater or equivalent then the previous
1380 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1381 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1382 &znode
->zbranch
[n
].key
);
1388 /* This can only be keys with colliding hash */
1389 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1394 if (znode
->level
!= 0 || c
->replaying
)
1398 * Colliding keys should follow binary order of
1399 * corresponding xentry/dentry names.
1401 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1402 &znode
->zbranch
[n
]);
1412 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1413 if (!znode
->zbranch
[n
].znode
&&
1414 (znode
->zbranch
[n
].lnum
== 0 ||
1415 znode
->zbranch
[n
].len
== 0)) {
1420 if (znode
->zbranch
[n
].lnum
!= 0 &&
1421 znode
->zbranch
[n
].len
== 0) {
1426 if (znode
->zbranch
[n
].lnum
== 0 &&
1427 znode
->zbranch
[n
].len
!= 0) {
1432 if (znode
->zbranch
[n
].lnum
== 0 &&
1433 znode
->zbranch
[n
].offs
!= 0) {
1438 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1439 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1448 ubifs_err(c
, "failed, error %d", err
);
1449 ubifs_msg(c
, "dump of the znode");
1450 ubifs_dump_znode(c
, znode
);
1452 ubifs_msg(c
, "dump of the parent znode");
1453 ubifs_dump_znode(c
, zp
);
1460 * dbg_check_tnc - check TNC tree.
1461 * @c: UBIFS file-system description object
1462 * @extra: do extra checks that are possible at start commit
1464 * This function traverses whole TNC tree and checks every znode. Returns zero
1465 * if everything is all right and %-EINVAL if something is wrong with TNC.
1467 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1469 struct ubifs_znode
*znode
;
1470 long clean_cnt
= 0, dirty_cnt
= 0;
1473 if (!dbg_is_chk_index(c
))
1476 ubifs_assert(c
, mutex_is_locked(&c
->tnc_mutex
));
1477 if (!c
->zroot
.znode
)
1480 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1482 struct ubifs_znode
*prev
;
1483 struct ubifs_zbranch
*zbr
;
1488 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1490 err
= dbg_check_znode(c
, zbr
);
1495 if (ubifs_zn_dirty(znode
))
1502 znode
= ubifs_tnc_postorder_next(c
, znode
);
1507 * If the last key of this znode is equivalent to the first key
1508 * of the next znode (collision), then check order of the keys.
1510 last
= prev
->child_cnt
- 1;
1511 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1512 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1513 &znode
->zbranch
[0].key
)) {
1514 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1515 &znode
->zbranch
[0]);
1519 ubifs_msg(c
, "first znode");
1520 ubifs_dump_znode(c
, prev
);
1521 ubifs_msg(c
, "second znode");
1522 ubifs_dump_znode(c
, znode
);
1529 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1530 ubifs_err(c
, "incorrect clean_zn_cnt %ld, calculated %ld",
1531 atomic_long_read(&c
->clean_zn_cnt
),
1535 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1536 ubifs_err(c
, "incorrect dirty_zn_cnt %ld, calculated %ld",
1537 atomic_long_read(&c
->dirty_zn_cnt
),
1547 * dbg_walk_index - walk the on-flash index.
1548 * @c: UBIFS file-system description object
1549 * @leaf_cb: called for each leaf node
1550 * @znode_cb: called for each indexing node
1551 * @priv: private data which is passed to callbacks
1553 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1554 * node and @znode_cb for each indexing node. Returns zero in case of success
1555 * and a negative error code in case of failure.
1557 * It would be better if this function removed every znode it pulled to into
1558 * the TNC, so that the behavior more closely matched the non-debugging
1561 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1562 dbg_znode_callback znode_cb
, void *priv
)
1565 struct ubifs_zbranch
*zbr
;
1566 struct ubifs_znode
*znode
, *child
;
1568 mutex_lock(&c
->tnc_mutex
);
1569 /* If the root indexing node is not in TNC - pull it */
1570 if (!c
->zroot
.znode
) {
1571 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1572 if (IS_ERR(c
->zroot
.znode
)) {
1573 err
= PTR_ERR(c
->zroot
.znode
);
1574 c
->zroot
.znode
= NULL
;
1580 * We are going to traverse the indexing tree in the postorder manner.
1581 * Go down and find the leftmost indexing node where we are going to
1584 znode
= c
->zroot
.znode
;
1585 while (znode
->level
> 0) {
1586 zbr
= &znode
->zbranch
[0];
1589 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1590 if (IS_ERR(child
)) {
1591 err
= PTR_ERR(child
);
1599 /* Iterate over all indexing nodes */
1606 err
= znode_cb(c
, znode
, priv
);
1608 ubifs_err(c
, "znode checking function returned error %d",
1610 ubifs_dump_znode(c
, znode
);
1614 if (leaf_cb
&& znode
->level
== 0) {
1615 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1616 zbr
= &znode
->zbranch
[idx
];
1617 err
= leaf_cb(c
, zbr
, priv
);
1619 ubifs_err(c
, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1620 err
, zbr
->lnum
, zbr
->offs
);
1629 idx
= znode
->iip
+ 1;
1630 znode
= znode
->parent
;
1631 if (idx
< znode
->child_cnt
) {
1632 /* Switch to the next index in the parent */
1633 zbr
= &znode
->zbranch
[idx
];
1636 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1637 if (IS_ERR(child
)) {
1638 err
= PTR_ERR(child
);
1646 * This is the last child, switch to the parent and
1651 /* Go to the lowest leftmost znode in the new sub-tree */
1652 while (znode
->level
> 0) {
1653 zbr
= &znode
->zbranch
[0];
1656 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1657 if (IS_ERR(child
)) {
1658 err
= PTR_ERR(child
);
1667 mutex_unlock(&c
->tnc_mutex
);
1672 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1675 ubifs_msg(c
, "dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1676 ubifs_dump_znode(c
, znode
);
1678 mutex_unlock(&c
->tnc_mutex
);
1683 * add_size - add znode size to partially calculated index size.
1684 * @c: UBIFS file-system description object
1685 * @znode: znode to add size for
1686 * @priv: partially calculated index size
1688 * This is a helper function for 'dbg_check_idx_size()' which is called for
1689 * every indexing node and adds its size to the 'long long' variable pointed to
1692 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1694 long long *idx_size
= priv
;
1697 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1698 add
= ALIGN(add
, 8);
1704 * dbg_check_idx_size - check index size.
1705 * @c: UBIFS file-system description object
1706 * @idx_size: size to check
1708 * This function walks the UBIFS index, calculates its size and checks that the
1709 * size is equivalent to @idx_size. Returns zero in case of success and a
1710 * negative error code in case of failure.
1712 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1717 if (!dbg_is_chk_index(c
))
1720 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1722 ubifs_err(c
, "error %d while walking the index", err
);
1726 if (calc
!= idx_size
) {
1727 ubifs_err(c
, "index size check failed: calculated size is %lld, should be %lld",
1737 * struct fsck_inode - information about an inode used when checking the file-system.
1738 * @rb: link in the RB-tree of inodes
1739 * @inum: inode number
1740 * @mode: inode type, permissions, etc
1741 * @nlink: inode link count
1742 * @xattr_cnt: count of extended attributes
1743 * @references: how many directory/xattr entries refer this inode (calculated
1744 * while walking the index)
1745 * @calc_cnt: for directory inode count of child directories
1746 * @size: inode size (read from on-flash inode)
1747 * @xattr_sz: summary size of all extended attributes (read from on-flash
1749 * @calc_sz: for directories calculated directory size
1750 * @calc_xcnt: count of extended attributes
1751 * @calc_xsz: calculated summary size of all extended attributes
1752 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1753 * inode (read from on-flash inode)
1754 * @calc_xnms: calculated sum of lengths of all extended attribute names
1761 unsigned int xattr_cnt
;
1765 unsigned int xattr_sz
;
1767 long long calc_xcnt
;
1769 unsigned int xattr_nms
;
1770 long long calc_xnms
;
1774 * struct fsck_data - private FS checking information.
1775 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1778 struct rb_root inodes
;
1782 * add_inode - add inode information to RB-tree of inodes.
1783 * @c: UBIFS file-system description object
1784 * @fsckd: FS checking information
1785 * @ino: raw UBIFS inode to add
1787 * This is a helper function for 'check_leaf()' which adds information about
1788 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1789 * case of success and a negative error code in case of failure.
1791 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1792 struct fsck_data
*fsckd
,
1793 struct ubifs_ino_node
*ino
)
1795 struct rb_node
**p
, *parent
= NULL
;
1796 struct fsck_inode
*fscki
;
1797 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1798 struct inode
*inode
;
1799 struct ubifs_inode
*ui
;
1801 p
= &fsckd
->inodes
.rb_node
;
1804 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1805 if (inum
< fscki
->inum
)
1807 else if (inum
> fscki
->inum
)
1808 p
= &(*p
)->rb_right
;
1813 if (inum
> c
->highest_inum
) {
1814 ubifs_err(c
, "too high inode number, max. is %lu",
1815 (unsigned long)c
->highest_inum
);
1816 return ERR_PTR(-EINVAL
);
1819 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1821 return ERR_PTR(-ENOMEM
);
1823 inode
= ilookup(c
->vfs_sb
, inum
);
1827 * If the inode is present in the VFS inode cache, use it instead of
1828 * the on-flash inode which might be out-of-date. E.g., the size might
1829 * be out-of-date. If we do not do this, the following may happen, for
1831 * 1. A power cut happens
1832 * 2. We mount the file-system R/O, the replay process fixes up the
1833 * inode size in the VFS cache, but on on-flash.
1834 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1838 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1839 fscki
->size
= le64_to_cpu(ino
->size
);
1840 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1841 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1842 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1843 fscki
->mode
= le32_to_cpu(ino
->mode
);
1845 ui
= ubifs_inode(inode
);
1846 fscki
->nlink
= inode
->i_nlink
;
1847 fscki
->size
= inode
->i_size
;
1848 fscki
->xattr_cnt
= ui
->xattr_cnt
;
1849 fscki
->xattr_sz
= ui
->xattr_size
;
1850 fscki
->xattr_nms
= ui
->xattr_names
;
1851 fscki
->mode
= inode
->i_mode
;
1855 if (S_ISDIR(fscki
->mode
)) {
1856 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1857 fscki
->calc_cnt
= 2;
1860 rb_link_node(&fscki
->rb
, parent
, p
);
1861 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1867 * search_inode - search inode in the RB-tree of inodes.
1868 * @fsckd: FS checking information
1869 * @inum: inode number to search
1871 * This is a helper function for 'check_leaf()' which searches inode @inum in
1872 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1873 * the inode was not found.
1875 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1878 struct fsck_inode
*fscki
;
1880 p
= fsckd
->inodes
.rb_node
;
1882 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1883 if (inum
< fscki
->inum
)
1885 else if (inum
> fscki
->inum
)
1894 * read_add_inode - read inode node and add it to RB-tree of inodes.
1895 * @c: UBIFS file-system description object
1896 * @fsckd: FS checking information
1897 * @inum: inode number to read
1899 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1900 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1901 * information pointer in case of success and a negative error code in case of
1904 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1905 struct fsck_data
*fsckd
, ino_t inum
)
1908 union ubifs_key key
;
1909 struct ubifs_znode
*znode
;
1910 struct ubifs_zbranch
*zbr
;
1911 struct ubifs_ino_node
*ino
;
1912 struct fsck_inode
*fscki
;
1914 fscki
= search_inode(fsckd
, inum
);
1918 ino_key_init(c
, &key
, inum
);
1919 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1921 ubifs_err(c
, "inode %lu not found in index", (unsigned long)inum
);
1922 return ERR_PTR(-ENOENT
);
1923 } else if (err
< 0) {
1924 ubifs_err(c
, "error %d while looking up inode %lu",
1925 err
, (unsigned long)inum
);
1926 return ERR_PTR(err
);
1929 zbr
= &znode
->zbranch
[n
];
1930 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1931 ubifs_err(c
, "bad node %lu node length %d",
1932 (unsigned long)inum
, zbr
->len
);
1933 return ERR_PTR(-EINVAL
);
1936 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1938 return ERR_PTR(-ENOMEM
);
1940 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1942 ubifs_err(c
, "cannot read inode node at LEB %d:%d, error %d",
1943 zbr
->lnum
, zbr
->offs
, err
);
1945 return ERR_PTR(err
);
1948 fscki
= add_inode(c
, fsckd
, ino
);
1950 if (IS_ERR(fscki
)) {
1951 ubifs_err(c
, "error %ld while adding inode %lu node",
1952 PTR_ERR(fscki
), (unsigned long)inum
);
1960 * check_leaf - check leaf node.
1961 * @c: UBIFS file-system description object
1962 * @zbr: zbranch of the leaf node to check
1963 * @priv: FS checking information
1965 * This is a helper function for 'dbg_check_filesystem()' which is called for
1966 * every single leaf node while walking the indexing tree. It checks that the
1967 * leaf node referred from the indexing tree exists, has correct CRC, and does
1968 * some other basic validation. This function is also responsible for building
1969 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1970 * calculates reference count, size, etc for each inode in order to later
1971 * compare them to the information stored inside the inodes and detect possible
1972 * inconsistencies. Returns zero in case of success and a negative error code
1973 * in case of failure.
1975 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
1980 struct ubifs_ch
*ch
;
1981 int err
, type
= key_type(c
, &zbr
->key
);
1982 struct fsck_inode
*fscki
;
1984 if (zbr
->len
< UBIFS_CH_SZ
) {
1985 ubifs_err(c
, "bad leaf length %d (LEB %d:%d)",
1986 zbr
->len
, zbr
->lnum
, zbr
->offs
);
1990 node
= kmalloc(zbr
->len
, GFP_NOFS
);
1994 err
= ubifs_tnc_read_node(c
, zbr
, node
);
1996 ubifs_err(c
, "cannot read leaf node at LEB %d:%d, error %d",
1997 zbr
->lnum
, zbr
->offs
, err
);
2001 /* If this is an inode node, add it to RB-tree of inodes */
2002 if (type
== UBIFS_INO_KEY
) {
2003 fscki
= add_inode(c
, priv
, node
);
2004 if (IS_ERR(fscki
)) {
2005 err
= PTR_ERR(fscki
);
2006 ubifs_err(c
, "error %d while adding inode node", err
);
2012 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
2013 type
!= UBIFS_DATA_KEY
) {
2014 ubifs_err(c
, "unexpected node type %d at LEB %d:%d",
2015 type
, zbr
->lnum
, zbr
->offs
);
2021 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
2022 ubifs_err(c
, "too high sequence number, max. is %llu",
2028 if (type
== UBIFS_DATA_KEY
) {
2030 struct ubifs_data_node
*dn
= node
;
2032 ubifs_assert(c
, zbr
->len
>= UBIFS_DATA_NODE_SZ
);
2035 * Search the inode node this data node belongs to and insert
2036 * it to the RB-tree of inodes.
2038 inum
= key_inum_flash(c
, &dn
->key
);
2039 fscki
= read_add_inode(c
, priv
, inum
);
2040 if (IS_ERR(fscki
)) {
2041 err
= PTR_ERR(fscki
);
2042 ubifs_err(c
, "error %d while processing data node and trying to find inode node %lu",
2043 err
, (unsigned long)inum
);
2047 /* Make sure the data node is within inode size */
2048 blk_offs
= key_block_flash(c
, &dn
->key
);
2049 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
2050 blk_offs
+= le32_to_cpu(dn
->size
);
2051 if (blk_offs
> fscki
->size
) {
2052 ubifs_err(c
, "data node at LEB %d:%d is not within inode size %lld",
2053 zbr
->lnum
, zbr
->offs
, fscki
->size
);
2059 struct ubifs_dent_node
*dent
= node
;
2060 struct fsck_inode
*fscki1
;
2062 ubifs_assert(c
, zbr
->len
>= UBIFS_DENT_NODE_SZ
);
2064 err
= ubifs_validate_entry(c
, dent
);
2069 * Search the inode node this entry refers to and the parent
2070 * inode node and insert them to the RB-tree of inodes.
2072 inum
= le64_to_cpu(dent
->inum
);
2073 fscki
= read_add_inode(c
, priv
, inum
);
2074 if (IS_ERR(fscki
)) {
2075 err
= PTR_ERR(fscki
);
2076 ubifs_err(c
, "error %d while processing entry node and trying to find inode node %lu",
2077 err
, (unsigned long)inum
);
2081 /* Count how many direntries or xentries refers this inode */
2082 fscki
->references
+= 1;
2084 inum
= key_inum_flash(c
, &dent
->key
);
2085 fscki1
= read_add_inode(c
, priv
, inum
);
2086 if (IS_ERR(fscki1
)) {
2087 err
= PTR_ERR(fscki1
);
2088 ubifs_err(c
, "error %d while processing entry node and trying to find parent inode node %lu",
2089 err
, (unsigned long)inum
);
2093 nlen
= le16_to_cpu(dent
->nlen
);
2094 if (type
== UBIFS_XENT_KEY
) {
2095 fscki1
->calc_xcnt
+= 1;
2096 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2097 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2098 fscki1
->calc_xnms
+= nlen
;
2100 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2101 if (dent
->type
== UBIFS_ITYPE_DIR
)
2102 fscki1
->calc_cnt
+= 1;
2111 ubifs_msg(c
, "dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2112 ubifs_dump_node(c
, node
);
2119 * free_inodes - free RB-tree of inodes.
2120 * @fsckd: FS checking information
2122 static void free_inodes(struct fsck_data
*fsckd
)
2124 struct fsck_inode
*fscki
, *n
;
2126 rbtree_postorder_for_each_entry_safe(fscki
, n
, &fsckd
->inodes
, rb
)
2131 * check_inodes - checks all inodes.
2132 * @c: UBIFS file-system description object
2133 * @fsckd: FS checking information
2135 * This is a helper function for 'dbg_check_filesystem()' which walks the
2136 * RB-tree of inodes after the index scan has been finished, and checks that
2137 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2138 * %-EINVAL if not, and a negative error code in case of failure.
2140 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2143 union ubifs_key key
;
2144 struct ubifs_znode
*znode
;
2145 struct ubifs_zbranch
*zbr
;
2146 struct ubifs_ino_node
*ino
;
2147 struct fsck_inode
*fscki
;
2148 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2151 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2152 this = rb_next(this);
2154 if (S_ISDIR(fscki
->mode
)) {
2156 * Directories have to have exactly one reference (they
2157 * cannot have hardlinks), although root inode is an
2160 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2161 fscki
->references
!= 1) {
2162 ubifs_err(c
, "directory inode %lu has %d direntries which refer it, but should be 1",
2163 (unsigned long)fscki
->inum
,
2167 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2168 fscki
->references
!= 0) {
2169 ubifs_err(c
, "root inode %lu has non-zero (%d) direntries which refer it",
2170 (unsigned long)fscki
->inum
,
2174 if (fscki
->calc_sz
!= fscki
->size
) {
2175 ubifs_err(c
, "directory inode %lu size is %lld, but calculated size is %lld",
2176 (unsigned long)fscki
->inum
,
2177 fscki
->size
, fscki
->calc_sz
);
2180 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2181 ubifs_err(c
, "directory inode %lu nlink is %d, but calculated nlink is %d",
2182 (unsigned long)fscki
->inum
,
2183 fscki
->nlink
, fscki
->calc_cnt
);
2187 if (fscki
->references
!= fscki
->nlink
) {
2188 ubifs_err(c
, "inode %lu nlink is %d, but calculated nlink is %d",
2189 (unsigned long)fscki
->inum
,
2190 fscki
->nlink
, fscki
->references
);
2194 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2195 ubifs_err(c
, "inode %lu has xattr size %u, but calculated size is %lld",
2196 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2200 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2201 ubifs_err(c
, "inode %lu has %u xattrs, but calculated count is %lld",
2202 (unsigned long)fscki
->inum
,
2203 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2206 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2207 ubifs_err(c
, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2208 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2217 /* Read the bad inode and dump it */
2218 ino_key_init(c
, &key
, fscki
->inum
);
2219 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2221 ubifs_err(c
, "inode %lu not found in index",
2222 (unsigned long)fscki
->inum
);
2224 } else if (err
< 0) {
2225 ubifs_err(c
, "error %d while looking up inode %lu",
2226 err
, (unsigned long)fscki
->inum
);
2230 zbr
= &znode
->zbranch
[n
];
2231 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2235 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2237 ubifs_err(c
, "cannot read inode node at LEB %d:%d, error %d",
2238 zbr
->lnum
, zbr
->offs
, err
);
2243 ubifs_msg(c
, "dump of the inode %lu sitting in LEB %d:%d",
2244 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2245 ubifs_dump_node(c
, ino
);
2251 * dbg_check_filesystem - check the file-system.
2252 * @c: UBIFS file-system description object
2254 * This function checks the file system, namely:
2255 * o makes sure that all leaf nodes exist and their CRCs are correct;
2256 * o makes sure inode nlink, size, xattr size/count are correct (for all
2259 * The function reads whole indexing tree and all nodes, so it is pretty
2260 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2261 * not, and a negative error code in case of failure.
2263 int dbg_check_filesystem(struct ubifs_info
*c
)
2266 struct fsck_data fsckd
;
2268 if (!dbg_is_chk_fs(c
))
2271 fsckd
.inodes
= RB_ROOT
;
2272 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2276 err
= check_inodes(c
, &fsckd
);
2280 free_inodes(&fsckd
);
2284 ubifs_err(c
, "file-system check failed with error %d", err
);
2286 free_inodes(&fsckd
);
2291 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2292 * @c: UBIFS file-system description object
2293 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2295 * This function returns zero if the list of data nodes is sorted correctly,
2296 * and %-EINVAL if not.
2298 int dbg_check_data_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2300 struct list_head
*cur
;
2301 struct ubifs_scan_node
*sa
, *sb
;
2303 if (!dbg_is_chk_gen(c
))
2306 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2308 uint32_t blka
, blkb
;
2311 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2312 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2314 if (sa
->type
!= UBIFS_DATA_NODE
) {
2315 ubifs_err(c
, "bad node type %d", sa
->type
);
2316 ubifs_dump_node(c
, sa
->node
);
2319 if (sb
->type
!= UBIFS_DATA_NODE
) {
2320 ubifs_err(c
, "bad node type %d", sb
->type
);
2321 ubifs_dump_node(c
, sb
->node
);
2325 inuma
= key_inum(c
, &sa
->key
);
2326 inumb
= key_inum(c
, &sb
->key
);
2330 if (inuma
> inumb
) {
2331 ubifs_err(c
, "larger inum %lu goes before inum %lu",
2332 (unsigned long)inuma
, (unsigned long)inumb
);
2336 blka
= key_block(c
, &sa
->key
);
2337 blkb
= key_block(c
, &sb
->key
);
2340 ubifs_err(c
, "larger block %u goes before %u", blka
, blkb
);
2344 ubifs_err(c
, "two data nodes for the same block");
2352 ubifs_dump_node(c
, sa
->node
);
2353 ubifs_dump_node(c
, sb
->node
);
2358 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2359 * @c: UBIFS file-system description object
2360 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2362 * This function returns zero if the list of non-data nodes is sorted correctly,
2363 * and %-EINVAL if not.
2365 int dbg_check_nondata_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2367 struct list_head
*cur
;
2368 struct ubifs_scan_node
*sa
, *sb
;
2370 if (!dbg_is_chk_gen(c
))
2373 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2375 uint32_t hasha
, hashb
;
2378 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2379 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2381 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2382 sa
->type
!= UBIFS_XENT_NODE
) {
2383 ubifs_err(c
, "bad node type %d", sa
->type
);
2384 ubifs_dump_node(c
, sa
->node
);
2387 if (sb
->type
!= UBIFS_INO_NODE
&& sb
->type
!= UBIFS_DENT_NODE
&&
2388 sb
->type
!= UBIFS_XENT_NODE
) {
2389 ubifs_err(c
, "bad node type %d", sb
->type
);
2390 ubifs_dump_node(c
, sb
->node
);
2394 if (sa
->type
!= UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2395 ubifs_err(c
, "non-inode node goes before inode node");
2399 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
!= UBIFS_INO_NODE
)
2402 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2403 /* Inode nodes are sorted in descending size order */
2404 if (sa
->len
< sb
->len
) {
2405 ubifs_err(c
, "smaller inode node goes first");
2412 * This is either a dentry or xentry, which should be sorted in
2413 * ascending (parent ino, hash) order.
2415 inuma
= key_inum(c
, &sa
->key
);
2416 inumb
= key_inum(c
, &sb
->key
);
2420 if (inuma
> inumb
) {
2421 ubifs_err(c
, "larger inum %lu goes before inum %lu",
2422 (unsigned long)inuma
, (unsigned long)inumb
);
2426 hasha
= key_block(c
, &sa
->key
);
2427 hashb
= key_block(c
, &sb
->key
);
2429 if (hasha
> hashb
) {
2430 ubifs_err(c
, "larger hash %u goes before %u",
2439 ubifs_msg(c
, "dumping first node");
2440 ubifs_dump_node(c
, sa
->node
);
2441 ubifs_msg(c
, "dumping second node");
2442 ubifs_dump_node(c
, sb
->node
);
2447 static inline int chance(unsigned int n
, unsigned int out_of
)
2449 return !!((prandom_u32() % out_of
) + 1 <= n
);
2453 static int power_cut_emulated(struct ubifs_info
*c
, int lnum
, int write
)
2455 struct ubifs_debug_info
*d
= c
->dbg
;
2457 ubifs_assert(c
, dbg_is_tst_rcvry(c
));
2460 /* First call - decide delay to the power cut */
2462 unsigned long delay
;
2466 /* Fail within 1 minute */
2467 delay
= prandom_u32() % 60000;
2468 d
->pc_timeout
= jiffies
;
2469 d
->pc_timeout
+= msecs_to_jiffies(delay
);
2470 ubifs_warn(c
, "failing after %lums", delay
);
2473 delay
= prandom_u32() % 10000;
2474 /* Fail within 10000 operations */
2475 d
->pc_cnt_max
= delay
;
2476 ubifs_warn(c
, "failing after %lu calls", delay
);
2483 /* Determine if failure delay has expired */
2484 if (d
->pc_delay
== 1 && time_before(jiffies
, d
->pc_timeout
))
2486 if (d
->pc_delay
== 2 && d
->pc_cnt
++ < d
->pc_cnt_max
)
2489 if (lnum
== UBIFS_SB_LNUM
) {
2490 if (write
&& chance(1, 2))
2494 ubifs_warn(c
, "failing in super block LEB %d", lnum
);
2495 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2498 ubifs_warn(c
, "failing in master LEB %d", lnum
);
2499 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2500 if (write
&& chance(99, 100))
2502 if (chance(399, 400))
2504 ubifs_warn(c
, "failing in log LEB %d", lnum
);
2505 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2506 if (write
&& chance(7, 8))
2510 ubifs_warn(c
, "failing in LPT LEB %d", lnum
);
2511 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2512 if (write
&& chance(1, 2))
2516 ubifs_warn(c
, "failing in orphan LEB %d", lnum
);
2517 } else if (lnum
== c
->ihead_lnum
) {
2518 if (chance(99, 100))
2520 ubifs_warn(c
, "failing in index head LEB %d", lnum
);
2521 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2524 ubifs_warn(c
, "failing in GC head LEB %d", lnum
);
2525 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2526 !ubifs_search_bud(c
, lnum
)) {
2529 ubifs_warn(c
, "failing in non-bud LEB %d", lnum
);
2530 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2531 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2532 if (chance(999, 1000))
2534 ubifs_warn(c
, "failing in bud LEB %d commit running", lnum
);
2536 if (chance(9999, 10000))
2538 ubifs_warn(c
, "failing in bud LEB %d commit not running", lnum
);
2542 ubifs_warn(c
, "========== Power cut emulated ==========");
2547 static int corrupt_data(const struct ubifs_info
*c
, const void *buf
,
2550 unsigned int from
, to
, ffs
= chance(1, 2);
2551 unsigned char *p
= (void *)buf
;
2553 from
= prandom_u32() % len
;
2554 /* Corruption span max to end of write unit */
2555 to
= min(len
, ALIGN(from
+ 1, c
->max_write_size
));
2557 ubifs_warn(c
, "filled bytes %u-%u with %s", from
, to
- 1,
2558 ffs
? "0xFFs" : "random data");
2561 memset(p
+ from
, 0xFF, to
- from
);
2563 prandom_bytes(p
+ from
, to
- from
);
2568 int dbg_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
,
2573 if (dbg_is_power_cut(c
))
2576 failing
= power_cut_emulated(c
, lnum
, 1);
2578 len
= corrupt_data(c
, buf
, len
);
2579 ubifs_warn(c
, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2582 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
);
2590 int dbg_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
,
2595 if (dbg_is_power_cut(c
))
2597 if (power_cut_emulated(c
, lnum
, 1))
2599 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
);
2602 if (power_cut_emulated(c
, lnum
, 1))
2607 int dbg_leb_unmap(struct ubifs_info
*c
, int lnum
)
2611 if (dbg_is_power_cut(c
))
2613 if (power_cut_emulated(c
, lnum
, 0))
2615 err
= ubi_leb_unmap(c
->ubi
, lnum
);
2618 if (power_cut_emulated(c
, lnum
, 0))
2623 int dbg_leb_map(struct ubifs_info
*c
, int lnum
)
2627 if (dbg_is_power_cut(c
))
2629 if (power_cut_emulated(c
, lnum
, 0))
2631 err
= ubi_leb_map(c
->ubi
, lnum
);
2634 if (power_cut_emulated(c
, lnum
, 0))
2640 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2641 * contain the stuff specific to particular file-system mounts.
2643 static struct dentry
*dfs_rootdir
;
2645 static int dfs_file_open(struct inode
*inode
, struct file
*file
)
2647 file
->private_data
= inode
->i_private
;
2648 return nonseekable_open(inode
, file
);
2652 * provide_user_output - provide output to the user reading a debugfs file.
2653 * @val: boolean value for the answer
2654 * @u: the buffer to store the answer at
2655 * @count: size of the buffer
2656 * @ppos: position in the @u output buffer
2658 * This is a simple helper function which stores @val boolean value in the user
2659 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2660 * bytes written to @u in case of success and a negative error code in case of
2663 static int provide_user_output(int val
, char __user
*u
, size_t count
,
2675 return simple_read_from_buffer(u
, count
, ppos
, buf
, 2);
2678 static ssize_t
dfs_file_read(struct file
*file
, char __user
*u
, size_t count
,
2681 struct dentry
*dent
= file
->f_path
.dentry
;
2682 struct ubifs_info
*c
= file
->private_data
;
2683 struct ubifs_debug_info
*d
= c
->dbg
;
2686 if (dent
== d
->dfs_chk_gen
)
2688 else if (dent
== d
->dfs_chk_index
)
2690 else if (dent
== d
->dfs_chk_orph
)
2692 else if (dent
== d
->dfs_chk_lprops
)
2693 val
= d
->chk_lprops
;
2694 else if (dent
== d
->dfs_chk_fs
)
2696 else if (dent
== d
->dfs_tst_rcvry
)
2698 else if (dent
== d
->dfs_ro_error
)
2703 return provide_user_output(val
, u
, count
, ppos
);
2707 * interpret_user_input - interpret user debugfs file input.
2708 * @u: user-provided buffer with the input
2709 * @count: buffer size
2711 * This is a helper function which interpret user input to a boolean UBIFS
2712 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2713 * in case of failure.
2715 static int interpret_user_input(const char __user
*u
, size_t count
)
2720 buf_size
= min_t(size_t, count
, (sizeof(buf
) - 1));
2721 if (copy_from_user(buf
, u
, buf_size
))
2726 else if (buf
[0] == '0')
2732 static ssize_t
dfs_file_write(struct file
*file
, const char __user
*u
,
2733 size_t count
, loff_t
*ppos
)
2735 struct ubifs_info
*c
= file
->private_data
;
2736 struct ubifs_debug_info
*d
= c
->dbg
;
2737 struct dentry
*dent
= file
->f_path
.dentry
;
2741 * TODO: this is racy - the file-system might have already been
2742 * unmounted and we'd oops in this case. The plan is to fix it with
2743 * help of 'iterate_supers_type()' which we should have in v3.0: when
2744 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2745 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2746 * superblocks and fine the one with the same UUID, and take the
2749 * The other way to go suggested by Al Viro is to create a separate
2750 * 'ubifs-debug' file-system instead.
2752 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
) {
2753 ubifs_dump_lprops(c
);
2756 if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2757 ubifs_dump_budg(c
, &c
->bi
);
2760 if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2761 mutex_lock(&c
->tnc_mutex
);
2763 mutex_unlock(&c
->tnc_mutex
);
2767 val
= interpret_user_input(u
, count
);
2771 if (dent
== d
->dfs_chk_gen
)
2773 else if (dent
== d
->dfs_chk_index
)
2775 else if (dent
== d
->dfs_chk_orph
)
2777 else if (dent
== d
->dfs_chk_lprops
)
2778 d
->chk_lprops
= val
;
2779 else if (dent
== d
->dfs_chk_fs
)
2781 else if (dent
== d
->dfs_tst_rcvry
)
2783 else if (dent
== d
->dfs_ro_error
)
2784 c
->ro_error
= !!val
;
2791 static const struct file_operations dfs_fops
= {
2792 .open
= dfs_file_open
,
2793 .read
= dfs_file_read
,
2794 .write
= dfs_file_write
,
2795 .owner
= THIS_MODULE
,
2796 .llseek
= no_llseek
,
2800 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2801 * @c: UBIFS file-system description object
2803 * This function creates all debugfs files for this instance of UBIFS.
2805 * Note, the only reason we have not merged this function with the
2806 * 'ubifs_debugging_init()' function is because it is better to initialize
2807 * debugfs interfaces at the very end of the mount process, and remove them at
2808 * the very beginning of the mount process.
2810 void dbg_debugfs_init_fs(struct ubifs_info
*c
)
2814 struct ubifs_debug_info
*d
= c
->dbg
;
2816 n
= snprintf(d
->dfs_dir_name
, UBIFS_DFS_DIR_LEN
+ 1, UBIFS_DFS_DIR_NAME
,
2817 c
->vi
.ubi_num
, c
->vi
.vol_id
);
2818 if (n
== UBIFS_DFS_DIR_LEN
) {
2819 /* The array size is too small */
2823 fname
= d
->dfs_dir_name
;
2824 d
->dfs_dir
= debugfs_create_dir(fname
, dfs_rootdir
);
2826 fname
= "dump_lprops";
2827 d
->dfs_dump_lprops
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
,
2830 fname
= "dump_budg";
2831 d
->dfs_dump_budg
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
,
2835 d
->dfs_dump_tnc
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
,
2838 fname
= "chk_general";
2839 d
->dfs_chk_gen
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2840 d
->dfs_dir
, c
, &dfs_fops
);
2842 fname
= "chk_index";
2843 d
->dfs_chk_index
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2844 d
->dfs_dir
, c
, &dfs_fops
);
2846 fname
= "chk_orphans";
2847 d
->dfs_chk_orph
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2848 d
->dfs_dir
, c
, &dfs_fops
);
2850 fname
= "chk_lprops";
2851 d
->dfs_chk_lprops
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2852 d
->dfs_dir
, c
, &dfs_fops
);
2855 d
->dfs_chk_fs
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2856 d
->dfs_dir
, c
, &dfs_fops
);
2858 fname
= "tst_recovery";
2859 d
->dfs_tst_rcvry
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2860 d
->dfs_dir
, c
, &dfs_fops
);
2863 d
->dfs_ro_error
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2864 d
->dfs_dir
, c
, &dfs_fops
);
2868 * dbg_debugfs_exit_fs - remove all debugfs files.
2869 * @c: UBIFS file-system description object
2871 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2873 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
2876 struct ubifs_global_debug_info ubifs_dbg
;
2878 static struct dentry
*dfs_chk_gen
;
2879 static struct dentry
*dfs_chk_index
;
2880 static struct dentry
*dfs_chk_orph
;
2881 static struct dentry
*dfs_chk_lprops
;
2882 static struct dentry
*dfs_chk_fs
;
2883 static struct dentry
*dfs_tst_rcvry
;
2885 static ssize_t
dfs_global_file_read(struct file
*file
, char __user
*u
,
2886 size_t count
, loff_t
*ppos
)
2888 struct dentry
*dent
= file
->f_path
.dentry
;
2891 if (dent
== dfs_chk_gen
)
2892 val
= ubifs_dbg
.chk_gen
;
2893 else if (dent
== dfs_chk_index
)
2894 val
= ubifs_dbg
.chk_index
;
2895 else if (dent
== dfs_chk_orph
)
2896 val
= ubifs_dbg
.chk_orph
;
2897 else if (dent
== dfs_chk_lprops
)
2898 val
= ubifs_dbg
.chk_lprops
;
2899 else if (dent
== dfs_chk_fs
)
2900 val
= ubifs_dbg
.chk_fs
;
2901 else if (dent
== dfs_tst_rcvry
)
2902 val
= ubifs_dbg
.tst_rcvry
;
2906 return provide_user_output(val
, u
, count
, ppos
);
2909 static ssize_t
dfs_global_file_write(struct file
*file
, const char __user
*u
,
2910 size_t count
, loff_t
*ppos
)
2912 struct dentry
*dent
= file
->f_path
.dentry
;
2915 val
= interpret_user_input(u
, count
);
2919 if (dent
== dfs_chk_gen
)
2920 ubifs_dbg
.chk_gen
= val
;
2921 else if (dent
== dfs_chk_index
)
2922 ubifs_dbg
.chk_index
= val
;
2923 else if (dent
== dfs_chk_orph
)
2924 ubifs_dbg
.chk_orph
= val
;
2925 else if (dent
== dfs_chk_lprops
)
2926 ubifs_dbg
.chk_lprops
= val
;
2927 else if (dent
== dfs_chk_fs
)
2928 ubifs_dbg
.chk_fs
= val
;
2929 else if (dent
== dfs_tst_rcvry
)
2930 ubifs_dbg
.tst_rcvry
= val
;
2937 static const struct file_operations dfs_global_fops
= {
2938 .read
= dfs_global_file_read
,
2939 .write
= dfs_global_file_write
,
2940 .owner
= THIS_MODULE
,
2941 .llseek
= no_llseek
,
2945 * dbg_debugfs_init - initialize debugfs file-system.
2947 * UBIFS uses debugfs file-system to expose various debugging knobs to
2948 * user-space. This function creates "ubifs" directory in the debugfs
2951 void dbg_debugfs_init(void)
2956 dfs_rootdir
= debugfs_create_dir(fname
, NULL
);
2958 fname
= "chk_general";
2959 dfs_chk_gen
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
,
2960 NULL
, &dfs_global_fops
);
2962 fname
= "chk_index";
2963 dfs_chk_index
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2964 dfs_rootdir
, NULL
, &dfs_global_fops
);
2966 fname
= "chk_orphans";
2967 dfs_chk_orph
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2968 dfs_rootdir
, NULL
, &dfs_global_fops
);
2970 fname
= "chk_lprops";
2971 dfs_chk_lprops
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2972 dfs_rootdir
, NULL
, &dfs_global_fops
);
2975 dfs_chk_fs
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
,
2976 NULL
, &dfs_global_fops
);
2978 fname
= "tst_recovery";
2979 dfs_tst_rcvry
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2980 dfs_rootdir
, NULL
, &dfs_global_fops
);
2984 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2986 void dbg_debugfs_exit(void)
2988 debugfs_remove_recursive(dfs_rootdir
);
2991 void ubifs_assert_failed(struct ubifs_info
*c
, const char *expr
,
2992 const char *file
, int line
)
2994 ubifs_err(c
, "UBIFS assert failed: %s, in %s:%u", expr
, file
, line
);
2996 switch (c
->assert_action
) {
3002 ubifs_ro_mode(c
, -EINVAL
);
3014 * ubifs_debugging_init - initialize UBIFS debugging.
3015 * @c: UBIFS file-system description object
3017 * This function initializes debugging-related data for the file system.
3018 * Returns zero in case of success and a negative error code in case of
3021 int ubifs_debugging_init(struct ubifs_info
*c
)
3023 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
3031 * ubifs_debugging_exit - free debugging data.
3032 * @c: UBIFS file-system description object
3034 void ubifs_debugging_exit(struct ubifs_info
*c
)