Merge tag 'kbuild-fixes-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/masahi...
[linux/fpc-iii.git] / fs / ubifs / replay.c
blobb28ac4dfb4070aef4203cfee08fcb5e65777007f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
12 * This file contains journal replay code. It runs when the file-system is being
13 * mounted and requires no locking.
15 * The larger is the journal, the longer it takes to scan it, so the longer it
16 * takes to mount UBIFS. This is why the journal has limited size which may be
17 * changed depending on the system requirements. But a larger journal gives
18 * faster I/O speed because it writes the index less frequently. So this is a
19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
20 * larger is the journal, the more memory its index may consume.
23 #include "ubifs.h"
24 #include <linux/list_sort.h>
25 #include <crypto/hash.h>
26 #include <crypto/algapi.h>
28 /**
29 * struct replay_entry - replay list entry.
30 * @lnum: logical eraseblock number of the node
31 * @offs: node offset
32 * @len: node length
33 * @deletion: non-zero if this entry corresponds to a node deletion
34 * @sqnum: node sequence number
35 * @list: links the replay list
36 * @key: node key
37 * @nm: directory entry name
38 * @old_size: truncation old size
39 * @new_size: truncation new size
41 * The replay process first scans all buds and builds the replay list, then
42 * sorts the replay list in nodes sequence number order, and then inserts all
43 * the replay entries to the TNC.
45 struct replay_entry {
46 int lnum;
47 int offs;
48 int len;
49 u8 hash[UBIFS_HASH_ARR_SZ];
50 unsigned int deletion:1;
51 unsigned long long sqnum;
52 struct list_head list;
53 union ubifs_key key;
54 union {
55 struct fscrypt_name nm;
56 struct {
57 loff_t old_size;
58 loff_t new_size;
63 /**
64 * struct bud_entry - entry in the list of buds to replay.
65 * @list: next bud in the list
66 * @bud: bud description object
67 * @sqnum: reference node sequence number
68 * @free: free bytes in the bud
69 * @dirty: dirty bytes in the bud
71 struct bud_entry {
72 struct list_head list;
73 struct ubifs_bud *bud;
74 unsigned long long sqnum;
75 int free;
76 int dirty;
79 /**
80 * set_bud_lprops - set free and dirty space used by a bud.
81 * @c: UBIFS file-system description object
82 * @b: bud entry which describes the bud
84 * This function makes sure the LEB properties of bud @b are set correctly
85 * after the replay. Returns zero in case of success and a negative error code
86 * in case of failure.
88 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
90 const struct ubifs_lprops *lp;
91 int err = 0, dirty;
93 ubifs_get_lprops(c);
95 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
96 if (IS_ERR(lp)) {
97 err = PTR_ERR(lp);
98 goto out;
101 dirty = lp->dirty;
102 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
104 * The LEB was added to the journal with a starting offset of
105 * zero which means the LEB must have been empty. The LEB
106 * property values should be @lp->free == @c->leb_size and
107 * @lp->dirty == 0, but that is not the case. The reason is that
108 * the LEB had been garbage collected before it became the bud,
109 * and there was not commit inbetween. The garbage collector
110 * resets the free and dirty space without recording it
111 * anywhere except lprops, so if there was no commit then
112 * lprops does not have that information.
114 * We do not need to adjust free space because the scan has told
115 * us the exact value which is recorded in the replay entry as
116 * @b->free.
118 * However we do need to subtract from the dirty space the
119 * amount of space that the garbage collector reclaimed, which
120 * is the whole LEB minus the amount of space that was free.
122 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
123 lp->free, lp->dirty);
124 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
125 lp->free, lp->dirty);
126 dirty -= c->leb_size - lp->free;
128 * If the replay order was perfect the dirty space would now be
129 * zero. The order is not perfect because the journal heads
130 * race with each other. This is not a problem but is does mean
131 * that the dirty space may temporarily exceed c->leb_size
132 * during the replay.
134 if (dirty != 0)
135 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
136 b->bud->lnum, lp->free, lp->dirty, b->free,
137 b->dirty);
139 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
140 lp->flags | LPROPS_TAKEN, 0);
141 if (IS_ERR(lp)) {
142 err = PTR_ERR(lp);
143 goto out;
146 /* Make sure the journal head points to the latest bud */
147 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
148 b->bud->lnum, c->leb_size - b->free);
150 out:
151 ubifs_release_lprops(c);
152 return err;
156 * set_buds_lprops - set free and dirty space for all replayed buds.
157 * @c: UBIFS file-system description object
159 * This function sets LEB properties for all replayed buds. Returns zero in
160 * case of success and a negative error code in case of failure.
162 static int set_buds_lprops(struct ubifs_info *c)
164 struct bud_entry *b;
165 int err;
167 list_for_each_entry(b, &c->replay_buds, list) {
168 err = set_bud_lprops(c, b);
169 if (err)
170 return err;
173 return 0;
177 * trun_remove_range - apply a replay entry for a truncation to the TNC.
178 * @c: UBIFS file-system description object
179 * @r: replay entry of truncation
181 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
183 unsigned min_blk, max_blk;
184 union ubifs_key min_key, max_key;
185 ino_t ino;
187 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
188 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
189 min_blk += 1;
191 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
192 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
193 max_blk -= 1;
195 ino = key_inum(c, &r->key);
197 data_key_init(c, &min_key, ino, min_blk);
198 data_key_init(c, &max_key, ino, max_blk);
200 return ubifs_tnc_remove_range(c, &min_key, &max_key);
204 * inode_still_linked - check whether inode in question will be re-linked.
205 * @c: UBIFS file-system description object
206 * @rino: replay entry to test
208 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
209 * This case needs special care, otherwise all references to the inode will
210 * be removed upon the first replay entry of an inode with link count 0
211 * is found.
213 static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
215 struct replay_entry *r;
217 ubifs_assert(c, rino->deletion);
218 ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
221 * Find the most recent entry for the inode behind @rino and check
222 * whether it is a deletion.
224 list_for_each_entry_reverse(r, &c->replay_list, list) {
225 ubifs_assert(c, r->sqnum >= rino->sqnum);
226 if (key_inum(c, &r->key) == key_inum(c, &rino->key))
227 return r->deletion == 0;
231 ubifs_assert(c, 0);
232 return false;
236 * apply_replay_entry - apply a replay entry to the TNC.
237 * @c: UBIFS file-system description object
238 * @r: replay entry to apply
240 * Apply a replay entry to the TNC.
242 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
244 int err;
246 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
247 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
249 if (is_hash_key(c, &r->key)) {
250 if (r->deletion)
251 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
252 else
253 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
254 r->len, r->hash, &r->nm);
255 } else {
256 if (r->deletion)
257 switch (key_type(c, &r->key)) {
258 case UBIFS_INO_KEY:
260 ino_t inum = key_inum(c, &r->key);
262 if (inode_still_linked(c, r)) {
263 err = 0;
264 break;
267 err = ubifs_tnc_remove_ino(c, inum);
268 break;
270 case UBIFS_TRUN_KEY:
271 err = trun_remove_range(c, r);
272 break;
273 default:
274 err = ubifs_tnc_remove(c, &r->key);
275 break;
277 else
278 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
279 r->len, r->hash);
280 if (err)
281 return err;
283 if (c->need_recovery)
284 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
285 r->new_size);
288 return err;
292 * replay_entries_cmp - compare 2 replay entries.
293 * @priv: UBIFS file-system description object
294 * @a: first replay entry
295 * @b: second replay entry
297 * This is a comparios function for 'list_sort()' which compares 2 replay
298 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
299 * greater sequence number and %-1 otherwise.
301 static int replay_entries_cmp(void *priv, struct list_head *a,
302 struct list_head *b)
304 struct ubifs_info *c = priv;
305 struct replay_entry *ra, *rb;
307 cond_resched();
308 if (a == b)
309 return 0;
311 ra = list_entry(a, struct replay_entry, list);
312 rb = list_entry(b, struct replay_entry, list);
313 ubifs_assert(c, ra->sqnum != rb->sqnum);
314 if (ra->sqnum > rb->sqnum)
315 return 1;
316 return -1;
320 * apply_replay_list - apply the replay list to the TNC.
321 * @c: UBIFS file-system description object
323 * Apply all entries in the replay list to the TNC. Returns zero in case of
324 * success and a negative error code in case of failure.
326 static int apply_replay_list(struct ubifs_info *c)
328 struct replay_entry *r;
329 int err;
331 list_sort(c, &c->replay_list, &replay_entries_cmp);
333 list_for_each_entry(r, &c->replay_list, list) {
334 cond_resched();
336 err = apply_replay_entry(c, r);
337 if (err)
338 return err;
341 return 0;
345 * destroy_replay_list - destroy the replay.
346 * @c: UBIFS file-system description object
348 * Destroy the replay list.
350 static void destroy_replay_list(struct ubifs_info *c)
352 struct replay_entry *r, *tmp;
354 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
355 if (is_hash_key(c, &r->key))
356 kfree(fname_name(&r->nm));
357 list_del(&r->list);
358 kfree(r);
363 * insert_node - insert a node to the replay list
364 * @c: UBIFS file-system description object
365 * @lnum: node logical eraseblock number
366 * @offs: node offset
367 * @len: node length
368 * @key: node key
369 * @sqnum: sequence number
370 * @deletion: non-zero if this is a deletion
371 * @used: number of bytes in use in a LEB
372 * @old_size: truncation old size
373 * @new_size: truncation new size
375 * This function inserts a scanned non-direntry node to the replay list. The
376 * replay list contains @struct replay_entry elements, and we sort this list in
377 * sequence number order before applying it. The replay list is applied at the
378 * very end of the replay process. Since the list is sorted in sequence number
379 * order, the older modifications are applied first. This function returns zero
380 * in case of success and a negative error code in case of failure.
382 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
383 const u8 *hash, union ubifs_key *key,
384 unsigned long long sqnum, int deletion, int *used,
385 loff_t old_size, loff_t new_size)
387 struct replay_entry *r;
389 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
391 if (key_inum(c, key) >= c->highest_inum)
392 c->highest_inum = key_inum(c, key);
394 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
395 if (!r)
396 return -ENOMEM;
398 if (!deletion)
399 *used += ALIGN(len, 8);
400 r->lnum = lnum;
401 r->offs = offs;
402 r->len = len;
403 ubifs_copy_hash(c, hash, r->hash);
404 r->deletion = !!deletion;
405 r->sqnum = sqnum;
406 key_copy(c, key, &r->key);
407 r->old_size = old_size;
408 r->new_size = new_size;
410 list_add_tail(&r->list, &c->replay_list);
411 return 0;
415 * insert_dent - insert a directory entry node into the replay list.
416 * @c: UBIFS file-system description object
417 * @lnum: node logical eraseblock number
418 * @offs: node offset
419 * @len: node length
420 * @key: node key
421 * @name: directory entry name
422 * @nlen: directory entry name length
423 * @sqnum: sequence number
424 * @deletion: non-zero if this is a deletion
425 * @used: number of bytes in use in a LEB
427 * This function inserts a scanned directory entry node or an extended
428 * attribute entry to the replay list. Returns zero in case of success and a
429 * negative error code in case of failure.
431 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
432 const u8 *hash, union ubifs_key *key,
433 const char *name, int nlen, unsigned long long sqnum,
434 int deletion, int *used)
436 struct replay_entry *r;
437 char *nbuf;
439 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
440 if (key_inum(c, key) >= c->highest_inum)
441 c->highest_inum = key_inum(c, key);
443 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
444 if (!r)
445 return -ENOMEM;
447 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
448 if (!nbuf) {
449 kfree(r);
450 return -ENOMEM;
453 if (!deletion)
454 *used += ALIGN(len, 8);
455 r->lnum = lnum;
456 r->offs = offs;
457 r->len = len;
458 ubifs_copy_hash(c, hash, r->hash);
459 r->deletion = !!deletion;
460 r->sqnum = sqnum;
461 key_copy(c, key, &r->key);
462 fname_len(&r->nm) = nlen;
463 memcpy(nbuf, name, nlen);
464 nbuf[nlen] = '\0';
465 fname_name(&r->nm) = nbuf;
467 list_add_tail(&r->list, &c->replay_list);
468 return 0;
472 * ubifs_validate_entry - validate directory or extended attribute entry node.
473 * @c: UBIFS file-system description object
474 * @dent: the node to validate
476 * This function validates directory or extended attribute entry node @dent.
477 * Returns zero if the node is all right and a %-EINVAL if not.
479 int ubifs_validate_entry(struct ubifs_info *c,
480 const struct ubifs_dent_node *dent)
482 int key_type = key_type_flash(c, dent->key);
483 int nlen = le16_to_cpu(dent->nlen);
485 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
486 dent->type >= UBIFS_ITYPES_CNT ||
487 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
488 (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
489 le64_to_cpu(dent->inum) > MAX_INUM) {
490 ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
491 "directory entry" : "extended attribute entry");
492 return -EINVAL;
495 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
496 ubifs_err(c, "bad key type %d", key_type);
497 return -EINVAL;
500 return 0;
504 * is_last_bud - check if the bud is the last in the journal head.
505 * @c: UBIFS file-system description object
506 * @bud: bud description object
508 * This function checks if bud @bud is the last bud in its journal head. This
509 * information is then used by 'replay_bud()' to decide whether the bud can
510 * have corruptions or not. Indeed, only last buds can be corrupted by power
511 * cuts. Returns %1 if this is the last bud, and %0 if not.
513 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
515 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
516 struct ubifs_bud *next;
517 uint32_t data;
518 int err;
520 if (list_is_last(&bud->list, &jh->buds_list))
521 return 1;
524 * The following is a quirk to make sure we work correctly with UBIFS
525 * images used with older UBIFS.
527 * Normally, the last bud will be the last in the journal head's list
528 * of bud. However, there is one exception if the UBIFS image belongs
529 * to older UBIFS. This is fairly unlikely: one would need to use old
530 * UBIFS, then have a power cut exactly at the right point, and then
531 * try to mount this image with new UBIFS.
533 * The exception is: it is possible to have 2 buds A and B, A goes
534 * before B, and B is the last, bud B is contains no data, and bud A is
535 * corrupted at the end. The reason is that in older versions when the
536 * journal code switched the next bud (from A to B), it first added a
537 * log reference node for the new bud (B), and only after this it
538 * synchronized the write-buffer of current bud (A). But later this was
539 * changed and UBIFS started to always synchronize the write-buffer of
540 * the bud (A) before writing the log reference for the new bud (B).
542 * But because older UBIFS always synchronized A's write-buffer before
543 * writing to B, we can recognize this exceptional situation but
544 * checking the contents of bud B - if it is empty, then A can be
545 * treated as the last and we can recover it.
547 * TODO: remove this piece of code in a couple of years (today it is
548 * 16.05.2011).
550 next = list_entry(bud->list.next, struct ubifs_bud, list);
551 if (!list_is_last(&next->list, &jh->buds_list))
552 return 0;
554 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
555 if (err)
556 return 0;
558 return data == 0xFFFFFFFF;
561 /* authenticate_sleb_hash and authenticate_sleb_hmac are split out for stack usage */
562 static int authenticate_sleb_hash(struct ubifs_info *c, struct shash_desc *log_hash, u8 *hash)
564 SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
566 hash_desc->tfm = c->hash_tfm;
568 ubifs_shash_copy_state(c, log_hash, hash_desc);
569 return crypto_shash_final(hash_desc, hash);
572 static int authenticate_sleb_hmac(struct ubifs_info *c, u8 *hash, u8 *hmac)
574 SHASH_DESC_ON_STACK(hmac_desc, c->hmac_tfm);
576 hmac_desc->tfm = c->hmac_tfm;
578 return crypto_shash_digest(hmac_desc, hash, c->hash_len, hmac);
582 * authenticate_sleb - authenticate one scan LEB
583 * @c: UBIFS file-system description object
584 * @sleb: the scan LEB to authenticate
585 * @log_hash:
586 * @is_last: if true, this is is the last LEB
588 * This function iterates over the buds of a single LEB authenticating all buds
589 * with the authentication nodes on this LEB. Authentication nodes are written
590 * after some buds and contain a HMAC covering the authentication node itself
591 * and the buds between the last authentication node and the current
592 * authentication node. It can happen that the last buds cannot be authenticated
593 * because a powercut happened when some nodes were written but not the
594 * corresponding authentication node. This function returns the number of nodes
595 * that could be authenticated or a negative error code.
597 static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
598 struct shash_desc *log_hash, int is_last)
600 int n_not_auth = 0;
601 struct ubifs_scan_node *snod;
602 int n_nodes = 0;
603 int err;
604 u8 *hash, *hmac;
606 if (!ubifs_authenticated(c))
607 return sleb->nodes_cnt;
609 hash = kmalloc(crypto_shash_descsize(c->hash_tfm), GFP_NOFS);
610 hmac = kmalloc(c->hmac_desc_len, GFP_NOFS);
611 if (!hash || !hmac) {
612 err = -ENOMEM;
613 goto out;
616 list_for_each_entry(snod, &sleb->nodes, list) {
618 n_nodes++;
620 if (snod->type == UBIFS_AUTH_NODE) {
621 struct ubifs_auth_node *auth = snod->node;
623 err = authenticate_sleb_hash(c, log_hash, hash);
624 if (err)
625 goto out;
627 err = authenticate_sleb_hmac(c, hash, hmac);
628 if (err)
629 goto out;
631 err = ubifs_check_hmac(c, auth->hmac, hmac);
632 if (err) {
633 err = -EPERM;
634 goto out;
636 n_not_auth = 0;
637 } else {
638 err = crypto_shash_update(log_hash, snod->node,
639 snod->len);
640 if (err)
641 goto out;
642 n_not_auth++;
647 * A powercut can happen when some nodes were written, but not yet
648 * the corresponding authentication node. This may only happen on
649 * the last bud though.
651 if (n_not_auth) {
652 if (is_last) {
653 dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
654 n_not_auth, sleb->lnum);
655 err = 0;
656 } else {
657 dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
658 n_not_auth, sleb->lnum);
659 err = -EPERM;
661 } else {
662 err = 0;
664 out:
665 kfree(hash);
666 kfree(hmac);
668 return err ? err : n_nodes - n_not_auth;
672 * replay_bud - replay a bud logical eraseblock.
673 * @c: UBIFS file-system description object
674 * @b: bud entry which describes the bud
676 * This function replays bud @bud, recovers it if needed, and adds all nodes
677 * from this bud to the replay list. Returns zero in case of success and a
678 * negative error code in case of failure.
680 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
682 int is_last = is_last_bud(c, b->bud);
683 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
684 int n_nodes, n = 0;
685 struct ubifs_scan_leb *sleb;
686 struct ubifs_scan_node *snod;
688 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
689 lnum, b->bud->jhead, offs, is_last);
691 if (c->need_recovery && is_last)
693 * Recover only last LEBs in the journal heads, because power
694 * cuts may cause corruptions only in these LEBs, because only
695 * these LEBs could possibly be written to at the power cut
696 * time.
698 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
699 else
700 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
701 if (IS_ERR(sleb))
702 return PTR_ERR(sleb);
704 n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
705 if (n_nodes < 0) {
706 err = n_nodes;
707 goto out;
710 ubifs_shash_copy_state(c, b->bud->log_hash,
711 c->jheads[b->bud->jhead].log_hash);
714 * The bud does not have to start from offset zero - the beginning of
715 * the 'lnum' LEB may contain previously committed data. One of the
716 * things we have to do in replay is to correctly update lprops with
717 * newer information about this LEB.
719 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
720 * bytes of free space because it only contain information about
721 * committed data.
723 * But we know that real amount of free space is 'c->leb_size -
724 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
725 * 'sleb->endpt' is used by bud data. We have to correctly calculate
726 * how much of these data are dirty and update lprops with this
727 * information.
729 * The dirt in that LEB region is comprised of padding nodes, deletion
730 * nodes, truncation nodes and nodes which are obsoleted by subsequent
731 * nodes in this LEB. So instead of calculating clean space, we
732 * calculate used space ('used' variable).
735 list_for_each_entry(snod, &sleb->nodes, list) {
736 u8 hash[UBIFS_HASH_ARR_SZ];
737 int deletion = 0;
739 cond_resched();
741 if (snod->sqnum >= SQNUM_WATERMARK) {
742 ubifs_err(c, "file system's life ended");
743 goto out_dump;
746 ubifs_node_calc_hash(c, snod->node, hash);
748 if (snod->sqnum > c->max_sqnum)
749 c->max_sqnum = snod->sqnum;
751 switch (snod->type) {
752 case UBIFS_INO_NODE:
754 struct ubifs_ino_node *ino = snod->node;
755 loff_t new_size = le64_to_cpu(ino->size);
757 if (le32_to_cpu(ino->nlink) == 0)
758 deletion = 1;
759 err = insert_node(c, lnum, snod->offs, snod->len, hash,
760 &snod->key, snod->sqnum, deletion,
761 &used, 0, new_size);
762 break;
764 case UBIFS_DATA_NODE:
766 struct ubifs_data_node *dn = snod->node;
767 loff_t new_size = le32_to_cpu(dn->size) +
768 key_block(c, &snod->key) *
769 UBIFS_BLOCK_SIZE;
771 err = insert_node(c, lnum, snod->offs, snod->len, hash,
772 &snod->key, snod->sqnum, deletion,
773 &used, 0, new_size);
774 break;
776 case UBIFS_DENT_NODE:
777 case UBIFS_XENT_NODE:
779 struct ubifs_dent_node *dent = snod->node;
781 err = ubifs_validate_entry(c, dent);
782 if (err)
783 goto out_dump;
785 err = insert_dent(c, lnum, snod->offs, snod->len, hash,
786 &snod->key, dent->name,
787 le16_to_cpu(dent->nlen), snod->sqnum,
788 !le64_to_cpu(dent->inum), &used);
789 break;
791 case UBIFS_TRUN_NODE:
793 struct ubifs_trun_node *trun = snod->node;
794 loff_t old_size = le64_to_cpu(trun->old_size);
795 loff_t new_size = le64_to_cpu(trun->new_size);
796 union ubifs_key key;
798 /* Validate truncation node */
799 if (old_size < 0 || old_size > c->max_inode_sz ||
800 new_size < 0 || new_size > c->max_inode_sz ||
801 old_size <= new_size) {
802 ubifs_err(c, "bad truncation node");
803 goto out_dump;
807 * Create a fake truncation key just to use the same
808 * functions which expect nodes to have keys.
810 trun_key_init(c, &key, le32_to_cpu(trun->inum));
811 err = insert_node(c, lnum, snod->offs, snod->len, hash,
812 &key, snod->sqnum, 1, &used,
813 old_size, new_size);
814 break;
816 case UBIFS_AUTH_NODE:
817 break;
818 default:
819 ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
820 snod->type, lnum, snod->offs);
821 err = -EINVAL;
822 goto out_dump;
824 if (err)
825 goto out;
827 n++;
828 if (n == n_nodes)
829 break;
832 ubifs_assert(c, ubifs_search_bud(c, lnum));
833 ubifs_assert(c, sleb->endpt - offs >= used);
834 ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
836 b->dirty = sleb->endpt - offs - used;
837 b->free = c->leb_size - sleb->endpt;
838 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
839 lnum, b->dirty, b->free);
841 out:
842 ubifs_scan_destroy(sleb);
843 return err;
845 out_dump:
846 ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
847 ubifs_dump_node(c, snod->node);
848 ubifs_scan_destroy(sleb);
849 return -EINVAL;
853 * replay_buds - replay all buds.
854 * @c: UBIFS file-system description object
856 * This function returns zero in case of success and a negative error code in
857 * case of failure.
859 static int replay_buds(struct ubifs_info *c)
861 struct bud_entry *b;
862 int err;
863 unsigned long long prev_sqnum = 0;
865 list_for_each_entry(b, &c->replay_buds, list) {
866 err = replay_bud(c, b);
867 if (err)
868 return err;
870 ubifs_assert(c, b->sqnum > prev_sqnum);
871 prev_sqnum = b->sqnum;
874 return 0;
878 * destroy_bud_list - destroy the list of buds to replay.
879 * @c: UBIFS file-system description object
881 static void destroy_bud_list(struct ubifs_info *c)
883 struct bud_entry *b;
885 while (!list_empty(&c->replay_buds)) {
886 b = list_entry(c->replay_buds.next, struct bud_entry, list);
887 list_del(&b->list);
888 kfree(b);
893 * add_replay_bud - add a bud to the list of buds to replay.
894 * @c: UBIFS file-system description object
895 * @lnum: bud logical eraseblock number to replay
896 * @offs: bud start offset
897 * @jhead: journal head to which this bud belongs
898 * @sqnum: reference node sequence number
900 * This function returns zero in case of success and a negative error code in
901 * case of failure.
903 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
904 unsigned long long sqnum)
906 struct ubifs_bud *bud;
907 struct bud_entry *b;
908 int err;
910 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
912 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
913 if (!bud)
914 return -ENOMEM;
916 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
917 if (!b) {
918 err = -ENOMEM;
919 goto out;
922 bud->lnum = lnum;
923 bud->start = offs;
924 bud->jhead = jhead;
925 bud->log_hash = ubifs_hash_get_desc(c);
926 if (IS_ERR(bud->log_hash)) {
927 err = PTR_ERR(bud->log_hash);
928 goto out;
931 ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
933 ubifs_add_bud(c, bud);
935 b->bud = bud;
936 b->sqnum = sqnum;
937 list_add_tail(&b->list, &c->replay_buds);
939 return 0;
940 out:
941 kfree(bud);
942 kfree(b);
944 return err;
948 * validate_ref - validate a reference node.
949 * @c: UBIFS file-system description object
950 * @ref: the reference node to validate
951 * @ref_lnum: LEB number of the reference node
952 * @ref_offs: reference node offset
954 * This function returns %1 if a bud reference already exists for the LEB. %0 is
955 * returned if the reference node is new, otherwise %-EINVAL is returned if
956 * validation failed.
958 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
960 struct ubifs_bud *bud;
961 int lnum = le32_to_cpu(ref->lnum);
962 unsigned int offs = le32_to_cpu(ref->offs);
963 unsigned int jhead = le32_to_cpu(ref->jhead);
966 * ref->offs may point to the end of LEB when the journal head points
967 * to the end of LEB and we write reference node for it during commit.
968 * So this is why we require 'offs > c->leb_size'.
970 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
971 lnum < c->main_first || offs > c->leb_size ||
972 offs & (c->min_io_size - 1))
973 return -EINVAL;
975 /* Make sure we have not already looked at this bud */
976 bud = ubifs_search_bud(c, lnum);
977 if (bud) {
978 if (bud->jhead == jhead && bud->start <= offs)
979 return 1;
980 ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
981 return -EINVAL;
984 return 0;
988 * replay_log_leb - replay a log logical eraseblock.
989 * @c: UBIFS file-system description object
990 * @lnum: log logical eraseblock to replay
991 * @offs: offset to start replaying from
992 * @sbuf: scan buffer
994 * This function replays a log LEB and returns zero in case of success, %1 if
995 * this is the last LEB in the log, and a negative error code in case of
996 * failure.
998 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
1000 int err;
1001 struct ubifs_scan_leb *sleb;
1002 struct ubifs_scan_node *snod;
1003 const struct ubifs_cs_node *node;
1005 dbg_mnt("replay log LEB %d:%d", lnum, offs);
1006 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
1007 if (IS_ERR(sleb)) {
1008 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
1009 return PTR_ERR(sleb);
1011 * Note, the below function will recover this log LEB only if
1012 * it is the last, because unclean reboots can possibly corrupt
1013 * only the tail of the log.
1015 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1016 if (IS_ERR(sleb))
1017 return PTR_ERR(sleb);
1020 if (sleb->nodes_cnt == 0) {
1021 err = 1;
1022 goto out;
1025 node = sleb->buf;
1026 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1027 if (c->cs_sqnum == 0) {
1029 * This is the first log LEB we are looking at, make sure that
1030 * the first node is a commit start node. Also record its
1031 * sequence number so that UBIFS can determine where the log
1032 * ends, because all nodes which were have higher sequence
1033 * numbers.
1035 if (snod->type != UBIFS_CS_NODE) {
1036 ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1037 lnum, offs);
1038 goto out_dump;
1040 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1041 ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1042 lnum, offs,
1043 (unsigned long long)le64_to_cpu(node->cmt_no),
1044 c->cmt_no);
1045 goto out_dump;
1048 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1049 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1051 err = ubifs_shash_init(c, c->log_hash);
1052 if (err)
1053 goto out;
1055 err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1056 if (err < 0)
1057 goto out;
1060 if (snod->sqnum < c->cs_sqnum) {
1062 * This means that we reached end of log and now
1063 * look to the older log data, which was already
1064 * committed but the eraseblock was not erased (UBIFS
1065 * only un-maps it). So this basically means we have to
1066 * exit with "end of log" code.
1068 err = 1;
1069 goto out;
1072 /* Make sure the first node sits at offset zero of the LEB */
1073 if (snod->offs != 0) {
1074 ubifs_err(c, "first node is not at zero offset");
1075 goto out_dump;
1078 list_for_each_entry(snod, &sleb->nodes, list) {
1079 cond_resched();
1081 if (snod->sqnum >= SQNUM_WATERMARK) {
1082 ubifs_err(c, "file system's life ended");
1083 goto out_dump;
1086 if (snod->sqnum < c->cs_sqnum) {
1087 ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1088 snod->sqnum, c->cs_sqnum);
1089 goto out_dump;
1092 if (snod->sqnum > c->max_sqnum)
1093 c->max_sqnum = snod->sqnum;
1095 switch (snod->type) {
1096 case UBIFS_REF_NODE: {
1097 const struct ubifs_ref_node *ref = snod->node;
1099 err = validate_ref(c, ref);
1100 if (err == 1)
1101 break; /* Already have this bud */
1102 if (err)
1103 goto out_dump;
1105 err = ubifs_shash_update(c, c->log_hash, ref,
1106 UBIFS_REF_NODE_SZ);
1107 if (err)
1108 goto out;
1110 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1111 le32_to_cpu(ref->offs),
1112 le32_to_cpu(ref->jhead),
1113 snod->sqnum);
1114 if (err)
1115 goto out;
1117 break;
1119 case UBIFS_CS_NODE:
1120 /* Make sure it sits at the beginning of LEB */
1121 if (snod->offs != 0) {
1122 ubifs_err(c, "unexpected node in log");
1123 goto out_dump;
1125 break;
1126 default:
1127 ubifs_err(c, "unexpected node in log");
1128 goto out_dump;
1132 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1133 c->lhead_lnum = lnum;
1134 c->lhead_offs = sleb->endpt;
1137 err = !sleb->endpt;
1138 out:
1139 ubifs_scan_destroy(sleb);
1140 return err;
1142 out_dump:
1143 ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1144 lnum, offs + snod->offs);
1145 ubifs_dump_node(c, snod->node);
1146 ubifs_scan_destroy(sleb);
1147 return -EINVAL;
1151 * take_ihead - update the status of the index head in lprops to 'taken'.
1152 * @c: UBIFS file-system description object
1154 * This function returns the amount of free space in the index head LEB or a
1155 * negative error code.
1157 static int take_ihead(struct ubifs_info *c)
1159 const struct ubifs_lprops *lp;
1160 int err, free;
1162 ubifs_get_lprops(c);
1164 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1165 if (IS_ERR(lp)) {
1166 err = PTR_ERR(lp);
1167 goto out;
1170 free = lp->free;
1172 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1173 lp->flags | LPROPS_TAKEN, 0);
1174 if (IS_ERR(lp)) {
1175 err = PTR_ERR(lp);
1176 goto out;
1179 err = free;
1180 out:
1181 ubifs_release_lprops(c);
1182 return err;
1186 * ubifs_replay_journal - replay journal.
1187 * @c: UBIFS file-system description object
1189 * This function scans the journal, replays and cleans it up. It makes sure all
1190 * memory data structures related to uncommitted journal are built (dirty TNC
1191 * tree, tree of buds, modified lprops, etc).
1193 int ubifs_replay_journal(struct ubifs_info *c)
1195 int err, lnum, free;
1197 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1199 /* Update the status of the index head in lprops to 'taken' */
1200 free = take_ihead(c);
1201 if (free < 0)
1202 return free; /* Error code */
1204 if (c->ihead_offs != c->leb_size - free) {
1205 ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1206 c->ihead_offs);
1207 return -EINVAL;
1210 dbg_mnt("start replaying the journal");
1211 c->replaying = 1;
1212 lnum = c->ltail_lnum = c->lhead_lnum;
1214 do {
1215 err = replay_log_leb(c, lnum, 0, c->sbuf);
1216 if (err == 1) {
1217 if (lnum != c->lhead_lnum)
1218 /* We hit the end of the log */
1219 break;
1222 * The head of the log must always start with the
1223 * "commit start" node on a properly formatted UBIFS.
1224 * But we found no nodes at all, which means that
1225 * something went wrong and we cannot proceed mounting
1226 * the file-system.
1228 ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1229 lnum, 0);
1230 err = -EINVAL;
1232 if (err)
1233 goto out;
1234 lnum = ubifs_next_log_lnum(c, lnum);
1235 } while (lnum != c->ltail_lnum);
1237 err = replay_buds(c);
1238 if (err)
1239 goto out;
1241 err = apply_replay_list(c);
1242 if (err)
1243 goto out;
1245 err = set_buds_lprops(c);
1246 if (err)
1247 goto out;
1250 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1251 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1252 * depend on it. This means we have to initialize it to make sure
1253 * budgeting works properly.
1255 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1256 c->bi.uncommitted_idx *= c->max_idx_node_sz;
1258 ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1259 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1260 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1261 (unsigned long)c->highest_inum);
1262 out:
1263 destroy_replay_list(c);
1264 destroy_bud_list(c);
1265 c->replaying = 0;
1266 return err;