2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
97 #include <net/cls_cgroup.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
108 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
109 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
110 unsigned long nr_segs
, loff_t pos
);
111 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
112 unsigned long nr_segs
, loff_t pos
);
113 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
115 static int sock_close(struct inode
*inode
, struct file
*file
);
116 static unsigned int sock_poll(struct file
*file
,
117 struct poll_table_struct
*wait
);
118 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
120 static long compat_sock_ioctl(struct file
*file
,
121 unsigned int cmd
, unsigned long arg
);
123 static int sock_fasync(int fd
, struct file
*filp
, int on
);
124 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
125 int offset
, size_t size
, loff_t
*ppos
, int more
);
126 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
127 struct pipe_inode_info
*pipe
, size_t len
,
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
135 static const struct file_operations socket_file_ops
= {
136 .owner
= THIS_MODULE
,
138 .aio_read
= sock_aio_read
,
139 .aio_write
= sock_aio_write
,
141 .unlocked_ioctl
= sock_ioctl
,
143 .compat_ioctl
= compat_sock_ioctl
,
146 .open
= sock_no_open
, /* special open code to disallow open via /proc */
147 .release
= sock_close
,
148 .fasync
= sock_fasync
,
149 .sendpage
= sock_sendpage
,
150 .splice_write
= generic_splice_sendpage
,
151 .splice_read
= sock_splice_read
,
155 * The protocol list. Each protocol is registered in here.
158 static DEFINE_SPINLOCK(net_family_lock
);
159 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
162 * Statistics counters of the socket lists
165 static DEFINE_PER_CPU(int, sockets_in_use
);
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr
*kaddr
)
186 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
190 if (copy_from_user(kaddr
, uaddr
, ulen
))
192 return audit_sockaddr(ulen
, kaddr
);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 static int move_addr_to_user(struct sockaddr
*kaddr
, int klen
,
213 void __user
*uaddr
, int __user
*ulen
)
218 err
= get_user(len
, ulen
);
223 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
226 if (audit_sockaddr(klen
, kaddr
))
228 if (copy_to_user(uaddr
, kaddr
, len
))
232 * "fromlen shall refer to the value before truncation.."
235 return __put_user(klen
, ulen
);
238 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
240 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
242 struct socket_alloc
*ei
;
243 struct socket_wq
*wq
;
245 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
248 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
250 kmem_cache_free(sock_inode_cachep
, ei
);
253 init_waitqueue_head(&wq
->wait
);
254 wq
->fasync_list
= NULL
;
255 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
257 ei
->socket
.state
= SS_UNCONNECTED
;
258 ei
->socket
.flags
= 0;
259 ei
->socket
.ops
= NULL
;
260 ei
->socket
.sk
= NULL
;
261 ei
->socket
.file
= NULL
;
263 return &ei
->vfs_inode
;
266 static void sock_destroy_inode(struct inode
*inode
)
268 struct socket_alloc
*ei
;
269 struct socket_wq
*wq
;
271 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
272 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
274 kmem_cache_free(sock_inode_cachep
, ei
);
277 static void init_once(void *foo
)
279 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
281 inode_init_once(&ei
->vfs_inode
);
284 static int init_inodecache(void)
286 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc
),
289 (SLAB_HWCACHE_ALIGN
|
290 SLAB_RECLAIM_ACCOUNT
|
293 if (sock_inode_cachep
== NULL
)
298 static const struct super_operations sockfs_ops
= {
299 .alloc_inode
= sock_alloc_inode
,
300 .destroy_inode
= sock_destroy_inode
,
301 .statfs
= simple_statfs
,
305 * sockfs_dname() is called from d_path().
307 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
309 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
310 dentry
->d_inode
->i_ino
);
313 static const struct dentry_operations sockfs_dentry_operations
= {
314 .d_dname
= sockfs_dname
,
317 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
318 int flags
, const char *dev_name
, void *data
)
320 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
321 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
324 static struct vfsmount
*sock_mnt __read_mostly
;
326 static struct file_system_type sock_fs_type
= {
328 .mount
= sockfs_mount
,
329 .kill_sb
= kill_anon_super
,
333 * Obtains the first available file descriptor and sets it up for use.
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
349 static int sock_alloc_file(struct socket
*sock
, struct file
**f
, int flags
)
351 struct qstr name
= { .name
= "" };
356 fd
= get_unused_fd_flags(flags
);
357 if (unlikely(fd
< 0))
360 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
361 if (unlikely(!path
.dentry
)) {
365 path
.mnt
= mntget(sock_mnt
);
367 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
368 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
370 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
372 if (unlikely(!file
)) {
373 /* drop dentry, keep inode */
374 ihold(path
.dentry
->d_inode
);
381 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
383 file
->private_data
= sock
;
389 int sock_map_fd(struct socket
*sock
, int flags
)
391 struct file
*newfile
;
392 int fd
= sock_alloc_file(sock
, &newfile
, flags
);
395 fd_install(fd
, newfile
);
399 EXPORT_SYMBOL(sock_map_fd
);
401 static struct socket
*sock_from_file(struct file
*file
, int *err
)
403 if (file
->f_op
== &socket_file_ops
)
404 return file
->private_data
; /* set in sock_map_fd */
411 * sockfd_lookup - Go from a file number to its socket slot
413 * @err: pointer to an error code return
415 * The file handle passed in is locked and the socket it is bound
416 * too is returned. If an error occurs the err pointer is overwritten
417 * with a negative errno code and NULL is returned. The function checks
418 * for both invalid handles and passing a handle which is not a socket.
420 * On a success the socket object pointer is returned.
423 struct socket
*sockfd_lookup(int fd
, int *err
)
434 sock
= sock_from_file(file
, err
);
439 EXPORT_SYMBOL(sockfd_lookup
);
441 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
447 file
= fget_light(fd
, fput_needed
);
449 sock
= sock_from_file(file
, err
);
452 fput_light(file
, *fput_needed
);
458 * sock_alloc - allocate a socket
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
465 static struct socket
*sock_alloc(void)
470 inode
= new_inode(sock_mnt
->mnt_sb
);
474 sock
= SOCKET_I(inode
);
476 kmemcheck_annotate_bitfield(sock
, type
);
477 inode
->i_ino
= get_next_ino();
478 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
479 inode
->i_uid
= current_fsuid();
480 inode
->i_gid
= current_fsgid();
482 percpu_add(sockets_in_use
, 1);
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
492 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
497 const struct file_operations bad_sock_fops
= {
498 .owner
= THIS_MODULE
,
499 .open
= sock_no_open
,
500 .llseek
= noop_llseek
,
504 * sock_release - close a socket
505 * @sock: socket to close
507 * The socket is released from the protocol stack if it has a release
508 * callback, and the inode is then released if the socket is bound to
509 * an inode not a file.
512 void sock_release(struct socket
*sock
)
515 struct module
*owner
= sock
->ops
->owner
;
517 sock
->ops
->release(sock
);
522 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
523 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
525 percpu_sub(sockets_in_use
, 1);
527 iput(SOCK_INODE(sock
));
532 EXPORT_SYMBOL(sock_release
);
534 int sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
537 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
538 *tx_flags
|= SKBTX_HW_TSTAMP
;
539 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
540 *tx_flags
|= SKBTX_SW_TSTAMP
;
543 EXPORT_SYMBOL(sock_tx_timestamp
);
545 static inline int __sock_sendmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
546 struct msghdr
*msg
, size_t size
)
548 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
550 sock_update_classid(sock
->sk
);
557 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
560 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
561 struct msghdr
*msg
, size_t size
)
563 int err
= security_socket_sendmsg(sock
, msg
, size
);
565 return err
?: __sock_sendmsg_nosec(iocb
, sock
, msg
, size
);
568 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
571 struct sock_iocb siocb
;
574 init_sync_kiocb(&iocb
, NULL
);
575 iocb
.private = &siocb
;
576 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
577 if (-EIOCBQUEUED
== ret
)
578 ret
= wait_on_sync_kiocb(&iocb
);
581 EXPORT_SYMBOL(sock_sendmsg
);
583 int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
586 struct sock_iocb siocb
;
589 init_sync_kiocb(&iocb
, NULL
);
590 iocb
.private = &siocb
;
591 ret
= __sock_sendmsg_nosec(&iocb
, sock
, msg
, size
);
592 if (-EIOCBQUEUED
== ret
)
593 ret
= wait_on_sync_kiocb(&iocb
);
597 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
598 struct kvec
*vec
, size_t num
, size_t size
)
600 mm_segment_t oldfs
= get_fs();
605 * the following is safe, since for compiler definitions of kvec and
606 * iovec are identical, yielding the same in-core layout and alignment
608 msg
->msg_iov
= (struct iovec
*)vec
;
609 msg
->msg_iovlen
= num
;
610 result
= sock_sendmsg(sock
, msg
, size
);
614 EXPORT_SYMBOL(kernel_sendmsg
);
616 static int ktime2ts(ktime_t kt
, struct timespec
*ts
)
619 *ts
= ktime_to_timespec(kt
);
627 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
629 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
632 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
633 struct timespec ts
[3];
635 struct skb_shared_hwtstamps
*shhwtstamps
=
638 /* Race occurred between timestamp enabling and packet
639 receiving. Fill in the current time for now. */
640 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
641 __net_timestamp(skb
);
643 if (need_software_tstamp
) {
644 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
646 skb_get_timestamp(skb
, &tv
);
647 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
650 skb_get_timestampns(skb
, &ts
[0]);
651 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
652 sizeof(ts
[0]), &ts
[0]);
657 memset(ts
, 0, sizeof(ts
));
658 if (skb
->tstamp
.tv64
&&
659 sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
)) {
660 skb_get_timestampns(skb
, ts
+ 0);
664 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
665 ktime2ts(shhwtstamps
->syststamp
, ts
+ 1))
667 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
668 ktime2ts(shhwtstamps
->hwtstamp
, ts
+ 2))
672 put_cmsg(msg
, SOL_SOCKET
,
673 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
677 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
680 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
681 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
682 sizeof(__u32
), &skb
->dropcount
);
685 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
688 sock_recv_timestamp(msg
, sk
, skb
);
689 sock_recv_drops(msg
, sk
, skb
);
691 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
693 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
694 struct msghdr
*msg
, size_t size
, int flags
)
696 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
698 sock_update_classid(sock
->sk
);
706 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
709 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
710 struct msghdr
*msg
, size_t size
, int flags
)
712 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
714 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
717 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
718 size_t size
, int flags
)
721 struct sock_iocb siocb
;
724 init_sync_kiocb(&iocb
, NULL
);
725 iocb
.private = &siocb
;
726 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
727 if (-EIOCBQUEUED
== ret
)
728 ret
= wait_on_sync_kiocb(&iocb
);
731 EXPORT_SYMBOL(sock_recvmsg
);
733 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
734 size_t size
, int flags
)
737 struct sock_iocb siocb
;
740 init_sync_kiocb(&iocb
, NULL
);
741 iocb
.private = &siocb
;
742 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
743 if (-EIOCBQUEUED
== ret
)
744 ret
= wait_on_sync_kiocb(&iocb
);
749 * kernel_recvmsg - Receive a message from a socket (kernel space)
750 * @sock: The socket to receive the message from
751 * @msg: Received message
752 * @vec: Input s/g array for message data
753 * @num: Size of input s/g array
754 * @size: Number of bytes to read
755 * @flags: Message flags (MSG_DONTWAIT, etc...)
757 * On return the msg structure contains the scatter/gather array passed in the
758 * vec argument. The array is modified so that it consists of the unfilled
759 * portion of the original array.
761 * The returned value is the total number of bytes received, or an error.
763 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
764 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
766 mm_segment_t oldfs
= get_fs();
771 * the following is safe, since for compiler definitions of kvec and
772 * iovec are identical, yielding the same in-core layout and alignment
774 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
775 result
= sock_recvmsg(sock
, msg
, size
, flags
);
779 EXPORT_SYMBOL(kernel_recvmsg
);
781 static void sock_aio_dtor(struct kiocb
*iocb
)
783 kfree(iocb
->private);
786 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
787 int offset
, size_t size
, loff_t
*ppos
, int more
)
792 sock
= file
->private_data
;
794 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
795 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
798 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
801 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
802 struct pipe_inode_info
*pipe
, size_t len
,
805 struct socket
*sock
= file
->private_data
;
807 if (unlikely(!sock
->ops
->splice_read
))
810 sock_update_classid(sock
->sk
);
812 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
815 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
816 struct sock_iocb
*siocb
)
818 if (!is_sync_kiocb(iocb
)) {
819 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
822 iocb
->ki_dtor
= sock_aio_dtor
;
826 iocb
->private = siocb
;
830 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
831 struct file
*file
, const struct iovec
*iov
,
832 unsigned long nr_segs
)
834 struct socket
*sock
= file
->private_data
;
838 for (i
= 0; i
< nr_segs
; i
++)
839 size
+= iov
[i
].iov_len
;
841 msg
->msg_name
= NULL
;
842 msg
->msg_namelen
= 0;
843 msg
->msg_control
= NULL
;
844 msg
->msg_controllen
= 0;
845 msg
->msg_iov
= (struct iovec
*)iov
;
846 msg
->msg_iovlen
= nr_segs
;
847 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
849 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
852 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
853 unsigned long nr_segs
, loff_t pos
)
855 struct sock_iocb siocb
, *x
;
860 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
864 x
= alloc_sock_iocb(iocb
, &siocb
);
867 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
870 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
871 struct file
*file
, const struct iovec
*iov
,
872 unsigned long nr_segs
)
874 struct socket
*sock
= file
->private_data
;
878 for (i
= 0; i
< nr_segs
; i
++)
879 size
+= iov
[i
].iov_len
;
881 msg
->msg_name
= NULL
;
882 msg
->msg_namelen
= 0;
883 msg
->msg_control
= NULL
;
884 msg
->msg_controllen
= 0;
885 msg
->msg_iov
= (struct iovec
*)iov
;
886 msg
->msg_iovlen
= nr_segs
;
887 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
888 if (sock
->type
== SOCK_SEQPACKET
)
889 msg
->msg_flags
|= MSG_EOR
;
891 return __sock_sendmsg(iocb
, sock
, msg
, size
);
894 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
895 unsigned long nr_segs
, loff_t pos
)
897 struct sock_iocb siocb
, *x
;
902 x
= alloc_sock_iocb(iocb
, &siocb
);
906 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
910 * Atomic setting of ioctl hooks to avoid race
911 * with module unload.
914 static DEFINE_MUTEX(br_ioctl_mutex
);
915 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
917 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
919 mutex_lock(&br_ioctl_mutex
);
920 br_ioctl_hook
= hook
;
921 mutex_unlock(&br_ioctl_mutex
);
923 EXPORT_SYMBOL(brioctl_set
);
925 static DEFINE_MUTEX(vlan_ioctl_mutex
);
926 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
928 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
930 mutex_lock(&vlan_ioctl_mutex
);
931 vlan_ioctl_hook
= hook
;
932 mutex_unlock(&vlan_ioctl_mutex
);
934 EXPORT_SYMBOL(vlan_ioctl_set
);
936 static DEFINE_MUTEX(dlci_ioctl_mutex
);
937 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
939 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
941 mutex_lock(&dlci_ioctl_mutex
);
942 dlci_ioctl_hook
= hook
;
943 mutex_unlock(&dlci_ioctl_mutex
);
945 EXPORT_SYMBOL(dlci_ioctl_set
);
947 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
948 unsigned int cmd
, unsigned long arg
)
951 void __user
*argp
= (void __user
*)arg
;
953 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
956 * If this ioctl is unknown try to hand it down
959 if (err
== -ENOIOCTLCMD
)
960 err
= dev_ioctl(net
, cmd
, argp
);
966 * With an ioctl, arg may well be a user mode pointer, but we don't know
967 * what to do with it - that's up to the protocol still.
970 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
974 void __user
*argp
= (void __user
*)arg
;
978 sock
= file
->private_data
;
981 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
982 err
= dev_ioctl(net
, cmd
, argp
);
984 #ifdef CONFIG_WEXT_CORE
985 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
986 err
= dev_ioctl(net
, cmd
, argp
);
993 if (get_user(pid
, (int __user
*)argp
))
995 err
= f_setown(sock
->file
, pid
, 1);
999 err
= put_user(f_getown(sock
->file
),
1000 (int __user
*)argp
);
1008 request_module("bridge");
1010 mutex_lock(&br_ioctl_mutex
);
1012 err
= br_ioctl_hook(net
, cmd
, argp
);
1013 mutex_unlock(&br_ioctl_mutex
);
1018 if (!vlan_ioctl_hook
)
1019 request_module("8021q");
1021 mutex_lock(&vlan_ioctl_mutex
);
1022 if (vlan_ioctl_hook
)
1023 err
= vlan_ioctl_hook(net
, argp
);
1024 mutex_unlock(&vlan_ioctl_mutex
);
1029 if (!dlci_ioctl_hook
)
1030 request_module("dlci");
1032 mutex_lock(&dlci_ioctl_mutex
);
1033 if (dlci_ioctl_hook
)
1034 err
= dlci_ioctl_hook(cmd
, argp
);
1035 mutex_unlock(&dlci_ioctl_mutex
);
1038 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1044 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1047 struct socket
*sock
= NULL
;
1049 err
= security_socket_create(family
, type
, protocol
, 1);
1053 sock
= sock_alloc();
1060 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1072 EXPORT_SYMBOL(sock_create_lite
);
1074 /* No kernel lock held - perfect */
1075 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1077 struct socket
*sock
;
1080 * We can't return errors to poll, so it's either yes or no.
1082 sock
= file
->private_data
;
1083 return sock
->ops
->poll(file
, sock
, wait
);
1086 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1088 struct socket
*sock
= file
->private_data
;
1090 return sock
->ops
->mmap(file
, sock
, vma
);
1093 static int sock_close(struct inode
*inode
, struct file
*filp
)
1096 * It was possible the inode is NULL we were
1097 * closing an unfinished socket.
1101 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1104 sock_release(SOCKET_I(inode
));
1109 * Update the socket async list
1111 * Fasync_list locking strategy.
1113 * 1. fasync_list is modified only under process context socket lock
1114 * i.e. under semaphore.
1115 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1116 * or under socket lock
1119 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1121 struct socket
*sock
= filp
->private_data
;
1122 struct sock
*sk
= sock
->sk
;
1123 struct socket_wq
*wq
;
1129 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1130 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1132 if (!wq
->fasync_list
)
1133 sock_reset_flag(sk
, SOCK_FASYNC
);
1135 sock_set_flag(sk
, SOCK_FASYNC
);
1141 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1143 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1145 struct socket_wq
*wq
;
1150 wq
= rcu_dereference(sock
->wq
);
1151 if (!wq
|| !wq
->fasync_list
) {
1156 case SOCK_WAKE_WAITD
:
1157 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1160 case SOCK_WAKE_SPACE
:
1161 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1166 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1169 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1174 EXPORT_SYMBOL(sock_wake_async
);
1176 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1177 struct socket
**res
, int kern
)
1180 struct socket
*sock
;
1181 const struct net_proto_family
*pf
;
1184 * Check protocol is in range
1186 if (family
< 0 || family
>= NPROTO
)
1187 return -EAFNOSUPPORT
;
1188 if (type
< 0 || type
>= SOCK_MAX
)
1193 This uglymoron is moved from INET layer to here to avoid
1194 deadlock in module load.
1196 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1200 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1206 err
= security_socket_create(family
, type
, protocol
, kern
);
1211 * Allocate the socket and allow the family to set things up. if
1212 * the protocol is 0, the family is instructed to select an appropriate
1215 sock
= sock_alloc();
1217 if (net_ratelimit())
1218 printk(KERN_WARNING
"socket: no more sockets\n");
1219 return -ENFILE
; /* Not exactly a match, but its the
1220 closest posix thing */
1225 #ifdef CONFIG_MODULES
1226 /* Attempt to load a protocol module if the find failed.
1228 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1229 * requested real, full-featured networking support upon configuration.
1230 * Otherwise module support will break!
1232 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1233 request_module("net-pf-%d", family
);
1237 pf
= rcu_dereference(net_families
[family
]);
1238 err
= -EAFNOSUPPORT
;
1243 * We will call the ->create function, that possibly is in a loadable
1244 * module, so we have to bump that loadable module refcnt first.
1246 if (!try_module_get(pf
->owner
))
1249 /* Now protected by module ref count */
1252 err
= pf
->create(net
, sock
, protocol
, kern
);
1254 goto out_module_put
;
1257 * Now to bump the refcnt of the [loadable] module that owns this
1258 * socket at sock_release time we decrement its refcnt.
1260 if (!try_module_get(sock
->ops
->owner
))
1261 goto out_module_busy
;
1264 * Now that we're done with the ->create function, the [loadable]
1265 * module can have its refcnt decremented
1267 module_put(pf
->owner
);
1268 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1270 goto out_sock_release
;
1276 err
= -EAFNOSUPPORT
;
1279 module_put(pf
->owner
);
1286 goto out_sock_release
;
1288 EXPORT_SYMBOL(__sock_create
);
1290 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1292 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1294 EXPORT_SYMBOL(sock_create
);
1296 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1298 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1300 EXPORT_SYMBOL(sock_create_kern
);
1302 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1305 struct socket
*sock
;
1308 /* Check the SOCK_* constants for consistency. */
1309 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1310 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1311 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1312 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1314 flags
= type
& ~SOCK_TYPE_MASK
;
1315 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1317 type
&= SOCK_TYPE_MASK
;
1319 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1320 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1322 retval
= sock_create(family
, type
, protocol
, &sock
);
1326 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1331 /* It may be already another descriptor 8) Not kernel problem. */
1340 * Create a pair of connected sockets.
1343 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1344 int __user
*, usockvec
)
1346 struct socket
*sock1
, *sock2
;
1348 struct file
*newfile1
, *newfile2
;
1351 flags
= type
& ~SOCK_TYPE_MASK
;
1352 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1354 type
&= SOCK_TYPE_MASK
;
1356 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1357 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1360 * Obtain the first socket and check if the underlying protocol
1361 * supports the socketpair call.
1364 err
= sock_create(family
, type
, protocol
, &sock1
);
1368 err
= sock_create(family
, type
, protocol
, &sock2
);
1372 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1374 goto out_release_both
;
1376 fd1
= sock_alloc_file(sock1
, &newfile1
, flags
);
1377 if (unlikely(fd1
< 0)) {
1379 goto out_release_both
;
1382 fd2
= sock_alloc_file(sock2
, &newfile2
, flags
);
1383 if (unlikely(fd2
< 0)) {
1387 sock_release(sock2
);
1391 audit_fd_pair(fd1
, fd2
);
1392 fd_install(fd1
, newfile1
);
1393 fd_install(fd2
, newfile2
);
1394 /* fd1 and fd2 may be already another descriptors.
1395 * Not kernel problem.
1398 err
= put_user(fd1
, &usockvec
[0]);
1400 err
= put_user(fd2
, &usockvec
[1]);
1409 sock_release(sock2
);
1411 sock_release(sock1
);
1417 * Bind a name to a socket. Nothing much to do here since it's
1418 * the protocol's responsibility to handle the local address.
1420 * We move the socket address to kernel space before we call
1421 * the protocol layer (having also checked the address is ok).
1424 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1426 struct socket
*sock
;
1427 struct sockaddr_storage address
;
1428 int err
, fput_needed
;
1430 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1432 err
= move_addr_to_kernel(umyaddr
, addrlen
, (struct sockaddr
*)&address
);
1434 err
= security_socket_bind(sock
,
1435 (struct sockaddr
*)&address
,
1438 err
= sock
->ops
->bind(sock
,
1442 fput_light(sock
->file
, fput_needed
);
1448 * Perform a listen. Basically, we allow the protocol to do anything
1449 * necessary for a listen, and if that works, we mark the socket as
1450 * ready for listening.
1453 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1455 struct socket
*sock
;
1456 int err
, fput_needed
;
1459 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1461 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1462 if ((unsigned)backlog
> somaxconn
)
1463 backlog
= somaxconn
;
1465 err
= security_socket_listen(sock
, backlog
);
1467 err
= sock
->ops
->listen(sock
, backlog
);
1469 fput_light(sock
->file
, fput_needed
);
1475 * For accept, we attempt to create a new socket, set up the link
1476 * with the client, wake up the client, then return the new
1477 * connected fd. We collect the address of the connector in kernel
1478 * space and move it to user at the very end. This is unclean because
1479 * we open the socket then return an error.
1481 * 1003.1g adds the ability to recvmsg() to query connection pending
1482 * status to recvmsg. We need to add that support in a way thats
1483 * clean when we restucture accept also.
1486 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1487 int __user
*, upeer_addrlen
, int, flags
)
1489 struct socket
*sock
, *newsock
;
1490 struct file
*newfile
;
1491 int err
, len
, newfd
, fput_needed
;
1492 struct sockaddr_storage address
;
1494 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1497 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1498 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1500 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1505 newsock
= sock_alloc();
1509 newsock
->type
= sock
->type
;
1510 newsock
->ops
= sock
->ops
;
1513 * We don't need try_module_get here, as the listening socket (sock)
1514 * has the protocol module (sock->ops->owner) held.
1516 __module_get(newsock
->ops
->owner
);
1518 newfd
= sock_alloc_file(newsock
, &newfile
, flags
);
1519 if (unlikely(newfd
< 0)) {
1521 sock_release(newsock
);
1525 err
= security_socket_accept(sock
, newsock
);
1529 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1533 if (upeer_sockaddr
) {
1534 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1536 err
= -ECONNABORTED
;
1539 err
= move_addr_to_user((struct sockaddr
*)&address
,
1540 len
, upeer_sockaddr
, upeer_addrlen
);
1545 /* File flags are not inherited via accept() unlike another OSes. */
1547 fd_install(newfd
, newfile
);
1551 fput_light(sock
->file
, fput_needed
);
1556 put_unused_fd(newfd
);
1560 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1561 int __user
*, upeer_addrlen
)
1563 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1567 * Attempt to connect to a socket with the server address. The address
1568 * is in user space so we verify it is OK and move it to kernel space.
1570 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1573 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1574 * other SEQPACKET protocols that take time to connect() as it doesn't
1575 * include the -EINPROGRESS status for such sockets.
1578 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1581 struct socket
*sock
;
1582 struct sockaddr_storage address
;
1583 int err
, fput_needed
;
1585 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1588 err
= move_addr_to_kernel(uservaddr
, addrlen
, (struct sockaddr
*)&address
);
1593 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1597 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1598 sock
->file
->f_flags
);
1600 fput_light(sock
->file
, fput_needed
);
1606 * Get the local address ('name') of a socket object. Move the obtained
1607 * name to user space.
1610 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1611 int __user
*, usockaddr_len
)
1613 struct socket
*sock
;
1614 struct sockaddr_storage address
;
1615 int len
, err
, fput_needed
;
1617 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1621 err
= security_socket_getsockname(sock
);
1625 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1628 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
, usockaddr_len
);
1631 fput_light(sock
->file
, fput_needed
);
1637 * Get the remote address ('name') of a socket object. Move the obtained
1638 * name to user space.
1641 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1642 int __user
*, usockaddr_len
)
1644 struct socket
*sock
;
1645 struct sockaddr_storage address
;
1646 int len
, err
, fput_needed
;
1648 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1650 err
= security_socket_getpeername(sock
);
1652 fput_light(sock
->file
, fput_needed
);
1657 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1660 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
,
1662 fput_light(sock
->file
, fput_needed
);
1668 * Send a datagram to a given address. We move the address into kernel
1669 * space and check the user space data area is readable before invoking
1673 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1674 unsigned, flags
, struct sockaddr __user
*, addr
,
1677 struct socket
*sock
;
1678 struct sockaddr_storage address
;
1686 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1690 iov
.iov_base
= buff
;
1692 msg
.msg_name
= NULL
;
1695 msg
.msg_control
= NULL
;
1696 msg
.msg_controllen
= 0;
1697 msg
.msg_namelen
= 0;
1699 err
= move_addr_to_kernel(addr
, addr_len
, (struct sockaddr
*)&address
);
1702 msg
.msg_name
= (struct sockaddr
*)&address
;
1703 msg
.msg_namelen
= addr_len
;
1705 if (sock
->file
->f_flags
& O_NONBLOCK
)
1706 flags
|= MSG_DONTWAIT
;
1707 msg
.msg_flags
= flags
;
1708 err
= sock_sendmsg(sock
, &msg
, len
);
1711 fput_light(sock
->file
, fput_needed
);
1717 * Send a datagram down a socket.
1720 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1723 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1727 * Receive a frame from the socket and optionally record the address of the
1728 * sender. We verify the buffers are writable and if needed move the
1729 * sender address from kernel to user space.
1732 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1733 unsigned, flags
, struct sockaddr __user
*, addr
,
1734 int __user
*, addr_len
)
1736 struct socket
*sock
;
1739 struct sockaddr_storage address
;
1745 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1749 msg
.msg_control
= NULL
;
1750 msg
.msg_controllen
= 0;
1754 iov
.iov_base
= ubuf
;
1755 msg
.msg_name
= (struct sockaddr
*)&address
;
1756 msg
.msg_namelen
= sizeof(address
);
1757 if (sock
->file
->f_flags
& O_NONBLOCK
)
1758 flags
|= MSG_DONTWAIT
;
1759 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1761 if (err
>= 0 && addr
!= NULL
) {
1762 err2
= move_addr_to_user((struct sockaddr
*)&address
,
1763 msg
.msg_namelen
, addr
, addr_len
);
1768 fput_light(sock
->file
, fput_needed
);
1774 * Receive a datagram from a socket.
1777 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1780 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1784 * Set a socket option. Because we don't know the option lengths we have
1785 * to pass the user mode parameter for the protocols to sort out.
1788 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1789 char __user
*, optval
, int, optlen
)
1791 int err
, fput_needed
;
1792 struct socket
*sock
;
1797 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1799 err
= security_socket_setsockopt(sock
, level
, optname
);
1803 if (level
== SOL_SOCKET
)
1805 sock_setsockopt(sock
, level
, optname
, optval
,
1809 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1812 fput_light(sock
->file
, fput_needed
);
1818 * Get a socket option. Because we don't know the option lengths we have
1819 * to pass a user mode parameter for the protocols to sort out.
1822 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1823 char __user
*, optval
, int __user
*, optlen
)
1825 int err
, fput_needed
;
1826 struct socket
*sock
;
1828 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1830 err
= security_socket_getsockopt(sock
, level
, optname
);
1834 if (level
== SOL_SOCKET
)
1836 sock_getsockopt(sock
, level
, optname
, optval
,
1840 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1843 fput_light(sock
->file
, fput_needed
);
1849 * Shutdown a socket.
1852 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1854 int err
, fput_needed
;
1855 struct socket
*sock
;
1857 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1859 err
= security_socket_shutdown(sock
, how
);
1861 err
= sock
->ops
->shutdown(sock
, how
);
1862 fput_light(sock
->file
, fput_needed
);
1867 /* A couple of helpful macros for getting the address of the 32/64 bit
1868 * fields which are the same type (int / unsigned) on our platforms.
1870 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1871 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1872 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1874 struct used_address
{
1875 struct sockaddr_storage name
;
1876 unsigned int name_len
;
1879 static int ___sys_sendmsg(struct socket
*sock
, struct msghdr __user
*msg
,
1880 struct msghdr
*msg_sys
, unsigned flags
,
1881 struct used_address
*used_address
)
1883 struct compat_msghdr __user
*msg_compat
=
1884 (struct compat_msghdr __user
*)msg
;
1885 struct sockaddr_storage address
;
1886 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1887 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1888 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1889 /* 20 is size of ipv6_pktinfo */
1890 unsigned char *ctl_buf
= ctl
;
1891 int err
, ctl_len
, iov_size
, total_len
;
1894 if (MSG_CMSG_COMPAT
& flags
) {
1895 if (get_compat_msghdr(msg_sys
, msg_compat
))
1897 } else if (copy_from_user(msg_sys
, msg
, sizeof(struct msghdr
)))
1900 /* do not move before msg_sys is valid */
1902 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
1905 /* Check whether to allocate the iovec area */
1907 iov_size
= msg_sys
->msg_iovlen
* sizeof(struct iovec
);
1908 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
1909 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1914 /* This will also move the address data into kernel space */
1915 if (MSG_CMSG_COMPAT
& flags
) {
1916 err
= verify_compat_iovec(msg_sys
, iov
,
1917 (struct sockaddr
*)&address
,
1920 err
= verify_iovec(msg_sys
, iov
,
1921 (struct sockaddr
*)&address
,
1929 if (msg_sys
->msg_controllen
> INT_MAX
)
1931 ctl_len
= msg_sys
->msg_controllen
;
1932 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1934 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1938 ctl_buf
= msg_sys
->msg_control
;
1939 ctl_len
= msg_sys
->msg_controllen
;
1940 } else if (ctl_len
) {
1941 if (ctl_len
> sizeof(ctl
)) {
1942 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1943 if (ctl_buf
== NULL
)
1948 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1949 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1950 * checking falls down on this.
1952 if (copy_from_user(ctl_buf
,
1953 (void __user __force
*)msg_sys
->msg_control
,
1956 msg_sys
->msg_control
= ctl_buf
;
1958 msg_sys
->msg_flags
= flags
;
1960 if (sock
->file
->f_flags
& O_NONBLOCK
)
1961 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
1963 * If this is sendmmsg() and current destination address is same as
1964 * previously succeeded address, omit asking LSM's decision.
1965 * used_address->name_len is initialized to UINT_MAX so that the first
1966 * destination address never matches.
1968 if (used_address
&& msg_sys
->msg_name
&&
1969 used_address
->name_len
== msg_sys
->msg_namelen
&&
1970 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
1971 used_address
->name_len
)) {
1972 err
= sock_sendmsg_nosec(sock
, msg_sys
, total_len
);
1975 err
= sock_sendmsg(sock
, msg_sys
, total_len
);
1977 * If this is sendmmsg() and sending to current destination address was
1978 * successful, remember it.
1980 if (used_address
&& err
>= 0) {
1981 used_address
->name_len
= msg_sys
->msg_namelen
;
1982 if (msg_sys
->msg_name
)
1983 memcpy(&used_address
->name
, msg_sys
->msg_name
,
1984 used_address
->name_len
);
1989 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1991 if (iov
!= iovstack
)
1992 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1998 * BSD sendmsg interface
2001 long __sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2003 int fput_needed
, err
;
2004 struct msghdr msg_sys
;
2005 struct socket
*sock
;
2007 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2011 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
2013 fput_light(sock
->file
, fput_needed
);
2018 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned int, flags
)
2020 if (flags
& MSG_CMSG_COMPAT
)
2022 return __sys_sendmsg(fd
, msg
, flags
);
2026 * Linux sendmmsg interface
2029 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2032 int fput_needed
, err
, datagrams
;
2033 struct socket
*sock
;
2034 struct mmsghdr __user
*entry
;
2035 struct compat_mmsghdr __user
*compat_entry
;
2036 struct msghdr msg_sys
;
2037 struct used_address used_address
;
2039 if (vlen
> UIO_MAXIOV
)
2044 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2048 used_address
.name_len
= UINT_MAX
;
2050 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2053 while (datagrams
< vlen
) {
2054 if (MSG_CMSG_COMPAT
& flags
) {
2055 err
= ___sys_sendmsg(sock
, (struct msghdr __user
*)compat_entry
,
2056 &msg_sys
, flags
, &used_address
);
2059 err
= __put_user(err
, &compat_entry
->msg_len
);
2062 err
= ___sys_sendmsg(sock
,
2063 (struct msghdr __user
*)entry
,
2064 &msg_sys
, flags
, &used_address
);
2067 err
= put_user(err
, &entry
->msg_len
);
2076 fput_light(sock
->file
, fput_needed
);
2078 /* We only return an error if no datagrams were able to be sent */
2085 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2086 unsigned int, vlen
, unsigned int, flags
)
2088 if (flags
& MSG_CMSG_COMPAT
)
2090 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2093 static int ___sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2094 struct msghdr
*msg_sys
, unsigned flags
, int nosec
)
2096 struct compat_msghdr __user
*msg_compat
=
2097 (struct compat_msghdr __user
*)msg
;
2098 struct iovec iovstack
[UIO_FASTIOV
];
2099 struct iovec
*iov
= iovstack
;
2100 unsigned long cmsg_ptr
;
2101 int err
, iov_size
, total_len
, len
;
2103 /* kernel mode address */
2104 struct sockaddr_storage addr
;
2106 /* user mode address pointers */
2107 struct sockaddr __user
*uaddr
;
2108 int __user
*uaddr_len
;
2110 if (MSG_CMSG_COMPAT
& flags
) {
2111 if (get_compat_msghdr(msg_sys
, msg_compat
))
2113 } else if (copy_from_user(msg_sys
, msg
, sizeof(struct msghdr
)))
2117 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2120 /* Check whether to allocate the iovec area */
2122 iov_size
= msg_sys
->msg_iovlen
* sizeof(struct iovec
);
2123 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2124 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
2130 * Save the user-mode address (verify_iovec will change the
2131 * kernel msghdr to use the kernel address space)
2134 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2135 uaddr_len
= COMPAT_NAMELEN(msg
);
2136 if (MSG_CMSG_COMPAT
& flags
) {
2137 err
= verify_compat_iovec(msg_sys
, iov
,
2138 (struct sockaddr
*)&addr
,
2141 err
= verify_iovec(msg_sys
, iov
,
2142 (struct sockaddr
*)&addr
,
2148 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2149 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2151 if (sock
->file
->f_flags
& O_NONBLOCK
)
2152 flags
|= MSG_DONTWAIT
;
2153 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2159 if (uaddr
!= NULL
) {
2160 err
= move_addr_to_user((struct sockaddr
*)&addr
,
2161 msg_sys
->msg_namelen
, uaddr
,
2166 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2170 if (MSG_CMSG_COMPAT
& flags
)
2171 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2172 &msg_compat
->msg_controllen
);
2174 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2175 &msg
->msg_controllen
);
2181 if (iov
!= iovstack
)
2182 sock_kfree_s(sock
->sk
, iov
, iov_size
);
2188 * BSD recvmsg interface
2191 long __sys_recvmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2193 int fput_needed
, err
;
2194 struct msghdr msg_sys
;
2195 struct socket
*sock
;
2197 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2201 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2203 fput_light(sock
->file
, fput_needed
);
2208 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2209 unsigned int, flags
)
2211 if (flags
& MSG_CMSG_COMPAT
)
2213 return __sys_recvmsg(fd
, msg
, flags
);
2217 * Linux recvmmsg interface
2220 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2221 unsigned int flags
, struct timespec
*timeout
)
2223 int fput_needed
, err
, datagrams
;
2224 struct socket
*sock
;
2225 struct mmsghdr __user
*entry
;
2226 struct compat_mmsghdr __user
*compat_entry
;
2227 struct msghdr msg_sys
;
2228 struct timespec end_time
;
2231 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2237 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2241 err
= sock_error(sock
->sk
);
2246 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2248 while (datagrams
< vlen
) {
2250 * No need to ask LSM for more than the first datagram.
2252 if (MSG_CMSG_COMPAT
& flags
) {
2253 err
= ___sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2254 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2258 err
= __put_user(err
, &compat_entry
->msg_len
);
2261 err
= ___sys_recvmsg(sock
,
2262 (struct msghdr __user
*)entry
,
2263 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2267 err
= put_user(err
, &entry
->msg_len
);
2275 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2276 if (flags
& MSG_WAITFORONE
)
2277 flags
|= MSG_DONTWAIT
;
2280 ktime_get_ts(timeout
);
2281 *timeout
= timespec_sub(end_time
, *timeout
);
2282 if (timeout
->tv_sec
< 0) {
2283 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2287 /* Timeout, return less than vlen datagrams */
2288 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2292 /* Out of band data, return right away */
2293 if (msg_sys
.msg_flags
& MSG_OOB
)
2298 fput_light(sock
->file
, fput_needed
);
2303 if (datagrams
!= 0) {
2305 * We may return less entries than requested (vlen) if the
2306 * sock is non block and there aren't enough datagrams...
2308 if (err
!= -EAGAIN
) {
2310 * ... or if recvmsg returns an error after we
2311 * received some datagrams, where we record the
2312 * error to return on the next call or if the
2313 * app asks about it using getsockopt(SO_ERROR).
2315 sock
->sk
->sk_err
= -err
;
2324 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2325 unsigned int, vlen
, unsigned int, flags
,
2326 struct timespec __user
*, timeout
)
2329 struct timespec timeout_sys
;
2331 if (flags
& MSG_CMSG_COMPAT
)
2335 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2337 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2340 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2342 if (datagrams
> 0 &&
2343 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2344 datagrams
= -EFAULT
;
2349 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2350 /* Argument list sizes for sys_socketcall */
2351 #define AL(x) ((x) * sizeof(unsigned long))
2352 static const unsigned char nargs
[21] = {
2353 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2354 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2355 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2362 * System call vectors.
2364 * Argument checking cleaned up. Saved 20% in size.
2365 * This function doesn't need to set the kernel lock because
2366 * it is set by the callees.
2369 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2372 unsigned long a0
, a1
;
2376 if (call
< 1 || call
> SYS_SENDMMSG
)
2380 if (len
> sizeof(a
))
2383 /* copy_from_user should be SMP safe. */
2384 if (copy_from_user(a
, args
, len
))
2387 audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2394 err
= sys_socket(a0
, a1
, a
[2]);
2397 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2400 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2403 err
= sys_listen(a0
, a1
);
2406 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2407 (int __user
*)a
[2], 0);
2409 case SYS_GETSOCKNAME
:
2411 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2412 (int __user
*)a
[2]);
2414 case SYS_GETPEERNAME
:
2416 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2417 (int __user
*)a
[2]);
2419 case SYS_SOCKETPAIR
:
2420 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2423 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2426 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2427 (struct sockaddr __user
*)a
[4], a
[5]);
2430 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2433 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2434 (struct sockaddr __user
*)a
[4],
2435 (int __user
*)a
[5]);
2438 err
= sys_shutdown(a0
, a1
);
2440 case SYS_SETSOCKOPT
:
2441 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2443 case SYS_GETSOCKOPT
:
2445 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2446 (int __user
*)a
[4]);
2449 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2452 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2455 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2458 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2459 (struct timespec __user
*)a
[4]);
2462 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2463 (int __user
*)a
[2], a
[3]);
2472 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2475 * sock_register - add a socket protocol handler
2476 * @ops: description of protocol
2478 * This function is called by a protocol handler that wants to
2479 * advertise its address family, and have it linked into the
2480 * socket interface. The value ops->family coresponds to the
2481 * socket system call protocol family.
2483 int sock_register(const struct net_proto_family
*ops
)
2487 if (ops
->family
>= NPROTO
) {
2488 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2493 spin_lock(&net_family_lock
);
2494 if (rcu_dereference_protected(net_families
[ops
->family
],
2495 lockdep_is_held(&net_family_lock
)))
2498 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2501 spin_unlock(&net_family_lock
);
2503 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2506 EXPORT_SYMBOL(sock_register
);
2509 * sock_unregister - remove a protocol handler
2510 * @family: protocol family to remove
2512 * This function is called by a protocol handler that wants to
2513 * remove its address family, and have it unlinked from the
2514 * new socket creation.
2516 * If protocol handler is a module, then it can use module reference
2517 * counts to protect against new references. If protocol handler is not
2518 * a module then it needs to provide its own protection in
2519 * the ops->create routine.
2521 void sock_unregister(int family
)
2523 BUG_ON(family
< 0 || family
>= NPROTO
);
2525 spin_lock(&net_family_lock
);
2526 rcu_assign_pointer(net_families
[family
], NULL
);
2527 spin_unlock(&net_family_lock
);
2531 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2533 EXPORT_SYMBOL(sock_unregister
);
2535 static int __init
sock_init(void)
2540 * Initialize sock SLAB cache.
2546 * Initialize skbuff SLAB cache
2551 * Initialize the protocols module.
2556 err
= register_filesystem(&sock_fs_type
);
2559 sock_mnt
= kern_mount(&sock_fs_type
);
2560 if (IS_ERR(sock_mnt
)) {
2561 err
= PTR_ERR(sock_mnt
);
2565 /* The real protocol initialization is performed in later initcalls.
2568 #ifdef CONFIG_NETFILTER
2572 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2573 skb_timestamping_init();
2580 unregister_filesystem(&sock_fs_type
);
2585 core_initcall(sock_init
); /* early initcall */
2587 #ifdef CONFIG_PROC_FS
2588 void socket_seq_show(struct seq_file
*seq
)
2593 for_each_possible_cpu(cpu
)
2594 counter
+= per_cpu(sockets_in_use
, cpu
);
2596 /* It can be negative, by the way. 8) */
2600 seq_printf(seq
, "sockets: used %d\n", counter
);
2602 #endif /* CONFIG_PROC_FS */
2604 #ifdef CONFIG_COMPAT
2605 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2606 unsigned int cmd
, struct compat_timeval __user
*up
)
2608 mm_segment_t old_fs
= get_fs();
2613 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2616 err
= put_user(ktv
.tv_sec
, &up
->tv_sec
);
2617 err
|= __put_user(ktv
.tv_usec
, &up
->tv_usec
);
2622 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2623 unsigned int cmd
, struct compat_timespec __user
*up
)
2625 mm_segment_t old_fs
= get_fs();
2626 struct timespec kts
;
2630 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2633 err
= put_user(kts
.tv_sec
, &up
->tv_sec
);
2634 err
|= __put_user(kts
.tv_nsec
, &up
->tv_nsec
);
2639 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2641 struct ifreq __user
*uifr
;
2644 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2645 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2648 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2652 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2658 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2660 struct compat_ifconf ifc32
;
2662 struct ifconf __user
*uifc
;
2663 struct compat_ifreq __user
*ifr32
;
2664 struct ifreq __user
*ifr
;
2668 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2671 memset(&ifc
, 0, sizeof(ifc
));
2672 if (ifc32
.ifcbuf
== 0) {
2676 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2678 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2679 sizeof(struct ifreq
);
2680 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2682 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2683 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2684 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2685 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2691 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2694 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2698 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2702 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2704 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2705 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2706 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2712 if (ifc32
.ifcbuf
== 0) {
2713 /* Translate from 64-bit structure multiple to
2717 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2722 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2728 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2730 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2731 bool convert_in
= false, convert_out
= false;
2732 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2733 struct ethtool_rxnfc __user
*rxnfc
;
2734 struct ifreq __user
*ifr
;
2735 u32 rule_cnt
= 0, actual_rule_cnt
;
2740 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2743 compat_rxnfc
= compat_ptr(data
);
2745 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2748 /* Most ethtool structures are defined without padding.
2749 * Unfortunately struct ethtool_rxnfc is an exception.
2754 case ETHTOOL_GRXCLSRLALL
:
2755 /* Buffer size is variable */
2756 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2758 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2760 buf_size
+= rule_cnt
* sizeof(u32
);
2762 case ETHTOOL_GRXRINGS
:
2763 case ETHTOOL_GRXCLSRLCNT
:
2764 case ETHTOOL_GRXCLSRULE
:
2767 case ETHTOOL_SRXCLSRLDEL
:
2768 case ETHTOOL_SRXCLSRLINS
:
2769 buf_size
+= sizeof(struct ethtool_rxnfc
);
2774 ifr
= compat_alloc_user_space(buf_size
);
2775 rxnfc
= (void *)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2777 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2780 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2781 &ifr
->ifr_ifru
.ifru_data
))
2785 /* We expect there to be holes between fs.m_ext and
2786 * fs.ring_cookie and at the end of fs, but nowhere else.
2788 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2789 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2790 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2791 sizeof(rxnfc
->fs
.m_ext
));
2793 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2794 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2795 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2796 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2798 if (copy_in_user(rxnfc
, compat_rxnfc
,
2799 (void *)(&rxnfc
->fs
.m_ext
+ 1) -
2801 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2802 &compat_rxnfc
->fs
.ring_cookie
,
2803 (void *)(&rxnfc
->fs
.location
+ 1) -
2804 (void *)&rxnfc
->fs
.ring_cookie
) ||
2805 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2806 sizeof(rxnfc
->rule_cnt
)))
2810 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2815 if (copy_in_user(compat_rxnfc
, rxnfc
,
2816 (const void *)(&rxnfc
->fs
.m_ext
+ 1) -
2817 (const void *)rxnfc
) ||
2818 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2819 &rxnfc
->fs
.ring_cookie
,
2820 (const void *)(&rxnfc
->fs
.location
+ 1) -
2821 (const void *)&rxnfc
->fs
.ring_cookie
) ||
2822 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2823 sizeof(rxnfc
->rule_cnt
)))
2826 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2827 /* As an optimisation, we only copy the actual
2828 * number of rules that the underlying
2829 * function returned. Since Mallory might
2830 * change the rule count in user memory, we
2831 * check that it is less than the rule count
2832 * originally given (as the user buffer size),
2833 * which has been range-checked.
2835 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2837 if (actual_rule_cnt
< rule_cnt
)
2838 rule_cnt
= actual_rule_cnt
;
2839 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2840 &rxnfc
->rule_locs
[0],
2841 rule_cnt
* sizeof(u32
)))
2849 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2852 compat_uptr_t uptr32
;
2853 struct ifreq __user
*uifr
;
2855 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2856 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2859 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2862 uptr
= compat_ptr(uptr32
);
2864 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2867 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2870 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2871 struct compat_ifreq __user
*ifr32
)
2874 struct ifreq __user
*uifr
;
2875 mm_segment_t old_fs
;
2881 case SIOCBONDENSLAVE
:
2882 case SIOCBONDRELEASE
:
2883 case SIOCBONDSETHWADDR
:
2884 case SIOCBONDCHANGEACTIVE
:
2885 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2890 err
= dev_ioctl(net
, cmd
,
2891 (struct ifreq __user __force
*) &kifr
);
2895 case SIOCBONDSLAVEINFOQUERY
:
2896 case SIOCBONDINFOQUERY
:
2897 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2898 if (copy_in_user(&uifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2901 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2904 datap
= compat_ptr(data
);
2905 if (put_user(datap
, &uifr
->ifr_ifru
.ifru_data
))
2908 return dev_ioctl(net
, cmd
, uifr
);
2914 static int siocdevprivate_ioctl(struct net
*net
, unsigned int cmd
,
2915 struct compat_ifreq __user
*u_ifreq32
)
2917 struct ifreq __user
*u_ifreq64
;
2918 char tmp_buf
[IFNAMSIZ
];
2919 void __user
*data64
;
2922 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2925 if (__get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2927 data64
= compat_ptr(data32
);
2929 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2931 /* Don't check these user accesses, just let that get trapped
2932 * in the ioctl handler instead.
2934 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2937 if (__put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2940 return dev_ioctl(net
, cmd
, u_ifreq64
);
2943 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2944 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2946 struct ifreq __user
*uifr
;
2949 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2950 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2953 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2964 case SIOCGIFBRDADDR
:
2965 case SIOCGIFDSTADDR
:
2966 case SIOCGIFNETMASK
:
2971 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2979 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2980 struct compat_ifreq __user
*uifr32
)
2983 struct compat_ifmap __user
*uifmap32
;
2984 mm_segment_t old_fs
;
2987 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2988 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2989 err
|= __get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2990 err
|= __get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2991 err
|= __get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2992 err
|= __get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2993 err
|= __get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2994 err
|= __get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3000 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
3003 if (cmd
== SIOCGIFMAP
&& !err
) {
3004 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3005 err
|= __put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3006 err
|= __put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3007 err
|= __put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3008 err
|= __put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3009 err
|= __put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3010 err
|= __put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3017 static int compat_siocshwtstamp(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3020 compat_uptr_t uptr32
;
3021 struct ifreq __user
*uifr
;
3023 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3024 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
3027 if (get_user(uptr32
, &uifr32
->ifr_data
))
3030 uptr
= compat_ptr(uptr32
);
3032 if (put_user(uptr
, &uifr
->ifr_data
))
3035 return dev_ioctl(net
, SIOCSHWTSTAMP
, uifr
);
3040 struct sockaddr rt_dst
; /* target address */
3041 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3042 struct sockaddr rt_genmask
; /* target network mask (IP) */
3043 unsigned short rt_flags
;
3046 unsigned char rt_tos
;
3047 unsigned char rt_class
;
3049 short rt_metric
; /* +1 for binary compatibility! */
3050 /* char * */ u32 rt_dev
; /* forcing the device at add */
3051 u32 rt_mtu
; /* per route MTU/Window */
3052 u32 rt_window
; /* Window clamping */
3053 unsigned short rt_irtt
; /* Initial RTT */
3056 struct in6_rtmsg32
{
3057 struct in6_addr rtmsg_dst
;
3058 struct in6_addr rtmsg_src
;
3059 struct in6_addr rtmsg_gateway
;
3069 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3070 unsigned int cmd
, void __user
*argp
)
3074 struct in6_rtmsg r6
;
3078 mm_segment_t old_fs
= get_fs();
3080 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3081 struct in6_rtmsg32 __user
*ur6
= argp
;
3082 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3083 3 * sizeof(struct in6_addr
));
3084 ret
|= __get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3085 ret
|= __get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3086 ret
|= __get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3087 ret
|= __get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3088 ret
|= __get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3089 ret
|= __get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3090 ret
|= __get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3094 struct rtentry32 __user
*ur4
= argp
;
3095 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3096 3 * sizeof(struct sockaddr
));
3097 ret
|= __get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3098 ret
|= __get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3099 ret
|= __get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3100 ret
|= __get_user(r4
.rt_window
, &(ur4
->rt_window
));
3101 ret
|= __get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3102 ret
|= __get_user(rtdev
, &(ur4
->rt_dev
));
3104 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3105 r4
.rt_dev
= (char __user __force
*)devname
;
3119 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3126 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3127 * for some operations; this forces use of the newer bridge-utils that
3128 * use compatible ioctls
3130 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3134 if (get_user(tmp
, argp
))
3136 if (tmp
== BRCTL_GET_VERSION
)
3137 return BRCTL_VERSION
+ 1;
3141 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3142 unsigned int cmd
, unsigned long arg
)
3144 void __user
*argp
= compat_ptr(arg
);
3145 struct sock
*sk
= sock
->sk
;
3146 struct net
*net
= sock_net(sk
);
3148 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3149 return siocdevprivate_ioctl(net
, cmd
, argp
);
3154 return old_bridge_ioctl(argp
);
3156 return dev_ifname32(net
, argp
);
3158 return dev_ifconf(net
, argp
);
3160 return ethtool_ioctl(net
, argp
);
3162 return compat_siocwandev(net
, argp
);
3165 return compat_sioc_ifmap(net
, cmd
, argp
);
3166 case SIOCBONDENSLAVE
:
3167 case SIOCBONDRELEASE
:
3168 case SIOCBONDSETHWADDR
:
3169 case SIOCBONDSLAVEINFOQUERY
:
3170 case SIOCBONDINFOQUERY
:
3171 case SIOCBONDCHANGEACTIVE
:
3172 return bond_ioctl(net
, cmd
, argp
);
3175 return routing_ioctl(net
, sock
, cmd
, argp
);
3177 return do_siocgstamp(net
, sock
, cmd
, argp
);
3179 return do_siocgstampns(net
, sock
, cmd
, argp
);
3181 return compat_siocshwtstamp(net
, argp
);
3193 return sock_ioctl(file
, cmd
, arg
);
3210 case SIOCSIFHWBROADCAST
:
3212 case SIOCGIFBRDADDR
:
3213 case SIOCSIFBRDADDR
:
3214 case SIOCGIFDSTADDR
:
3215 case SIOCSIFDSTADDR
:
3216 case SIOCGIFNETMASK
:
3217 case SIOCSIFNETMASK
:
3228 return dev_ifsioc(net
, sock
, cmd
, argp
);
3234 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3237 /* Prevent warning from compat_sys_ioctl, these always
3238 * result in -EINVAL in the native case anyway. */
3251 return -ENOIOCTLCMD
;
3254 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
3257 struct socket
*sock
= file
->private_data
;
3258 int ret
= -ENOIOCTLCMD
;
3265 if (sock
->ops
->compat_ioctl
)
3266 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3268 if (ret
== -ENOIOCTLCMD
&&
3269 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3270 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3272 if (ret
== -ENOIOCTLCMD
)
3273 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3279 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3281 return sock
->ops
->bind(sock
, addr
, addrlen
);
3283 EXPORT_SYMBOL(kernel_bind
);
3285 int kernel_listen(struct socket
*sock
, int backlog
)
3287 return sock
->ops
->listen(sock
, backlog
);
3289 EXPORT_SYMBOL(kernel_listen
);
3291 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3293 struct sock
*sk
= sock
->sk
;
3296 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3301 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3303 sock_release(*newsock
);
3308 (*newsock
)->ops
= sock
->ops
;
3309 __module_get((*newsock
)->ops
->owner
);
3314 EXPORT_SYMBOL(kernel_accept
);
3316 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3319 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3321 EXPORT_SYMBOL(kernel_connect
);
3323 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3326 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3328 EXPORT_SYMBOL(kernel_getsockname
);
3330 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3333 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3335 EXPORT_SYMBOL(kernel_getpeername
);
3337 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3338 char *optval
, int *optlen
)
3340 mm_segment_t oldfs
= get_fs();
3341 char __user
*uoptval
;
3342 int __user
*uoptlen
;
3345 uoptval
= (char __user __force
*) optval
;
3346 uoptlen
= (int __user __force
*) optlen
;
3349 if (level
== SOL_SOCKET
)
3350 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3352 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3357 EXPORT_SYMBOL(kernel_getsockopt
);
3359 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3360 char *optval
, unsigned int optlen
)
3362 mm_segment_t oldfs
= get_fs();
3363 char __user
*uoptval
;
3366 uoptval
= (char __user __force
*) optval
;
3369 if (level
== SOL_SOCKET
)
3370 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3372 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3377 EXPORT_SYMBOL(kernel_setsockopt
);
3379 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3380 size_t size
, int flags
)
3382 sock_update_classid(sock
->sk
);
3384 if (sock
->ops
->sendpage
)
3385 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3387 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3389 EXPORT_SYMBOL(kernel_sendpage
);
3391 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3393 mm_segment_t oldfs
= get_fs();
3397 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3402 EXPORT_SYMBOL(kernel_sock_ioctl
);
3404 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3406 return sock
->ops
->shutdown(sock
, how
);
3408 EXPORT_SYMBOL(kernel_sock_shutdown
);