1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/magic.h>
18 #include <linux/pipe_fs_i.h>
19 #include <linux/uio.h>
20 #include <linux/highmem.h>
21 #include <linux/pagemap.h>
22 #include <linux/audit.h>
23 #include <linux/syscalls.h>
24 #include <linux/fcntl.h>
25 #include <linux/memcontrol.h>
27 #include <linux/uaccess.h>
28 #include <asm/ioctls.h>
33 * The max size that a non-root user is allowed to grow the pipe. Can
34 * be set by root in /proc/sys/fs/pipe-max-size
36 unsigned int pipe_max_size
= 1048576;
38 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
39 * matches default values.
41 unsigned long pipe_user_pages_hard
;
42 unsigned long pipe_user_pages_soft
= PIPE_DEF_BUFFERS
* INR_OPEN_CUR
;
45 * We use a start+len construction, which provides full use of the
47 * -- Florian Coosmann (FGC)
49 * Reads with count = 0 should always return 0.
50 * -- Julian Bradfield 1999-06-07.
52 * FIFOs and Pipes now generate SIGIO for both readers and writers.
53 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
55 * pipe_read & write cleanup
56 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
59 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
62 mutex_lock_nested(&pipe
->mutex
, subclass
);
65 void pipe_lock(struct pipe_inode_info
*pipe
)
68 * pipe_lock() nests non-pipe inode locks (for writing to a file)
70 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
72 EXPORT_SYMBOL(pipe_lock
);
74 void pipe_unlock(struct pipe_inode_info
*pipe
)
77 mutex_unlock(&pipe
->mutex
);
79 EXPORT_SYMBOL(pipe_unlock
);
81 static inline void __pipe_lock(struct pipe_inode_info
*pipe
)
83 mutex_lock_nested(&pipe
->mutex
, I_MUTEX_PARENT
);
86 static inline void __pipe_unlock(struct pipe_inode_info
*pipe
)
88 mutex_unlock(&pipe
->mutex
);
91 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
92 struct pipe_inode_info
*pipe2
)
94 BUG_ON(pipe1
== pipe2
);
97 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
98 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
100 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
101 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
105 /* Drop the inode semaphore and wait for a pipe event, atomically */
106 void pipe_wait(struct pipe_inode_info
*pipe
)
111 * Pipes are system-local resources, so sleeping on them
112 * is considered a noninteractive wait:
114 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
117 finish_wait(&pipe
->wait
, &wait
);
121 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
122 struct pipe_buffer
*buf
)
124 struct page
*page
= buf
->page
;
127 * If nobody else uses this page, and we don't already have a
128 * temporary page, let's keep track of it as a one-deep
129 * allocation cache. (Otherwise just release our reference to it)
131 if (page_count(page
) == 1 && !pipe
->tmp_page
)
132 pipe
->tmp_page
= page
;
137 static int anon_pipe_buf_steal(struct pipe_inode_info
*pipe
,
138 struct pipe_buffer
*buf
)
140 struct page
*page
= buf
->page
;
142 if (page_count(page
) == 1) {
143 if (memcg_kmem_enabled())
144 memcg_kmem_uncharge(page
, 0);
145 __SetPageLocked(page
);
152 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
153 * @pipe: the pipe that the buffer belongs to
154 * @buf: the buffer to attempt to steal
157 * This function attempts to steal the &struct page attached to
158 * @buf. If successful, this function returns 0 and returns with
159 * the page locked. The caller may then reuse the page for whatever
160 * he wishes; the typical use is insertion into a different file
163 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
164 struct pipe_buffer
*buf
)
166 struct page
*page
= buf
->page
;
169 * A reference of one is golden, that means that the owner of this
170 * page is the only one holding a reference to it. lock the page
173 if (page_count(page
) == 1) {
180 EXPORT_SYMBOL(generic_pipe_buf_steal
);
183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
184 * @pipe: the pipe that the buffer belongs to
185 * @buf: the buffer to get a reference to
188 * This function grabs an extra reference to @buf. It's used in
189 * in the tee() system call, when we duplicate the buffers in one
192 bool generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
194 return try_get_page(buf
->page
);
196 EXPORT_SYMBOL(generic_pipe_buf_get
);
199 * generic_pipe_buf_confirm - verify contents of the pipe buffer
200 * @info: the pipe that the buffer belongs to
201 * @buf: the buffer to confirm
204 * This function does nothing, because the generic pipe code uses
205 * pages that are always good when inserted into the pipe.
207 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
208 struct pipe_buffer
*buf
)
212 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
215 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
216 * @pipe: the pipe that the buffer belongs to
217 * @buf: the buffer to put a reference to
220 * This function releases a reference to @buf.
222 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
223 struct pipe_buffer
*buf
)
227 EXPORT_SYMBOL(generic_pipe_buf_release
);
229 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
231 .confirm
= generic_pipe_buf_confirm
,
232 .release
= anon_pipe_buf_release
,
233 .steal
= anon_pipe_buf_steal
,
234 .get
= generic_pipe_buf_get
,
237 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops
= {
239 .confirm
= generic_pipe_buf_confirm
,
240 .release
= anon_pipe_buf_release
,
241 .steal
= anon_pipe_buf_steal
,
242 .get
= generic_pipe_buf_get
,
245 static const struct pipe_buf_operations packet_pipe_buf_ops
= {
247 .confirm
= generic_pipe_buf_confirm
,
248 .release
= anon_pipe_buf_release
,
249 .steal
= anon_pipe_buf_steal
,
250 .get
= generic_pipe_buf_get
,
253 void pipe_buf_mark_unmergeable(struct pipe_buffer
*buf
)
255 if (buf
->ops
== &anon_pipe_buf_ops
)
256 buf
->ops
= &anon_pipe_buf_nomerge_ops
;
260 pipe_read(struct kiocb
*iocb
, struct iov_iter
*to
)
262 size_t total_len
= iov_iter_count(to
);
263 struct file
*filp
= iocb
->ki_filp
;
264 struct pipe_inode_info
*pipe
= filp
->private_data
;
268 /* Null read succeeds. */
269 if (unlikely(total_len
== 0))
276 int bufs
= pipe
->nrbufs
;
278 int curbuf
= pipe
->curbuf
;
279 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
280 size_t chars
= buf
->len
;
284 if (chars
> total_len
)
287 error
= pipe_buf_confirm(pipe
, buf
);
294 written
= copy_page_to_iter(buf
->page
, buf
->offset
, chars
, to
);
295 if (unlikely(written
< chars
)) {
301 buf
->offset
+= chars
;
304 /* Was it a packet buffer? Clean up and exit */
305 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
311 pipe_buf_release(pipe
, buf
);
312 curbuf
= (curbuf
+ 1) & (pipe
->buffers
- 1);
313 pipe
->curbuf
= curbuf
;
314 pipe
->nrbufs
= --bufs
;
319 break; /* common path: read succeeded */
321 if (bufs
) /* More to do? */
325 if (!pipe
->waiting_writers
) {
326 /* syscall merging: Usually we must not sleep
327 * if O_NONBLOCK is set, or if we got some data.
328 * But if a writer sleeps in kernel space, then
329 * we can wait for that data without violating POSIX.
333 if (filp
->f_flags
& O_NONBLOCK
) {
338 if (signal_pending(current
)) {
344 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLOUT
| EPOLLWRNORM
);
345 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
351 /* Signal writers asynchronously that there is more room. */
353 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLOUT
| EPOLLWRNORM
);
354 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
361 static inline int is_packetized(struct file
*file
)
363 return (file
->f_flags
& O_DIRECT
) != 0;
367 pipe_write(struct kiocb
*iocb
, struct iov_iter
*from
)
369 struct file
*filp
= iocb
->ki_filp
;
370 struct pipe_inode_info
*pipe
= filp
->private_data
;
373 size_t total_len
= iov_iter_count(from
);
376 /* Null write succeeds. */
377 if (unlikely(total_len
== 0))
382 if (!pipe
->readers
) {
383 send_sig(SIGPIPE
, current
, 0);
388 /* We try to merge small writes */
389 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
390 if (pipe
->nrbufs
&& chars
!= 0) {
391 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
393 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
394 int offset
= buf
->offset
+ buf
->len
;
396 if (buf
->ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
397 ret
= pipe_buf_confirm(pipe
, buf
);
401 ret
= copy_page_from_iter(buf
->page
, offset
, chars
, from
);
402 if (unlikely(ret
< chars
)) {
408 if (!iov_iter_count(from
))
416 if (!pipe
->readers
) {
417 send_sig(SIGPIPE
, current
, 0);
423 if (bufs
< pipe
->buffers
) {
424 int newbuf
= (pipe
->curbuf
+ bufs
) & (pipe
->buffers
-1);
425 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
426 struct page
*page
= pipe
->tmp_page
;
430 page
= alloc_page(GFP_HIGHUSER
| __GFP_ACCOUNT
);
431 if (unlikely(!page
)) {
432 ret
= ret
? : -ENOMEM
;
435 pipe
->tmp_page
= page
;
437 /* Always wake up, even if the copy fails. Otherwise
438 * we lock up (O_NONBLOCK-)readers that sleep due to
440 * FIXME! Is this really true?
443 copied
= copy_page_from_iter(page
, 0, PAGE_SIZE
, from
);
444 if (unlikely(copied
< PAGE_SIZE
&& iov_iter_count(from
))) {
451 /* Insert it into the buffer array */
453 buf
->ops
= &anon_pipe_buf_ops
;
457 if (is_packetized(filp
)) {
458 buf
->ops
= &packet_pipe_buf_ops
;
459 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
461 pipe
->nrbufs
= ++bufs
;
462 pipe
->tmp_page
= NULL
;
464 if (!iov_iter_count(from
))
467 if (bufs
< pipe
->buffers
)
469 if (filp
->f_flags
& O_NONBLOCK
) {
474 if (signal_pending(current
)) {
480 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLIN
| EPOLLRDNORM
);
481 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
484 pipe
->waiting_writers
++;
486 pipe
->waiting_writers
--;
491 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLIN
| EPOLLRDNORM
);
492 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
494 if (ret
> 0 && sb_start_write_trylock(file_inode(filp
)->i_sb
)) {
495 int err
= file_update_time(filp
);
498 sb_end_write(file_inode(filp
)->i_sb
);
503 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
505 struct pipe_inode_info
*pipe
= filp
->private_data
;
506 int count
, buf
, nrbufs
;
513 nrbufs
= pipe
->nrbufs
;
514 while (--nrbufs
>= 0) {
515 count
+= pipe
->bufs
[buf
].len
;
516 buf
= (buf
+1) & (pipe
->buffers
- 1);
520 return put_user(count
, (int __user
*)arg
);
526 /* No kernel lock held - fine */
528 pipe_poll(struct file
*filp
, poll_table
*wait
)
531 struct pipe_inode_info
*pipe
= filp
->private_data
;
534 poll_wait(filp
, &pipe
->wait
, wait
);
536 /* Reading only -- no need for acquiring the semaphore. */
537 nrbufs
= pipe
->nrbufs
;
539 if (filp
->f_mode
& FMODE_READ
) {
540 mask
= (nrbufs
> 0) ? EPOLLIN
| EPOLLRDNORM
: 0;
541 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
545 if (filp
->f_mode
& FMODE_WRITE
) {
546 mask
|= (nrbufs
< pipe
->buffers
) ? EPOLLOUT
| EPOLLWRNORM
: 0;
548 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
549 * behave exactly like pipes for poll().
558 static void put_pipe_info(struct inode
*inode
, struct pipe_inode_info
*pipe
)
562 spin_lock(&inode
->i_lock
);
563 if (!--pipe
->files
) {
564 inode
->i_pipe
= NULL
;
567 spin_unlock(&inode
->i_lock
);
570 free_pipe_info(pipe
);
574 pipe_release(struct inode
*inode
, struct file
*file
)
576 struct pipe_inode_info
*pipe
= file
->private_data
;
579 if (file
->f_mode
& FMODE_READ
)
581 if (file
->f_mode
& FMODE_WRITE
)
584 if (pipe
->readers
|| pipe
->writers
) {
585 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLIN
| EPOLLOUT
| EPOLLRDNORM
| EPOLLWRNORM
| EPOLLERR
| EPOLLHUP
);
586 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
587 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
591 put_pipe_info(inode
, pipe
);
596 pipe_fasync(int fd
, struct file
*filp
, int on
)
598 struct pipe_inode_info
*pipe
= filp
->private_data
;
602 if (filp
->f_mode
& FMODE_READ
)
603 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
604 if ((filp
->f_mode
& FMODE_WRITE
) && retval
>= 0) {
605 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
606 if (retval
< 0 && (filp
->f_mode
& FMODE_READ
))
607 /* this can happen only if on == T */
608 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
614 static unsigned long account_pipe_buffers(struct user_struct
*user
,
615 unsigned long old
, unsigned long new)
617 return atomic_long_add_return(new - old
, &user
->pipe_bufs
);
620 static bool too_many_pipe_buffers_soft(unsigned long user_bufs
)
622 unsigned long soft_limit
= READ_ONCE(pipe_user_pages_soft
);
624 return soft_limit
&& user_bufs
> soft_limit
;
627 static bool too_many_pipe_buffers_hard(unsigned long user_bufs
)
629 unsigned long hard_limit
= READ_ONCE(pipe_user_pages_hard
);
631 return hard_limit
&& user_bufs
> hard_limit
;
634 static bool is_unprivileged_user(void)
636 return !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
);
639 struct pipe_inode_info
*alloc_pipe_info(void)
641 struct pipe_inode_info
*pipe
;
642 unsigned long pipe_bufs
= PIPE_DEF_BUFFERS
;
643 struct user_struct
*user
= get_current_user();
644 unsigned long user_bufs
;
645 unsigned int max_size
= READ_ONCE(pipe_max_size
);
647 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL_ACCOUNT
);
651 if (pipe_bufs
* PAGE_SIZE
> max_size
&& !capable(CAP_SYS_RESOURCE
))
652 pipe_bufs
= max_size
>> PAGE_SHIFT
;
654 user_bufs
= account_pipe_buffers(user
, 0, pipe_bufs
);
656 if (too_many_pipe_buffers_soft(user_bufs
) && is_unprivileged_user()) {
657 user_bufs
= account_pipe_buffers(user
, pipe_bufs
, 1);
661 if (too_many_pipe_buffers_hard(user_bufs
) && is_unprivileged_user())
662 goto out_revert_acct
;
664 pipe
->bufs
= kcalloc(pipe_bufs
, sizeof(struct pipe_buffer
),
668 init_waitqueue_head(&pipe
->wait
);
669 pipe
->r_counter
= pipe
->w_counter
= 1;
670 pipe
->buffers
= pipe_bufs
;
672 mutex_init(&pipe
->mutex
);
677 (void) account_pipe_buffers(user
, pipe_bufs
, 0);
684 void free_pipe_info(struct pipe_inode_info
*pipe
)
688 (void) account_pipe_buffers(pipe
->user
, pipe
->buffers
, 0);
689 free_uid(pipe
->user
);
690 for (i
= 0; i
< pipe
->buffers
; i
++) {
691 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
693 pipe_buf_release(pipe
, buf
);
696 __free_page(pipe
->tmp_page
);
701 static struct vfsmount
*pipe_mnt __read_mostly
;
704 * pipefs_dname() is called from d_path().
706 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
708 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
709 d_inode(dentry
)->i_ino
);
712 static const struct dentry_operations pipefs_dentry_operations
= {
713 .d_dname
= pipefs_dname
,
716 static struct inode
* get_pipe_inode(void)
718 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
719 struct pipe_inode_info
*pipe
;
724 inode
->i_ino
= get_next_ino();
726 pipe
= alloc_pipe_info();
730 inode
->i_pipe
= pipe
;
732 pipe
->readers
= pipe
->writers
= 1;
733 inode
->i_fop
= &pipefifo_fops
;
736 * Mark the inode dirty from the very beginning,
737 * that way it will never be moved to the dirty
738 * list because "mark_inode_dirty()" will think
739 * that it already _is_ on the dirty list.
741 inode
->i_state
= I_DIRTY
;
742 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
743 inode
->i_uid
= current_fsuid();
744 inode
->i_gid
= current_fsgid();
745 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
756 int create_pipe_files(struct file
**res
, int flags
)
758 struct inode
*inode
= get_pipe_inode();
764 f
= alloc_file_pseudo(inode
, pipe_mnt
, "",
765 O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
)),
768 free_pipe_info(inode
->i_pipe
);
773 f
->private_data
= inode
->i_pipe
;
775 res
[0] = alloc_file_clone(f
, O_RDONLY
| (flags
& O_NONBLOCK
),
777 if (IS_ERR(res
[0])) {
778 put_pipe_info(inode
, inode
->i_pipe
);
780 return PTR_ERR(res
[0]);
782 res
[0]->private_data
= inode
->i_pipe
;
787 static int __do_pipe_flags(int *fd
, struct file
**files
, int flags
)
792 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
))
795 error
= create_pipe_files(files
, flags
);
799 error
= get_unused_fd_flags(flags
);
804 error
= get_unused_fd_flags(flags
);
809 audit_fd_pair(fdr
, fdw
);
822 int do_pipe_flags(int *fd
, int flags
)
824 struct file
*files
[2];
825 int error
= __do_pipe_flags(fd
, files
, flags
);
827 fd_install(fd
[0], files
[0]);
828 fd_install(fd
[1], files
[1]);
834 * sys_pipe() is the normal C calling standard for creating
835 * a pipe. It's not the way Unix traditionally does this, though.
837 static int do_pipe2(int __user
*fildes
, int flags
)
839 struct file
*files
[2];
843 error
= __do_pipe_flags(fd
, files
, flags
);
845 if (unlikely(copy_to_user(fildes
, fd
, sizeof(fd
)))) {
848 put_unused_fd(fd
[0]);
849 put_unused_fd(fd
[1]);
852 fd_install(fd
[0], files
[0]);
853 fd_install(fd
[1], files
[1]);
859 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
861 return do_pipe2(fildes
, flags
);
864 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
866 return do_pipe2(fildes
, 0);
869 static int wait_for_partner(struct pipe_inode_info
*pipe
, unsigned int *cnt
)
873 while (cur
== *cnt
) {
875 if (signal_pending(current
))
878 return cur
== *cnt
? -ERESTARTSYS
: 0;
881 static void wake_up_partner(struct pipe_inode_info
*pipe
)
883 wake_up_interruptible(&pipe
->wait
);
886 static int fifo_open(struct inode
*inode
, struct file
*filp
)
888 struct pipe_inode_info
*pipe
;
889 bool is_pipe
= inode
->i_sb
->s_magic
== PIPEFS_MAGIC
;
894 spin_lock(&inode
->i_lock
);
896 pipe
= inode
->i_pipe
;
898 spin_unlock(&inode
->i_lock
);
900 spin_unlock(&inode
->i_lock
);
901 pipe
= alloc_pipe_info();
905 spin_lock(&inode
->i_lock
);
906 if (unlikely(inode
->i_pipe
)) {
907 inode
->i_pipe
->files
++;
908 spin_unlock(&inode
->i_lock
);
909 free_pipe_info(pipe
);
910 pipe
= inode
->i_pipe
;
912 inode
->i_pipe
= pipe
;
913 spin_unlock(&inode
->i_lock
);
916 filp
->private_data
= pipe
;
917 /* OK, we have a pipe and it's pinned down */
921 /* We can only do regular read/write on fifos */
922 filp
->f_mode
&= (FMODE_READ
| FMODE_WRITE
);
924 switch (filp
->f_mode
) {
928 * POSIX.1 says that O_NONBLOCK means return with the FIFO
929 * opened, even when there is no process writing the FIFO.
932 if (pipe
->readers
++ == 0)
933 wake_up_partner(pipe
);
935 if (!is_pipe
&& !pipe
->writers
) {
936 if ((filp
->f_flags
& O_NONBLOCK
)) {
937 /* suppress EPOLLHUP until we have
939 filp
->f_version
= pipe
->w_counter
;
941 if (wait_for_partner(pipe
, &pipe
->w_counter
))
950 * POSIX.1 says that O_NONBLOCK means return -1 with
951 * errno=ENXIO when there is no process reading the FIFO.
954 if (!is_pipe
&& (filp
->f_flags
& O_NONBLOCK
) && !pipe
->readers
)
958 if (!pipe
->writers
++)
959 wake_up_partner(pipe
);
961 if (!is_pipe
&& !pipe
->readers
) {
962 if (wait_for_partner(pipe
, &pipe
->r_counter
))
967 case FMODE_READ
| FMODE_WRITE
:
970 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
971 * This implementation will NEVER block on a O_RDWR open, since
972 * the process can at least talk to itself.
979 if (pipe
->readers
== 1 || pipe
->writers
== 1)
980 wake_up_partner(pipe
);
993 if (!--pipe
->readers
)
994 wake_up_interruptible(&pipe
->wait
);
999 if (!--pipe
->writers
)
1000 wake_up_interruptible(&pipe
->wait
);
1005 __pipe_unlock(pipe
);
1007 put_pipe_info(inode
, pipe
);
1011 const struct file_operations pipefifo_fops
= {
1013 .llseek
= no_llseek
,
1014 .read_iter
= pipe_read
,
1015 .write_iter
= pipe_write
,
1017 .unlocked_ioctl
= pipe_ioctl
,
1018 .release
= pipe_release
,
1019 .fasync
= pipe_fasync
,
1023 * Currently we rely on the pipe array holding a power-of-2 number
1024 * of pages. Returns 0 on error.
1026 unsigned int round_pipe_size(unsigned long size
)
1028 if (size
> (1U << 31))
1031 /* Minimum pipe size, as required by POSIX */
1032 if (size
< PAGE_SIZE
)
1035 return roundup_pow_of_two(size
);
1039 * Allocate a new array of pipe buffers and copy the info over. Returns the
1040 * pipe size if successful, or return -ERROR on error.
1042 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long arg
)
1044 struct pipe_buffer
*bufs
;
1045 unsigned int size
, nr_pages
;
1046 unsigned long user_bufs
;
1049 size
= round_pipe_size(arg
);
1050 nr_pages
= size
>> PAGE_SHIFT
;
1056 * If trying to increase the pipe capacity, check that an
1057 * unprivileged user is not trying to exceed various limits
1058 * (soft limit check here, hard limit check just below).
1059 * Decreasing the pipe capacity is always permitted, even
1060 * if the user is currently over a limit.
1062 if (nr_pages
> pipe
->buffers
&&
1063 size
> pipe_max_size
&& !capable(CAP_SYS_RESOURCE
))
1066 user_bufs
= account_pipe_buffers(pipe
->user
, pipe
->buffers
, nr_pages
);
1068 if (nr_pages
> pipe
->buffers
&&
1069 (too_many_pipe_buffers_hard(user_bufs
) ||
1070 too_many_pipe_buffers_soft(user_bufs
)) &&
1071 is_unprivileged_user()) {
1073 goto out_revert_acct
;
1077 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1078 * expect a lot of shrink+grow operations, just free and allocate
1079 * again like we would do for growing. If the pipe currently
1080 * contains more buffers than arg, then return busy.
1082 if (nr_pages
< pipe
->nrbufs
) {
1084 goto out_revert_acct
;
1087 bufs
= kcalloc(nr_pages
, sizeof(*bufs
),
1088 GFP_KERNEL_ACCOUNT
| __GFP_NOWARN
);
1089 if (unlikely(!bufs
)) {
1091 goto out_revert_acct
;
1095 * The pipe array wraps around, so just start the new one at zero
1096 * and adjust the indexes.
1102 tail
= pipe
->curbuf
+ pipe
->nrbufs
;
1103 if (tail
< pipe
->buffers
)
1106 tail
&= (pipe
->buffers
- 1);
1108 head
= pipe
->nrbufs
- tail
;
1110 memcpy(bufs
, pipe
->bufs
+ pipe
->curbuf
, head
* sizeof(struct pipe_buffer
));
1112 memcpy(bufs
+ head
, pipe
->bufs
, tail
* sizeof(struct pipe_buffer
));
1118 pipe
->buffers
= nr_pages
;
1119 return nr_pages
* PAGE_SIZE
;
1122 (void) account_pipe_buffers(pipe
->user
, nr_pages
, pipe
->buffers
);
1127 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1128 * location, so checking ->i_pipe is not enough to verify that this is a
1131 struct pipe_inode_info
*get_pipe_info(struct file
*file
)
1133 return file
->f_op
== &pipefifo_fops
? file
->private_data
: NULL
;
1136 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1138 struct pipe_inode_info
*pipe
;
1141 pipe
= get_pipe_info(file
);
1149 ret
= pipe_set_size(pipe
, arg
);
1152 ret
= pipe
->buffers
* PAGE_SIZE
;
1159 __pipe_unlock(pipe
);
1163 static const struct super_operations pipefs_ops
= {
1164 .destroy_inode
= free_inode_nonrcu
,
1165 .statfs
= simple_statfs
,
1169 * pipefs should _never_ be mounted by userland - too much of security hassle,
1170 * no real gain from having the whole whorehouse mounted. So we don't need
1171 * any operations on the root directory. However, we need a non-trivial
1172 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1174 static struct dentry
*pipefs_mount(struct file_system_type
*fs_type
,
1175 int flags
, const char *dev_name
, void *data
)
1177 return mount_pseudo(fs_type
, "pipe:", &pipefs_ops
,
1178 &pipefs_dentry_operations
, PIPEFS_MAGIC
);
1181 static struct file_system_type pipe_fs_type
= {
1183 .mount
= pipefs_mount
,
1184 .kill_sb
= kill_anon_super
,
1187 static int __init
init_pipe_fs(void)
1189 int err
= register_filesystem(&pipe_fs_type
);
1192 pipe_mnt
= kern_mount(&pipe_fs_type
);
1193 if (IS_ERR(pipe_mnt
)) {
1194 err
= PTR_ERR(pipe_mnt
);
1195 unregister_filesystem(&pipe_fs_type
);
1201 fs_initcall(init_pipe_fs
);