i2c-viapro: Add support for the VT8237A and VT8251
[linux/fpc-iii.git] / drivers / net / cassini.c
blob6e295fce5c6f08c3a1554ea87c9d9be18e86e4cc
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
66 * by default, the selective clear mask is set up to process rx packets.
69 #include <linux/config.h>
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
80 #include <linux/mm.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
92 #include <linux/ip.h>
93 #include <linux/tcp.h>
95 #include <net/checksum.h>
97 #include <asm/atomic.h>
98 #include <asm/system.h>
99 #include <asm/io.h>
100 #include <asm/byteorder.h>
101 #include <asm/uaccess.h>
103 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define CAS_NCPUS num_online_cpus()
107 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
108 #define USE_NAPI
109 #define cas_skb_release(x) netif_receive_skb(x)
110 #else
111 #define cas_skb_release(x) netif_rx(x)
112 #endif
114 /* select which firmware to use */
115 #define USE_HP_WORKAROUND
116 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
119 #include "cassini.h"
121 #define USE_TX_COMPWB /* use completion writeback registers */
122 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123 #define USE_RX_BLANK /* hw interrupt mitigation */
124 #undef USE_ENTROPY_DEV /* don't test for entropy device */
126 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
129 #undef USE_PCI_INTB
130 #undef USE_PCI_INTC
131 #undef USE_PCI_INTD
132 #undef USE_QOS
134 #undef USE_VPD_DEBUG /* debug vpd information if defined */
136 /* rx processing options */
137 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
138 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
140 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
143 #define DRV_MODULE_NAME "cassini"
144 #define PFX DRV_MODULE_NAME ": "
145 #define DRV_MODULE_VERSION "1.4"
146 #define DRV_MODULE_RELDATE "1 July 2004"
148 #define CAS_DEF_MSG_ENABLE \
149 (NETIF_MSG_DRV | \
150 NETIF_MSG_PROBE | \
151 NETIF_MSG_LINK | \
152 NETIF_MSG_TIMER | \
153 NETIF_MSG_IFDOWN | \
154 NETIF_MSG_IFUP | \
155 NETIF_MSG_RX_ERR | \
156 NETIF_MSG_TX_ERR)
158 /* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
161 #define CAS_TX_TIMEOUT (HZ)
162 #define CAS_LINK_TIMEOUT (22*HZ/10)
163 #define CAS_LINK_FAST_TIMEOUT (1)
165 /* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
168 #define STOP_TRIES_PHY 1000
169 #define STOP_TRIES 5000
171 /* specify a minimum frame size to deal with some fifo issues
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
175 #define CAS_MIN_FRAME 97
176 #define CAS_1000MB_MIN_FRAME 255
177 #define CAS_MIN_MTU 60
178 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
180 #if 1
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
185 #else
186 #define CAS_RESET_MTU 1
187 #define CAS_RESET_ALL 2
188 #define CAS_RESET_SPARE 3
189 #endif
191 static char version[] __devinitdata =
192 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_PARM(cassini_debug, "i");
198 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
199 MODULE_PARM(link_mode, "i");
200 MODULE_PARM_DESC(link_mode, "default link mode");
203 * Work around for a PCS bug in which the link goes down due to the chip
204 * being confused and never showing a link status of "up."
206 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 * Value in seconds, for user input.
210 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
211 MODULE_PARM(linkdown_timeout, "i");
212 MODULE_PARM_DESC(linkdown_timeout,
213 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
216 * value in 'ticks' (units used by jiffies). Set when we init the
217 * module because 'HZ' in actually a function call on some flavors of
218 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220 static int link_transition_timeout;
223 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
224 static int link_mode;
226 static u16 link_modes[] __devinitdata = {
227 BMCR_ANENABLE, /* 0 : autoneg */
228 0, /* 1 : 10bt half duplex */
229 BMCR_SPEED100, /* 2 : 100bt half duplex */
230 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
231 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
232 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
235 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
236 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
237 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
238 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
239 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
240 { 0, }
243 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
245 static void cas_set_link_modes(struct cas *cp);
247 static inline void cas_lock_tx(struct cas *cp)
249 int i;
251 for (i = 0; i < N_TX_RINGS; i++)
252 spin_lock(&cp->tx_lock[i]);
255 static inline void cas_lock_all(struct cas *cp)
257 spin_lock_irq(&cp->lock);
258 cas_lock_tx(cp);
261 /* WTZ: QA was finding deadlock problems with the previous
262 * versions after long test runs with multiple cards per machine.
263 * See if replacing cas_lock_all with safer versions helps. The
264 * symptoms QA is reporting match those we'd expect if interrupts
265 * aren't being properly restored, and we fixed a previous deadlock
266 * with similar symptoms by using save/restore versions in other
267 * places.
269 #define cas_lock_all_save(cp, flags) \
270 do { \
271 struct cas *xxxcp = (cp); \
272 spin_lock_irqsave(&xxxcp->lock, flags); \
273 cas_lock_tx(xxxcp); \
274 } while (0)
276 static inline void cas_unlock_tx(struct cas *cp)
278 int i;
280 for (i = N_TX_RINGS; i > 0; i--)
281 spin_unlock(&cp->tx_lock[i - 1]);
284 static inline void cas_unlock_all(struct cas *cp)
286 cas_unlock_tx(cp);
287 spin_unlock_irq(&cp->lock);
290 #define cas_unlock_all_restore(cp, flags) \
291 do { \
292 struct cas *xxxcp = (cp); \
293 cas_unlock_tx(xxxcp); \
294 spin_unlock_irqrestore(&xxxcp->lock, flags); \
295 } while (0)
297 static void cas_disable_irq(struct cas *cp, const int ring)
299 /* Make sure we won't get any more interrupts */
300 if (ring == 0) {
301 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
302 return;
305 /* disable completion interrupts and selectively mask */
306 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
307 switch (ring) {
308 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
309 #ifdef USE_PCI_INTB
310 case 1:
311 #endif
312 #ifdef USE_PCI_INTC
313 case 2:
314 #endif
315 #ifdef USE_PCI_INTD
316 case 3:
317 #endif
318 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
319 cp->regs + REG_PLUS_INTRN_MASK(ring));
320 break;
321 #endif
322 default:
323 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
324 REG_PLUS_INTRN_MASK(ring));
325 break;
330 static inline void cas_mask_intr(struct cas *cp)
332 int i;
334 for (i = 0; i < N_RX_COMP_RINGS; i++)
335 cas_disable_irq(cp, i);
338 static inline void cas_buffer_init(cas_page_t *cp)
340 struct page *page = cp->buffer;
341 atomic_set((atomic_t *)&page->lru.next, 1);
344 static inline int cas_buffer_count(cas_page_t *cp)
346 struct page *page = cp->buffer;
347 return atomic_read((atomic_t *)&page->lru.next);
350 static inline void cas_buffer_inc(cas_page_t *cp)
352 struct page *page = cp->buffer;
353 atomic_inc((atomic_t *)&page->lru.next);
356 static inline void cas_buffer_dec(cas_page_t *cp)
358 struct page *page = cp->buffer;
359 atomic_dec((atomic_t *)&page->lru.next);
362 static void cas_enable_irq(struct cas *cp, const int ring)
364 if (ring == 0) { /* all but TX_DONE */
365 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
366 return;
369 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
370 switch (ring) {
371 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
372 #ifdef USE_PCI_INTB
373 case 1:
374 #endif
375 #ifdef USE_PCI_INTC
376 case 2:
377 #endif
378 #ifdef USE_PCI_INTD
379 case 3:
380 #endif
381 writel(INTRN_MASK_RX_EN, cp->regs +
382 REG_PLUS_INTRN_MASK(ring));
383 break;
384 #endif
385 default:
386 break;
391 static inline void cas_unmask_intr(struct cas *cp)
393 int i;
395 for (i = 0; i < N_RX_COMP_RINGS; i++)
396 cas_enable_irq(cp, i);
399 static inline void cas_entropy_gather(struct cas *cp)
401 #ifdef USE_ENTROPY_DEV
402 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
403 return;
405 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
406 readl(cp->regs + REG_ENTROPY_IV),
407 sizeof(uint64_t)*8);
408 #endif
411 static inline void cas_entropy_reset(struct cas *cp)
413 #ifdef USE_ENTROPY_DEV
414 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
415 return;
417 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
418 cp->regs + REG_BIM_LOCAL_DEV_EN);
419 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
420 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
422 /* if we read back 0x0, we don't have an entropy device */
423 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
424 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
425 #endif
428 /* access to the phy. the following assumes that we've initialized the MIF to
429 * be in frame rather than bit-bang mode
431 static u16 cas_phy_read(struct cas *cp, int reg)
433 u32 cmd;
434 int limit = STOP_TRIES_PHY;
436 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
437 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
438 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
439 cmd |= MIF_FRAME_TURN_AROUND_MSB;
440 writel(cmd, cp->regs + REG_MIF_FRAME);
442 /* poll for completion */
443 while (limit-- > 0) {
444 udelay(10);
445 cmd = readl(cp->regs + REG_MIF_FRAME);
446 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
447 return (cmd & MIF_FRAME_DATA_MASK);
449 return 0xFFFF; /* -1 */
452 static int cas_phy_write(struct cas *cp, int reg, u16 val)
454 int limit = STOP_TRIES_PHY;
455 u32 cmd;
457 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
458 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
459 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
460 cmd |= MIF_FRAME_TURN_AROUND_MSB;
461 cmd |= val & MIF_FRAME_DATA_MASK;
462 writel(cmd, cp->regs + REG_MIF_FRAME);
464 /* poll for completion */
465 while (limit-- > 0) {
466 udelay(10);
467 cmd = readl(cp->regs + REG_MIF_FRAME);
468 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
469 return 0;
471 return -1;
474 static void cas_phy_powerup(struct cas *cp)
476 u16 ctl = cas_phy_read(cp, MII_BMCR);
478 if ((ctl & BMCR_PDOWN) == 0)
479 return;
480 ctl &= ~BMCR_PDOWN;
481 cas_phy_write(cp, MII_BMCR, ctl);
484 static void cas_phy_powerdown(struct cas *cp)
486 u16 ctl = cas_phy_read(cp, MII_BMCR);
488 if (ctl & BMCR_PDOWN)
489 return;
490 ctl |= BMCR_PDOWN;
491 cas_phy_write(cp, MII_BMCR, ctl);
494 /* cp->lock held. note: the last put_page will free the buffer */
495 static int cas_page_free(struct cas *cp, cas_page_t *page)
497 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
498 PCI_DMA_FROMDEVICE);
499 cas_buffer_dec(page);
500 __free_pages(page->buffer, cp->page_order);
501 kfree(page);
502 return 0;
505 #ifdef RX_COUNT_BUFFERS
506 #define RX_USED_ADD(x, y) ((x)->used += (y))
507 #define RX_USED_SET(x, y) ((x)->used = (y))
508 #else
509 #define RX_USED_ADD(x, y)
510 #define RX_USED_SET(x, y)
511 #endif
513 /* local page allocation routines for the receive buffers. jumbo pages
514 * require at least 8K contiguous and 8K aligned buffers.
516 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
518 cas_page_t *page;
520 page = kmalloc(sizeof(cas_page_t), flags);
521 if (!page)
522 return NULL;
524 INIT_LIST_HEAD(&page->list);
525 RX_USED_SET(page, 0);
526 page->buffer = alloc_pages(flags, cp->page_order);
527 if (!page->buffer)
528 goto page_err;
529 cas_buffer_init(page);
530 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
531 cp->page_size, PCI_DMA_FROMDEVICE);
532 return page;
534 page_err:
535 kfree(page);
536 return NULL;
539 /* initialize spare pool of rx buffers, but allocate during the open */
540 static void cas_spare_init(struct cas *cp)
542 spin_lock(&cp->rx_inuse_lock);
543 INIT_LIST_HEAD(&cp->rx_inuse_list);
544 spin_unlock(&cp->rx_inuse_lock);
546 spin_lock(&cp->rx_spare_lock);
547 INIT_LIST_HEAD(&cp->rx_spare_list);
548 cp->rx_spares_needed = RX_SPARE_COUNT;
549 spin_unlock(&cp->rx_spare_lock);
552 /* used on close. free all the spare buffers. */
553 static void cas_spare_free(struct cas *cp)
555 struct list_head list, *elem, *tmp;
557 /* free spare buffers */
558 INIT_LIST_HEAD(&list);
559 spin_lock(&cp->rx_spare_lock);
560 list_splice(&cp->rx_spare_list, &list);
561 INIT_LIST_HEAD(&cp->rx_spare_list);
562 spin_unlock(&cp->rx_spare_lock);
563 list_for_each_safe(elem, tmp, &list) {
564 cas_page_free(cp, list_entry(elem, cas_page_t, list));
567 INIT_LIST_HEAD(&list);
568 #if 1
570 * Looks like Adrian had protected this with a different
571 * lock than used everywhere else to manipulate this list.
573 spin_lock(&cp->rx_inuse_lock);
574 list_splice(&cp->rx_inuse_list, &list);
575 INIT_LIST_HEAD(&cp->rx_inuse_list);
576 spin_unlock(&cp->rx_inuse_lock);
577 #else
578 spin_lock(&cp->rx_spare_lock);
579 list_splice(&cp->rx_inuse_list, &list);
580 INIT_LIST_HEAD(&cp->rx_inuse_list);
581 spin_unlock(&cp->rx_spare_lock);
582 #endif
583 list_for_each_safe(elem, tmp, &list) {
584 cas_page_free(cp, list_entry(elem, cas_page_t, list));
588 /* replenish spares if needed */
589 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
591 struct list_head list, *elem, *tmp;
592 int needed, i;
594 /* check inuse list. if we don't need any more free buffers,
595 * just free it
598 /* make a local copy of the list */
599 INIT_LIST_HEAD(&list);
600 spin_lock(&cp->rx_inuse_lock);
601 list_splice(&cp->rx_inuse_list, &list);
602 INIT_LIST_HEAD(&cp->rx_inuse_list);
603 spin_unlock(&cp->rx_inuse_lock);
605 list_for_each_safe(elem, tmp, &list) {
606 cas_page_t *page = list_entry(elem, cas_page_t, list);
608 if (cas_buffer_count(page) > 1)
609 continue;
611 list_del(elem);
612 spin_lock(&cp->rx_spare_lock);
613 if (cp->rx_spares_needed > 0) {
614 list_add(elem, &cp->rx_spare_list);
615 cp->rx_spares_needed--;
616 spin_unlock(&cp->rx_spare_lock);
617 } else {
618 spin_unlock(&cp->rx_spare_lock);
619 cas_page_free(cp, page);
623 /* put any inuse buffers back on the list */
624 if (!list_empty(&list)) {
625 spin_lock(&cp->rx_inuse_lock);
626 list_splice(&list, &cp->rx_inuse_list);
627 spin_unlock(&cp->rx_inuse_lock);
630 spin_lock(&cp->rx_spare_lock);
631 needed = cp->rx_spares_needed;
632 spin_unlock(&cp->rx_spare_lock);
633 if (!needed)
634 return;
636 /* we still need spares, so try to allocate some */
637 INIT_LIST_HEAD(&list);
638 i = 0;
639 while (i < needed) {
640 cas_page_t *spare = cas_page_alloc(cp, flags);
641 if (!spare)
642 break;
643 list_add(&spare->list, &list);
644 i++;
647 spin_lock(&cp->rx_spare_lock);
648 list_splice(&list, &cp->rx_spare_list);
649 cp->rx_spares_needed -= i;
650 spin_unlock(&cp->rx_spare_lock);
653 /* pull a page from the list. */
654 static cas_page_t *cas_page_dequeue(struct cas *cp)
656 struct list_head *entry;
657 int recover;
659 spin_lock(&cp->rx_spare_lock);
660 if (list_empty(&cp->rx_spare_list)) {
661 /* try to do a quick recovery */
662 spin_unlock(&cp->rx_spare_lock);
663 cas_spare_recover(cp, GFP_ATOMIC);
664 spin_lock(&cp->rx_spare_lock);
665 if (list_empty(&cp->rx_spare_list)) {
666 if (netif_msg_rx_err(cp))
667 printk(KERN_ERR "%s: no spare buffers "
668 "available.\n", cp->dev->name);
669 spin_unlock(&cp->rx_spare_lock);
670 return NULL;
674 entry = cp->rx_spare_list.next;
675 list_del(entry);
676 recover = ++cp->rx_spares_needed;
677 spin_unlock(&cp->rx_spare_lock);
679 /* trigger the timer to do the recovery */
680 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
681 #if 1
682 atomic_inc(&cp->reset_task_pending);
683 atomic_inc(&cp->reset_task_pending_spare);
684 schedule_work(&cp->reset_task);
685 #else
686 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
687 schedule_work(&cp->reset_task);
688 #endif
690 return list_entry(entry, cas_page_t, list);
694 static void cas_mif_poll(struct cas *cp, const int enable)
696 u32 cfg;
698 cfg = readl(cp->regs + REG_MIF_CFG);
699 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
701 if (cp->phy_type & CAS_PHY_MII_MDIO1)
702 cfg |= MIF_CFG_PHY_SELECT;
704 /* poll and interrupt on link status change. */
705 if (enable) {
706 cfg |= MIF_CFG_POLL_EN;
707 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
708 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
710 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
711 cp->regs + REG_MIF_MASK);
712 writel(cfg, cp->regs + REG_MIF_CFG);
715 /* Must be invoked under cp->lock */
716 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
718 u16 ctl;
719 #if 1
720 int lcntl;
721 int changed = 0;
722 int oldstate = cp->lstate;
723 int link_was_not_down = !(oldstate == link_down);
724 #endif
725 /* Setup link parameters */
726 if (!ep)
727 goto start_aneg;
728 lcntl = cp->link_cntl;
729 if (ep->autoneg == AUTONEG_ENABLE)
730 cp->link_cntl = BMCR_ANENABLE;
731 else {
732 cp->link_cntl = 0;
733 if (ep->speed == SPEED_100)
734 cp->link_cntl |= BMCR_SPEED100;
735 else if (ep->speed == SPEED_1000)
736 cp->link_cntl |= CAS_BMCR_SPEED1000;
737 if (ep->duplex == DUPLEX_FULL)
738 cp->link_cntl |= BMCR_FULLDPLX;
740 #if 1
741 changed = (lcntl != cp->link_cntl);
742 #endif
743 start_aneg:
744 if (cp->lstate == link_up) {
745 printk(KERN_INFO "%s: PCS link down.\n",
746 cp->dev->name);
747 } else {
748 if (changed) {
749 printk(KERN_INFO "%s: link configuration changed\n",
750 cp->dev->name);
753 cp->lstate = link_down;
754 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
755 if (!cp->hw_running)
756 return;
757 #if 1
759 * WTZ: If the old state was link_up, we turn off the carrier
760 * to replicate everything we do elsewhere on a link-down
761 * event when we were already in a link-up state..
763 if (oldstate == link_up)
764 netif_carrier_off(cp->dev);
765 if (changed && link_was_not_down) {
767 * WTZ: This branch will simply schedule a full reset after
768 * we explicitly changed link modes in an ioctl. See if this
769 * fixes the link-problems we were having for forced mode.
771 atomic_inc(&cp->reset_task_pending);
772 atomic_inc(&cp->reset_task_pending_all);
773 schedule_work(&cp->reset_task);
774 cp->timer_ticks = 0;
775 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
776 return;
778 #endif
779 if (cp->phy_type & CAS_PHY_SERDES) {
780 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
782 if (cp->link_cntl & BMCR_ANENABLE) {
783 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
784 cp->lstate = link_aneg;
785 } else {
786 if (cp->link_cntl & BMCR_FULLDPLX)
787 val |= PCS_MII_CTRL_DUPLEX;
788 val &= ~PCS_MII_AUTONEG_EN;
789 cp->lstate = link_force_ok;
791 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
792 writel(val, cp->regs + REG_PCS_MII_CTRL);
794 } else {
795 cas_mif_poll(cp, 0);
796 ctl = cas_phy_read(cp, MII_BMCR);
797 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
798 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
799 ctl |= cp->link_cntl;
800 if (ctl & BMCR_ANENABLE) {
801 ctl |= BMCR_ANRESTART;
802 cp->lstate = link_aneg;
803 } else {
804 cp->lstate = link_force_ok;
806 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
807 cas_phy_write(cp, MII_BMCR, ctl);
808 cas_mif_poll(cp, 1);
811 cp->timer_ticks = 0;
812 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
815 /* Must be invoked under cp->lock. */
816 static int cas_reset_mii_phy(struct cas *cp)
818 int limit = STOP_TRIES_PHY;
819 u16 val;
821 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
822 udelay(100);
823 while (limit--) {
824 val = cas_phy_read(cp, MII_BMCR);
825 if ((val & BMCR_RESET) == 0)
826 break;
827 udelay(10);
829 return (limit <= 0);
832 static void cas_saturn_firmware_load(struct cas *cp)
834 cas_saturn_patch_t *patch = cas_saturn_patch;
836 cas_phy_powerdown(cp);
838 /* expanded memory access mode */
839 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
841 /* pointer configuration for new firmware */
842 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
843 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
844 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
845 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
846 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
847 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
848 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
849 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
851 /* download new firmware */
852 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
853 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
854 while (patch->addr) {
855 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
856 patch++;
859 /* enable firmware */
860 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
861 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
865 /* phy initialization */
866 static void cas_phy_init(struct cas *cp)
868 u16 val;
870 /* if we're in MII/GMII mode, set up phy */
871 if (CAS_PHY_MII(cp->phy_type)) {
872 writel(PCS_DATAPATH_MODE_MII,
873 cp->regs + REG_PCS_DATAPATH_MODE);
875 cas_mif_poll(cp, 0);
876 cas_reset_mii_phy(cp); /* take out of isolate mode */
878 if (PHY_LUCENT_B0 == cp->phy_id) {
879 /* workaround link up/down issue with lucent */
880 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
881 cas_phy_write(cp, MII_BMCR, 0x00f1);
882 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
884 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
885 /* workarounds for broadcom phy */
886 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
887 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
888 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
889 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
890 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
891 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
892 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
893 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
894 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
895 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
896 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
898 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
899 val = cas_phy_read(cp, BROADCOM_MII_REG4);
900 val = cas_phy_read(cp, BROADCOM_MII_REG4);
901 if (val & 0x0080) {
902 /* link workaround */
903 cas_phy_write(cp, BROADCOM_MII_REG4,
904 val & ~0x0080);
907 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
908 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
909 SATURN_PCFG_FSI : 0x0,
910 cp->regs + REG_SATURN_PCFG);
912 /* load firmware to address 10Mbps auto-negotiation
913 * issue. NOTE: this will need to be changed if the
914 * default firmware gets fixed.
916 if (PHY_NS_DP83065 == cp->phy_id) {
917 cas_saturn_firmware_load(cp);
919 cas_phy_powerup(cp);
922 /* advertise capabilities */
923 val = cas_phy_read(cp, MII_BMCR);
924 val &= ~BMCR_ANENABLE;
925 cas_phy_write(cp, MII_BMCR, val);
926 udelay(10);
928 cas_phy_write(cp, MII_ADVERTISE,
929 cas_phy_read(cp, MII_ADVERTISE) |
930 (ADVERTISE_10HALF | ADVERTISE_10FULL |
931 ADVERTISE_100HALF | ADVERTISE_100FULL |
932 CAS_ADVERTISE_PAUSE |
933 CAS_ADVERTISE_ASYM_PAUSE));
935 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
936 /* make sure that we don't advertise half
937 * duplex to avoid a chip issue
939 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
940 val &= ~CAS_ADVERTISE_1000HALF;
941 val |= CAS_ADVERTISE_1000FULL;
942 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
945 } else {
946 /* reset pcs for serdes */
947 u32 val;
948 int limit;
950 writel(PCS_DATAPATH_MODE_SERDES,
951 cp->regs + REG_PCS_DATAPATH_MODE);
953 /* enable serdes pins on saturn */
954 if (cp->cas_flags & CAS_FLAG_SATURN)
955 writel(0, cp->regs + REG_SATURN_PCFG);
957 /* Reset PCS unit. */
958 val = readl(cp->regs + REG_PCS_MII_CTRL);
959 val |= PCS_MII_RESET;
960 writel(val, cp->regs + REG_PCS_MII_CTRL);
962 limit = STOP_TRIES;
963 while (limit-- > 0) {
964 udelay(10);
965 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
966 PCS_MII_RESET) == 0)
967 break;
969 if (limit <= 0)
970 printk(KERN_WARNING "%s: PCS reset bit would not "
971 "clear [%08x].\n", cp->dev->name,
972 readl(cp->regs + REG_PCS_STATE_MACHINE));
974 /* Make sure PCS is disabled while changing advertisement
975 * configuration.
977 writel(0x0, cp->regs + REG_PCS_CFG);
979 /* Advertise all capabilities except half-duplex. */
980 val = readl(cp->regs + REG_PCS_MII_ADVERT);
981 val &= ~PCS_MII_ADVERT_HD;
982 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
983 PCS_MII_ADVERT_ASYM_PAUSE);
984 writel(val, cp->regs + REG_PCS_MII_ADVERT);
986 /* enable PCS */
987 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
989 /* pcs workaround: enable sync detect */
990 writel(PCS_SERDES_CTRL_SYNCD_EN,
991 cp->regs + REG_PCS_SERDES_CTRL);
996 static int cas_pcs_link_check(struct cas *cp)
998 u32 stat, state_machine;
999 int retval = 0;
1001 /* The link status bit latches on zero, so you must
1002 * read it twice in such a case to see a transition
1003 * to the link being up.
1005 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1006 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1007 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1009 /* The remote-fault indication is only valid
1010 * when autoneg has completed.
1012 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1013 PCS_MII_STATUS_REMOTE_FAULT)) ==
1014 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
1015 if (netif_msg_link(cp))
1016 printk(KERN_INFO "%s: PCS RemoteFault\n",
1017 cp->dev->name);
1020 /* work around link detection issue by querying the PCS state
1021 * machine directly.
1023 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1024 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1025 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1026 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1027 stat |= PCS_MII_STATUS_LINK_STATUS;
1030 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1031 if (cp->lstate != link_up) {
1032 if (cp->opened) {
1033 cp->lstate = link_up;
1034 cp->link_transition = LINK_TRANSITION_LINK_UP;
1036 cas_set_link_modes(cp);
1037 netif_carrier_on(cp->dev);
1040 } else if (cp->lstate == link_up) {
1041 cp->lstate = link_down;
1042 if (link_transition_timeout != 0 &&
1043 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1044 !cp->link_transition_jiffies_valid) {
1046 * force a reset, as a workaround for the
1047 * link-failure problem. May want to move this to a
1048 * point a bit earlier in the sequence. If we had
1049 * generated a reset a short time ago, we'll wait for
1050 * the link timer to check the status until a
1051 * timer expires (link_transistion_jiffies_valid is
1052 * true when the timer is running.) Instead of using
1053 * a system timer, we just do a check whenever the
1054 * link timer is running - this clears the flag after
1055 * a suitable delay.
1057 retval = 1;
1058 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1059 cp->link_transition_jiffies = jiffies;
1060 cp->link_transition_jiffies_valid = 1;
1061 } else {
1062 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1064 netif_carrier_off(cp->dev);
1065 if (cp->opened && netif_msg_link(cp)) {
1066 printk(KERN_INFO "%s: PCS link down.\n",
1067 cp->dev->name);
1070 /* Cassini only: if you force a mode, there can be
1071 * sync problems on link down. to fix that, the following
1072 * things need to be checked:
1073 * 1) read serialink state register
1074 * 2) read pcs status register to verify link down.
1075 * 3) if link down and serial link == 0x03, then you need
1076 * to global reset the chip.
1078 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1079 /* should check to see if we're in a forced mode */
1080 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1081 if (stat == 0x03)
1082 return 1;
1084 } else if (cp->lstate == link_down) {
1085 if (link_transition_timeout != 0 &&
1086 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1087 !cp->link_transition_jiffies_valid) {
1088 /* force a reset, as a workaround for the
1089 * link-failure problem. May want to move
1090 * this to a point a bit earlier in the
1091 * sequence.
1093 retval = 1;
1094 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1095 cp->link_transition_jiffies = jiffies;
1096 cp->link_transition_jiffies_valid = 1;
1097 } else {
1098 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1102 return retval;
1105 static int cas_pcs_interrupt(struct net_device *dev,
1106 struct cas *cp, u32 status)
1108 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1110 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1111 return 0;
1112 return cas_pcs_link_check(cp);
1115 static int cas_txmac_interrupt(struct net_device *dev,
1116 struct cas *cp, u32 status)
1118 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1120 if (!txmac_stat)
1121 return 0;
1123 if (netif_msg_intr(cp))
1124 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1125 cp->dev->name, txmac_stat);
1127 /* Defer timer expiration is quite normal,
1128 * don't even log the event.
1130 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1131 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1132 return 0;
1134 spin_lock(&cp->stat_lock[0]);
1135 if (txmac_stat & MAC_TX_UNDERRUN) {
1136 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1137 dev->name);
1138 cp->net_stats[0].tx_fifo_errors++;
1141 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1142 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1143 dev->name);
1144 cp->net_stats[0].tx_errors++;
1147 /* The rest are all cases of one of the 16-bit TX
1148 * counters expiring.
1150 if (txmac_stat & MAC_TX_COLL_NORMAL)
1151 cp->net_stats[0].collisions += 0x10000;
1153 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1154 cp->net_stats[0].tx_aborted_errors += 0x10000;
1155 cp->net_stats[0].collisions += 0x10000;
1158 if (txmac_stat & MAC_TX_COLL_LATE) {
1159 cp->net_stats[0].tx_aborted_errors += 0x10000;
1160 cp->net_stats[0].collisions += 0x10000;
1162 spin_unlock(&cp->stat_lock[0]);
1164 /* We do not keep track of MAC_TX_COLL_FIRST and
1165 * MAC_TX_PEAK_ATTEMPTS events.
1167 return 0;
1170 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1172 cas_hp_inst_t *inst;
1173 u32 val;
1174 int i;
1176 i = 0;
1177 while ((inst = firmware) && inst->note) {
1178 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1180 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1181 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1182 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1184 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1185 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1186 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1191 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1193 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1194 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1197 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1198 ++firmware;
1199 ++i;
1203 static void cas_init_rx_dma(struct cas *cp)
1205 u64 desc_dma = cp->block_dvma;
1206 u32 val;
1207 int i, size;
1209 /* rx free descriptors */
1210 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1211 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1212 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1213 if ((N_RX_DESC_RINGS > 1) &&
1214 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1215 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1216 writel(val, cp->regs + REG_RX_CFG);
1218 val = (unsigned long) cp->init_rxds[0] -
1219 (unsigned long) cp->init_block;
1220 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1221 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1222 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1224 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1225 /* rx desc 2 is for IPSEC packets. however,
1226 * we don't it that for that purpose.
1228 val = (unsigned long) cp->init_rxds[1] -
1229 (unsigned long) cp->init_block;
1230 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1231 writel((desc_dma + val) & 0xffffffff, cp->regs +
1232 REG_PLUS_RX_DB1_LOW);
1233 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1234 REG_PLUS_RX_KICK1);
1237 /* rx completion registers */
1238 val = (unsigned long) cp->init_rxcs[0] -
1239 (unsigned long) cp->init_block;
1240 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1241 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1243 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1244 /* rx comp 2-4 */
1245 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1246 val = (unsigned long) cp->init_rxcs[i] -
1247 (unsigned long) cp->init_block;
1248 writel((desc_dma + val) >> 32, cp->regs +
1249 REG_PLUS_RX_CBN_HI(i));
1250 writel((desc_dma + val) & 0xffffffff, cp->regs +
1251 REG_PLUS_RX_CBN_LOW(i));
1255 /* read selective clear regs to prevent spurious interrupts
1256 * on reset because complete == kick.
1257 * selective clear set up to prevent interrupts on resets
1259 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1260 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1261 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1262 for (i = 1; i < N_RX_COMP_RINGS; i++)
1263 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1265 /* 2 is different from 3 and 4 */
1266 if (N_RX_COMP_RINGS > 1)
1267 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1268 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1270 for (i = 2; i < N_RX_COMP_RINGS; i++)
1271 writel(INTR_RX_DONE_ALT,
1272 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1275 /* set up pause thresholds */
1276 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1277 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1278 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1279 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1280 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1282 /* zero out dma reassembly buffers */
1283 for (i = 0; i < 64; i++) {
1284 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1285 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1290 /* make sure address register is 0 for normal operation */
1291 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1292 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1294 /* interrupt mitigation */
1295 #ifdef USE_RX_BLANK
1296 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1297 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1298 writel(val, cp->regs + REG_RX_BLANK);
1299 #else
1300 writel(0x0, cp->regs + REG_RX_BLANK);
1301 #endif
1303 /* interrupt generation as a function of low water marks for
1304 * free desc and completion entries. these are used to trigger
1305 * housekeeping for rx descs. we don't use the free interrupt
1306 * as it's not very useful
1308 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1309 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1310 writel(val, cp->regs + REG_RX_AE_THRESH);
1311 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1312 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1313 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1316 /* Random early detect registers. useful for congestion avoidance.
1317 * this should be tunable.
1319 writel(0x0, cp->regs + REG_RX_RED);
1321 /* receive page sizes. default == 2K (0x800) */
1322 val = 0;
1323 if (cp->page_size == 0x1000)
1324 val = 0x1;
1325 else if (cp->page_size == 0x2000)
1326 val = 0x2;
1327 else if (cp->page_size == 0x4000)
1328 val = 0x3;
1330 /* round mtu + offset. constrain to page size. */
1331 size = cp->dev->mtu + 64;
1332 if (size > cp->page_size)
1333 size = cp->page_size;
1335 if (size <= 0x400)
1336 i = 0x0;
1337 else if (size <= 0x800)
1338 i = 0x1;
1339 else if (size <= 0x1000)
1340 i = 0x2;
1341 else
1342 i = 0x3;
1344 cp->mtu_stride = 1 << (i + 10);
1345 val = CAS_BASE(RX_PAGE_SIZE, val);
1346 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1349 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1351 /* enable the header parser if desired */
1352 if (CAS_HP_FIRMWARE == cas_prog_null)
1353 return;
1355 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1356 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1357 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1358 writel(val, cp->regs + REG_HP_CFG);
1361 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1363 memset(rxc, 0, sizeof(*rxc));
1364 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1367 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1368 * flipping is protected by the fact that the chip will not
1369 * hand back the same page index while it's being processed.
1371 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1373 cas_page_t *page = cp->rx_pages[1][index];
1374 cas_page_t *new;
1376 if (cas_buffer_count(page) == 1)
1377 return page;
1379 new = cas_page_dequeue(cp);
1380 if (new) {
1381 spin_lock(&cp->rx_inuse_lock);
1382 list_add(&page->list, &cp->rx_inuse_list);
1383 spin_unlock(&cp->rx_inuse_lock);
1385 return new;
1388 /* this needs to be changed if we actually use the ENC RX DESC ring */
1389 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1390 const int index)
1392 cas_page_t **page0 = cp->rx_pages[0];
1393 cas_page_t **page1 = cp->rx_pages[1];
1395 /* swap if buffer is in use */
1396 if (cas_buffer_count(page0[index]) > 1) {
1397 cas_page_t *new = cas_page_spare(cp, index);
1398 if (new) {
1399 page1[index] = page0[index];
1400 page0[index] = new;
1403 RX_USED_SET(page0[index], 0);
1404 return page0[index];
1407 static void cas_clean_rxds(struct cas *cp)
1409 /* only clean ring 0 as ring 1 is used for spare buffers */
1410 struct cas_rx_desc *rxd = cp->init_rxds[0];
1411 int i, size;
1413 /* release all rx flows */
1414 for (i = 0; i < N_RX_FLOWS; i++) {
1415 struct sk_buff *skb;
1416 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1417 cas_skb_release(skb);
1421 /* initialize descriptors */
1422 size = RX_DESC_RINGN_SIZE(0);
1423 for (i = 0; i < size; i++) {
1424 cas_page_t *page = cas_page_swap(cp, 0, i);
1425 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1426 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1427 CAS_BASE(RX_INDEX_RING, 0));
1430 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1431 cp->rx_last[0] = 0;
1432 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1435 static void cas_clean_rxcs(struct cas *cp)
1437 int i, j;
1439 /* take ownership of rx comp descriptors */
1440 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1441 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1442 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1443 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1444 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1445 cas_rxc_init(rxc + j);
1450 #if 0
1451 /* When we get a RX fifo overflow, the RX unit is probably hung
1452 * so we do the following.
1454 * If any part of the reset goes wrong, we return 1 and that causes the
1455 * whole chip to be reset.
1457 static int cas_rxmac_reset(struct cas *cp)
1459 struct net_device *dev = cp->dev;
1460 int limit;
1461 u32 val;
1463 /* First, reset MAC RX. */
1464 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1465 for (limit = 0; limit < STOP_TRIES; limit++) {
1466 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1467 break;
1468 udelay(10);
1470 if (limit == STOP_TRIES) {
1471 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1472 "chip.\n", dev->name);
1473 return 1;
1476 /* Second, disable RX DMA. */
1477 writel(0, cp->regs + REG_RX_CFG);
1478 for (limit = 0; limit < STOP_TRIES; limit++) {
1479 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1480 break;
1481 udelay(10);
1483 if (limit == STOP_TRIES) {
1484 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1485 "chip.\n", dev->name);
1486 return 1;
1489 mdelay(5);
1491 /* Execute RX reset command. */
1492 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1493 for (limit = 0; limit < STOP_TRIES; limit++) {
1494 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1495 break;
1496 udelay(10);
1498 if (limit == STOP_TRIES) {
1499 printk(KERN_ERR "%s: RX reset command will not execute, "
1500 "resetting whole chip.\n", dev->name);
1501 return 1;
1504 /* reset driver rx state */
1505 cas_clean_rxds(cp);
1506 cas_clean_rxcs(cp);
1508 /* Now, reprogram the rest of RX unit. */
1509 cas_init_rx_dma(cp);
1511 /* re-enable */
1512 val = readl(cp->regs + REG_RX_CFG);
1513 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1514 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1515 val = readl(cp->regs + REG_MAC_RX_CFG);
1516 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1517 return 0;
1519 #endif
1521 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1522 u32 status)
1524 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1526 if (!stat)
1527 return 0;
1529 if (netif_msg_intr(cp))
1530 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1531 cp->dev->name, stat);
1533 /* these are all rollovers */
1534 spin_lock(&cp->stat_lock[0]);
1535 if (stat & MAC_RX_ALIGN_ERR)
1536 cp->net_stats[0].rx_frame_errors += 0x10000;
1538 if (stat & MAC_RX_CRC_ERR)
1539 cp->net_stats[0].rx_crc_errors += 0x10000;
1541 if (stat & MAC_RX_LEN_ERR)
1542 cp->net_stats[0].rx_length_errors += 0x10000;
1544 if (stat & MAC_RX_OVERFLOW) {
1545 cp->net_stats[0].rx_over_errors++;
1546 cp->net_stats[0].rx_fifo_errors++;
1549 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1550 * events.
1552 spin_unlock(&cp->stat_lock[0]);
1553 return 0;
1556 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1557 u32 status)
1559 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1561 if (!stat)
1562 return 0;
1564 if (netif_msg_intr(cp))
1565 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1566 cp->dev->name, stat);
1568 /* This interrupt is just for pause frame and pause
1569 * tracking. It is useful for diagnostics and debug
1570 * but probably by default we will mask these events.
1572 if (stat & MAC_CTRL_PAUSE_STATE)
1573 cp->pause_entered++;
1575 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1576 cp->pause_last_time_recvd = (stat >> 16);
1578 return 0;
1582 /* Must be invoked under cp->lock. */
1583 static inline int cas_mdio_link_not_up(struct cas *cp)
1585 u16 val;
1587 switch (cp->lstate) {
1588 case link_force_ret:
1589 if (netif_msg_link(cp))
1590 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1591 " forced mode\n", cp->dev->name);
1592 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1593 cp->timer_ticks = 5;
1594 cp->lstate = link_force_ok;
1595 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1596 break;
1598 case link_aneg:
1599 val = cas_phy_read(cp, MII_BMCR);
1601 /* Try forced modes. we try things in the following order:
1602 * 1000 full -> 100 full/half -> 10 half
1604 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1605 val |= BMCR_FULLDPLX;
1606 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1607 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1608 cas_phy_write(cp, MII_BMCR, val);
1609 cp->timer_ticks = 5;
1610 cp->lstate = link_force_try;
1611 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1612 break;
1614 case link_force_try:
1615 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1616 val = cas_phy_read(cp, MII_BMCR);
1617 cp->timer_ticks = 5;
1618 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1619 val &= ~CAS_BMCR_SPEED1000;
1620 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1621 cas_phy_write(cp, MII_BMCR, val);
1622 break;
1625 if (val & BMCR_SPEED100) {
1626 if (val & BMCR_FULLDPLX) /* fd failed */
1627 val &= ~BMCR_FULLDPLX;
1628 else { /* 100Mbps failed */
1629 val &= ~BMCR_SPEED100;
1631 cas_phy_write(cp, MII_BMCR, val);
1632 break;
1634 default:
1635 break;
1637 return 0;
1641 /* must be invoked with cp->lock held */
1642 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1644 int restart;
1646 if (bmsr & BMSR_LSTATUS) {
1647 /* Ok, here we got a link. If we had it due to a forced
1648 * fallback, and we were configured for autoneg, we
1649 * retry a short autoneg pass. If you know your hub is
1650 * broken, use ethtool ;)
1652 if ((cp->lstate == link_force_try) &&
1653 (cp->link_cntl & BMCR_ANENABLE)) {
1654 cp->lstate = link_force_ret;
1655 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1656 cas_mif_poll(cp, 0);
1657 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1658 cp->timer_ticks = 5;
1659 if (cp->opened && netif_msg_link(cp))
1660 printk(KERN_INFO "%s: Got link after fallback, retrying"
1661 " autoneg once...\n", cp->dev->name);
1662 cas_phy_write(cp, MII_BMCR,
1663 cp->link_fcntl | BMCR_ANENABLE |
1664 BMCR_ANRESTART);
1665 cas_mif_poll(cp, 1);
1667 } else if (cp->lstate != link_up) {
1668 cp->lstate = link_up;
1669 cp->link_transition = LINK_TRANSITION_LINK_UP;
1671 if (cp->opened) {
1672 cas_set_link_modes(cp);
1673 netif_carrier_on(cp->dev);
1676 return 0;
1679 /* link not up. if the link was previously up, we restart the
1680 * whole process
1682 restart = 0;
1683 if (cp->lstate == link_up) {
1684 cp->lstate = link_down;
1685 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1687 netif_carrier_off(cp->dev);
1688 if (cp->opened && netif_msg_link(cp))
1689 printk(KERN_INFO "%s: Link down\n",
1690 cp->dev->name);
1691 restart = 1;
1693 } else if (++cp->timer_ticks > 10)
1694 cas_mdio_link_not_up(cp);
1696 return restart;
1699 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1700 u32 status)
1702 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1703 u16 bmsr;
1705 /* check for a link change */
1706 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1707 return 0;
1709 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1710 return cas_mii_link_check(cp, bmsr);
1713 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1714 u32 status)
1716 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1718 if (!stat)
1719 return 0;
1721 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1722 readl(cp->regs + REG_BIM_DIAG));
1724 /* cassini+ has this reserved */
1725 if ((stat & PCI_ERR_BADACK) &&
1726 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1727 printk("<No ACK64# during ABS64 cycle> ");
1729 if (stat & PCI_ERR_DTRTO)
1730 printk("<Delayed transaction timeout> ");
1731 if (stat & PCI_ERR_OTHER)
1732 printk("<other> ");
1733 if (stat & PCI_ERR_BIM_DMA_WRITE)
1734 printk("<BIM DMA 0 write req> ");
1735 if (stat & PCI_ERR_BIM_DMA_READ)
1736 printk("<BIM DMA 0 read req> ");
1737 printk("\n");
1739 if (stat & PCI_ERR_OTHER) {
1740 u16 cfg;
1742 /* Interrogate PCI config space for the
1743 * true cause.
1745 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1746 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1747 dev->name, cfg);
1748 if (cfg & PCI_STATUS_PARITY)
1749 printk(KERN_ERR "%s: PCI parity error detected.\n",
1750 dev->name);
1751 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1752 printk(KERN_ERR "%s: PCI target abort.\n",
1753 dev->name);
1754 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1755 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1756 dev->name);
1757 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1758 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1759 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1760 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1761 dev->name);
1762 if (cfg & PCI_STATUS_DETECTED_PARITY)
1763 printk(KERN_ERR "%s: PCI parity error.\n",
1764 dev->name);
1766 /* Write the error bits back to clear them. */
1767 cfg &= (PCI_STATUS_PARITY |
1768 PCI_STATUS_SIG_TARGET_ABORT |
1769 PCI_STATUS_REC_TARGET_ABORT |
1770 PCI_STATUS_REC_MASTER_ABORT |
1771 PCI_STATUS_SIG_SYSTEM_ERROR |
1772 PCI_STATUS_DETECTED_PARITY);
1773 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1776 /* For all PCI errors, we should reset the chip. */
1777 return 1;
1780 /* All non-normal interrupt conditions get serviced here.
1781 * Returns non-zero if we should just exit the interrupt
1782 * handler right now (ie. if we reset the card which invalidates
1783 * all of the other original irq status bits).
1785 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1786 u32 status)
1788 if (status & INTR_RX_TAG_ERROR) {
1789 /* corrupt RX tag framing */
1790 if (netif_msg_rx_err(cp))
1791 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1792 cp->dev->name);
1793 spin_lock(&cp->stat_lock[0]);
1794 cp->net_stats[0].rx_errors++;
1795 spin_unlock(&cp->stat_lock[0]);
1796 goto do_reset;
1799 if (status & INTR_RX_LEN_MISMATCH) {
1800 /* length mismatch. */
1801 if (netif_msg_rx_err(cp))
1802 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1803 cp->dev->name);
1804 spin_lock(&cp->stat_lock[0]);
1805 cp->net_stats[0].rx_errors++;
1806 spin_unlock(&cp->stat_lock[0]);
1807 goto do_reset;
1810 if (status & INTR_PCS_STATUS) {
1811 if (cas_pcs_interrupt(dev, cp, status))
1812 goto do_reset;
1815 if (status & INTR_TX_MAC_STATUS) {
1816 if (cas_txmac_interrupt(dev, cp, status))
1817 goto do_reset;
1820 if (status & INTR_RX_MAC_STATUS) {
1821 if (cas_rxmac_interrupt(dev, cp, status))
1822 goto do_reset;
1825 if (status & INTR_MAC_CTRL_STATUS) {
1826 if (cas_mac_interrupt(dev, cp, status))
1827 goto do_reset;
1830 if (status & INTR_MIF_STATUS) {
1831 if (cas_mif_interrupt(dev, cp, status))
1832 goto do_reset;
1835 if (status & INTR_PCI_ERROR_STATUS) {
1836 if (cas_pci_interrupt(dev, cp, status))
1837 goto do_reset;
1839 return 0;
1841 do_reset:
1842 #if 1
1843 atomic_inc(&cp->reset_task_pending);
1844 atomic_inc(&cp->reset_task_pending_all);
1845 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1846 dev->name, status);
1847 schedule_work(&cp->reset_task);
1848 #else
1849 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1850 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1851 schedule_work(&cp->reset_task);
1852 #endif
1853 return 1;
1856 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1857 * determining whether to do a netif_stop/wakeup
1859 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1860 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1861 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1862 const int len)
1864 unsigned long off = addr + len;
1866 if (CAS_TABORT(cp) == 1)
1867 return 0;
1868 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1869 return 0;
1870 return TX_TARGET_ABORT_LEN;
1873 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1875 struct cas_tx_desc *txds;
1876 struct sk_buff **skbs;
1877 struct net_device *dev = cp->dev;
1878 int entry, count;
1880 spin_lock(&cp->tx_lock[ring]);
1881 txds = cp->init_txds[ring];
1882 skbs = cp->tx_skbs[ring];
1883 entry = cp->tx_old[ring];
1885 count = TX_BUFF_COUNT(ring, entry, limit);
1886 while (entry != limit) {
1887 struct sk_buff *skb = skbs[entry];
1888 dma_addr_t daddr;
1889 u32 dlen;
1890 int frag;
1892 if (!skb) {
1893 /* this should never occur */
1894 entry = TX_DESC_NEXT(ring, entry);
1895 continue;
1898 /* however, we might get only a partial skb release. */
1899 count -= skb_shinfo(skb)->nr_frags +
1900 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1901 if (count < 0)
1902 break;
1904 if (netif_msg_tx_done(cp))
1905 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1906 cp->dev->name, ring, entry);
1908 skbs[entry] = NULL;
1909 cp->tx_tiny_use[ring][entry].nbufs = 0;
1911 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1912 struct cas_tx_desc *txd = txds + entry;
1914 daddr = le64_to_cpu(txd->buffer);
1915 dlen = CAS_VAL(TX_DESC_BUFLEN,
1916 le64_to_cpu(txd->control));
1917 pci_unmap_page(cp->pdev, daddr, dlen,
1918 PCI_DMA_TODEVICE);
1919 entry = TX_DESC_NEXT(ring, entry);
1921 /* tiny buffer may follow */
1922 if (cp->tx_tiny_use[ring][entry].used) {
1923 cp->tx_tiny_use[ring][entry].used = 0;
1924 entry = TX_DESC_NEXT(ring, entry);
1928 spin_lock(&cp->stat_lock[ring]);
1929 cp->net_stats[ring].tx_packets++;
1930 cp->net_stats[ring].tx_bytes += skb->len;
1931 spin_unlock(&cp->stat_lock[ring]);
1932 dev_kfree_skb_irq(skb);
1934 cp->tx_old[ring] = entry;
1936 /* this is wrong for multiple tx rings. the net device needs
1937 * multiple queues for this to do the right thing. we wait
1938 * for 2*packets to be available when using tiny buffers
1940 if (netif_queue_stopped(dev) &&
1941 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1942 netif_wake_queue(dev);
1943 spin_unlock(&cp->tx_lock[ring]);
1946 static void cas_tx(struct net_device *dev, struct cas *cp,
1947 u32 status)
1949 int limit, ring;
1950 #ifdef USE_TX_COMPWB
1951 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1952 #endif
1953 if (netif_msg_intr(cp))
1954 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1955 cp->dev->name, status, (unsigned long long)compwb);
1956 /* process all the rings */
1957 for (ring = 0; ring < N_TX_RINGS; ring++) {
1958 #ifdef USE_TX_COMPWB
1959 /* use the completion writeback registers */
1960 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1961 CAS_VAL(TX_COMPWB_LSB, compwb);
1962 compwb = TX_COMPWB_NEXT(compwb);
1963 #else
1964 limit = readl(cp->regs + REG_TX_COMPN(ring));
1965 #endif
1966 if (cp->tx_old[ring] != limit)
1967 cas_tx_ringN(cp, ring, limit);
1972 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1973 int entry, const u64 *words,
1974 struct sk_buff **skbref)
1976 int dlen, hlen, len, i, alloclen;
1977 int off, swivel = RX_SWIVEL_OFF_VAL;
1978 struct cas_page *page;
1979 struct sk_buff *skb;
1980 void *addr, *crcaddr;
1981 char *p;
1983 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1984 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1985 len = hlen + dlen;
1987 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1988 alloclen = len;
1989 else
1990 alloclen = max(hlen, RX_COPY_MIN);
1992 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1993 if (skb == NULL)
1994 return -1;
1996 *skbref = skb;
1997 skb->dev = cp->dev;
1998 skb_reserve(skb, swivel);
2000 p = skb->data;
2001 addr = crcaddr = NULL;
2002 if (hlen) { /* always copy header pages */
2003 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2004 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2005 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
2006 swivel;
2008 i = hlen;
2009 if (!dlen) /* attach FCS */
2010 i += cp->crc_size;
2011 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2012 PCI_DMA_FROMDEVICE);
2013 addr = cas_page_map(page->buffer);
2014 memcpy(p, addr + off, i);
2015 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2016 PCI_DMA_FROMDEVICE);
2017 cas_page_unmap(addr);
2018 RX_USED_ADD(page, 0x100);
2019 p += hlen;
2020 swivel = 0;
2024 if (alloclen < (hlen + dlen)) {
2025 skb_frag_t *frag = skb_shinfo(skb)->frags;
2027 /* normal or jumbo packets. we use frags */
2028 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2029 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2030 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2032 hlen = min(cp->page_size - off, dlen);
2033 if (hlen < 0) {
2034 if (netif_msg_rx_err(cp)) {
2035 printk(KERN_DEBUG "%s: rx page overflow: "
2036 "%d\n", cp->dev->name, hlen);
2038 dev_kfree_skb_irq(skb);
2039 return -1;
2041 i = hlen;
2042 if (i == dlen) /* attach FCS */
2043 i += cp->crc_size;
2044 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2045 PCI_DMA_FROMDEVICE);
2047 /* make sure we always copy a header */
2048 swivel = 0;
2049 if (p == (char *) skb->data) { /* not split */
2050 addr = cas_page_map(page->buffer);
2051 memcpy(p, addr + off, RX_COPY_MIN);
2052 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2053 PCI_DMA_FROMDEVICE);
2054 cas_page_unmap(addr);
2055 off += RX_COPY_MIN;
2056 swivel = RX_COPY_MIN;
2057 RX_USED_ADD(page, cp->mtu_stride);
2058 } else {
2059 RX_USED_ADD(page, hlen);
2061 skb_put(skb, alloclen);
2063 skb_shinfo(skb)->nr_frags++;
2064 skb->data_len += hlen - swivel;
2065 skb->len += hlen - swivel;
2067 get_page(page->buffer);
2068 cas_buffer_inc(page);
2069 frag->page = page->buffer;
2070 frag->page_offset = off;
2071 frag->size = hlen - swivel;
2073 /* any more data? */
2074 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2075 hlen = dlen;
2076 off = 0;
2078 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2079 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2080 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2081 hlen + cp->crc_size,
2082 PCI_DMA_FROMDEVICE);
2083 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2084 hlen + cp->crc_size,
2085 PCI_DMA_FROMDEVICE);
2087 skb_shinfo(skb)->nr_frags++;
2088 skb->data_len += hlen;
2089 skb->len += hlen;
2090 frag++;
2092 get_page(page->buffer);
2093 cas_buffer_inc(page);
2094 frag->page = page->buffer;
2095 frag->page_offset = 0;
2096 frag->size = hlen;
2097 RX_USED_ADD(page, hlen + cp->crc_size);
2100 if (cp->crc_size) {
2101 addr = cas_page_map(page->buffer);
2102 crcaddr = addr + off + hlen;
2105 } else {
2106 /* copying packet */
2107 if (!dlen)
2108 goto end_copy_pkt;
2110 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2111 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2112 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2113 hlen = min(cp->page_size - off, dlen);
2114 if (hlen < 0) {
2115 if (netif_msg_rx_err(cp)) {
2116 printk(KERN_DEBUG "%s: rx page overflow: "
2117 "%d\n", cp->dev->name, hlen);
2119 dev_kfree_skb_irq(skb);
2120 return -1;
2122 i = hlen;
2123 if (i == dlen) /* attach FCS */
2124 i += cp->crc_size;
2125 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2126 PCI_DMA_FROMDEVICE);
2127 addr = cas_page_map(page->buffer);
2128 memcpy(p, addr + off, i);
2129 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2130 PCI_DMA_FROMDEVICE);
2131 cas_page_unmap(addr);
2132 if (p == (char *) skb->data) /* not split */
2133 RX_USED_ADD(page, cp->mtu_stride);
2134 else
2135 RX_USED_ADD(page, i);
2137 /* any more data? */
2138 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2139 p += hlen;
2140 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2141 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2142 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2143 dlen + cp->crc_size,
2144 PCI_DMA_FROMDEVICE);
2145 addr = cas_page_map(page->buffer);
2146 memcpy(p, addr, dlen + cp->crc_size);
2147 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2148 dlen + cp->crc_size,
2149 PCI_DMA_FROMDEVICE);
2150 cas_page_unmap(addr);
2151 RX_USED_ADD(page, dlen + cp->crc_size);
2153 end_copy_pkt:
2154 if (cp->crc_size) {
2155 addr = NULL;
2156 crcaddr = skb->data + alloclen;
2158 skb_put(skb, alloclen);
2161 i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]);
2162 if (cp->crc_size) {
2163 /* checksum includes FCS. strip it out. */
2164 i = csum_fold(csum_partial(crcaddr, cp->crc_size, i));
2165 if (addr)
2166 cas_page_unmap(addr);
2168 skb->csum = ntohs(i ^ 0xffff);
2169 skb->ip_summed = CHECKSUM_HW;
2170 skb->protocol = eth_type_trans(skb, cp->dev);
2171 return len;
2175 /* we can handle up to 64 rx flows at a time. we do the same thing
2176 * as nonreassm except that we batch up the buffers.
2177 * NOTE: we currently just treat each flow as a bunch of packets that
2178 * we pass up. a better way would be to coalesce the packets
2179 * into a jumbo packet. to do that, we need to do the following:
2180 * 1) the first packet will have a clean split between header and
2181 * data. save both.
2182 * 2) each time the next flow packet comes in, extend the
2183 * data length and merge the checksums.
2184 * 3) on flow release, fix up the header.
2185 * 4) make sure the higher layer doesn't care.
2186 * because packets get coalesced, we shouldn't run into fragment count
2187 * issues.
2189 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2190 struct sk_buff *skb)
2192 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2193 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2195 /* this is protected at a higher layer, so no need to
2196 * do any additional locking here. stick the buffer
2197 * at the end.
2199 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2200 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2201 while ((skb = __skb_dequeue(flow))) {
2202 cas_skb_release(skb);
2207 /* put rx descriptor back on ring. if a buffer is in use by a higher
2208 * layer, this will need to put in a replacement.
2210 static void cas_post_page(struct cas *cp, const int ring, const int index)
2212 cas_page_t *new;
2213 int entry;
2215 entry = cp->rx_old[ring];
2217 new = cas_page_swap(cp, ring, index);
2218 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2219 cp->init_rxds[ring][entry].index =
2220 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2221 CAS_BASE(RX_INDEX_RING, ring));
2223 entry = RX_DESC_ENTRY(ring, entry + 1);
2224 cp->rx_old[ring] = entry;
2226 if (entry % 4)
2227 return;
2229 if (ring == 0)
2230 writel(entry, cp->regs + REG_RX_KICK);
2231 else if ((N_RX_DESC_RINGS > 1) &&
2232 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2233 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2237 /* only when things are bad */
2238 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2240 unsigned int entry, last, count, released;
2241 int cluster;
2242 cas_page_t **page = cp->rx_pages[ring];
2244 entry = cp->rx_old[ring];
2246 if (netif_msg_intr(cp))
2247 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2248 cp->dev->name, ring, entry);
2250 cluster = -1;
2251 count = entry & 0x3;
2252 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2253 released = 0;
2254 while (entry != last) {
2255 /* make a new buffer if it's still in use */
2256 if (cas_buffer_count(page[entry]) > 1) {
2257 cas_page_t *new = cas_page_dequeue(cp);
2258 if (!new) {
2259 /* let the timer know that we need to
2260 * do this again
2262 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2263 if (!timer_pending(&cp->link_timer))
2264 mod_timer(&cp->link_timer, jiffies +
2265 CAS_LINK_FAST_TIMEOUT);
2266 cp->rx_old[ring] = entry;
2267 cp->rx_last[ring] = num ? num - released : 0;
2268 return -ENOMEM;
2270 spin_lock(&cp->rx_inuse_lock);
2271 list_add(&page[entry]->list, &cp->rx_inuse_list);
2272 spin_unlock(&cp->rx_inuse_lock);
2273 cp->init_rxds[ring][entry].buffer =
2274 cpu_to_le64(new->dma_addr);
2275 page[entry] = new;
2279 if (++count == 4) {
2280 cluster = entry;
2281 count = 0;
2283 released++;
2284 entry = RX_DESC_ENTRY(ring, entry + 1);
2286 cp->rx_old[ring] = entry;
2288 if (cluster < 0)
2289 return 0;
2291 if (ring == 0)
2292 writel(cluster, cp->regs + REG_RX_KICK);
2293 else if ((N_RX_DESC_RINGS > 1) &&
2294 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2295 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2296 return 0;
2300 /* process a completion ring. packets are set up in three basic ways:
2301 * small packets: should be copied header + data in single buffer.
2302 * large packets: header and data in a single buffer.
2303 * split packets: header in a separate buffer from data.
2304 * data may be in multiple pages. data may be > 256
2305 * bytes but in a single page.
2307 * NOTE: RX page posting is done in this routine as well. while there's
2308 * the capability of using multiple RX completion rings, it isn't
2309 * really worthwhile due to the fact that the page posting will
2310 * force serialization on the single descriptor ring.
2312 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2314 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2315 int entry, drops;
2316 int npackets = 0;
2318 if (netif_msg_intr(cp))
2319 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2320 cp->dev->name, ring,
2321 readl(cp->regs + REG_RX_COMP_HEAD),
2322 cp->rx_new[ring]);
2324 entry = cp->rx_new[ring];
2325 drops = 0;
2326 while (1) {
2327 struct cas_rx_comp *rxc = rxcs + entry;
2328 struct sk_buff *skb;
2329 int type, len;
2330 u64 words[4];
2331 int i, dring;
2333 words[0] = le64_to_cpu(rxc->word1);
2334 words[1] = le64_to_cpu(rxc->word2);
2335 words[2] = le64_to_cpu(rxc->word3);
2336 words[3] = le64_to_cpu(rxc->word4);
2338 /* don't touch if still owned by hw */
2339 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2340 if (type == 0)
2341 break;
2343 /* hw hasn't cleared the zero bit yet */
2344 if (words[3] & RX_COMP4_ZERO) {
2345 break;
2348 /* get info on the packet */
2349 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2350 spin_lock(&cp->stat_lock[ring]);
2351 cp->net_stats[ring].rx_errors++;
2352 if (words[3] & RX_COMP4_LEN_MISMATCH)
2353 cp->net_stats[ring].rx_length_errors++;
2354 if (words[3] & RX_COMP4_BAD)
2355 cp->net_stats[ring].rx_crc_errors++;
2356 spin_unlock(&cp->stat_lock[ring]);
2358 /* We'll just return it to Cassini. */
2359 drop_it:
2360 spin_lock(&cp->stat_lock[ring]);
2361 ++cp->net_stats[ring].rx_dropped;
2362 spin_unlock(&cp->stat_lock[ring]);
2363 goto next;
2366 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2367 if (len < 0) {
2368 ++drops;
2369 goto drop_it;
2372 /* see if it's a flow re-assembly or not. the driver
2373 * itself handles release back up.
2375 if (RX_DONT_BATCH || (type == 0x2)) {
2376 /* non-reassm: these always get released */
2377 cas_skb_release(skb);
2378 } else {
2379 cas_rx_flow_pkt(cp, words, skb);
2382 spin_lock(&cp->stat_lock[ring]);
2383 cp->net_stats[ring].rx_packets++;
2384 cp->net_stats[ring].rx_bytes += len;
2385 spin_unlock(&cp->stat_lock[ring]);
2386 cp->dev->last_rx = jiffies;
2388 next:
2389 npackets++;
2391 /* should it be released? */
2392 if (words[0] & RX_COMP1_RELEASE_HDR) {
2393 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2394 dring = CAS_VAL(RX_INDEX_RING, i);
2395 i = CAS_VAL(RX_INDEX_NUM, i);
2396 cas_post_page(cp, dring, i);
2399 if (words[0] & RX_COMP1_RELEASE_DATA) {
2400 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2401 dring = CAS_VAL(RX_INDEX_RING, i);
2402 i = CAS_VAL(RX_INDEX_NUM, i);
2403 cas_post_page(cp, dring, i);
2406 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2407 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2408 dring = CAS_VAL(RX_INDEX_RING, i);
2409 i = CAS_VAL(RX_INDEX_NUM, i);
2410 cas_post_page(cp, dring, i);
2413 /* skip to the next entry */
2414 entry = RX_COMP_ENTRY(ring, entry + 1 +
2415 CAS_VAL(RX_COMP1_SKIP, words[0]));
2416 #ifdef USE_NAPI
2417 if (budget && (npackets >= budget))
2418 break;
2419 #endif
2421 cp->rx_new[ring] = entry;
2423 if (drops)
2424 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2425 cp->dev->name);
2426 return npackets;
2430 /* put completion entries back on the ring */
2431 static void cas_post_rxcs_ringN(struct net_device *dev,
2432 struct cas *cp, int ring)
2434 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2435 int last, entry;
2437 last = cp->rx_cur[ring];
2438 entry = cp->rx_new[ring];
2439 if (netif_msg_intr(cp))
2440 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2441 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2442 entry);
2444 /* zero and re-mark descriptors */
2445 while (last != entry) {
2446 cas_rxc_init(rxc + last);
2447 last = RX_COMP_ENTRY(ring, last + 1);
2449 cp->rx_cur[ring] = last;
2451 if (ring == 0)
2452 writel(last, cp->regs + REG_RX_COMP_TAIL);
2453 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2454 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2459 /* cassini can use all four PCI interrupts for the completion ring.
2460 * rings 3 and 4 are identical
2462 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2463 static inline void cas_handle_irqN(struct net_device *dev,
2464 struct cas *cp, const u32 status,
2465 const int ring)
2467 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2468 cas_post_rxcs_ringN(dev, cp, ring);
2471 static irqreturn_t cas_interruptN(int irq, void *dev_id, struct pt_regs *regs)
2473 struct net_device *dev = dev_id;
2474 struct cas *cp = netdev_priv(dev);
2475 unsigned long flags;
2476 int ring;
2477 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2479 /* check for shared irq */
2480 if (status == 0)
2481 return IRQ_NONE;
2483 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2484 spin_lock_irqsave(&cp->lock, flags);
2485 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2486 #ifdef USE_NAPI
2487 cas_mask_intr(cp);
2488 netif_rx_schedule(dev);
2489 #else
2490 cas_rx_ringN(cp, ring, 0);
2491 #endif
2492 status &= ~INTR_RX_DONE_ALT;
2495 if (status)
2496 cas_handle_irqN(dev, cp, status, ring);
2497 spin_unlock_irqrestore(&cp->lock, flags);
2498 return IRQ_HANDLED;
2500 #endif
2502 #ifdef USE_PCI_INTB
2503 /* everything but rx packets */
2504 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2506 if (status & INTR_RX_BUF_UNAVAIL_1) {
2507 /* Frame arrived, no free RX buffers available.
2508 * NOTE: we can get this on a link transition. */
2509 cas_post_rxds_ringN(cp, 1, 0);
2510 spin_lock(&cp->stat_lock[1]);
2511 cp->net_stats[1].rx_dropped++;
2512 spin_unlock(&cp->stat_lock[1]);
2515 if (status & INTR_RX_BUF_AE_1)
2516 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2517 RX_AE_FREEN_VAL(1));
2519 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2520 cas_post_rxcs_ringN(cp, 1);
2523 /* ring 2 handles a few more events than 3 and 4 */
2524 static irqreturn_t cas_interrupt1(int irq, void *dev_id, struct pt_regs *regs)
2526 struct net_device *dev = dev_id;
2527 struct cas *cp = netdev_priv(dev);
2528 unsigned long flags;
2529 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2531 /* check for shared interrupt */
2532 if (status == 0)
2533 return IRQ_NONE;
2535 spin_lock_irqsave(&cp->lock, flags);
2536 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2537 #ifdef USE_NAPI
2538 cas_mask_intr(cp);
2539 netif_rx_schedule(dev);
2540 #else
2541 cas_rx_ringN(cp, 1, 0);
2542 #endif
2543 status &= ~INTR_RX_DONE_ALT;
2545 if (status)
2546 cas_handle_irq1(cp, status);
2547 spin_unlock_irqrestore(&cp->lock, flags);
2548 return IRQ_HANDLED;
2550 #endif
2552 static inline void cas_handle_irq(struct net_device *dev,
2553 struct cas *cp, const u32 status)
2555 /* housekeeping interrupts */
2556 if (status & INTR_ERROR_MASK)
2557 cas_abnormal_irq(dev, cp, status);
2559 if (status & INTR_RX_BUF_UNAVAIL) {
2560 /* Frame arrived, no free RX buffers available.
2561 * NOTE: we can get this on a link transition.
2563 cas_post_rxds_ringN(cp, 0, 0);
2564 spin_lock(&cp->stat_lock[0]);
2565 cp->net_stats[0].rx_dropped++;
2566 spin_unlock(&cp->stat_lock[0]);
2567 } else if (status & INTR_RX_BUF_AE) {
2568 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2569 RX_AE_FREEN_VAL(0));
2572 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2573 cas_post_rxcs_ringN(dev, cp, 0);
2576 static irqreturn_t cas_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2578 struct net_device *dev = dev_id;
2579 struct cas *cp = netdev_priv(dev);
2580 unsigned long flags;
2581 u32 status = readl(cp->regs + REG_INTR_STATUS);
2583 if (status == 0)
2584 return IRQ_NONE;
2586 spin_lock_irqsave(&cp->lock, flags);
2587 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2588 cas_tx(dev, cp, status);
2589 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2592 if (status & INTR_RX_DONE) {
2593 #ifdef USE_NAPI
2594 cas_mask_intr(cp);
2595 netif_rx_schedule(dev);
2596 #else
2597 cas_rx_ringN(cp, 0, 0);
2598 #endif
2599 status &= ~INTR_RX_DONE;
2602 if (status)
2603 cas_handle_irq(dev, cp, status);
2604 spin_unlock_irqrestore(&cp->lock, flags);
2605 return IRQ_HANDLED;
2609 #ifdef USE_NAPI
2610 static int cas_poll(struct net_device *dev, int *budget)
2612 struct cas *cp = netdev_priv(dev);
2613 int i, enable_intr, todo, credits;
2614 u32 status = readl(cp->regs + REG_INTR_STATUS);
2615 unsigned long flags;
2617 spin_lock_irqsave(&cp->lock, flags);
2618 cas_tx(dev, cp, status);
2619 spin_unlock_irqrestore(&cp->lock, flags);
2621 /* NAPI rx packets. we spread the credits across all of the
2622 * rxc rings
2624 todo = min(*budget, dev->quota);
2626 /* to make sure we're fair with the work we loop through each
2627 * ring N_RX_COMP_RING times with a request of
2628 * todo / N_RX_COMP_RINGS
2630 enable_intr = 1;
2631 credits = 0;
2632 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2633 int j;
2634 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2635 credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS);
2636 if (credits >= todo) {
2637 enable_intr = 0;
2638 goto rx_comp;
2643 rx_comp:
2644 *budget -= credits;
2645 dev->quota -= credits;
2647 /* final rx completion */
2648 spin_lock_irqsave(&cp->lock, flags);
2649 if (status)
2650 cas_handle_irq(dev, cp, status);
2652 #ifdef USE_PCI_INTB
2653 if (N_RX_COMP_RINGS > 1) {
2654 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2655 if (status)
2656 cas_handle_irq1(dev, cp, status);
2658 #endif
2660 #ifdef USE_PCI_INTC
2661 if (N_RX_COMP_RINGS > 2) {
2662 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2663 if (status)
2664 cas_handle_irqN(dev, cp, status, 2);
2666 #endif
2668 #ifdef USE_PCI_INTD
2669 if (N_RX_COMP_RINGS > 3) {
2670 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2671 if (status)
2672 cas_handle_irqN(dev, cp, status, 3);
2674 #endif
2675 spin_unlock_irqrestore(&cp->lock, flags);
2676 if (enable_intr) {
2677 netif_rx_complete(dev);
2678 cas_unmask_intr(cp);
2679 return 0;
2681 return 1;
2683 #endif
2685 #ifdef CONFIG_NET_POLL_CONTROLLER
2686 static void cas_netpoll(struct net_device *dev)
2688 struct cas *cp = netdev_priv(dev);
2690 cas_disable_irq(cp, 0);
2691 cas_interrupt(cp->pdev->irq, dev, NULL);
2692 cas_enable_irq(cp, 0);
2694 #ifdef USE_PCI_INTB
2695 if (N_RX_COMP_RINGS > 1) {
2696 /* cas_interrupt1(); */
2698 #endif
2699 #ifdef USE_PCI_INTC
2700 if (N_RX_COMP_RINGS > 2) {
2701 /* cas_interruptN(); */
2703 #endif
2704 #ifdef USE_PCI_INTD
2705 if (N_RX_COMP_RINGS > 3) {
2706 /* cas_interruptN(); */
2708 #endif
2710 #endif
2712 static void cas_tx_timeout(struct net_device *dev)
2714 struct cas *cp = netdev_priv(dev);
2716 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2717 if (!cp->hw_running) {
2718 printk("%s: hrm.. hw not running!\n", dev->name);
2719 return;
2722 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2723 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2725 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2726 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2728 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2729 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2730 dev->name,
2731 readl(cp->regs + REG_TX_CFG),
2732 readl(cp->regs + REG_MAC_TX_STATUS),
2733 readl(cp->regs + REG_MAC_TX_CFG),
2734 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2735 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2736 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2737 readl(cp->regs + REG_TX_SM_1),
2738 readl(cp->regs + REG_TX_SM_2));
2740 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2741 dev->name,
2742 readl(cp->regs + REG_RX_CFG),
2743 readl(cp->regs + REG_MAC_RX_STATUS),
2744 readl(cp->regs + REG_MAC_RX_CFG));
2746 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2747 dev->name,
2748 readl(cp->regs + REG_HP_STATE_MACHINE),
2749 readl(cp->regs + REG_HP_STATUS0),
2750 readl(cp->regs + REG_HP_STATUS1),
2751 readl(cp->regs + REG_HP_STATUS2));
2753 #if 1
2754 atomic_inc(&cp->reset_task_pending);
2755 atomic_inc(&cp->reset_task_pending_all);
2756 schedule_work(&cp->reset_task);
2757 #else
2758 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2759 schedule_work(&cp->reset_task);
2760 #endif
2763 static inline int cas_intme(int ring, int entry)
2765 /* Algorithm: IRQ every 1/2 of descriptors. */
2766 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2767 return 1;
2768 return 0;
2772 static void cas_write_txd(struct cas *cp, int ring, int entry,
2773 dma_addr_t mapping, int len, u64 ctrl, int last)
2775 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2777 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2778 if (cas_intme(ring, entry))
2779 ctrl |= TX_DESC_INTME;
2780 if (last)
2781 ctrl |= TX_DESC_EOF;
2782 txd->control = cpu_to_le64(ctrl);
2783 txd->buffer = cpu_to_le64(mapping);
2786 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2787 const int entry)
2789 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2792 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2793 const int entry, const int tentry)
2795 cp->tx_tiny_use[ring][tentry].nbufs++;
2796 cp->tx_tiny_use[ring][entry].used = 1;
2797 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2800 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2801 struct sk_buff *skb)
2803 struct net_device *dev = cp->dev;
2804 int entry, nr_frags, frag, tabort, tentry;
2805 dma_addr_t mapping;
2806 unsigned long flags;
2807 u64 ctrl;
2808 u32 len;
2810 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2812 /* This is a hard error, log it. */
2813 if (TX_BUFFS_AVAIL(cp, ring) <=
2814 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2815 netif_stop_queue(dev);
2816 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2817 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2818 "queue awake!\n", dev->name);
2819 return 1;
2822 ctrl = 0;
2823 if (skb->ip_summed == CHECKSUM_HW) {
2824 u64 csum_start_off, csum_stuff_off;
2826 csum_start_off = (u64) (skb->h.raw - skb->data);
2827 csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
2829 ctrl = TX_DESC_CSUM_EN |
2830 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2831 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2834 entry = cp->tx_new[ring];
2835 cp->tx_skbs[ring][entry] = skb;
2837 nr_frags = skb_shinfo(skb)->nr_frags;
2838 len = skb_headlen(skb);
2839 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2840 offset_in_page(skb->data), len,
2841 PCI_DMA_TODEVICE);
2843 tentry = entry;
2844 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2845 if (unlikely(tabort)) {
2846 /* NOTE: len is always > tabort */
2847 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2848 ctrl | TX_DESC_SOF, 0);
2849 entry = TX_DESC_NEXT(ring, entry);
2851 memcpy(tx_tiny_buf(cp, ring, entry), skb->data +
2852 len - tabort, tabort);
2853 mapping = tx_tiny_map(cp, ring, entry, tentry);
2854 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2855 (nr_frags == 0));
2856 } else {
2857 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2858 TX_DESC_SOF, (nr_frags == 0));
2860 entry = TX_DESC_NEXT(ring, entry);
2862 for (frag = 0; frag < nr_frags; frag++) {
2863 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2865 len = fragp->size;
2866 mapping = pci_map_page(cp->pdev, fragp->page,
2867 fragp->page_offset, len,
2868 PCI_DMA_TODEVICE);
2870 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2871 if (unlikely(tabort)) {
2872 void *addr;
2874 /* NOTE: len is always > tabort */
2875 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2876 ctrl, 0);
2877 entry = TX_DESC_NEXT(ring, entry);
2879 addr = cas_page_map(fragp->page);
2880 memcpy(tx_tiny_buf(cp, ring, entry),
2881 addr + fragp->page_offset + len - tabort,
2882 tabort);
2883 cas_page_unmap(addr);
2884 mapping = tx_tiny_map(cp, ring, entry, tentry);
2885 len = tabort;
2888 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2889 (frag + 1 == nr_frags));
2890 entry = TX_DESC_NEXT(ring, entry);
2893 cp->tx_new[ring] = entry;
2894 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2895 netif_stop_queue(dev);
2897 if (netif_msg_tx_queued(cp))
2898 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2899 "avail %d\n",
2900 dev->name, ring, entry, skb->len,
2901 TX_BUFFS_AVAIL(cp, ring));
2902 writel(entry, cp->regs + REG_TX_KICKN(ring));
2903 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2904 return 0;
2907 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2909 struct cas *cp = netdev_priv(dev);
2911 /* this is only used as a load-balancing hint, so it doesn't
2912 * need to be SMP safe
2914 static int ring;
2916 skb = skb_padto(skb, cp->min_frame_size);
2917 if (!skb)
2918 return 0;
2920 /* XXX: we need some higher-level QoS hooks to steer packets to
2921 * individual queues.
2923 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2924 return 1;
2925 dev->trans_start = jiffies;
2926 return 0;
2929 static void cas_init_tx_dma(struct cas *cp)
2931 u64 desc_dma = cp->block_dvma;
2932 unsigned long off;
2933 u32 val;
2934 int i;
2936 /* set up tx completion writeback registers. must be 8-byte aligned */
2937 #ifdef USE_TX_COMPWB
2938 off = offsetof(struct cas_init_block, tx_compwb);
2939 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2940 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2941 #endif
2943 /* enable completion writebacks, enable paced mode,
2944 * disable read pipe, and disable pre-interrupt compwbs
2946 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2947 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2948 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2949 TX_CFG_INTR_COMPWB_DIS;
2951 /* write out tx ring info and tx desc bases */
2952 for (i = 0; i < MAX_TX_RINGS; i++) {
2953 off = (unsigned long) cp->init_txds[i] -
2954 (unsigned long) cp->init_block;
2956 val |= CAS_TX_RINGN_BASE(i);
2957 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2958 writel((desc_dma + off) & 0xffffffff, cp->regs +
2959 REG_TX_DBN_LOW(i));
2960 /* don't zero out the kick register here as the system
2961 * will wedge
2964 writel(val, cp->regs + REG_TX_CFG);
2966 /* program max burst sizes. these numbers should be different
2967 * if doing QoS.
2969 #ifdef USE_QOS
2970 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2971 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2972 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2973 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2974 #else
2975 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2976 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2977 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2978 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2979 #endif
2982 /* Must be invoked under cp->lock. */
2983 static inline void cas_init_dma(struct cas *cp)
2985 cas_init_tx_dma(cp);
2986 cas_init_rx_dma(cp);
2989 /* Must be invoked under cp->lock. */
2990 static u32 cas_setup_multicast(struct cas *cp)
2992 u32 rxcfg = 0;
2993 int i;
2995 if (cp->dev->flags & IFF_PROMISC) {
2996 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2998 } else if (cp->dev->flags & IFF_ALLMULTI) {
2999 for (i=0; i < 16; i++)
3000 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3001 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3003 } else {
3004 u16 hash_table[16];
3005 u32 crc;
3006 struct dev_mc_list *dmi = cp->dev->mc_list;
3007 int i;
3009 /* use the alternate mac address registers for the
3010 * first 15 multicast addresses
3012 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
3013 if (!dmi) {
3014 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
3015 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
3016 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
3017 continue;
3019 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
3020 cp->regs + REG_MAC_ADDRN(i*3 + 0));
3021 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
3022 cp->regs + REG_MAC_ADDRN(i*3 + 1));
3023 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
3024 cp->regs + REG_MAC_ADDRN(i*3 + 2));
3025 dmi = dmi->next;
3028 /* use hw hash table for the next series of
3029 * multicast addresses
3031 memset(hash_table, 0, sizeof(hash_table));
3032 while (dmi) {
3033 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3034 crc >>= 24;
3035 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3036 dmi = dmi->next;
3038 for (i=0; i < 16; i++)
3039 writel(hash_table[i], cp->regs +
3040 REG_MAC_HASH_TABLEN(i));
3041 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3044 return rxcfg;
3047 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3048 static void cas_clear_mac_err(struct cas *cp)
3050 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3051 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3052 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3053 writel(0, cp->regs + REG_MAC_COLL_LATE);
3054 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3055 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3056 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3057 writel(0, cp->regs + REG_MAC_LEN_ERR);
3058 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3059 writel(0, cp->regs + REG_MAC_FCS_ERR);
3060 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3064 static void cas_mac_reset(struct cas *cp)
3066 int i;
3068 /* do both TX and RX reset */
3069 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3070 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3072 /* wait for TX */
3073 i = STOP_TRIES;
3074 while (i-- > 0) {
3075 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3076 break;
3077 udelay(10);
3080 /* wait for RX */
3081 i = STOP_TRIES;
3082 while (i-- > 0) {
3083 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3084 break;
3085 udelay(10);
3088 if (readl(cp->regs + REG_MAC_TX_RESET) |
3089 readl(cp->regs + REG_MAC_RX_RESET))
3090 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3091 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3092 readl(cp->regs + REG_MAC_RX_RESET),
3093 readl(cp->regs + REG_MAC_STATE_MACHINE));
3097 /* Must be invoked under cp->lock. */
3098 static void cas_init_mac(struct cas *cp)
3100 unsigned char *e = &cp->dev->dev_addr[0];
3101 int i;
3102 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3103 u32 rxcfg;
3104 #endif
3105 cas_mac_reset(cp);
3107 /* setup core arbitration weight register */
3108 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3110 /* XXX Use pci_dma_burst_advice() */
3111 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3112 /* set the infinite burst register for chips that don't have
3113 * pci issues.
3115 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3116 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3117 #endif
3119 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3121 writel(0x00, cp->regs + REG_MAC_IPG0);
3122 writel(0x08, cp->regs + REG_MAC_IPG1);
3123 writel(0x04, cp->regs + REG_MAC_IPG2);
3125 /* change later for 802.3z */
3126 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3128 /* min frame + FCS */
3129 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3131 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3132 * specify the maximum frame size to prevent RX tag errors on
3133 * oversized frames.
3135 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3136 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3137 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3138 cp->regs + REG_MAC_FRAMESIZE_MAX);
3140 /* NOTE: crc_size is used as a surrogate for half-duplex.
3141 * workaround saturn half-duplex issue by increasing preamble
3142 * size to 65 bytes.
3144 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3145 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3146 else
3147 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3148 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3149 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3150 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3152 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3154 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3155 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3156 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3157 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3158 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3160 /* setup mac address in perfect filter array */
3161 for (i = 0; i < 45; i++)
3162 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3164 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3165 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3166 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3168 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3169 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3170 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3172 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3173 cp->mac_rx_cfg = cas_setup_multicast(cp);
3174 #else
3175 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3176 * a writel does not seem to be necessary because Cassini
3177 * seems to preserve the configuration when we do the reset.
3178 * If the chip is in trouble, though, it is not clear if we
3179 * can really count on this behavior. cas_set_multicast uses
3180 * spin_lock_irqsave, but we are called only in cas_init_hw and
3181 * cas_init_hw is protected by cas_lock_all, which calls
3182 * spin_lock_irq (so it doesn't need to save the flags, and
3183 * we should be OK for the writel, as that is the only
3184 * difference).
3186 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3187 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3188 #endif
3189 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3190 cas_clear_mac_err(cp);
3191 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3193 /* Setup MAC interrupts. We want to get all of the interesting
3194 * counter expiration events, but we do not want to hear about
3195 * normal rx/tx as the DMA engine tells us that.
3197 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3198 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3200 /* Don't enable even the PAUSE interrupts for now, we
3201 * make no use of those events other than to record them.
3203 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3206 /* Must be invoked under cp->lock. */
3207 static void cas_init_pause_thresholds(struct cas *cp)
3209 /* Calculate pause thresholds. Setting the OFF threshold to the
3210 * full RX fifo size effectively disables PAUSE generation
3212 if (cp->rx_fifo_size <= (2 * 1024)) {
3213 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3214 } else {
3215 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3216 if (max_frame * 3 > cp->rx_fifo_size) {
3217 cp->rx_pause_off = 7104;
3218 cp->rx_pause_on = 960;
3219 } else {
3220 int off = (cp->rx_fifo_size - (max_frame * 2));
3221 int on = off - max_frame;
3222 cp->rx_pause_off = off;
3223 cp->rx_pause_on = on;
3228 static int cas_vpd_match(const void __iomem *p, const char *str)
3230 int len = strlen(str) + 1;
3231 int i;
3233 for (i = 0; i < len; i++) {
3234 if (readb(p + i) != str[i])
3235 return 0;
3237 return 1;
3241 /* get the mac address by reading the vpd information in the rom.
3242 * also get the phy type and determine if there's an entropy generator.
3243 * NOTE: this is a bit convoluted for the following reasons:
3244 * 1) vpd info has order-dependent mac addresses for multinic cards
3245 * 2) the only way to determine the nic order is to use the slot
3246 * number.
3247 * 3) fiber cards don't have bridges, so their slot numbers don't
3248 * mean anything.
3249 * 4) we don't actually know we have a fiber card until after
3250 * the mac addresses are parsed.
3252 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3253 const int offset)
3255 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3256 void __iomem *base, *kstart;
3257 int i, len;
3258 int found = 0;
3259 #define VPD_FOUND_MAC 0x01
3260 #define VPD_FOUND_PHY 0x02
3262 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3263 int mac_off = 0;
3265 /* give us access to the PROM */
3266 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3267 cp->regs + REG_BIM_LOCAL_DEV_EN);
3269 /* check for an expansion rom */
3270 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3271 goto use_random_mac_addr;
3273 /* search for beginning of vpd */
3274 base = NULL;
3275 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3276 /* check for PCIR */
3277 if ((readb(p + i + 0) == 0x50) &&
3278 (readb(p + i + 1) == 0x43) &&
3279 (readb(p + i + 2) == 0x49) &&
3280 (readb(p + i + 3) == 0x52)) {
3281 base = p + (readb(p + i + 8) |
3282 (readb(p + i + 9) << 8));
3283 break;
3287 if (!base || (readb(base) != 0x82))
3288 goto use_random_mac_addr;
3290 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3291 while (i < EXPANSION_ROM_SIZE) {
3292 if (readb(base + i) != 0x90) /* no vpd found */
3293 goto use_random_mac_addr;
3295 /* found a vpd field */
3296 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3298 /* extract keywords */
3299 kstart = base + i + 3;
3300 p = kstart;
3301 while ((p - kstart) < len) {
3302 int klen = readb(p + 2);
3303 int j;
3304 char type;
3306 p += 3;
3308 /* look for the following things:
3309 * -- correct length == 29
3310 * 3 (type) + 2 (size) +
3311 * 18 (strlen("local-mac-address") + 1) +
3312 * 6 (mac addr)
3313 * -- VPD Instance 'I'
3314 * -- VPD Type Bytes 'B'
3315 * -- VPD data length == 6
3316 * -- property string == local-mac-address
3318 * -- correct length == 24
3319 * 3 (type) + 2 (size) +
3320 * 12 (strlen("entropy-dev") + 1) +
3321 * 7 (strlen("vms110") + 1)
3322 * -- VPD Instance 'I'
3323 * -- VPD Type String 'B'
3324 * -- VPD data length == 7
3325 * -- property string == entropy-dev
3327 * -- correct length == 18
3328 * 3 (type) + 2 (size) +
3329 * 9 (strlen("phy-type") + 1) +
3330 * 4 (strlen("pcs") + 1)
3331 * -- VPD Instance 'I'
3332 * -- VPD Type String 'S'
3333 * -- VPD data length == 4
3334 * -- property string == phy-type
3336 * -- correct length == 23
3337 * 3 (type) + 2 (size) +
3338 * 14 (strlen("phy-interface") + 1) +
3339 * 4 (strlen("pcs") + 1)
3340 * -- VPD Instance 'I'
3341 * -- VPD Type String 'S'
3342 * -- VPD data length == 4
3343 * -- property string == phy-interface
3345 if (readb(p) != 'I')
3346 goto next;
3348 /* finally, check string and length */
3349 type = readb(p + 3);
3350 if (type == 'B') {
3351 if ((klen == 29) && readb(p + 4) == 6 &&
3352 cas_vpd_match(p + 5,
3353 "local-mac-address")) {
3354 if (mac_off++ > offset)
3355 goto next;
3357 /* set mac address */
3358 for (j = 0; j < 6; j++)
3359 dev_addr[j] =
3360 readb(p + 23 + j);
3361 goto found_mac;
3365 if (type != 'S')
3366 goto next;
3368 #ifdef USE_ENTROPY_DEV
3369 if ((klen == 24) &&
3370 cas_vpd_match(p + 5, "entropy-dev") &&
3371 cas_vpd_match(p + 17, "vms110")) {
3372 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3373 goto next;
3375 #endif
3377 if (found & VPD_FOUND_PHY)
3378 goto next;
3380 if ((klen == 18) && readb(p + 4) == 4 &&
3381 cas_vpd_match(p + 5, "phy-type")) {
3382 if (cas_vpd_match(p + 14, "pcs")) {
3383 phy_type = CAS_PHY_SERDES;
3384 goto found_phy;
3388 if ((klen == 23) && readb(p + 4) == 4 &&
3389 cas_vpd_match(p + 5, "phy-interface")) {
3390 if (cas_vpd_match(p + 19, "pcs")) {
3391 phy_type = CAS_PHY_SERDES;
3392 goto found_phy;
3395 found_mac:
3396 found |= VPD_FOUND_MAC;
3397 goto next;
3399 found_phy:
3400 found |= VPD_FOUND_PHY;
3402 next:
3403 p += klen;
3405 i += len + 3;
3408 use_random_mac_addr:
3409 if (found & VPD_FOUND_MAC)
3410 goto done;
3412 /* Sun MAC prefix then 3 random bytes. */
3413 printk(PFX "MAC address not found in ROM VPD\n");
3414 dev_addr[0] = 0x08;
3415 dev_addr[1] = 0x00;
3416 dev_addr[2] = 0x20;
3417 get_random_bytes(dev_addr + 3, 3);
3419 done:
3420 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3421 return phy_type;
3424 /* check pci invariants */
3425 static void cas_check_pci_invariants(struct cas *cp)
3427 struct pci_dev *pdev = cp->pdev;
3428 u8 rev;
3430 cp->cas_flags = 0;
3431 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev);
3432 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3433 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3434 if (rev >= CAS_ID_REVPLUS)
3435 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3436 if (rev < CAS_ID_REVPLUS02u)
3437 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3439 /* Original Cassini supports HW CSUM, but it's not
3440 * enabled by default as it can trigger TX hangs.
3442 if (rev < CAS_ID_REV2)
3443 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3444 } else {
3445 /* Only sun has original cassini chips. */
3446 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3448 /* We use a flag because the same phy might be externally
3449 * connected.
3451 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3452 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3453 cp->cas_flags |= CAS_FLAG_SATURN;
3458 static int cas_check_invariants(struct cas *cp)
3460 struct pci_dev *pdev = cp->pdev;
3461 u32 cfg;
3462 int i;
3464 /* get page size for rx buffers. */
3465 cp->page_order = 0;
3466 #ifdef USE_PAGE_ORDER
3467 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3468 /* see if we can allocate larger pages */
3469 struct page *page = alloc_pages(GFP_ATOMIC,
3470 CAS_JUMBO_PAGE_SHIFT -
3471 PAGE_SHIFT);
3472 if (page) {
3473 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3474 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3475 } else {
3476 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3479 #endif
3480 cp->page_size = (PAGE_SIZE << cp->page_order);
3482 /* Fetch the FIFO configurations. */
3483 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3484 cp->rx_fifo_size = RX_FIFO_SIZE;
3486 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3487 * they're both connected.
3489 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3490 PCI_SLOT(pdev->devfn));
3491 if (cp->phy_type & CAS_PHY_SERDES) {
3492 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3493 return 0; /* no more checking needed */
3496 /* MII */
3497 cfg = readl(cp->regs + REG_MIF_CFG);
3498 if (cfg & MIF_CFG_MDIO_1) {
3499 cp->phy_type = CAS_PHY_MII_MDIO1;
3500 } else if (cfg & MIF_CFG_MDIO_0) {
3501 cp->phy_type = CAS_PHY_MII_MDIO0;
3504 cas_mif_poll(cp, 0);
3505 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3507 for (i = 0; i < 32; i++) {
3508 u32 phy_id;
3509 int j;
3511 for (j = 0; j < 3; j++) {
3512 cp->phy_addr = i;
3513 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3514 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3515 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3516 cp->phy_id = phy_id;
3517 goto done;
3521 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3522 readl(cp->regs + REG_MIF_STATE_MACHINE));
3523 return -1;
3525 done:
3526 /* see if we can do gigabit */
3527 cfg = cas_phy_read(cp, MII_BMSR);
3528 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3529 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3530 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3531 return 0;
3534 /* Must be invoked under cp->lock. */
3535 static inline void cas_start_dma(struct cas *cp)
3537 int i;
3538 u32 val;
3539 int txfailed = 0;
3541 /* enable dma */
3542 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3543 writel(val, cp->regs + REG_TX_CFG);
3544 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3545 writel(val, cp->regs + REG_RX_CFG);
3547 /* enable the mac */
3548 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3549 writel(val, cp->regs + REG_MAC_TX_CFG);
3550 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3551 writel(val, cp->regs + REG_MAC_RX_CFG);
3553 i = STOP_TRIES;
3554 while (i-- > 0) {
3555 val = readl(cp->regs + REG_MAC_TX_CFG);
3556 if ((val & MAC_TX_CFG_EN))
3557 break;
3558 udelay(10);
3560 if (i < 0) txfailed = 1;
3561 i = STOP_TRIES;
3562 while (i-- > 0) {
3563 val = readl(cp->regs + REG_MAC_RX_CFG);
3564 if ((val & MAC_RX_CFG_EN)) {
3565 if (txfailed) {
3566 printk(KERN_ERR
3567 "%s: enabling mac failed [tx:%08x:%08x].\n",
3568 cp->dev->name,
3569 readl(cp->regs + REG_MIF_STATE_MACHINE),
3570 readl(cp->regs + REG_MAC_STATE_MACHINE));
3572 goto enable_rx_done;
3574 udelay(10);
3576 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3577 cp->dev->name,
3578 (txfailed? "tx,rx":"rx"),
3579 readl(cp->regs + REG_MIF_STATE_MACHINE),
3580 readl(cp->regs + REG_MAC_STATE_MACHINE));
3582 enable_rx_done:
3583 cas_unmask_intr(cp); /* enable interrupts */
3584 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3585 writel(0, cp->regs + REG_RX_COMP_TAIL);
3587 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3588 if (N_RX_DESC_RINGS > 1)
3589 writel(RX_DESC_RINGN_SIZE(1) - 4,
3590 cp->regs + REG_PLUS_RX_KICK1);
3592 for (i = 1; i < N_RX_COMP_RINGS; i++)
3593 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3597 /* Must be invoked under cp->lock. */
3598 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3599 int *pause)
3601 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3602 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3603 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3604 if (val & PCS_MII_LPA_ASYM_PAUSE)
3605 *pause |= 0x10;
3606 *spd = 1000;
3609 /* Must be invoked under cp->lock. */
3610 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3611 int *pause)
3613 u32 val;
3615 *fd = 0;
3616 *spd = 10;
3617 *pause = 0;
3619 /* use GMII registers */
3620 val = cas_phy_read(cp, MII_LPA);
3621 if (val & CAS_LPA_PAUSE)
3622 *pause = 0x01;
3624 if (val & CAS_LPA_ASYM_PAUSE)
3625 *pause |= 0x10;
3627 if (val & LPA_DUPLEX)
3628 *fd = 1;
3629 if (val & LPA_100)
3630 *spd = 100;
3632 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3633 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3634 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3635 *spd = 1000;
3636 if (val & CAS_LPA_1000FULL)
3637 *fd = 1;
3641 /* A link-up condition has occurred, initialize and enable the
3642 * rest of the chip.
3644 * Must be invoked under cp->lock.
3646 static void cas_set_link_modes(struct cas *cp)
3648 u32 val;
3649 int full_duplex, speed, pause;
3651 full_duplex = 0;
3652 speed = 10;
3653 pause = 0;
3655 if (CAS_PHY_MII(cp->phy_type)) {
3656 cas_mif_poll(cp, 0);
3657 val = cas_phy_read(cp, MII_BMCR);
3658 if (val & BMCR_ANENABLE) {
3659 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3660 &pause);
3661 } else {
3662 if (val & BMCR_FULLDPLX)
3663 full_duplex = 1;
3665 if (val & BMCR_SPEED100)
3666 speed = 100;
3667 else if (val & CAS_BMCR_SPEED1000)
3668 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3669 1000 : 100;
3671 cas_mif_poll(cp, 1);
3673 } else {
3674 val = readl(cp->regs + REG_PCS_MII_CTRL);
3675 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3676 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3677 if (val & PCS_MII_CTRL_DUPLEX)
3678 full_duplex = 1;
3682 if (netif_msg_link(cp))
3683 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3684 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3686 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3687 if (CAS_PHY_MII(cp->phy_type)) {
3688 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3689 if (!full_duplex)
3690 val |= MAC_XIF_DISABLE_ECHO;
3692 if (full_duplex)
3693 val |= MAC_XIF_FDPLX_LED;
3694 if (speed == 1000)
3695 val |= MAC_XIF_GMII_MODE;
3696 writel(val, cp->regs + REG_MAC_XIF_CFG);
3698 /* deal with carrier and collision detect. */
3699 val = MAC_TX_CFG_IPG_EN;
3700 if (full_duplex) {
3701 val |= MAC_TX_CFG_IGNORE_CARRIER;
3702 val |= MAC_TX_CFG_IGNORE_COLL;
3703 } else {
3704 #ifndef USE_CSMA_CD_PROTO
3705 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3706 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3707 #endif
3709 /* val now set up for REG_MAC_TX_CFG */
3711 /* If gigabit and half-duplex, enable carrier extension
3712 * mode. increase slot time to 512 bytes as well.
3713 * else, disable it and make sure slot time is 64 bytes.
3714 * also activate checksum bug workaround
3716 if ((speed == 1000) && !full_duplex) {
3717 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3718 cp->regs + REG_MAC_TX_CFG);
3720 val = readl(cp->regs + REG_MAC_RX_CFG);
3721 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3722 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3723 cp->regs + REG_MAC_RX_CFG);
3725 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3727 cp->crc_size = 4;
3728 /* minimum size gigabit frame at half duplex */
3729 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3731 } else {
3732 writel(val, cp->regs + REG_MAC_TX_CFG);
3734 /* checksum bug workaround. don't strip FCS when in
3735 * half-duplex mode
3737 val = readl(cp->regs + REG_MAC_RX_CFG);
3738 if (full_duplex) {
3739 val |= MAC_RX_CFG_STRIP_FCS;
3740 cp->crc_size = 0;
3741 cp->min_frame_size = CAS_MIN_MTU;
3742 } else {
3743 val &= ~MAC_RX_CFG_STRIP_FCS;
3744 cp->crc_size = 4;
3745 cp->min_frame_size = CAS_MIN_FRAME;
3747 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3748 cp->regs + REG_MAC_RX_CFG);
3749 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3752 if (netif_msg_link(cp)) {
3753 if (pause & 0x01) {
3754 printk(KERN_INFO "%s: Pause is enabled "
3755 "(rxfifo: %d off: %d on: %d)\n",
3756 cp->dev->name,
3757 cp->rx_fifo_size,
3758 cp->rx_pause_off,
3759 cp->rx_pause_on);
3760 } else if (pause & 0x10) {
3761 printk(KERN_INFO "%s: TX pause enabled\n",
3762 cp->dev->name);
3763 } else {
3764 printk(KERN_INFO "%s: Pause is disabled\n",
3765 cp->dev->name);
3769 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3770 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3771 if (pause) { /* symmetric or asymmetric pause */
3772 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3773 if (pause & 0x01) { /* symmetric pause */
3774 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3777 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3778 cas_start_dma(cp);
3781 /* Must be invoked under cp->lock. */
3782 static void cas_init_hw(struct cas *cp, int restart_link)
3784 if (restart_link)
3785 cas_phy_init(cp);
3787 cas_init_pause_thresholds(cp);
3788 cas_init_mac(cp);
3789 cas_init_dma(cp);
3791 if (restart_link) {
3792 /* Default aneg parameters */
3793 cp->timer_ticks = 0;
3794 cas_begin_auto_negotiation(cp, NULL);
3795 } else if (cp->lstate == link_up) {
3796 cas_set_link_modes(cp);
3797 netif_carrier_on(cp->dev);
3801 /* Must be invoked under cp->lock. on earlier cassini boards,
3802 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3803 * let it settle out, and then restore pci state.
3805 static void cas_hard_reset(struct cas *cp)
3807 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3808 udelay(20);
3809 pci_restore_state(cp->pdev);
3813 static void cas_global_reset(struct cas *cp, int blkflag)
3815 int limit;
3817 /* issue a global reset. don't use RSTOUT. */
3818 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3819 /* For PCS, when the blkflag is set, we should set the
3820 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3821 * the last autonegotiation from being cleared. We'll
3822 * need some special handling if the chip is set into a
3823 * loopback mode.
3825 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3826 cp->regs + REG_SW_RESET);
3827 } else {
3828 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3831 /* need to wait at least 3ms before polling register */
3832 mdelay(3);
3834 limit = STOP_TRIES;
3835 while (limit-- > 0) {
3836 u32 val = readl(cp->regs + REG_SW_RESET);
3837 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3838 goto done;
3839 udelay(10);
3841 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3843 done:
3844 /* enable various BIM interrupts */
3845 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3846 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3848 /* clear out pci error status mask for handled errors.
3849 * we don't deal with DMA counter overflows as they happen
3850 * all the time.
3852 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3853 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3854 PCI_ERR_BIM_DMA_READ), cp->regs +
3855 REG_PCI_ERR_STATUS_MASK);
3857 /* set up for MII by default to address mac rx reset timeout
3858 * issue
3860 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3863 static void cas_reset(struct cas *cp, int blkflag)
3865 u32 val;
3867 cas_mask_intr(cp);
3868 cas_global_reset(cp, blkflag);
3869 cas_mac_reset(cp);
3870 cas_entropy_reset(cp);
3872 /* disable dma engines. */
3873 val = readl(cp->regs + REG_TX_CFG);
3874 val &= ~TX_CFG_DMA_EN;
3875 writel(val, cp->regs + REG_TX_CFG);
3877 val = readl(cp->regs + REG_RX_CFG);
3878 val &= ~RX_CFG_DMA_EN;
3879 writel(val, cp->regs + REG_RX_CFG);
3881 /* program header parser */
3882 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3883 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3884 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3885 } else {
3886 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3889 /* clear out error registers */
3890 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3891 cas_clear_mac_err(cp);
3892 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3895 /* Shut down the chip, must be called with pm_sem held. */
3896 static void cas_shutdown(struct cas *cp)
3898 unsigned long flags;
3900 /* Make us not-running to avoid timers respawning */
3901 cp->hw_running = 0;
3903 del_timer_sync(&cp->link_timer);
3905 /* Stop the reset task */
3906 #if 0
3907 while (atomic_read(&cp->reset_task_pending_mtu) ||
3908 atomic_read(&cp->reset_task_pending_spare) ||
3909 atomic_read(&cp->reset_task_pending_all))
3910 schedule();
3912 #else
3913 while (atomic_read(&cp->reset_task_pending))
3914 schedule();
3915 #endif
3916 /* Actually stop the chip */
3917 cas_lock_all_save(cp, flags);
3918 cas_reset(cp, 0);
3919 if (cp->cas_flags & CAS_FLAG_SATURN)
3920 cas_phy_powerdown(cp);
3921 cas_unlock_all_restore(cp, flags);
3924 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3926 struct cas *cp = netdev_priv(dev);
3928 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3929 return -EINVAL;
3931 dev->mtu = new_mtu;
3932 if (!netif_running(dev) || !netif_device_present(dev))
3933 return 0;
3935 /* let the reset task handle it */
3936 #if 1
3937 atomic_inc(&cp->reset_task_pending);
3938 if ((cp->phy_type & CAS_PHY_SERDES)) {
3939 atomic_inc(&cp->reset_task_pending_all);
3940 } else {
3941 atomic_inc(&cp->reset_task_pending_mtu);
3943 schedule_work(&cp->reset_task);
3944 #else
3945 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3946 CAS_RESET_ALL : CAS_RESET_MTU);
3947 printk(KERN_ERR "reset called in cas_change_mtu\n");
3948 schedule_work(&cp->reset_task);
3949 #endif
3951 flush_scheduled_work();
3952 return 0;
3955 static void cas_clean_txd(struct cas *cp, int ring)
3957 struct cas_tx_desc *txd = cp->init_txds[ring];
3958 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3959 u64 daddr, dlen;
3960 int i, size;
3962 size = TX_DESC_RINGN_SIZE(ring);
3963 for (i = 0; i < size; i++) {
3964 int frag;
3966 if (skbs[i] == NULL)
3967 continue;
3969 skb = skbs[i];
3970 skbs[i] = NULL;
3972 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3973 int ent = i & (size - 1);
3975 /* first buffer is never a tiny buffer and so
3976 * needs to be unmapped.
3978 daddr = le64_to_cpu(txd[ent].buffer);
3979 dlen = CAS_VAL(TX_DESC_BUFLEN,
3980 le64_to_cpu(txd[ent].control));
3981 pci_unmap_page(cp->pdev, daddr, dlen,
3982 PCI_DMA_TODEVICE);
3984 if (frag != skb_shinfo(skb)->nr_frags) {
3985 i++;
3987 /* next buffer might by a tiny buffer.
3988 * skip past it.
3990 ent = i & (size - 1);
3991 if (cp->tx_tiny_use[ring][ent].used)
3992 i++;
3995 dev_kfree_skb_any(skb);
3998 /* zero out tiny buf usage */
3999 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
4002 /* freed on close */
4003 static inline void cas_free_rx_desc(struct cas *cp, int ring)
4005 cas_page_t **page = cp->rx_pages[ring];
4006 int i, size;
4008 size = RX_DESC_RINGN_SIZE(ring);
4009 for (i = 0; i < size; i++) {
4010 if (page[i]) {
4011 cas_page_free(cp, page[i]);
4012 page[i] = NULL;
4017 static void cas_free_rxds(struct cas *cp)
4019 int i;
4021 for (i = 0; i < N_RX_DESC_RINGS; i++)
4022 cas_free_rx_desc(cp, i);
4025 /* Must be invoked under cp->lock. */
4026 static void cas_clean_rings(struct cas *cp)
4028 int i;
4030 /* need to clean all tx rings */
4031 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
4032 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
4033 for (i = 0; i < N_TX_RINGS; i++)
4034 cas_clean_txd(cp, i);
4036 /* zero out init block */
4037 memset(cp->init_block, 0, sizeof(struct cas_init_block));
4038 cas_clean_rxds(cp);
4039 cas_clean_rxcs(cp);
4042 /* allocated on open */
4043 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4045 cas_page_t **page = cp->rx_pages[ring];
4046 int size, i = 0;
4048 size = RX_DESC_RINGN_SIZE(ring);
4049 for (i = 0; i < size; i++) {
4050 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4051 return -1;
4053 return 0;
4056 static int cas_alloc_rxds(struct cas *cp)
4058 int i;
4060 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4061 if (cas_alloc_rx_desc(cp, i) < 0) {
4062 cas_free_rxds(cp);
4063 return -1;
4066 return 0;
4069 static void cas_reset_task(void *data)
4071 struct cas *cp = (struct cas *) data;
4072 #if 0
4073 int pending = atomic_read(&cp->reset_task_pending);
4074 #else
4075 int pending_all = atomic_read(&cp->reset_task_pending_all);
4076 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4077 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4079 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4080 /* We can have more tasks scheduled than actually
4081 * needed.
4083 atomic_dec(&cp->reset_task_pending);
4084 return;
4086 #endif
4087 /* The link went down, we reset the ring, but keep
4088 * DMA stopped. Use this function for reset
4089 * on error as well.
4091 if (cp->hw_running) {
4092 unsigned long flags;
4094 /* Make sure we don't get interrupts or tx packets */
4095 netif_device_detach(cp->dev);
4096 cas_lock_all_save(cp, flags);
4098 if (cp->opened) {
4099 /* We call cas_spare_recover when we call cas_open.
4100 * but we do not initialize the lists cas_spare_recover
4101 * uses until cas_open is called.
4103 cas_spare_recover(cp, GFP_ATOMIC);
4105 #if 1
4106 /* test => only pending_spare set */
4107 if (!pending_all && !pending_mtu)
4108 goto done;
4109 #else
4110 if (pending == CAS_RESET_SPARE)
4111 goto done;
4112 #endif
4113 /* when pending == CAS_RESET_ALL, the following
4114 * call to cas_init_hw will restart auto negotiation.
4115 * Setting the second argument of cas_reset to
4116 * !(pending == CAS_RESET_ALL) will set this argument
4117 * to 1 (avoiding reinitializing the PHY for the normal
4118 * PCS case) when auto negotiation is not restarted.
4120 #if 1
4121 cas_reset(cp, !(pending_all > 0));
4122 if (cp->opened)
4123 cas_clean_rings(cp);
4124 cas_init_hw(cp, (pending_all > 0));
4125 #else
4126 cas_reset(cp, !(pending == CAS_RESET_ALL));
4127 if (cp->opened)
4128 cas_clean_rings(cp);
4129 cas_init_hw(cp, pending == CAS_RESET_ALL);
4130 #endif
4132 done:
4133 cas_unlock_all_restore(cp, flags);
4134 netif_device_attach(cp->dev);
4136 #if 1
4137 atomic_sub(pending_all, &cp->reset_task_pending_all);
4138 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4139 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4140 atomic_dec(&cp->reset_task_pending);
4141 #else
4142 atomic_set(&cp->reset_task_pending, 0);
4143 #endif
4146 static void cas_link_timer(unsigned long data)
4148 struct cas *cp = (struct cas *) data;
4149 int mask, pending = 0, reset = 0;
4150 unsigned long flags;
4152 if (link_transition_timeout != 0 &&
4153 cp->link_transition_jiffies_valid &&
4154 ((jiffies - cp->link_transition_jiffies) >
4155 (link_transition_timeout))) {
4156 /* One-second counter so link-down workaround doesn't
4157 * cause resets to occur so fast as to fool the switch
4158 * into thinking the link is down.
4160 cp->link_transition_jiffies_valid = 0;
4163 if (!cp->hw_running)
4164 return;
4166 spin_lock_irqsave(&cp->lock, flags);
4167 cas_lock_tx(cp);
4168 cas_entropy_gather(cp);
4170 /* If the link task is still pending, we just
4171 * reschedule the link timer
4173 #if 1
4174 if (atomic_read(&cp->reset_task_pending_all) ||
4175 atomic_read(&cp->reset_task_pending_spare) ||
4176 atomic_read(&cp->reset_task_pending_mtu))
4177 goto done;
4178 #else
4179 if (atomic_read(&cp->reset_task_pending))
4180 goto done;
4181 #endif
4183 /* check for rx cleaning */
4184 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4185 int i, rmask;
4187 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4188 rmask = CAS_FLAG_RXD_POST(i);
4189 if ((mask & rmask) == 0)
4190 continue;
4192 /* post_rxds will do a mod_timer */
4193 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4194 pending = 1;
4195 continue;
4197 cp->cas_flags &= ~rmask;
4201 if (CAS_PHY_MII(cp->phy_type)) {
4202 u16 bmsr;
4203 cas_mif_poll(cp, 0);
4204 bmsr = cas_phy_read(cp, MII_BMSR);
4205 /* WTZ: Solaris driver reads this twice, but that
4206 * may be due to the PCS case and the use of a
4207 * common implementation. Read it twice here to be
4208 * safe.
4210 bmsr = cas_phy_read(cp, MII_BMSR);
4211 cas_mif_poll(cp, 1);
4212 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4213 reset = cas_mii_link_check(cp, bmsr);
4214 } else {
4215 reset = cas_pcs_link_check(cp);
4218 if (reset)
4219 goto done;
4221 /* check for tx state machine confusion */
4222 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4223 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4224 u32 wptr, rptr;
4225 int tlm = CAS_VAL(MAC_SM_TLM, val);
4227 if (((tlm == 0x5) || (tlm == 0x3)) &&
4228 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4229 if (netif_msg_tx_err(cp))
4230 printk(KERN_DEBUG "%s: tx err: "
4231 "MAC_STATE[%08x]\n",
4232 cp->dev->name, val);
4233 reset = 1;
4234 goto done;
4237 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4238 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4239 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4240 if ((val == 0) && (wptr != rptr)) {
4241 if (netif_msg_tx_err(cp))
4242 printk(KERN_DEBUG "%s: tx err: "
4243 "TX_FIFO[%08x:%08x:%08x]\n",
4244 cp->dev->name, val, wptr, rptr);
4245 reset = 1;
4248 if (reset)
4249 cas_hard_reset(cp);
4252 done:
4253 if (reset) {
4254 #if 1
4255 atomic_inc(&cp->reset_task_pending);
4256 atomic_inc(&cp->reset_task_pending_all);
4257 schedule_work(&cp->reset_task);
4258 #else
4259 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4260 printk(KERN_ERR "reset called in cas_link_timer\n");
4261 schedule_work(&cp->reset_task);
4262 #endif
4265 if (!pending)
4266 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4267 cas_unlock_tx(cp);
4268 spin_unlock_irqrestore(&cp->lock, flags);
4271 /* tiny buffers are used to avoid target abort issues with
4272 * older cassini's
4274 static void cas_tx_tiny_free(struct cas *cp)
4276 struct pci_dev *pdev = cp->pdev;
4277 int i;
4279 for (i = 0; i < N_TX_RINGS; i++) {
4280 if (!cp->tx_tiny_bufs[i])
4281 continue;
4283 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4284 cp->tx_tiny_bufs[i],
4285 cp->tx_tiny_dvma[i]);
4286 cp->tx_tiny_bufs[i] = NULL;
4290 static int cas_tx_tiny_alloc(struct cas *cp)
4292 struct pci_dev *pdev = cp->pdev;
4293 int i;
4295 for (i = 0; i < N_TX_RINGS; i++) {
4296 cp->tx_tiny_bufs[i] =
4297 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4298 &cp->tx_tiny_dvma[i]);
4299 if (!cp->tx_tiny_bufs[i]) {
4300 cas_tx_tiny_free(cp);
4301 return -1;
4304 return 0;
4308 static int cas_open(struct net_device *dev)
4310 struct cas *cp = netdev_priv(dev);
4311 int hw_was_up, err;
4312 unsigned long flags;
4314 down(&cp->pm_sem);
4316 hw_was_up = cp->hw_running;
4318 /* The power-management semaphore protects the hw_running
4319 * etc. state so it is safe to do this bit without cp->lock
4321 if (!cp->hw_running) {
4322 /* Reset the chip */
4323 cas_lock_all_save(cp, flags);
4324 /* We set the second arg to cas_reset to zero
4325 * because cas_init_hw below will have its second
4326 * argument set to non-zero, which will force
4327 * autonegotiation to start.
4329 cas_reset(cp, 0);
4330 cp->hw_running = 1;
4331 cas_unlock_all_restore(cp, flags);
4334 if (cas_tx_tiny_alloc(cp) < 0)
4335 return -ENOMEM;
4337 /* alloc rx descriptors */
4338 err = -ENOMEM;
4339 if (cas_alloc_rxds(cp) < 0)
4340 goto err_tx_tiny;
4342 /* allocate spares */
4343 cas_spare_init(cp);
4344 cas_spare_recover(cp, GFP_KERNEL);
4346 /* We can now request the interrupt as we know it's masked
4347 * on the controller. cassini+ has up to 4 interrupts
4348 * that can be used, but you need to do explicit pci interrupt
4349 * mapping to expose them
4351 if (request_irq(cp->pdev->irq, cas_interrupt,
4352 SA_SHIRQ, dev->name, (void *) dev)) {
4353 printk(KERN_ERR "%s: failed to request irq !\n",
4354 cp->dev->name);
4355 err = -EAGAIN;
4356 goto err_spare;
4359 /* init hw */
4360 cas_lock_all_save(cp, flags);
4361 cas_clean_rings(cp);
4362 cas_init_hw(cp, !hw_was_up);
4363 cp->opened = 1;
4364 cas_unlock_all_restore(cp, flags);
4366 netif_start_queue(dev);
4367 up(&cp->pm_sem);
4368 return 0;
4370 err_spare:
4371 cas_spare_free(cp);
4372 cas_free_rxds(cp);
4373 err_tx_tiny:
4374 cas_tx_tiny_free(cp);
4375 up(&cp->pm_sem);
4376 return err;
4379 static int cas_close(struct net_device *dev)
4381 unsigned long flags;
4382 struct cas *cp = netdev_priv(dev);
4384 /* Make sure we don't get distracted by suspend/resume */
4385 down(&cp->pm_sem);
4387 netif_stop_queue(dev);
4389 /* Stop traffic, mark us closed */
4390 cas_lock_all_save(cp, flags);
4391 cp->opened = 0;
4392 cas_reset(cp, 0);
4393 cas_phy_init(cp);
4394 cas_begin_auto_negotiation(cp, NULL);
4395 cas_clean_rings(cp);
4396 cas_unlock_all_restore(cp, flags);
4398 free_irq(cp->pdev->irq, (void *) dev);
4399 cas_spare_free(cp);
4400 cas_free_rxds(cp);
4401 cas_tx_tiny_free(cp);
4402 up(&cp->pm_sem);
4403 return 0;
4406 static struct {
4407 const char name[ETH_GSTRING_LEN];
4408 } ethtool_cassini_statnames[] = {
4409 {"collisions"},
4410 {"rx_bytes"},
4411 {"rx_crc_errors"},
4412 {"rx_dropped"},
4413 {"rx_errors"},
4414 {"rx_fifo_errors"},
4415 {"rx_frame_errors"},
4416 {"rx_length_errors"},
4417 {"rx_over_errors"},
4418 {"rx_packets"},
4419 {"tx_aborted_errors"},
4420 {"tx_bytes"},
4421 {"tx_dropped"},
4422 {"tx_errors"},
4423 {"tx_fifo_errors"},
4424 {"tx_packets"}
4426 #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4428 static struct {
4429 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4430 } ethtool_register_table[] = {
4431 {-MII_BMSR},
4432 {-MII_BMCR},
4433 {REG_CAWR},
4434 {REG_INF_BURST},
4435 {REG_BIM_CFG},
4436 {REG_RX_CFG},
4437 {REG_HP_CFG},
4438 {REG_MAC_TX_CFG},
4439 {REG_MAC_RX_CFG},
4440 {REG_MAC_CTRL_CFG},
4441 {REG_MAC_XIF_CFG},
4442 {REG_MIF_CFG},
4443 {REG_PCS_CFG},
4444 {REG_SATURN_PCFG},
4445 {REG_PCS_MII_STATUS},
4446 {REG_PCS_STATE_MACHINE},
4447 {REG_MAC_COLL_EXCESS},
4448 {REG_MAC_COLL_LATE}
4450 #define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int))
4451 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4453 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4455 u8 *p;
4456 int i;
4457 unsigned long flags;
4459 spin_lock_irqsave(&cp->lock, flags);
4460 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4461 u16 hval;
4462 u32 val;
4463 if (ethtool_register_table[i].offsets < 0) {
4464 hval = cas_phy_read(cp,
4465 -ethtool_register_table[i].offsets);
4466 val = hval;
4467 } else {
4468 val= readl(cp->regs+ethtool_register_table[i].offsets);
4470 memcpy(p, (u8 *)&val, sizeof(u32));
4472 spin_unlock_irqrestore(&cp->lock, flags);
4475 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4477 struct cas *cp = netdev_priv(dev);
4478 struct net_device_stats *stats = cp->net_stats;
4479 unsigned long flags;
4480 int i;
4481 unsigned long tmp;
4483 /* we collate all of the stats into net_stats[N_TX_RING] */
4484 if (!cp->hw_running)
4485 return stats + N_TX_RINGS;
4487 /* collect outstanding stats */
4488 /* WTZ: the Cassini spec gives these as 16 bit counters but
4489 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4490 * in case the chip somehow puts any garbage in the other bits.
4491 * Also, counter usage didn't seem to mach what Adrian did
4492 * in the parts of the code that set these quantities. Made
4493 * that consistent.
4495 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4496 stats[N_TX_RINGS].rx_crc_errors +=
4497 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4498 stats[N_TX_RINGS].rx_frame_errors +=
4499 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4500 stats[N_TX_RINGS].rx_length_errors +=
4501 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4502 #if 1
4503 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4504 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4505 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4506 stats[N_TX_RINGS].collisions +=
4507 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4508 #else
4509 stats[N_TX_RINGS].tx_aborted_errors +=
4510 readl(cp->regs + REG_MAC_COLL_EXCESS);
4511 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4512 readl(cp->regs + REG_MAC_COLL_LATE);
4513 #endif
4514 cas_clear_mac_err(cp);
4516 /* saved bits that are unique to ring 0 */
4517 spin_lock(&cp->stat_lock[0]);
4518 stats[N_TX_RINGS].collisions += stats[0].collisions;
4519 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4520 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4521 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4522 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4523 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4524 spin_unlock(&cp->stat_lock[0]);
4526 for (i = 0; i < N_TX_RINGS; i++) {
4527 spin_lock(&cp->stat_lock[i]);
4528 stats[N_TX_RINGS].rx_length_errors +=
4529 stats[i].rx_length_errors;
4530 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4531 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4532 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4533 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4534 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4535 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4536 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4537 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4538 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4539 memset(stats + i, 0, sizeof(struct net_device_stats));
4540 spin_unlock(&cp->stat_lock[i]);
4542 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4543 return stats + N_TX_RINGS;
4547 static void cas_set_multicast(struct net_device *dev)
4549 struct cas *cp = netdev_priv(dev);
4550 u32 rxcfg, rxcfg_new;
4551 unsigned long flags;
4552 int limit = STOP_TRIES;
4554 if (!cp->hw_running)
4555 return;
4557 spin_lock_irqsave(&cp->lock, flags);
4558 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4560 /* disable RX MAC and wait for completion */
4561 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4562 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4563 if (!limit--)
4564 break;
4565 udelay(10);
4568 /* disable hash filter and wait for completion */
4569 limit = STOP_TRIES;
4570 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4571 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4572 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4573 if (!limit--)
4574 break;
4575 udelay(10);
4578 /* program hash filters */
4579 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4580 rxcfg |= rxcfg_new;
4581 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4582 spin_unlock_irqrestore(&cp->lock, flags);
4585 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4587 struct cas *cp = netdev_priv(dev);
4588 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4589 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4590 info->fw_version[0] = '\0';
4591 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4592 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4593 cp->casreg_len : CAS_MAX_REGS;
4594 info->n_stats = CAS_NUM_STAT_KEYS;
4597 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4599 struct cas *cp = netdev_priv(dev);
4600 u16 bmcr;
4601 int full_duplex, speed, pause;
4602 unsigned long flags;
4603 enum link_state linkstate = link_up;
4605 cmd->advertising = 0;
4606 cmd->supported = SUPPORTED_Autoneg;
4607 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4608 cmd->supported |= SUPPORTED_1000baseT_Full;
4609 cmd->advertising |= ADVERTISED_1000baseT_Full;
4612 /* Record PHY settings if HW is on. */
4613 spin_lock_irqsave(&cp->lock, flags);
4614 bmcr = 0;
4615 linkstate = cp->lstate;
4616 if (CAS_PHY_MII(cp->phy_type)) {
4617 cmd->port = PORT_MII;
4618 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4619 XCVR_INTERNAL : XCVR_EXTERNAL;
4620 cmd->phy_address = cp->phy_addr;
4621 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4622 ADVERTISED_10baseT_Half |
4623 ADVERTISED_10baseT_Full |
4624 ADVERTISED_100baseT_Half |
4625 ADVERTISED_100baseT_Full;
4627 cmd->supported |=
4628 (SUPPORTED_10baseT_Half |
4629 SUPPORTED_10baseT_Full |
4630 SUPPORTED_100baseT_Half |
4631 SUPPORTED_100baseT_Full |
4632 SUPPORTED_TP | SUPPORTED_MII);
4634 if (cp->hw_running) {
4635 cas_mif_poll(cp, 0);
4636 bmcr = cas_phy_read(cp, MII_BMCR);
4637 cas_read_mii_link_mode(cp, &full_duplex,
4638 &speed, &pause);
4639 cas_mif_poll(cp, 1);
4642 } else {
4643 cmd->port = PORT_FIBRE;
4644 cmd->transceiver = XCVR_INTERNAL;
4645 cmd->phy_address = 0;
4646 cmd->supported |= SUPPORTED_FIBRE;
4647 cmd->advertising |= ADVERTISED_FIBRE;
4649 if (cp->hw_running) {
4650 /* pcs uses the same bits as mii */
4651 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4652 cas_read_pcs_link_mode(cp, &full_duplex,
4653 &speed, &pause);
4656 spin_unlock_irqrestore(&cp->lock, flags);
4658 if (bmcr & BMCR_ANENABLE) {
4659 cmd->advertising |= ADVERTISED_Autoneg;
4660 cmd->autoneg = AUTONEG_ENABLE;
4661 cmd->speed = ((speed == 10) ?
4662 SPEED_10 :
4663 ((speed == 1000) ?
4664 SPEED_1000 : SPEED_100));
4665 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4666 } else {
4667 cmd->autoneg = AUTONEG_DISABLE;
4668 cmd->speed =
4669 (bmcr & CAS_BMCR_SPEED1000) ?
4670 SPEED_1000 :
4671 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4672 SPEED_10);
4673 cmd->duplex =
4674 (bmcr & BMCR_FULLDPLX) ?
4675 DUPLEX_FULL : DUPLEX_HALF;
4677 if (linkstate != link_up) {
4678 /* Force these to "unknown" if the link is not up and
4679 * autonogotiation in enabled. We can set the link
4680 * speed to 0, but not cmd->duplex,
4681 * because its legal values are 0 and 1. Ethtool will
4682 * print the value reported in parentheses after the
4683 * word "Unknown" for unrecognized values.
4685 * If in forced mode, we report the speed and duplex
4686 * settings that we configured.
4688 if (cp->link_cntl & BMCR_ANENABLE) {
4689 cmd->speed = 0;
4690 cmd->duplex = 0xff;
4691 } else {
4692 cmd->speed = SPEED_10;
4693 if (cp->link_cntl & BMCR_SPEED100) {
4694 cmd->speed = SPEED_100;
4695 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4696 cmd->speed = SPEED_1000;
4698 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4699 DUPLEX_FULL : DUPLEX_HALF;
4702 return 0;
4705 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4707 struct cas *cp = netdev_priv(dev);
4708 unsigned long flags;
4710 /* Verify the settings we care about. */
4711 if (cmd->autoneg != AUTONEG_ENABLE &&
4712 cmd->autoneg != AUTONEG_DISABLE)
4713 return -EINVAL;
4715 if (cmd->autoneg == AUTONEG_DISABLE &&
4716 ((cmd->speed != SPEED_1000 &&
4717 cmd->speed != SPEED_100 &&
4718 cmd->speed != SPEED_10) ||
4719 (cmd->duplex != DUPLEX_HALF &&
4720 cmd->duplex != DUPLEX_FULL)))
4721 return -EINVAL;
4723 /* Apply settings and restart link process. */
4724 spin_lock_irqsave(&cp->lock, flags);
4725 cas_begin_auto_negotiation(cp, cmd);
4726 spin_unlock_irqrestore(&cp->lock, flags);
4727 return 0;
4730 static int cas_nway_reset(struct net_device *dev)
4732 struct cas *cp = netdev_priv(dev);
4733 unsigned long flags;
4735 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4736 return -EINVAL;
4738 /* Restart link process. */
4739 spin_lock_irqsave(&cp->lock, flags);
4740 cas_begin_auto_negotiation(cp, NULL);
4741 spin_unlock_irqrestore(&cp->lock, flags);
4743 return 0;
4746 static u32 cas_get_link(struct net_device *dev)
4748 struct cas *cp = netdev_priv(dev);
4749 return cp->lstate == link_up;
4752 static u32 cas_get_msglevel(struct net_device *dev)
4754 struct cas *cp = netdev_priv(dev);
4755 return cp->msg_enable;
4758 static void cas_set_msglevel(struct net_device *dev, u32 value)
4760 struct cas *cp = netdev_priv(dev);
4761 cp->msg_enable = value;
4764 static int cas_get_regs_len(struct net_device *dev)
4766 struct cas *cp = netdev_priv(dev);
4767 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4770 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4771 void *p)
4773 struct cas *cp = netdev_priv(dev);
4774 regs->version = 0;
4775 /* cas_read_regs handles locks (cp->lock). */
4776 cas_read_regs(cp, p, regs->len / sizeof(u32));
4779 static int cas_get_stats_count(struct net_device *dev)
4781 return CAS_NUM_STAT_KEYS;
4784 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4786 memcpy(data, &ethtool_cassini_statnames,
4787 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4790 static void cas_get_ethtool_stats(struct net_device *dev,
4791 struct ethtool_stats *estats, u64 *data)
4793 struct cas *cp = netdev_priv(dev);
4794 struct net_device_stats *stats = cas_get_stats(cp->dev);
4795 int i = 0;
4796 data[i++] = stats->collisions;
4797 data[i++] = stats->rx_bytes;
4798 data[i++] = stats->rx_crc_errors;
4799 data[i++] = stats->rx_dropped;
4800 data[i++] = stats->rx_errors;
4801 data[i++] = stats->rx_fifo_errors;
4802 data[i++] = stats->rx_frame_errors;
4803 data[i++] = stats->rx_length_errors;
4804 data[i++] = stats->rx_over_errors;
4805 data[i++] = stats->rx_packets;
4806 data[i++] = stats->tx_aborted_errors;
4807 data[i++] = stats->tx_bytes;
4808 data[i++] = stats->tx_dropped;
4809 data[i++] = stats->tx_errors;
4810 data[i++] = stats->tx_fifo_errors;
4811 data[i++] = stats->tx_packets;
4812 BUG_ON(i != CAS_NUM_STAT_KEYS);
4815 static struct ethtool_ops cas_ethtool_ops = {
4816 .get_drvinfo = cas_get_drvinfo,
4817 .get_settings = cas_get_settings,
4818 .set_settings = cas_set_settings,
4819 .nway_reset = cas_nway_reset,
4820 .get_link = cas_get_link,
4821 .get_msglevel = cas_get_msglevel,
4822 .set_msglevel = cas_set_msglevel,
4823 .get_regs_len = cas_get_regs_len,
4824 .get_regs = cas_get_regs,
4825 .get_stats_count = cas_get_stats_count,
4826 .get_strings = cas_get_strings,
4827 .get_ethtool_stats = cas_get_ethtool_stats,
4830 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4832 struct cas *cp = netdev_priv(dev);
4833 struct mii_ioctl_data *data = if_mii(ifr);
4834 unsigned long flags;
4835 int rc = -EOPNOTSUPP;
4837 /* Hold the PM semaphore while doing ioctl's or we may collide
4838 * with open/close and power management and oops.
4840 down(&cp->pm_sem);
4841 switch (cmd) {
4842 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4843 data->phy_id = cp->phy_addr;
4844 /* Fallthrough... */
4846 case SIOCGMIIREG: /* Read MII PHY register. */
4847 spin_lock_irqsave(&cp->lock, flags);
4848 cas_mif_poll(cp, 0);
4849 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4850 cas_mif_poll(cp, 1);
4851 spin_unlock_irqrestore(&cp->lock, flags);
4852 rc = 0;
4853 break;
4855 case SIOCSMIIREG: /* Write MII PHY register. */
4856 if (!capable(CAP_NET_ADMIN)) {
4857 rc = -EPERM;
4858 break;
4860 spin_lock_irqsave(&cp->lock, flags);
4861 cas_mif_poll(cp, 0);
4862 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4863 cas_mif_poll(cp, 1);
4864 spin_unlock_irqrestore(&cp->lock, flags);
4865 break;
4866 default:
4867 break;
4870 up(&cp->pm_sem);
4871 return rc;
4874 static int __devinit cas_init_one(struct pci_dev *pdev,
4875 const struct pci_device_id *ent)
4877 static int cas_version_printed = 0;
4878 unsigned long casreg_base, casreg_len;
4879 struct net_device *dev;
4880 struct cas *cp;
4881 int i, err, pci_using_dac;
4882 u16 pci_cmd;
4883 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4885 if (cas_version_printed++ == 0)
4886 printk(KERN_INFO "%s", version);
4888 err = pci_enable_device(pdev);
4889 if (err) {
4890 printk(KERN_ERR PFX "Cannot enable PCI device, "
4891 "aborting.\n");
4892 return err;
4895 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4896 printk(KERN_ERR PFX "Cannot find proper PCI device "
4897 "base address, aborting.\n");
4898 err = -ENODEV;
4899 goto err_out_disable_pdev;
4902 dev = alloc_etherdev(sizeof(*cp));
4903 if (!dev) {
4904 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
4905 err = -ENOMEM;
4906 goto err_out_disable_pdev;
4908 SET_MODULE_OWNER(dev);
4909 SET_NETDEV_DEV(dev, &pdev->dev);
4911 err = pci_request_regions(pdev, dev->name);
4912 if (err) {
4913 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
4914 "aborting.\n");
4915 goto err_out_free_netdev;
4917 pci_set_master(pdev);
4919 /* we must always turn on parity response or else parity
4920 * doesn't get generated properly. disable SERR/PERR as well.
4921 * in addition, we want to turn MWI on.
4923 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4924 pci_cmd &= ~PCI_COMMAND_SERR;
4925 pci_cmd |= PCI_COMMAND_PARITY;
4926 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4927 pci_set_mwi(pdev);
4929 * On some architectures, the default cache line size set
4930 * by pci_set_mwi reduces perforamnce. We have to increase
4931 * it for this case. To start, we'll print some configuration
4932 * data.
4934 #if 1
4935 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4936 &orig_cacheline_size);
4937 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4938 cas_cacheline_size =
4939 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4940 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4941 if (pci_write_config_byte(pdev,
4942 PCI_CACHE_LINE_SIZE,
4943 cas_cacheline_size)) {
4944 printk(KERN_ERR PFX "Could not set PCI cache "
4945 "line size\n");
4946 goto err_write_cacheline;
4949 #endif
4952 /* Configure DMA attributes. */
4953 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
4954 pci_using_dac = 1;
4955 err = pci_set_consistent_dma_mask(pdev,
4956 DMA_64BIT_MASK);
4957 if (err < 0) {
4958 printk(KERN_ERR PFX "Unable to obtain 64-bit DMA "
4959 "for consistent allocations\n");
4960 goto err_out_free_res;
4963 } else {
4964 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4965 if (err) {
4966 printk(KERN_ERR PFX "No usable DMA configuration, "
4967 "aborting.\n");
4968 goto err_out_free_res;
4970 pci_using_dac = 0;
4973 casreg_base = pci_resource_start(pdev, 0);
4974 casreg_len = pci_resource_len(pdev, 0);
4976 cp = netdev_priv(dev);
4977 cp->pdev = pdev;
4978 #if 1
4979 /* A value of 0 indicates we never explicitly set it */
4980 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4981 #endif
4982 cp->dev = dev;
4983 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4984 cassini_debug;
4986 cp->link_transition = LINK_TRANSITION_UNKNOWN;
4987 cp->link_transition_jiffies_valid = 0;
4989 spin_lock_init(&cp->lock);
4990 spin_lock_init(&cp->rx_inuse_lock);
4991 spin_lock_init(&cp->rx_spare_lock);
4992 for (i = 0; i < N_TX_RINGS; i++) {
4993 spin_lock_init(&cp->stat_lock[i]);
4994 spin_lock_init(&cp->tx_lock[i]);
4996 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4997 init_MUTEX(&cp->pm_sem);
4999 init_timer(&cp->link_timer);
5000 cp->link_timer.function = cas_link_timer;
5001 cp->link_timer.data = (unsigned long) cp;
5003 #if 1
5004 /* Just in case the implementation of atomic operations
5005 * change so that an explicit initialization is necessary.
5007 atomic_set(&cp->reset_task_pending, 0);
5008 atomic_set(&cp->reset_task_pending_all, 0);
5009 atomic_set(&cp->reset_task_pending_spare, 0);
5010 atomic_set(&cp->reset_task_pending_mtu, 0);
5011 #endif
5012 INIT_WORK(&cp->reset_task, cas_reset_task, cp);
5014 /* Default link parameters */
5015 if (link_mode >= 0 && link_mode <= 6)
5016 cp->link_cntl = link_modes[link_mode];
5017 else
5018 cp->link_cntl = BMCR_ANENABLE;
5019 cp->lstate = link_down;
5020 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5021 netif_carrier_off(cp->dev);
5022 cp->timer_ticks = 0;
5024 /* give us access to cassini registers */
5025 cp->regs = ioremap(casreg_base, casreg_len);
5026 if (cp->regs == 0UL) {
5027 printk(KERN_ERR PFX "Cannot map device registers, "
5028 "aborting.\n");
5029 goto err_out_free_res;
5031 cp->casreg_len = casreg_len;
5033 pci_save_state(pdev);
5034 cas_check_pci_invariants(cp);
5035 cas_hard_reset(cp);
5036 cas_reset(cp, 0);
5037 if (cas_check_invariants(cp))
5038 goto err_out_iounmap;
5040 cp->init_block = (struct cas_init_block *)
5041 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5042 &cp->block_dvma);
5043 if (!cp->init_block) {
5044 printk(KERN_ERR PFX "Cannot allocate init block, "
5045 "aborting.\n");
5046 goto err_out_iounmap;
5049 for (i = 0; i < N_TX_RINGS; i++)
5050 cp->init_txds[i] = cp->init_block->txds[i];
5052 for (i = 0; i < N_RX_DESC_RINGS; i++)
5053 cp->init_rxds[i] = cp->init_block->rxds[i];
5055 for (i = 0; i < N_RX_COMP_RINGS; i++)
5056 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5058 for (i = 0; i < N_RX_FLOWS; i++)
5059 skb_queue_head_init(&cp->rx_flows[i]);
5061 dev->open = cas_open;
5062 dev->stop = cas_close;
5063 dev->hard_start_xmit = cas_start_xmit;
5064 dev->get_stats = cas_get_stats;
5065 dev->set_multicast_list = cas_set_multicast;
5066 dev->do_ioctl = cas_ioctl;
5067 dev->ethtool_ops = &cas_ethtool_ops;
5068 dev->tx_timeout = cas_tx_timeout;
5069 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5070 dev->change_mtu = cas_change_mtu;
5071 #ifdef USE_NAPI
5072 dev->poll = cas_poll;
5073 dev->weight = 64;
5074 #endif
5075 #ifdef CONFIG_NET_POLL_CONTROLLER
5076 dev->poll_controller = cas_netpoll;
5077 #endif
5078 dev->irq = pdev->irq;
5079 dev->dma = 0;
5081 /* Cassini features. */
5082 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5083 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5085 if (pci_using_dac)
5086 dev->features |= NETIF_F_HIGHDMA;
5088 if (register_netdev(dev)) {
5089 printk(KERN_ERR PFX "Cannot register net device, "
5090 "aborting.\n");
5091 goto err_out_free_consistent;
5094 i = readl(cp->regs + REG_BIM_CFG);
5095 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5096 "Ethernet[%d] ", dev->name,
5097 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5098 (i & BIM_CFG_32BIT) ? "32" : "64",
5099 (i & BIM_CFG_66MHZ) ? "66" : "33",
5100 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq);
5102 for (i = 0; i < 6; i++)
5103 printk("%2.2x%c", dev->dev_addr[i],
5104 i == 5 ? ' ' : ':');
5105 printk("\n");
5107 pci_set_drvdata(pdev, dev);
5108 cp->hw_running = 1;
5109 cas_entropy_reset(cp);
5110 cas_phy_init(cp);
5111 cas_begin_auto_negotiation(cp, NULL);
5112 return 0;
5114 err_out_free_consistent:
5115 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5116 cp->init_block, cp->block_dvma);
5118 err_out_iounmap:
5119 down(&cp->pm_sem);
5120 if (cp->hw_running)
5121 cas_shutdown(cp);
5122 up(&cp->pm_sem);
5124 iounmap(cp->regs);
5127 err_out_free_res:
5128 pci_release_regions(pdev);
5130 err_write_cacheline:
5131 /* Try to restore it in case the error occured after we
5132 * set it.
5134 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5136 err_out_free_netdev:
5137 free_netdev(dev);
5139 err_out_disable_pdev:
5140 pci_disable_device(pdev);
5141 pci_set_drvdata(pdev, NULL);
5142 return -ENODEV;
5145 static void __devexit cas_remove_one(struct pci_dev *pdev)
5147 struct net_device *dev = pci_get_drvdata(pdev);
5148 struct cas *cp;
5149 if (!dev)
5150 return;
5152 cp = netdev_priv(dev);
5153 unregister_netdev(dev);
5155 down(&cp->pm_sem);
5156 flush_scheduled_work();
5157 if (cp->hw_running)
5158 cas_shutdown(cp);
5159 up(&cp->pm_sem);
5161 #if 1
5162 if (cp->orig_cacheline_size) {
5163 /* Restore the cache line size if we had modified
5164 * it.
5166 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5167 cp->orig_cacheline_size);
5169 #endif
5170 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5171 cp->init_block, cp->block_dvma);
5172 iounmap(cp->regs);
5173 free_netdev(dev);
5174 pci_release_regions(pdev);
5175 pci_disable_device(pdev);
5176 pci_set_drvdata(pdev, NULL);
5179 #ifdef CONFIG_PM
5180 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5182 struct net_device *dev = pci_get_drvdata(pdev);
5183 struct cas *cp = netdev_priv(dev);
5184 unsigned long flags;
5186 /* We hold the PM semaphore during entire driver
5187 * sleep time
5189 down(&cp->pm_sem);
5191 /* If the driver is opened, we stop the DMA */
5192 if (cp->opened) {
5193 netif_device_detach(dev);
5195 cas_lock_all_save(cp, flags);
5197 /* We can set the second arg of cas_reset to 0
5198 * because on resume, we'll call cas_init_hw with
5199 * its second arg set so that autonegotiation is
5200 * restarted.
5202 cas_reset(cp, 0);
5203 cas_clean_rings(cp);
5204 cas_unlock_all_restore(cp, flags);
5207 if (cp->hw_running)
5208 cas_shutdown(cp);
5210 return 0;
5213 static int cas_resume(struct pci_dev *pdev)
5215 struct net_device *dev = pci_get_drvdata(pdev);
5216 struct cas *cp = netdev_priv(dev);
5218 printk(KERN_INFO "%s: resuming\n", dev->name);
5220 cas_hard_reset(cp);
5221 if (cp->opened) {
5222 unsigned long flags;
5223 cas_lock_all_save(cp, flags);
5224 cas_reset(cp, 0);
5225 cp->hw_running = 1;
5226 cas_clean_rings(cp);
5227 cas_init_hw(cp, 1);
5228 cas_unlock_all_restore(cp, flags);
5230 netif_device_attach(dev);
5232 up(&cp->pm_sem);
5233 return 0;
5235 #endif /* CONFIG_PM */
5237 static struct pci_driver cas_driver = {
5238 .name = DRV_MODULE_NAME,
5239 .id_table = cas_pci_tbl,
5240 .probe = cas_init_one,
5241 .remove = __devexit_p(cas_remove_one),
5242 #ifdef CONFIG_PM
5243 .suspend = cas_suspend,
5244 .resume = cas_resume
5245 #endif
5248 static int __init cas_init(void)
5250 if (linkdown_timeout > 0)
5251 link_transition_timeout = linkdown_timeout * HZ;
5252 else
5253 link_transition_timeout = 0;
5255 return pci_module_init(&cas_driver);
5258 static void __exit cas_cleanup(void)
5260 pci_unregister_driver(&cas_driver);
5263 module_init(cas_init);
5264 module_exit(cas_cleanup);