2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
19 * Gianfar: AKA Lambda Draconis, "Dragon"
27 * The driver is initialized through platform_device. Structures which
28 * define the configuration needed by the board are defined in a
29 * board structure in arch/ppc/platforms (though I do not
30 * discount the possibility that other architectures could one
33 * The Gianfar Ethernet Controller uses a ring of buffer
34 * descriptors. The beginning is indicated by a register
35 * pointing to the physical address of the start of the ring.
36 * The end is determined by a "wrap" bit being set in the
37 * last descriptor of the ring.
39 * When a packet is received, the RXF bit in the
40 * IEVENT register is set, triggering an interrupt when the
41 * corresponding bit in the IMASK register is also set (if
42 * interrupt coalescing is active, then the interrupt may not
43 * happen immediately, but will wait until either a set number
44 * of frames or amount of time have passed). In NAPI, the
45 * interrupt handler will signal there is work to be done, and
46 * exit. Without NAPI, the packet(s) will be handled
47 * immediately. Both methods will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
83 #include <linux/platform_device.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
99 #include "gianfar_mii.h"
101 #define TX_TIMEOUT (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
109 #define RECEIVE(x) netif_rx(x)
112 const char gfar_driver_name
[] = "Gianfar Ethernet";
113 const char gfar_driver_version
[] = "1.3";
115 static int gfar_enet_open(struct net_device
*dev
);
116 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
117 static void gfar_timeout(struct net_device
*dev
);
118 static int gfar_close(struct net_device
*dev
);
119 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
120 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
);
121 static int gfar_set_mac_address(struct net_device
*dev
);
122 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
123 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
);
124 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
);
125 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
126 static void adjust_link(struct net_device
*dev
);
127 static void init_registers(struct net_device
*dev
);
128 static int init_phy(struct net_device
*dev
);
129 static int gfar_probe(struct platform_device
*pdev
);
130 static int gfar_remove(struct platform_device
*pdev
);
131 static void free_skb_resources(struct gfar_private
*priv
);
132 static void gfar_set_multi(struct net_device
*dev
);
133 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct net_device
*dev
, int *budget
);
137 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
138 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
139 static void gfar_vlan_rx_register(struct net_device
*netdev
,
140 struct vlan_group
*grp
);
141 static void gfar_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
142 void gfar_halt(struct net_device
*dev
);
143 void gfar_start(struct net_device
*dev
);
144 static void gfar_clear_exact_match(struct net_device
*dev
);
145 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
147 extern struct ethtool_ops gfar_ethtool_ops
;
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
153 /* Returns 1 if incoming frames use an FCB */
154 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
156 return (priv
->vlan_enable
|| priv
->rx_csum_enable
);
159 /* Set up the ethernet device structure, private data,
160 * and anything else we need before we start */
161 static int gfar_probe(struct platform_device
*pdev
)
164 struct net_device
*dev
= NULL
;
165 struct gfar_private
*priv
= NULL
;
166 struct gianfar_platform_data
*einfo
;
171 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
174 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
180 /* Create an ethernet device instance */
181 dev
= alloc_etherdev(sizeof (*priv
));
186 priv
= netdev_priv(dev
);
188 /* Set the info in the priv to the current info */
191 /* fill out IRQ fields */
192 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
193 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
194 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
195 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
197 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
200 /* get a pointer to the register memory */
201 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
202 priv
->regs
= ioremap(r
->start
, sizeof (struct gfar
));
204 if (NULL
== priv
->regs
) {
209 spin_lock_init(&priv
->lock
);
211 platform_set_drvdata(pdev
, dev
);
213 /* Stop the DMA engine now, in case it was running before */
214 /* (The firmware could have used it, and left it running). */
215 /* To do this, we write Graceful Receive Stop and Graceful */
216 /* Transmit Stop, and then wait until the corresponding bits */
217 /* in IEVENT indicate the stops have completed. */
218 tempval
= gfar_read(&priv
->regs
->dmactrl
);
219 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
220 gfar_write(&priv
->regs
->dmactrl
, tempval
);
222 tempval
= gfar_read(&priv
->regs
->dmactrl
);
223 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
224 gfar_write(&priv
->regs
->dmactrl
, tempval
);
226 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
229 /* Reset MAC layer */
230 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
232 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
233 gfar_write(&priv
->regs
->maccfg1
, tempval
);
235 /* Initialize MACCFG2. */
236 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
238 /* Initialize ECNTRL */
239 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
241 /* Copy the station address into the dev structure, */
242 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
244 /* Set the dev->base_addr to the gfar reg region */
245 dev
->base_addr
= (unsigned long) (priv
->regs
);
247 SET_MODULE_OWNER(dev
);
248 SET_NETDEV_DEV(dev
, &pdev
->dev
);
250 /* Fill in the dev structure */
251 dev
->open
= gfar_enet_open
;
252 dev
->hard_start_xmit
= gfar_start_xmit
;
253 dev
->tx_timeout
= gfar_timeout
;
254 dev
->watchdog_timeo
= TX_TIMEOUT
;
255 #ifdef CONFIG_GFAR_NAPI
256 dev
->poll
= gfar_poll
;
257 dev
->weight
= GFAR_DEV_WEIGHT
;
259 dev
->stop
= gfar_close
;
260 dev
->get_stats
= gfar_get_stats
;
261 dev
->change_mtu
= gfar_change_mtu
;
263 dev
->set_multicast_list
= gfar_set_multi
;
265 dev
->ethtool_ops
= &gfar_ethtool_ops
;
267 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
268 priv
->rx_csum_enable
= 1;
269 dev
->features
|= NETIF_F_IP_CSUM
;
271 priv
->rx_csum_enable
= 0;
275 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
276 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
277 dev
->vlan_rx_kill_vid
= gfar_vlan_rx_kill_vid
;
279 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
281 priv
->vlan_enable
= 1;
284 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
285 priv
->extended_hash
= 1;
286 priv
->hash_width
= 9;
288 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
289 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
290 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
291 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
292 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
293 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
294 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
295 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
296 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
297 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
298 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
299 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
300 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
301 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
302 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
303 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
306 priv
->extended_hash
= 0;
307 priv
->hash_width
= 8;
309 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
310 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
311 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
312 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
313 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
314 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
315 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
316 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
319 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
320 priv
->padding
= DEFAULT_PADDING
;
324 if (dev
->features
& NETIF_F_IP_CSUM
)
325 dev
->hard_header_len
+= GMAC_FCB_LEN
;
327 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
328 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
329 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
331 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
332 priv
->txcount
= DEFAULT_TXCOUNT
;
333 priv
->txtime
= DEFAULT_TXTIME
;
334 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
335 priv
->rxcount
= DEFAULT_RXCOUNT
;
336 priv
->rxtime
= DEFAULT_RXTIME
;
338 /* Enable most messages by default */
339 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
341 err
= register_netdev(dev
);
344 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
349 /* Create all the sysfs files */
350 gfar_init_sysfs(dev
);
352 /* Print out the device info */
353 printk(KERN_INFO DEVICE_NAME
, dev
->name
);
354 for (idx
= 0; idx
< 6; idx
++)
355 printk("%2.2x%c", dev
->dev_addr
[idx
], idx
== 5 ? ' ' : ':');
358 /* Even more device info helps when determining which kernel */
359 /* provided which set of benchmarks. */
360 #ifdef CONFIG_GFAR_NAPI
361 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
363 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
365 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
366 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
377 static int gfar_remove(struct platform_device
*pdev
)
379 struct net_device
*dev
= platform_get_drvdata(pdev
);
380 struct gfar_private
*priv
= netdev_priv(dev
);
382 platform_set_drvdata(pdev
, NULL
);
391 /* Initializes driver's PHY state, and attaches to the PHY.
392 * Returns 0 on success.
394 static int init_phy(struct net_device
*dev
)
396 struct gfar_private
*priv
= netdev_priv(dev
);
397 uint gigabit_support
=
398 priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
399 SUPPORTED_1000baseT_Full
: 0;
400 struct phy_device
*phydev
;
401 char phy_id
[BUS_ID_SIZE
];
405 priv
->oldduplex
= -1;
407 snprintf(phy_id
, BUS_ID_SIZE
, PHY_ID_FMT
, priv
->einfo
->bus_id
, priv
->einfo
->phy_id
);
409 phydev
= phy_connect(dev
, phy_id
, &adjust_link
, 0);
411 if (IS_ERR(phydev
)) {
412 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
413 return PTR_ERR(phydev
);
416 /* Remove any features not supported by the controller */
417 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
418 phydev
->advertising
= phydev
->supported
;
420 priv
->phydev
= phydev
;
425 static void init_registers(struct net_device
*dev
)
427 struct gfar_private
*priv
= netdev_priv(dev
);
430 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
432 /* Initialize IMASK */
433 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
435 /* Init hash registers to zero */
436 gfar_write(&priv
->regs
->igaddr0
, 0);
437 gfar_write(&priv
->regs
->igaddr1
, 0);
438 gfar_write(&priv
->regs
->igaddr2
, 0);
439 gfar_write(&priv
->regs
->igaddr3
, 0);
440 gfar_write(&priv
->regs
->igaddr4
, 0);
441 gfar_write(&priv
->regs
->igaddr5
, 0);
442 gfar_write(&priv
->regs
->igaddr6
, 0);
443 gfar_write(&priv
->regs
->igaddr7
, 0);
445 gfar_write(&priv
->regs
->gaddr0
, 0);
446 gfar_write(&priv
->regs
->gaddr1
, 0);
447 gfar_write(&priv
->regs
->gaddr2
, 0);
448 gfar_write(&priv
->regs
->gaddr3
, 0);
449 gfar_write(&priv
->regs
->gaddr4
, 0);
450 gfar_write(&priv
->regs
->gaddr5
, 0);
451 gfar_write(&priv
->regs
->gaddr6
, 0);
452 gfar_write(&priv
->regs
->gaddr7
, 0);
454 /* Zero out the rmon mib registers if it has them */
455 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
456 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
458 /* Mask off the CAM interrupts */
459 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
460 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
463 /* Initialize the max receive buffer length */
464 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
466 /* Initialize the Minimum Frame Length Register */
467 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
469 /* Assign the TBI an address which won't conflict with the PHYs */
470 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
474 /* Halt the receive and transmit queues */
475 void gfar_halt(struct net_device
*dev
)
477 struct gfar_private
*priv
= netdev_priv(dev
);
478 struct gfar __iomem
*regs
= priv
->regs
;
481 /* Mask all interrupts */
482 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
484 /* Clear all interrupts */
485 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
487 /* Stop the DMA, and wait for it to stop */
488 tempval
= gfar_read(&priv
->regs
->dmactrl
);
489 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
490 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
491 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
492 gfar_write(&priv
->regs
->dmactrl
, tempval
);
494 while (!(gfar_read(&priv
->regs
->ievent
) &
495 (IEVENT_GRSC
| IEVENT_GTSC
)))
499 /* Disable Rx and Tx */
500 tempval
= gfar_read(®s
->maccfg1
);
501 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
502 gfar_write(®s
->maccfg1
, tempval
);
505 void stop_gfar(struct net_device
*dev
)
507 struct gfar_private
*priv
= netdev_priv(dev
);
508 struct gfar __iomem
*regs
= priv
->regs
;
511 phy_stop(priv
->phydev
);
514 spin_lock_irqsave(&priv
->lock
, flags
);
518 spin_unlock_irqrestore(&priv
->lock
, flags
);
521 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
522 free_irq(priv
->interruptError
, dev
);
523 free_irq(priv
->interruptTransmit
, dev
);
524 free_irq(priv
->interruptReceive
, dev
);
526 free_irq(priv
->interruptTransmit
, dev
);
529 free_skb_resources(priv
);
531 dma_free_coherent(NULL
,
532 sizeof(struct txbd8
)*priv
->tx_ring_size
533 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
535 gfar_read(®s
->tbase0
));
538 /* If there are any tx skbs or rx skbs still around, free them.
539 * Then free tx_skbuff and rx_skbuff */
540 static void free_skb_resources(struct gfar_private
*priv
)
546 /* Go through all the buffer descriptors and free their data buffers */
547 txbdp
= priv
->tx_bd_base
;
549 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
551 if (priv
->tx_skbuff
[i
]) {
552 dma_unmap_single(NULL
, txbdp
->bufPtr
,
555 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
556 priv
->tx_skbuff
[i
] = NULL
;
560 kfree(priv
->tx_skbuff
);
562 rxbdp
= priv
->rx_bd_base
;
564 /* rx_skbuff is not guaranteed to be allocated, so only
565 * free it and its contents if it is allocated */
566 if(priv
->rx_skbuff
!= NULL
) {
567 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
568 if (priv
->rx_skbuff
[i
]) {
569 dma_unmap_single(NULL
, rxbdp
->bufPtr
,
570 priv
->rx_buffer_size
,
573 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
574 priv
->rx_skbuff
[i
] = NULL
;
584 kfree(priv
->rx_skbuff
);
588 void gfar_start(struct net_device
*dev
)
590 struct gfar_private
*priv
= netdev_priv(dev
);
591 struct gfar __iomem
*regs
= priv
->regs
;
594 /* Enable Rx and Tx in MACCFG1 */
595 tempval
= gfar_read(®s
->maccfg1
);
596 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
597 gfar_write(®s
->maccfg1
, tempval
);
599 /* Initialize DMACTRL to have WWR and WOP */
600 tempval
= gfar_read(&priv
->regs
->dmactrl
);
601 tempval
|= DMACTRL_INIT_SETTINGS
;
602 gfar_write(&priv
->regs
->dmactrl
, tempval
);
604 /* Clear THLT, so that the DMA starts polling now */
605 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
607 /* Make sure we aren't stopped */
608 tempval
= gfar_read(&priv
->regs
->dmactrl
);
609 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
610 gfar_write(&priv
->regs
->dmactrl
, tempval
);
612 /* Unmask the interrupts we look for */
613 gfar_write(®s
->imask
, IMASK_DEFAULT
);
616 /* Bring the controller up and running */
617 int startup_gfar(struct net_device
*dev
)
624 struct gfar_private
*priv
= netdev_priv(dev
);
625 struct gfar __iomem
*regs
= priv
->regs
;
630 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
632 /* Allocate memory for the buffer descriptors */
633 vaddr
= (unsigned long) dma_alloc_coherent(NULL
,
634 sizeof (struct txbd8
) * priv
->tx_ring_size
+
635 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
639 if (netif_msg_ifup(priv
))
640 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
645 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
647 /* enet DMA only understands physical addresses */
648 gfar_write(®s
->tbase0
, addr
);
650 /* Start the rx descriptor ring where the tx ring leaves off */
651 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
652 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
653 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
654 gfar_write(®s
->rbase0
, addr
);
656 /* Setup the skbuff rings */
658 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
659 priv
->tx_ring_size
, GFP_KERNEL
);
661 if (NULL
== priv
->tx_skbuff
) {
662 if (netif_msg_ifup(priv
))
663 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
669 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
670 priv
->tx_skbuff
[i
] = NULL
;
673 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
674 priv
->rx_ring_size
, GFP_KERNEL
);
676 if (NULL
== priv
->rx_skbuff
) {
677 if (netif_msg_ifup(priv
))
678 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
684 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
685 priv
->rx_skbuff
[i
] = NULL
;
687 /* Initialize some variables in our dev structure */
688 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
689 priv
->cur_rx
= priv
->rx_bd_base
;
690 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
693 /* Initialize Transmit Descriptor Ring */
694 txbdp
= priv
->tx_bd_base
;
695 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
702 /* Set the last descriptor in the ring to indicate wrap */
704 txbdp
->status
|= TXBD_WRAP
;
706 rxbdp
= priv
->rx_bd_base
;
707 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
708 struct sk_buff
*skb
= NULL
;
712 skb
= gfar_new_skb(dev
, rxbdp
);
714 priv
->rx_skbuff
[i
] = skb
;
719 /* Set the last descriptor in the ring to wrap */
721 rxbdp
->status
|= RXBD_WRAP
;
723 /* If the device has multiple interrupts, register for
724 * them. Otherwise, only register for the one */
725 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
726 /* Install our interrupt handlers for Error,
727 * Transmit, and Receive */
728 if (request_irq(priv
->interruptError
, gfar_error
,
729 0, "enet_error", dev
) < 0) {
730 if (netif_msg_intr(priv
))
731 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
732 dev
->name
, priv
->interruptError
);
738 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
739 0, "enet_tx", dev
) < 0) {
740 if (netif_msg_intr(priv
))
741 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
742 dev
->name
, priv
->interruptTransmit
);
749 if (request_irq(priv
->interruptReceive
, gfar_receive
,
750 0, "enet_rx", dev
) < 0) {
751 if (netif_msg_intr(priv
))
752 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
753 dev
->name
, priv
->interruptReceive
);
759 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
760 0, "gfar_interrupt", dev
) < 0) {
761 if (netif_msg_intr(priv
))
762 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
763 dev
->name
, priv
->interruptError
);
770 phy_start(priv
->phydev
);
772 /* Configure the coalescing support */
773 if (priv
->txcoalescing
)
774 gfar_write(®s
->txic
,
775 mk_ic_value(priv
->txcount
, priv
->txtime
));
777 gfar_write(®s
->txic
, 0);
779 if (priv
->rxcoalescing
)
780 gfar_write(®s
->rxic
,
781 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
783 gfar_write(®s
->rxic
, 0);
785 if (priv
->rx_csum_enable
)
786 rctrl
|= RCTRL_CHECKSUMMING
;
788 if (priv
->extended_hash
) {
789 rctrl
|= RCTRL_EXTHASH
;
791 gfar_clear_exact_match(dev
);
795 if (priv
->vlan_enable
)
799 rctrl
&= ~RCTRL_PAL_MASK
;
800 rctrl
|= RCTRL_PADDING(priv
->padding
);
803 /* Init rctrl based on our settings */
804 gfar_write(&priv
->regs
->rctrl
, rctrl
);
806 if (dev
->features
& NETIF_F_IP_CSUM
)
807 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
809 /* Set the extraction length and index */
810 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
811 ATTRELI_EI(priv
->rx_stash_index
);
813 gfar_write(&priv
->regs
->attreli
, attrs
);
815 /* Start with defaults, and add stashing or locking
816 * depending on the approprate variables */
817 attrs
= ATTR_INIT_SETTINGS
;
819 if (priv
->bd_stash_en
)
820 attrs
|= ATTR_BDSTASH
;
822 if (priv
->rx_stash_size
!= 0)
823 attrs
|= ATTR_BUFSTASH
;
825 gfar_write(&priv
->regs
->attr
, attrs
);
827 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
828 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
829 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
831 /* Start the controller */
837 free_irq(priv
->interruptTransmit
, dev
);
839 free_irq(priv
->interruptError
, dev
);
842 free_skb_resources(priv
);
844 dma_free_coherent(NULL
,
845 sizeof(struct txbd8
)*priv
->tx_ring_size
846 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
848 gfar_read(®s
->tbase0
));
853 /* Called when something needs to use the ethernet device */
854 /* Returns 0 for success. */
855 static int gfar_enet_open(struct net_device
*dev
)
859 /* Initialize a bunch of registers */
862 gfar_set_mac_address(dev
);
869 err
= startup_gfar(dev
);
871 netif_start_queue(dev
);
876 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
878 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
880 memset(fcb
, 0, GMAC_FCB_LEN
);
885 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
889 /* If we're here, it's a IP packet with a TCP or UDP
890 * payload. We set it to checksum, using a pseudo-header
893 flags
= TXFCB_DEFAULT
;
895 /* Tell the controller what the protocol is */
896 /* And provide the already calculated phcs */
897 if (skb
->nh
.iph
->protocol
== IPPROTO_UDP
) {
899 fcb
->phcs
= skb
->h
.uh
->check
;
901 fcb
->phcs
= skb
->h
.th
->check
;
903 /* l3os is the distance between the start of the
904 * frame (skb->data) and the start of the IP hdr.
905 * l4os is the distance between the start of the
906 * l3 hdr and the l4 hdr */
907 fcb
->l3os
= (u16
)(skb
->nh
.raw
- skb
->data
- GMAC_FCB_LEN
);
908 fcb
->l4os
= (u16
)(skb
->h
.raw
- skb
->nh
.raw
);
913 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
915 fcb
->flags
|= TXFCB_VLN
;
916 fcb
->vlctl
= vlan_tx_tag_get(skb
);
919 /* This is called by the kernel when a frame is ready for transmission. */
920 /* It is pointed to by the dev->hard_start_xmit function pointer */
921 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
923 struct gfar_private
*priv
= netdev_priv(dev
);
924 struct txfcb
*fcb
= NULL
;
928 /* Update transmit stats */
929 priv
->stats
.tx_bytes
+= skb
->len
;
932 spin_lock_irq(&priv
->lock
);
934 /* Point at the first free tx descriptor */
935 txbdp
= priv
->cur_tx
;
937 /* Clear all but the WRAP status flags */
938 status
= txbdp
->status
& TXBD_WRAP
;
940 /* Set up checksumming */
941 if (likely((dev
->features
& NETIF_F_IP_CSUM
)
942 && (CHECKSUM_HW
== skb
->ip_summed
))) {
943 fcb
= gfar_add_fcb(skb
, txbdp
);
945 gfar_tx_checksum(skb
, fcb
);
948 if (priv
->vlan_enable
&&
949 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
950 if (unlikely(NULL
== fcb
)) {
951 fcb
= gfar_add_fcb(skb
, txbdp
);
955 gfar_tx_vlan(skb
, fcb
);
958 /* Set buffer length and pointer */
959 txbdp
->length
= skb
->len
;
960 txbdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
961 skb
->len
, DMA_TO_DEVICE
);
963 /* Save the skb pointer so we can free it later */
964 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
966 /* Update the current skb pointer (wrapping if this was the last) */
968 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
970 /* Flag the BD as interrupt-causing */
971 status
|= TXBD_INTERRUPT
;
973 /* Flag the BD as ready to go, last in frame, and */
975 status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
977 dev
->trans_start
= jiffies
;
979 txbdp
->status
= status
;
981 /* If this was the last BD in the ring, the next one */
982 /* is at the beginning of the ring */
983 if (txbdp
->status
& TXBD_WRAP
)
984 txbdp
= priv
->tx_bd_base
;
988 /* If the next BD still needs to be cleaned up, then the bds
989 are full. We need to tell the kernel to stop sending us stuff. */
990 if (txbdp
== priv
->dirty_tx
) {
991 netif_stop_queue(dev
);
993 priv
->stats
.tx_fifo_errors
++;
996 /* Update the current txbd to the next one */
997 priv
->cur_tx
= txbdp
;
999 /* Tell the DMA to go go go */
1000 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1003 spin_unlock_irq(&priv
->lock
);
1008 /* Stops the kernel queue, and halts the controller */
1009 static int gfar_close(struct net_device
*dev
)
1011 struct gfar_private
*priv
= netdev_priv(dev
);
1014 /* Disconnect from the PHY */
1015 phy_disconnect(priv
->phydev
);
1016 priv
->phydev
= NULL
;
1018 netif_stop_queue(dev
);
1023 /* returns a net_device_stats structure pointer */
1024 static struct net_device_stats
* gfar_get_stats(struct net_device
*dev
)
1026 struct gfar_private
*priv
= netdev_priv(dev
);
1028 return &(priv
->stats
);
1031 /* Changes the mac address if the controller is not running. */
1032 int gfar_set_mac_address(struct net_device
*dev
)
1034 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1040 /* Enables and disables VLAN insertion/extraction */
1041 static void gfar_vlan_rx_register(struct net_device
*dev
,
1042 struct vlan_group
*grp
)
1044 struct gfar_private
*priv
= netdev_priv(dev
);
1045 unsigned long flags
;
1048 spin_lock_irqsave(&priv
->lock
, flags
);
1053 /* Enable VLAN tag insertion */
1054 tempval
= gfar_read(&priv
->regs
->tctrl
);
1055 tempval
|= TCTRL_VLINS
;
1057 gfar_write(&priv
->regs
->tctrl
, tempval
);
1059 /* Enable VLAN tag extraction */
1060 tempval
= gfar_read(&priv
->regs
->rctrl
);
1061 tempval
|= RCTRL_VLEX
;
1062 gfar_write(&priv
->regs
->rctrl
, tempval
);
1064 /* Disable VLAN tag insertion */
1065 tempval
= gfar_read(&priv
->regs
->tctrl
);
1066 tempval
&= ~TCTRL_VLINS
;
1067 gfar_write(&priv
->regs
->tctrl
, tempval
);
1069 /* Disable VLAN tag extraction */
1070 tempval
= gfar_read(&priv
->regs
->rctrl
);
1071 tempval
&= ~RCTRL_VLEX
;
1072 gfar_write(&priv
->regs
->rctrl
, tempval
);
1075 spin_unlock_irqrestore(&priv
->lock
, flags
);
1079 static void gfar_vlan_rx_kill_vid(struct net_device
*dev
, uint16_t vid
)
1081 struct gfar_private
*priv
= netdev_priv(dev
);
1082 unsigned long flags
;
1084 spin_lock_irqsave(&priv
->lock
, flags
);
1087 priv
->vlgrp
->vlan_devices
[vid
] = NULL
;
1089 spin_unlock_irqrestore(&priv
->lock
, flags
);
1093 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1095 int tempsize
, tempval
;
1096 struct gfar_private
*priv
= netdev_priv(dev
);
1097 int oldsize
= priv
->rx_buffer_size
;
1098 int frame_size
= new_mtu
+ ETH_HLEN
;
1100 if (priv
->vlan_enable
)
1101 frame_size
+= VLAN_ETH_HLEN
;
1103 if (gfar_uses_fcb(priv
))
1104 frame_size
+= GMAC_FCB_LEN
;
1106 frame_size
+= priv
->padding
;
1108 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1109 if (netif_msg_drv(priv
))
1110 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1116 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1117 INCREMENTAL_BUFFER_SIZE
;
1119 /* Only stop and start the controller if it isn't already
1120 * stopped, and we changed something */
1121 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1124 priv
->rx_buffer_size
= tempsize
;
1128 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1129 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1131 /* If the mtu is larger than the max size for standard
1132 * ethernet frames (ie, a jumbo frame), then set maccfg2
1133 * to allow huge frames, and to check the length */
1134 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1136 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1137 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1139 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1141 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1143 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1149 /* gfar_timeout gets called when a packet has not been
1150 * transmitted after a set amount of time.
1151 * For now, assume that clearing out all the structures, and
1152 * starting over will fix the problem. */
1153 static void gfar_timeout(struct net_device
*dev
)
1155 struct gfar_private
*priv
= netdev_priv(dev
);
1157 priv
->stats
.tx_errors
++;
1159 if (dev
->flags
& IFF_UP
) {
1164 netif_schedule(dev
);
1167 /* Interrupt Handler for Transmit complete */
1168 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
)
1170 struct net_device
*dev
= (struct net_device
*) dev_id
;
1171 struct gfar_private
*priv
= netdev_priv(dev
);
1175 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1178 spin_lock(&priv
->lock
);
1179 bdp
= priv
->dirty_tx
;
1180 while ((bdp
->status
& TXBD_READY
) == 0) {
1181 /* If dirty_tx and cur_tx are the same, then either the */
1182 /* ring is empty or full now (it could only be full in the beginning, */
1183 /* obviously). If it is empty, we are done. */
1184 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1187 priv
->stats
.tx_packets
++;
1189 /* Deferred means some collisions occurred during transmit, */
1190 /* but we eventually sent the packet. */
1191 if (bdp
->status
& TXBD_DEF
)
1192 priv
->stats
.collisions
++;
1194 /* Free the sk buffer associated with this TxBD */
1195 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1196 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1198 (priv
->skb_dirtytx
+
1199 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1201 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1202 if (bdp
->status
& TXBD_WRAP
)
1203 bdp
= priv
->tx_bd_base
;
1207 /* Move dirty_tx to be the next bd */
1208 priv
->dirty_tx
= bdp
;
1210 /* We freed a buffer, so now we can restart transmission */
1211 if (netif_queue_stopped(dev
))
1212 netif_wake_queue(dev
);
1213 } /* while ((bdp->status & TXBD_READY) == 0) */
1215 /* If we are coalescing the interrupts, reset the timer */
1216 /* Otherwise, clear it */
1217 if (priv
->txcoalescing
)
1218 gfar_write(&priv
->regs
->txic
,
1219 mk_ic_value(priv
->txcount
, priv
->txtime
));
1221 gfar_write(&priv
->regs
->txic
, 0);
1223 spin_unlock(&priv
->lock
);
1228 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1230 unsigned int alignamount
;
1231 struct gfar_private
*priv
= netdev_priv(dev
);
1232 struct sk_buff
*skb
= NULL
;
1233 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1235 /* We have to allocate the skb, so keep trying till we succeed */
1236 while ((!skb
) && timeout
--)
1237 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1242 alignamount
= RXBUF_ALIGNMENT
-
1243 (((unsigned) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1245 /* We need the data buffer to be aligned properly. We will reserve
1246 * as many bytes as needed to align the data properly
1248 skb_reserve(skb
, alignamount
);
1252 bdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1253 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1257 /* Mark the buffer empty */
1258 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1263 static inline void count_errors(unsigned short status
, struct gfar_private
*priv
)
1265 struct net_device_stats
*stats
= &priv
->stats
;
1266 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1268 /* If the packet was truncated, none of the other errors
1270 if (status
& RXBD_TRUNCATED
) {
1271 stats
->rx_length_errors
++;
1277 /* Count the errors, if there were any */
1278 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1279 stats
->rx_length_errors
++;
1281 if (status
& RXBD_LARGE
)
1286 if (status
& RXBD_NONOCTET
) {
1287 stats
->rx_frame_errors
++;
1288 estats
->rx_nonoctet
++;
1290 if (status
& RXBD_CRCERR
) {
1291 estats
->rx_crcerr
++;
1292 stats
->rx_crc_errors
++;
1294 if (status
& RXBD_OVERRUN
) {
1295 estats
->rx_overrun
++;
1296 stats
->rx_crc_errors
++;
1300 irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
)
1302 struct net_device
*dev
= (struct net_device
*) dev_id
;
1303 struct gfar_private
*priv
= netdev_priv(dev
);
1305 #ifdef CONFIG_GFAR_NAPI
1309 /* Clear IEVENT, so rx interrupt isn't called again
1310 * because of this interrupt */
1311 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1314 #ifdef CONFIG_GFAR_NAPI
1315 if (netif_rx_schedule_prep(dev
)) {
1316 tempval
= gfar_read(&priv
->regs
->imask
);
1317 tempval
&= IMASK_RX_DISABLED
;
1318 gfar_write(&priv
->regs
->imask
, tempval
);
1320 __netif_rx_schedule(dev
);
1322 if (netif_msg_rx_err(priv
))
1323 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1324 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1325 gfar_read(&priv
->regs
->imask
));
1329 spin_lock(&priv
->lock
);
1330 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1332 /* If we are coalescing interrupts, update the timer */
1333 /* Otherwise, clear it */
1334 if (priv
->rxcoalescing
)
1335 gfar_write(&priv
->regs
->rxic
,
1336 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1338 gfar_write(&priv
->regs
->rxic
, 0);
1340 spin_unlock(&priv
->lock
);
1346 static inline int gfar_rx_vlan(struct sk_buff
*skb
,
1347 struct vlan_group
*vlgrp
, unsigned short vlctl
)
1349 #ifdef CONFIG_GFAR_NAPI
1350 return vlan_hwaccel_receive_skb(skb
, vlgrp
, vlctl
);
1352 return vlan_hwaccel_rx(skb
, vlgrp
, vlctl
);
1356 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1358 /* If valid headers were found, and valid sums
1359 * were verified, then we tell the kernel that no
1360 * checksumming is necessary. Otherwise, it is */
1361 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1362 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1364 skb
->ip_summed
= CHECKSUM_NONE
;
1368 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1370 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1372 /* Remove the FCB from the skb */
1373 skb_pull(skb
, GMAC_FCB_LEN
);
1378 /* gfar_process_frame() -- handle one incoming packet if skb
1380 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1383 struct gfar_private
*priv
= netdev_priv(dev
);
1384 struct rxfcb
*fcb
= NULL
;
1387 if (netif_msg_rx_err(priv
))
1388 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1389 priv
->stats
.rx_dropped
++;
1390 priv
->extra_stats
.rx_skbmissing
++;
1394 /* Prep the skb for the packet */
1395 skb_put(skb
, length
);
1397 /* Grab the FCB if there is one */
1398 if (gfar_uses_fcb(priv
))
1399 fcb
= gfar_get_fcb(skb
);
1401 /* Remove the padded bytes, if there are any */
1403 skb_pull(skb
, priv
->padding
);
1405 if (priv
->rx_csum_enable
)
1406 gfar_rx_checksum(skb
, fcb
);
1408 /* Tell the skb what kind of packet this is */
1409 skb
->protocol
= eth_type_trans(skb
, dev
);
1411 /* Send the packet up the stack */
1412 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
1413 ret
= gfar_rx_vlan(skb
, priv
->vlgrp
, fcb
->vlctl
);
1417 if (NET_RX_DROP
== ret
)
1418 priv
->extra_stats
.kernel_dropped
++;
1424 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1425 * until the budget/quota has been reached. Returns the number
1428 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1431 struct sk_buff
*skb
;
1434 struct gfar_private
*priv
= netdev_priv(dev
);
1436 /* Get the first full descriptor */
1439 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1440 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1443 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1444 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1445 /* Increment the number of packets */
1446 priv
->stats
.rx_packets
++;
1449 /* Remove the FCS from the packet length */
1450 pkt_len
= bdp
->length
- 4;
1452 gfar_process_frame(dev
, skb
, pkt_len
);
1454 priv
->stats
.rx_bytes
+= pkt_len
;
1456 count_errors(bdp
->status
, priv
);
1459 dev_kfree_skb_any(skb
);
1461 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1464 dev
->last_rx
= jiffies
;
1466 /* Clear the status flags for this buffer */
1467 bdp
->status
&= ~RXBD_STATS
;
1469 /* Add another skb for the future */
1470 skb
= gfar_new_skb(dev
, bdp
);
1471 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1473 /* Update to the next pointer */
1474 if (bdp
->status
& RXBD_WRAP
)
1475 bdp
= priv
->rx_bd_base
;
1479 /* update to point at the next skb */
1482 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1486 /* Update the current rxbd pointer to be the next one */
1489 /* If no packets have arrived since the
1490 * last one we processed, clear the IEVENT RX and
1491 * BSY bits so that another interrupt won't be
1492 * generated when we set IMASK */
1493 if (bdp
->status
& RXBD_EMPTY
)
1494 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1499 #ifdef CONFIG_GFAR_NAPI
1500 static int gfar_poll(struct net_device
*dev
, int *budget
)
1503 struct gfar_private
*priv
= netdev_priv(dev
);
1504 int rx_work_limit
= *budget
;
1506 if (rx_work_limit
> dev
->quota
)
1507 rx_work_limit
= dev
->quota
;
1509 howmany
= gfar_clean_rx_ring(dev
, rx_work_limit
);
1511 dev
->quota
-= howmany
;
1512 rx_work_limit
-= howmany
;
1515 if (rx_work_limit
>= 0) {
1516 netif_rx_complete(dev
);
1518 /* Clear the halt bit in RSTAT */
1519 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1521 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1523 /* If we are coalescing interrupts, update the timer */
1524 /* Otherwise, clear it */
1525 if (priv
->rxcoalescing
)
1526 gfar_write(&priv
->regs
->rxic
,
1527 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1529 gfar_write(&priv
->regs
->rxic
, 0);
1532 return (rx_work_limit
< 0) ? 1 : 0;
1536 /* The interrupt handler for devices with one interrupt */
1537 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1539 struct net_device
*dev
= dev_id
;
1540 struct gfar_private
*priv
= netdev_priv(dev
);
1542 /* Save ievent for future reference */
1543 u32 events
= gfar_read(&priv
->regs
->ievent
);
1546 gfar_write(&priv
->regs
->ievent
, events
);
1548 /* Check for reception */
1549 if ((events
& IEVENT_RXF0
) || (events
& IEVENT_RXB0
))
1550 gfar_receive(irq
, dev_id
, regs
);
1552 /* Check for transmit completion */
1553 if ((events
& IEVENT_TXF
) || (events
& IEVENT_TXB
))
1554 gfar_transmit(irq
, dev_id
, regs
);
1556 /* Update error statistics */
1557 if (events
& IEVENT_TXE
) {
1558 priv
->stats
.tx_errors
++;
1560 if (events
& IEVENT_LC
)
1561 priv
->stats
.tx_window_errors
++;
1562 if (events
& IEVENT_CRL
)
1563 priv
->stats
.tx_aborted_errors
++;
1564 if (events
& IEVENT_XFUN
) {
1565 if (netif_msg_tx_err(priv
))
1566 printk(KERN_WARNING
"%s: tx underrun. dropped packet\n", dev
->name
);
1567 priv
->stats
.tx_dropped
++;
1568 priv
->extra_stats
.tx_underrun
++;
1570 /* Reactivate the Tx Queues */
1571 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1574 if (events
& IEVENT_BSY
) {
1575 priv
->stats
.rx_errors
++;
1576 priv
->extra_stats
.rx_bsy
++;
1578 gfar_receive(irq
, dev_id
, regs
);
1580 #ifndef CONFIG_GFAR_NAPI
1581 /* Clear the halt bit in RSTAT */
1582 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1585 if (netif_msg_rx_err(priv
))
1586 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
1588 gfar_read(&priv
->regs
->rstat
));
1590 if (events
& IEVENT_BABR
) {
1591 priv
->stats
.rx_errors
++;
1592 priv
->extra_stats
.rx_babr
++;
1594 if (netif_msg_rx_err(priv
))
1595 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1597 if (events
& IEVENT_EBERR
) {
1598 priv
->extra_stats
.eberr
++;
1599 if (netif_msg_rx_err(priv
))
1600 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1602 if ((events
& IEVENT_RXC
) && (netif_msg_rx_err(priv
)))
1603 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1605 if (events
& IEVENT_BABT
) {
1606 priv
->extra_stats
.tx_babt
++;
1607 if (netif_msg_rx_err(priv
))
1608 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1614 /* Called every time the controller might need to be made
1615 * aware of new link state. The PHY code conveys this
1616 * information through variables in the phydev structure, and this
1617 * function converts those variables into the appropriate
1618 * register values, and can bring down the device if needed.
1620 static void adjust_link(struct net_device
*dev
)
1622 struct gfar_private
*priv
= netdev_priv(dev
);
1623 struct gfar __iomem
*regs
= priv
->regs
;
1624 unsigned long flags
;
1625 struct phy_device
*phydev
= priv
->phydev
;
1628 spin_lock_irqsave(&priv
->lock
, flags
);
1630 u32 tempval
= gfar_read(®s
->maccfg2
);
1631 u32 ecntrl
= gfar_read(®s
->ecntrl
);
1633 /* Now we make sure that we can be in full duplex mode.
1634 * If not, we operate in half-duplex mode. */
1635 if (phydev
->duplex
!= priv
->oldduplex
) {
1637 if (!(phydev
->duplex
))
1638 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1640 tempval
|= MACCFG2_FULL_DUPLEX
;
1642 priv
->oldduplex
= phydev
->duplex
;
1645 if (phydev
->speed
!= priv
->oldspeed
) {
1647 switch (phydev
->speed
) {
1650 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1655 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1657 /* Reduced mode distinguishes
1658 * between 10 and 100 */
1659 if (phydev
->speed
== SPEED_100
)
1660 ecntrl
|= ECNTRL_R100
;
1662 ecntrl
&= ~(ECNTRL_R100
);
1665 if (netif_msg_link(priv
))
1667 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1668 dev
->name
, phydev
->speed
);
1672 priv
->oldspeed
= phydev
->speed
;
1675 gfar_write(®s
->maccfg2
, tempval
);
1676 gfar_write(®s
->ecntrl
, ecntrl
);
1678 if (!priv
->oldlink
) {
1681 netif_schedule(dev
);
1683 } else if (priv
->oldlink
) {
1687 priv
->oldduplex
= -1;
1690 if (new_state
&& netif_msg_link(priv
))
1691 phy_print_status(phydev
);
1693 spin_unlock_irqrestore(&priv
->lock
, flags
);
1696 /* Update the hash table based on the current list of multicast
1697 * addresses we subscribe to. Also, change the promiscuity of
1698 * the device based on the flags (this function is called
1699 * whenever dev->flags is changed */
1700 static void gfar_set_multi(struct net_device
*dev
)
1702 struct dev_mc_list
*mc_ptr
;
1703 struct gfar_private
*priv
= netdev_priv(dev
);
1704 struct gfar __iomem
*regs
= priv
->regs
;
1707 if(dev
->flags
& IFF_PROMISC
) {
1708 if (netif_msg_drv(priv
))
1709 printk(KERN_INFO
"%s: Entering promiscuous mode.\n",
1711 /* Set RCTRL to PROM */
1712 tempval
= gfar_read(®s
->rctrl
);
1713 tempval
|= RCTRL_PROM
;
1714 gfar_write(®s
->rctrl
, tempval
);
1716 /* Set RCTRL to not PROM */
1717 tempval
= gfar_read(®s
->rctrl
);
1718 tempval
&= ~(RCTRL_PROM
);
1719 gfar_write(®s
->rctrl
, tempval
);
1722 if(dev
->flags
& IFF_ALLMULTI
) {
1723 /* Set the hash to rx all multicast frames */
1724 gfar_write(®s
->igaddr0
, 0xffffffff);
1725 gfar_write(®s
->igaddr1
, 0xffffffff);
1726 gfar_write(®s
->igaddr2
, 0xffffffff);
1727 gfar_write(®s
->igaddr3
, 0xffffffff);
1728 gfar_write(®s
->igaddr4
, 0xffffffff);
1729 gfar_write(®s
->igaddr5
, 0xffffffff);
1730 gfar_write(®s
->igaddr6
, 0xffffffff);
1731 gfar_write(®s
->igaddr7
, 0xffffffff);
1732 gfar_write(®s
->gaddr0
, 0xffffffff);
1733 gfar_write(®s
->gaddr1
, 0xffffffff);
1734 gfar_write(®s
->gaddr2
, 0xffffffff);
1735 gfar_write(®s
->gaddr3
, 0xffffffff);
1736 gfar_write(®s
->gaddr4
, 0xffffffff);
1737 gfar_write(®s
->gaddr5
, 0xffffffff);
1738 gfar_write(®s
->gaddr6
, 0xffffffff);
1739 gfar_write(®s
->gaddr7
, 0xffffffff);
1744 /* zero out the hash */
1745 gfar_write(®s
->igaddr0
, 0x0);
1746 gfar_write(®s
->igaddr1
, 0x0);
1747 gfar_write(®s
->igaddr2
, 0x0);
1748 gfar_write(®s
->igaddr3
, 0x0);
1749 gfar_write(®s
->igaddr4
, 0x0);
1750 gfar_write(®s
->igaddr5
, 0x0);
1751 gfar_write(®s
->igaddr6
, 0x0);
1752 gfar_write(®s
->igaddr7
, 0x0);
1753 gfar_write(®s
->gaddr0
, 0x0);
1754 gfar_write(®s
->gaddr1
, 0x0);
1755 gfar_write(®s
->gaddr2
, 0x0);
1756 gfar_write(®s
->gaddr3
, 0x0);
1757 gfar_write(®s
->gaddr4
, 0x0);
1758 gfar_write(®s
->gaddr5
, 0x0);
1759 gfar_write(®s
->gaddr6
, 0x0);
1760 gfar_write(®s
->gaddr7
, 0x0);
1762 /* If we have extended hash tables, we need to
1763 * clear the exact match registers to prepare for
1765 if (priv
->extended_hash
) {
1766 em_num
= GFAR_EM_NUM
+ 1;
1767 gfar_clear_exact_match(dev
);
1774 if(dev
->mc_count
== 0)
1777 /* Parse the list, and set the appropriate bits */
1778 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1780 gfar_set_mac_for_addr(dev
, idx
,
1784 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1792 /* Clears each of the exact match registers to zero, so they
1793 * don't interfere with normal reception */
1794 static void gfar_clear_exact_match(struct net_device
*dev
)
1797 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
1799 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
1800 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
1803 /* Set the appropriate hash bit for the given addr */
1804 /* The algorithm works like so:
1805 * 1) Take the Destination Address (ie the multicast address), and
1806 * do a CRC on it (little endian), and reverse the bits of the
1808 * 2) Use the 8 most significant bits as a hash into a 256-entry
1809 * table. The table is controlled through 8 32-bit registers:
1810 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1811 * gaddr7. This means that the 3 most significant bits in the
1812 * hash index which gaddr register to use, and the 5 other bits
1813 * indicate which bit (assuming an IBM numbering scheme, which
1814 * for PowerPC (tm) is usually the case) in the register holds
1816 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1819 struct gfar_private
*priv
= netdev_priv(dev
);
1820 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1821 int width
= priv
->hash_width
;
1822 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
1823 u8 whichreg
= result
>> (32 - width
+ 5);
1824 u32 value
= (1 << (31-whichbit
));
1826 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
1828 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
1834 /* There are multiple MAC Address register pairs on some controllers
1835 * This function sets the numth pair to a given address
1837 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
1839 struct gfar_private
*priv
= netdev_priv(dev
);
1841 char tmpbuf
[MAC_ADDR_LEN
];
1843 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
1847 /* Now copy it into the mac registers backwards, cuz */
1848 /* little endian is silly */
1849 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
1850 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
1852 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
1854 tempval
= *((u32
*) (tmpbuf
+ 4));
1856 gfar_write(macptr
+1, tempval
);
1859 /* GFAR error interrupt handler */
1860 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
)
1862 struct net_device
*dev
= dev_id
;
1863 struct gfar_private
*priv
= netdev_priv(dev
);
1865 /* Save ievent for future reference */
1866 u32 events
= gfar_read(&priv
->regs
->ievent
);
1869 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
1872 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
1873 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1874 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
1876 /* Update the error counters */
1877 if (events
& IEVENT_TXE
) {
1878 priv
->stats
.tx_errors
++;
1880 if (events
& IEVENT_LC
)
1881 priv
->stats
.tx_window_errors
++;
1882 if (events
& IEVENT_CRL
)
1883 priv
->stats
.tx_aborted_errors
++;
1884 if (events
& IEVENT_XFUN
) {
1885 if (netif_msg_tx_err(priv
))
1886 printk(KERN_DEBUG
"%s: underrun. packet dropped.\n",
1888 priv
->stats
.tx_dropped
++;
1889 priv
->extra_stats
.tx_underrun
++;
1891 /* Reactivate the Tx Queues */
1892 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1894 if (netif_msg_tx_err(priv
))
1895 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
1897 if (events
& IEVENT_BSY
) {
1898 priv
->stats
.rx_errors
++;
1899 priv
->extra_stats
.rx_bsy
++;
1901 gfar_receive(irq
, dev_id
, regs
);
1903 #ifndef CONFIG_GFAR_NAPI
1904 /* Clear the halt bit in RSTAT */
1905 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1908 if (netif_msg_rx_err(priv
))
1909 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
1911 gfar_read(&priv
->regs
->rstat
));
1913 if (events
& IEVENT_BABR
) {
1914 priv
->stats
.rx_errors
++;
1915 priv
->extra_stats
.rx_babr
++;
1917 if (netif_msg_rx_err(priv
))
1918 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1920 if (events
& IEVENT_EBERR
) {
1921 priv
->extra_stats
.eberr
++;
1922 if (netif_msg_rx_err(priv
))
1923 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1925 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
1926 if (netif_msg_rx_status(priv
))
1927 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1929 if (events
& IEVENT_BABT
) {
1930 priv
->extra_stats
.tx_babt
++;
1931 if (netif_msg_tx_err(priv
))
1932 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1937 /* Structure for a device driver */
1938 static struct platform_driver gfar_driver
= {
1939 .probe
= gfar_probe
,
1940 .remove
= gfar_remove
,
1942 .name
= "fsl-gianfar",
1946 static int __init
gfar_init(void)
1948 int err
= gfar_mdio_init();
1953 err
= platform_driver_register(&gfar_driver
);
1961 static void __exit
gfar_exit(void)
1963 platform_driver_unregister(&gfar_driver
);
1967 module_init(gfar_init
);
1968 module_exit(gfar_exit
);