1 // SPDX-License-Identifier: GPL-2.0
3 * Performance events core code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
55 #include <asm/irq_regs.h>
57 typedef int (*remote_function_f
)(void *);
59 struct remote_function_call
{
60 struct task_struct
*p
;
61 remote_function_f func
;
66 static void remote_function(void *data
)
68 struct remote_function_call
*tfc
= data
;
69 struct task_struct
*p
= tfc
->p
;
73 if (task_cpu(p
) != smp_processor_id())
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
81 tfc
->ret
= -ESRCH
; /* No such (running) process */
86 tfc
->ret
= tfc
->func(tfc
->info
);
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
103 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
105 struct remote_function_call data
= {
114 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
117 } while (ret
== -EAGAIN
);
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
127 * Calls the function @func on the remote cpu.
129 * returns: @func return value or -ENXIO when the cpu is offline
131 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
133 struct remote_function_call data
= {
137 .ret
= -ENXIO
, /* No such CPU */
140 smp_call_function_single(cpu
, remote_function
, &data
, 1);
145 static inline struct perf_cpu_context
*
146 __get_cpu_context(struct perf_event_context
*ctx
)
148 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
151 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
152 struct perf_event_context
*ctx
)
154 raw_spin_lock(&cpuctx
->ctx
.lock
);
156 raw_spin_lock(&ctx
->lock
);
159 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
160 struct perf_event_context
*ctx
)
163 raw_spin_unlock(&ctx
->lock
);
164 raw_spin_unlock(&cpuctx
->ctx
.lock
);
167 #define TASK_TOMBSTONE ((void *)-1L)
169 static bool is_kernel_event(struct perf_event
*event
)
171 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
175 * On task ctx scheduling...
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
181 * This however results in two special cases:
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
194 struct perf_event_context
*, void *);
196 struct event_function_struct
{
197 struct perf_event
*event
;
202 static int event_function(void *info
)
204 struct event_function_struct
*efs
= info
;
205 struct perf_event
*event
= efs
->event
;
206 struct perf_event_context
*ctx
= event
->ctx
;
207 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
208 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
211 lockdep_assert_irqs_disabled();
213 perf_ctx_lock(cpuctx
, task_ctx
);
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
219 if (ctx
->task
!= current
) {
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
231 WARN_ON_ONCE(!ctx
->is_active
);
233 * And since we have ctx->is_active, cpuctx->task_ctx must
236 WARN_ON_ONCE(task_ctx
!= ctx
);
238 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
241 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
243 perf_ctx_unlock(cpuctx
, task_ctx
);
248 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
250 struct perf_event_context
*ctx
= event
->ctx
;
251 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
252 struct event_function_struct efs
= {
258 if (!event
->parent
) {
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
264 lockdep_assert_held(&ctx
->mutex
);
268 cpu_function_call(event
->cpu
, event_function
, &efs
);
272 if (task
== TASK_TOMBSTONE
)
276 if (!task_function_call(task
, event_function
, &efs
))
279 raw_spin_lock_irq(&ctx
->lock
);
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
285 if (task
== TASK_TOMBSTONE
) {
286 raw_spin_unlock_irq(&ctx
->lock
);
289 if (ctx
->is_active
) {
290 raw_spin_unlock_irq(&ctx
->lock
);
293 func(event
, NULL
, ctx
, data
);
294 raw_spin_unlock_irq(&ctx
->lock
);
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
301 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
303 struct perf_event_context
*ctx
= event
->ctx
;
304 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
305 struct task_struct
*task
= READ_ONCE(ctx
->task
);
306 struct perf_event_context
*task_ctx
= NULL
;
308 lockdep_assert_irqs_disabled();
311 if (task
== TASK_TOMBSTONE
)
317 perf_ctx_lock(cpuctx
, task_ctx
);
320 if (task
== TASK_TOMBSTONE
)
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
329 if (ctx
->is_active
) {
330 if (WARN_ON_ONCE(task
!= current
))
333 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
337 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
340 func(event
, cpuctx
, ctx
, data
);
342 perf_ctx_unlock(cpuctx
, task_ctx
);
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
351 * branch priv levels that need permission checks
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
358 EVENT_FLEXIBLE
= 0x1,
361 /* see ctx_resched() for details */
363 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371 static void perf_sched_delayed(struct work_struct
*work
);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
373 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
374 static DEFINE_MUTEX(perf_sched_mutex
);
375 static atomic_t perf_sched_count
;
377 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
379 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
381 static atomic_t nr_mmap_events __read_mostly
;
382 static atomic_t nr_comm_events __read_mostly
;
383 static atomic_t nr_namespaces_events __read_mostly
;
384 static atomic_t nr_task_events __read_mostly
;
385 static atomic_t nr_freq_events __read_mostly
;
386 static atomic_t nr_switch_events __read_mostly
;
387 static atomic_t nr_ksymbol_events __read_mostly
;
388 static atomic_t nr_bpf_events __read_mostly
;
390 static LIST_HEAD(pmus
);
391 static DEFINE_MUTEX(pmus_lock
);
392 static struct srcu_struct pmus_srcu
;
393 static cpumask_var_t perf_online_mask
;
396 * perf event paranoia level:
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
399 * 1 - disallow cpu events for unpriv
400 * 2 - disallow kernel profiling for unpriv
402 int sysctl_perf_event_paranoid __read_mostly
= 2;
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
408 * max perf event sample rate
410 #define DEFAULT_MAX_SAMPLE_RATE 100000
411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
414 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
416 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
417 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
419 static int perf_sample_allowed_ns __read_mostly
=
420 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
422 static void update_perf_cpu_limits(void)
424 u64 tmp
= perf_sample_period_ns
;
426 tmp
*= sysctl_perf_cpu_time_max_percent
;
427 tmp
= div_u64(tmp
, 100);
431 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
434 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
);
436 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
437 void __user
*buffer
, size_t *lenp
,
441 int perf_cpu
= sysctl_perf_cpu_time_max_percent
;
443 * If throttling is disabled don't allow the write:
445 if (write
&& (perf_cpu
== 100 || perf_cpu
== 0))
448 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
452 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
453 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
454 update_perf_cpu_limits();
459 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
461 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
462 void __user
*buffer
, size_t *lenp
,
465 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
470 if (sysctl_perf_cpu_time_max_percent
== 100 ||
471 sysctl_perf_cpu_time_max_percent
== 0) {
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns
, 0);
476 update_perf_cpu_limits();
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64
, running_sample_length
);
491 static u64 __report_avg
;
492 static u64 __report_allowed
;
494 static void perf_duration_warn(struct irq_work
*w
)
496 printk_ratelimited(KERN_INFO
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg
, __report_allowed
,
500 sysctl_perf_event_sample_rate
);
503 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
505 void perf_sample_event_took(u64 sample_len_ns
)
507 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
515 /* Decay the counter by 1 average sample. */
516 running_len
= __this_cpu_read(running_sample_length
);
517 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
518 running_len
+= sample_len_ns
;
519 __this_cpu_write(running_sample_length
, running_len
);
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 * from having to maintain a count.
526 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
527 if (avg_len
<= max_len
)
530 __report_avg
= avg_len
;
531 __report_allowed
= max_len
;
534 * Compute a throttle threshold 25% below the current duration.
536 avg_len
+= avg_len
/ 4;
537 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
543 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
544 WRITE_ONCE(max_samples_per_tick
, max
);
546 sysctl_perf_event_sample_rate
= max
* HZ
;
547 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
549 if (!irq_work_queue(&perf_duration_work
)) {
550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 "kernel.perf_event_max_sample_rate to %d\n",
552 __report_avg
, __report_allowed
,
553 sysctl_perf_event_sample_rate
);
557 static atomic64_t perf_event_id
;
559 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
560 enum event_type_t event_type
);
562 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
563 enum event_type_t event_type
,
564 struct task_struct
*task
);
566 static void update_context_time(struct perf_event_context
*ctx
);
567 static u64
perf_event_time(struct perf_event
*event
);
569 void __weak
perf_event_print_debug(void) { }
571 extern __weak
const char *perf_pmu_name(void)
576 static inline u64
perf_clock(void)
578 return local_clock();
581 static inline u64
perf_event_clock(struct perf_event
*event
)
583 return event
->clock();
587 * State based event timekeeping...
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
608 static __always_inline
enum perf_event_state
609 __perf_effective_state(struct perf_event
*event
)
611 struct perf_event
*leader
= event
->group_leader
;
613 if (leader
->state
<= PERF_EVENT_STATE_OFF
)
614 return leader
->state
;
619 static __always_inline
void
620 __perf_update_times(struct perf_event
*event
, u64 now
, u64
*enabled
, u64
*running
)
622 enum perf_event_state state
= __perf_effective_state(event
);
623 u64 delta
= now
- event
->tstamp
;
625 *enabled
= event
->total_time_enabled
;
626 if (state
>= PERF_EVENT_STATE_INACTIVE
)
629 *running
= event
->total_time_running
;
630 if (state
>= PERF_EVENT_STATE_ACTIVE
)
634 static void perf_event_update_time(struct perf_event
*event
)
636 u64 now
= perf_event_time(event
);
638 __perf_update_times(event
, now
, &event
->total_time_enabled
,
639 &event
->total_time_running
);
643 static void perf_event_update_sibling_time(struct perf_event
*leader
)
645 struct perf_event
*sibling
;
647 for_each_sibling_event(sibling
, leader
)
648 perf_event_update_time(sibling
);
652 perf_event_set_state(struct perf_event
*event
, enum perf_event_state state
)
654 if (event
->state
== state
)
657 perf_event_update_time(event
);
659 * If a group leader gets enabled/disabled all its siblings
662 if ((event
->state
< 0) ^ (state
< 0))
663 perf_event_update_sibling_time(event
);
665 WRITE_ONCE(event
->state
, state
);
668 #ifdef CONFIG_CGROUP_PERF
671 perf_cgroup_match(struct perf_event
*event
)
673 struct perf_event_context
*ctx
= event
->ctx
;
674 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
676 /* @event doesn't care about cgroup */
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
690 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
691 event
->cgrp
->css
.cgroup
);
694 static inline void perf_detach_cgroup(struct perf_event
*event
)
696 css_put(&event
->cgrp
->css
);
700 static inline int is_cgroup_event(struct perf_event
*event
)
702 return event
->cgrp
!= NULL
;
705 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
707 struct perf_cgroup_info
*t
;
709 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
713 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
715 struct perf_cgroup_info
*info
;
720 info
= this_cpu_ptr(cgrp
->info
);
722 info
->time
+= now
- info
->timestamp
;
723 info
->timestamp
= now
;
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
728 struct perf_cgroup
*cgrp
= cpuctx
->cgrp
;
729 struct cgroup_subsys_state
*css
;
732 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
733 cgrp
= container_of(css
, struct perf_cgroup
, css
);
734 __update_cgrp_time(cgrp
);
739 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
741 struct perf_cgroup
*cgrp
;
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
747 if (!is_cgroup_event(event
))
750 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
752 * Do not update time when cgroup is not active
754 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
755 __update_cgrp_time(event
->cgrp
);
759 perf_cgroup_set_timestamp(struct task_struct
*task
,
760 struct perf_event_context
*ctx
)
762 struct perf_cgroup
*cgrp
;
763 struct perf_cgroup_info
*info
;
764 struct cgroup_subsys_state
*css
;
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
771 if (!task
|| !ctx
->nr_cgroups
)
774 cgrp
= perf_cgroup_from_task(task
, ctx
);
776 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
777 cgrp
= container_of(css
, struct perf_cgroup
, css
);
778 info
= this_cpu_ptr(cgrp
->info
);
779 info
->timestamp
= ctx
->timestamp
;
783 static DEFINE_PER_CPU(struct list_head
, cgrp_cpuctx_list
);
785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
789 * reschedule events based on the cgroup constraint of task.
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
794 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
796 struct perf_cpu_context
*cpuctx
;
797 struct list_head
*list
;
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
804 local_irq_save(flags
);
806 list
= this_cpu_ptr(&cgrp_cpuctx_list
);
807 list_for_each_entry(cpuctx
, list
, cgrp_cpuctx_entry
) {
808 WARN_ON_ONCE(cpuctx
->ctx
.nr_cgroups
== 0);
810 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
811 perf_pmu_disable(cpuctx
->ctx
.pmu
);
813 if (mode
& PERF_CGROUP_SWOUT
) {
814 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
822 if (mode
& PERF_CGROUP_SWIN
) {
823 WARN_ON_ONCE(cpuctx
->cgrp
);
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
831 cpuctx
->cgrp
= perf_cgroup_from_task(task
,
833 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
835 perf_pmu_enable(cpuctx
->ctx
.pmu
);
836 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
839 local_irq_restore(flags
);
842 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
843 struct task_struct
*next
)
845 struct perf_cgroup
*cgrp1
;
846 struct perf_cgroup
*cgrp2
= NULL
;
850 * we come here when we know perf_cgroup_events > 0
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
854 cgrp1
= perf_cgroup_from_task(task
, NULL
);
855 cgrp2
= perf_cgroup_from_task(next
, NULL
);
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
863 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
868 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
869 struct task_struct
*task
)
871 struct perf_cgroup
*cgrp1
;
872 struct perf_cgroup
*cgrp2
= NULL
;
876 * we come here when we know perf_cgroup_events > 0
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
880 cgrp1
= perf_cgroup_from_task(task
, NULL
);
881 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
889 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
894 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
895 struct perf_event_attr
*attr
,
896 struct perf_event
*group_leader
)
898 struct perf_cgroup
*cgrp
;
899 struct cgroup_subsys_state
*css
;
900 struct fd f
= fdget(fd
);
906 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
907 &perf_event_cgrp_subsys
);
913 cgrp
= container_of(css
, struct perf_cgroup
, css
);
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
921 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
922 perf_detach_cgroup(event
);
931 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
933 struct perf_cgroup_info
*t
;
934 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
935 event
->shadow_ctx_time
= now
- t
->timestamp
;
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
943 list_update_cgroup_event(struct perf_event
*event
,
944 struct perf_event_context
*ctx
, bool add
)
946 struct perf_cpu_context
*cpuctx
;
947 struct list_head
*cpuctx_entry
;
949 if (!is_cgroup_event(event
))
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
956 cpuctx
= __get_cpu_context(ctx
);
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
964 if (add
&& !cpuctx
->cgrp
) {
965 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
967 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
971 if (add
&& ctx
->nr_cgroups
++)
973 else if (!add
&& --ctx
->nr_cgroups
)
976 /* no cgroup running */
980 cpuctx_entry
= &cpuctx
->cgrp_cpuctx_entry
;
982 list_add(cpuctx_entry
, this_cpu_ptr(&cgrp_cpuctx_list
));
984 list_del(cpuctx_entry
);
987 #else /* !CONFIG_CGROUP_PERF */
990 perf_cgroup_match(struct perf_event
*event
)
995 static inline void perf_detach_cgroup(struct perf_event
*event
)
998 static inline int is_cgroup_event(struct perf_event
*event
)
1003 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
1011 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
1012 struct task_struct
*next
)
1016 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
1017 struct task_struct
*task
)
1021 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
1022 struct perf_event_attr
*attr
,
1023 struct perf_event
*group_leader
)
1029 perf_cgroup_set_timestamp(struct task_struct
*task
,
1030 struct perf_event_context
*ctx
)
1035 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
1040 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
1044 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
1050 list_update_cgroup_event(struct perf_event
*event
,
1051 struct perf_event_context
*ctx
, bool add
)
1058 * set default to be dependent on timer tick just
1059 * like original code
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1063 * function must be called with interrupts disabled
1065 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1067 struct perf_cpu_context
*cpuctx
;
1070 lockdep_assert_irqs_disabled();
1072 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1073 rotations
= perf_rotate_context(cpuctx
);
1075 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1077 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1079 cpuctx
->hrtimer_active
= 0;
1080 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1082 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1087 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1088 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu
->task_ctx_nr
== perf_sw_context
)
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1099 interval
= pmu
->hrtimer_interval_ms
;
1101 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1103 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1105 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1106 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
1107 timer
->function
= perf_mux_hrtimer_handler
;
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1112 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1113 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1114 unsigned long flags
;
1116 /* not for SW PMU */
1117 if (pmu
->task_ctx_nr
== perf_sw_context
)
1120 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1121 if (!cpuctx
->hrtimer_active
) {
1122 cpuctx
->hrtimer_active
= 1;
1123 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1124 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
1126 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1131 void perf_pmu_disable(struct pmu
*pmu
)
1133 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1135 pmu
->pmu_disable(pmu
);
1138 void perf_pmu_enable(struct pmu
*pmu
)
1140 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1142 pmu
->pmu_enable(pmu
);
1145 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
1153 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1155 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1157 lockdep_assert_irqs_disabled();
1159 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1161 list_add(&ctx
->active_ctx_list
, head
);
1164 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1166 lockdep_assert_irqs_disabled();
1168 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1170 list_del_init(&ctx
->active_ctx_list
);
1173 static void get_ctx(struct perf_event_context
*ctx
)
1175 refcount_inc(&ctx
->refcount
);
1178 static void free_ctx(struct rcu_head
*head
)
1180 struct perf_event_context
*ctx
;
1182 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1183 kfree(ctx
->task_ctx_data
);
1187 static void put_ctx(struct perf_event_context
*ctx
)
1189 if (refcount_dec_and_test(&ctx
->refcount
)) {
1190 if (ctx
->parent_ctx
)
1191 put_ctx(ctx
->parent_ctx
);
1192 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1193 put_task_struct(ctx
->task
);
1194 call_rcu(&ctx
->rcu_head
, free_ctx
);
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1208 * - perf_event_exit_task_context() [ child , 0 ]
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1216 * perf_event_alloc()
1218 * perf_try_init_event() [ child , 1 ]
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1234 * The places that change perf_event::ctx will issue:
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
1254 * perf_event::child_mutex;
1255 * perf_event_context::lock
1256 * perf_event::mmap_mutex
1258 * perf_addr_filters_head::lock
1262 * cpuctx->mutex / perf_event_context::mutex
1264 static struct perf_event_context
*
1265 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1267 struct perf_event_context
*ctx
;
1271 ctx
= READ_ONCE(event
->ctx
);
1272 if (!refcount_inc_not_zero(&ctx
->refcount
)) {
1278 mutex_lock_nested(&ctx
->mutex
, nesting
);
1279 if (event
->ctx
!= ctx
) {
1280 mutex_unlock(&ctx
->mutex
);
1288 static inline struct perf_event_context
*
1289 perf_event_ctx_lock(struct perf_event
*event
)
1291 return perf_event_ctx_lock_nested(event
, 0);
1294 static void perf_event_ctx_unlock(struct perf_event
*event
,
1295 struct perf_event_context
*ctx
)
1297 mutex_unlock(&ctx
->mutex
);
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1306 static __must_check
struct perf_event_context
*
1307 unclone_ctx(struct perf_event_context
*ctx
)
1309 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1311 lockdep_assert_held(&ctx
->lock
);
1314 ctx
->parent_ctx
= NULL
;
1320 static u32
perf_event_pid_type(struct perf_event
*event
, struct task_struct
*p
,
1325 * only top level events have the pid namespace they were created in
1328 event
= event
->parent
;
1330 nr
= __task_pid_nr_ns(p
, type
, event
->ns
);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr
&& !pid_alive(p
))
1337 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1339 return perf_event_pid_type(event
, p
, PIDTYPE_TGID
);
1342 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1344 return perf_event_pid_type(event
, p
, PIDTYPE_PID
);
1348 * If we inherit events we want to return the parent event id
1351 static u64
primary_event_id(struct perf_event
*event
)
1356 id
= event
->parent
->id
;
1362 * Get the perf_event_context for a task and lock it.
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1367 static struct perf_event_context
*
1368 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1370 struct perf_event_context
*ctx
;
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 * part of the read side critical section was irqs-enabled -- see
1377 * rcu_read_unlock_special().
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 * side critical section has interrupts disabled.
1382 local_irq_save(*flags
);
1384 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
1389 * perf_event_task_sched_out, though the
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1396 raw_spin_lock(&ctx
->lock
);
1397 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1398 raw_spin_unlock(&ctx
->lock
);
1400 local_irq_restore(*flags
);
1404 if (ctx
->task
== TASK_TOMBSTONE
||
1405 !refcount_inc_not_zero(&ctx
->refcount
)) {
1406 raw_spin_unlock(&ctx
->lock
);
1409 WARN_ON_ONCE(ctx
->task
!= task
);
1414 local_irq_restore(*flags
);
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1423 static struct perf_event_context
*
1424 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1426 struct perf_event_context
*ctx
;
1427 unsigned long flags
;
1429 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1432 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1437 static void perf_unpin_context(struct perf_event_context
*ctx
)
1439 unsigned long flags
;
1441 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1443 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1447 * Update the record of the current time in a context.
1449 static void update_context_time(struct perf_event_context
*ctx
)
1451 u64 now
= perf_clock();
1453 ctx
->time
+= now
- ctx
->timestamp
;
1454 ctx
->timestamp
= now
;
1457 static u64
perf_event_time(struct perf_event
*event
)
1459 struct perf_event_context
*ctx
= event
->ctx
;
1461 if (is_cgroup_event(event
))
1462 return perf_cgroup_event_time(event
);
1464 return ctx
? ctx
->time
: 0;
1467 static enum event_type_t
get_event_type(struct perf_event
*event
)
1469 struct perf_event_context
*ctx
= event
->ctx
;
1470 enum event_type_t event_type
;
1472 lockdep_assert_held(&ctx
->lock
);
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1478 if (event
->group_leader
!= event
)
1479 event
= event
->group_leader
;
1481 event_type
= event
->attr
.pinned
? EVENT_PINNED
: EVENT_FLEXIBLE
;
1483 event_type
|= EVENT_CPU
;
1489 * Helper function to initialize event group nodes.
1491 static void init_event_group(struct perf_event
*event
)
1493 RB_CLEAR_NODE(&event
->group_node
);
1494 event
->group_index
= 0;
1498 * Extract pinned or flexible groups from the context
1499 * based on event attrs bits.
1501 static struct perf_event_groups
*
1502 get_event_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1504 if (event
->attr
.pinned
)
1505 return &ctx
->pinned_groups
;
1507 return &ctx
->flexible_groups
;
1511 * Helper function to initializes perf_event_group trees.
1513 static void perf_event_groups_init(struct perf_event_groups
*groups
)
1515 groups
->tree
= RB_ROOT
;
1520 * Compare function for event groups;
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
1526 perf_event_groups_less(struct perf_event
*left
, struct perf_event
*right
)
1528 if (left
->cpu
< right
->cpu
)
1530 if (left
->cpu
> right
->cpu
)
1533 if (left
->group_index
< right
->group_index
)
1535 if (left
->group_index
> right
->group_index
)
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1547 perf_event_groups_insert(struct perf_event_groups
*groups
,
1548 struct perf_event
*event
)
1550 struct perf_event
*node_event
;
1551 struct rb_node
*parent
;
1552 struct rb_node
**node
;
1554 event
->group_index
= ++groups
->index
;
1556 node
= &groups
->tree
.rb_node
;
1561 node_event
= container_of(*node
, struct perf_event
, group_node
);
1563 if (perf_event_groups_less(event
, node_event
))
1564 node
= &parent
->rb_left
;
1566 node
= &parent
->rb_right
;
1569 rb_link_node(&event
->group_node
, parent
, node
);
1570 rb_insert_color(&event
->group_node
, &groups
->tree
);
1574 * Helper function to insert event into the pinned or flexible groups.
1577 add_event_to_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1579 struct perf_event_groups
*groups
;
1581 groups
= get_event_groups(event
, ctx
);
1582 perf_event_groups_insert(groups
, event
);
1586 * Delete a group from a tree.
1589 perf_event_groups_delete(struct perf_event_groups
*groups
,
1590 struct perf_event
*event
)
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event
->group_node
) ||
1593 RB_EMPTY_ROOT(&groups
->tree
));
1595 rb_erase(&event
->group_node
, &groups
->tree
);
1596 init_event_group(event
);
1600 * Helper function to delete event from its groups.
1603 del_event_from_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1605 struct perf_event_groups
*groups
;
1607 groups
= get_event_groups(event
, ctx
);
1608 perf_event_groups_delete(groups
, event
);
1612 * Get the leftmost event in the @cpu subtree.
1614 static struct perf_event
*
1615 perf_event_groups_first(struct perf_event_groups
*groups
, int cpu
)
1617 struct perf_event
*node_event
= NULL
, *match
= NULL
;
1618 struct rb_node
*node
= groups
->tree
.rb_node
;
1621 node_event
= container_of(node
, struct perf_event
, group_node
);
1623 if (cpu
< node_event
->cpu
) {
1624 node
= node
->rb_left
;
1625 } else if (cpu
> node_event
->cpu
) {
1626 node
= node
->rb_right
;
1629 node
= node
->rb_left
;
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1639 static struct perf_event
*
1640 perf_event_groups_next(struct perf_event
*event
)
1642 struct perf_event
*next
;
1644 next
= rb_entry_safe(rb_next(&event
->group_node
), typeof(*event
), group_node
);
1645 if (next
&& next
->cpu
== event
->cpu
)
1652 * Iterate through the whole groups tree.
1654 #define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
1661 * Add an event from the lists for its context.
1662 * Must be called with ctx->mutex and ctx->lock held.
1665 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1667 lockdep_assert_held(&ctx
->lock
);
1669 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1670 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1672 event
->tstamp
= perf_event_time(event
);
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
1679 if (event
->group_leader
== event
) {
1680 event
->group_caps
= event
->event_caps
;
1681 add_event_to_groups(event
, ctx
);
1684 list_update_cgroup_event(event
, ctx
, true);
1686 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1688 if (event
->attr
.inherit_stat
)
1695 * Initialize event state based on the perf_event_attr::disabled.
1697 static inline void perf_event__state_init(struct perf_event
*event
)
1699 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1700 PERF_EVENT_STATE_INACTIVE
;
1703 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1705 int entry
= sizeof(u64
); /* value */
1709 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1710 size
+= sizeof(u64
);
1712 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1713 size
+= sizeof(u64
);
1715 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1716 entry
+= sizeof(u64
);
1718 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1720 size
+= sizeof(u64
);
1724 event
->read_size
= size
;
1727 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1729 struct perf_sample_data
*data
;
1732 if (sample_type
& PERF_SAMPLE_IP
)
1733 size
+= sizeof(data
->ip
);
1735 if (sample_type
& PERF_SAMPLE_ADDR
)
1736 size
+= sizeof(data
->addr
);
1738 if (sample_type
& PERF_SAMPLE_PERIOD
)
1739 size
+= sizeof(data
->period
);
1741 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1742 size
+= sizeof(data
->weight
);
1744 if (sample_type
& PERF_SAMPLE_READ
)
1745 size
+= event
->read_size
;
1747 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1748 size
+= sizeof(data
->data_src
.val
);
1750 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1751 size
+= sizeof(data
->txn
);
1753 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
1754 size
+= sizeof(data
->phys_addr
);
1756 event
->header_size
= size
;
1760 * Called at perf_event creation and when events are attached/detached from a
1763 static void perf_event__header_size(struct perf_event
*event
)
1765 __perf_event_read_size(event
,
1766 event
->group_leader
->nr_siblings
);
1767 __perf_event_header_size(event
, event
->attr
.sample_type
);
1770 static void perf_event__id_header_size(struct perf_event
*event
)
1772 struct perf_sample_data
*data
;
1773 u64 sample_type
= event
->attr
.sample_type
;
1776 if (sample_type
& PERF_SAMPLE_TID
)
1777 size
+= sizeof(data
->tid_entry
);
1779 if (sample_type
& PERF_SAMPLE_TIME
)
1780 size
+= sizeof(data
->time
);
1782 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1783 size
+= sizeof(data
->id
);
1785 if (sample_type
& PERF_SAMPLE_ID
)
1786 size
+= sizeof(data
->id
);
1788 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1789 size
+= sizeof(data
->stream_id
);
1791 if (sample_type
& PERF_SAMPLE_CPU
)
1792 size
+= sizeof(data
->cpu_entry
);
1794 event
->id_header_size
= size
;
1797 static bool perf_event_validate_size(struct perf_event
*event
)
1800 * The values computed here will be over-written when we actually
1803 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1804 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1805 perf_event__id_header_size(event
);
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1811 if (event
->read_size
+ event
->header_size
+
1812 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1818 static void perf_group_attach(struct perf_event
*event
)
1820 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1822 lockdep_assert_held(&event
->ctx
->lock
);
1825 * We can have double attach due to group movement in perf_event_open.
1827 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1830 event
->attach_state
|= PERF_ATTACH_GROUP
;
1832 if (group_leader
== event
)
1835 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1837 group_leader
->group_caps
&= event
->event_caps
;
1839 list_add_tail(&event
->sibling_list
, &group_leader
->sibling_list
);
1840 group_leader
->nr_siblings
++;
1842 perf_event__header_size(group_leader
);
1844 for_each_sibling_event(pos
, group_leader
)
1845 perf_event__header_size(pos
);
1849 * Remove an event from the lists for its context.
1850 * Must be called with ctx->mutex and ctx->lock held.
1853 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1855 WARN_ON_ONCE(event
->ctx
!= ctx
);
1856 lockdep_assert_held(&ctx
->lock
);
1859 * We can have double detach due to exit/hot-unplug + close.
1861 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1864 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1866 list_update_cgroup_event(event
, ctx
, false);
1869 if (event
->attr
.inherit_stat
)
1872 list_del_rcu(&event
->event_entry
);
1874 if (event
->group_leader
== event
)
1875 del_event_from_groups(event
, ctx
);
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1884 if (event
->state
> PERF_EVENT_STATE_OFF
)
1885 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
1890 static void perf_group_detach(struct perf_event
*event
)
1892 struct perf_event
*sibling
, *tmp
;
1893 struct perf_event_context
*ctx
= event
->ctx
;
1895 lockdep_assert_held(&ctx
->lock
);
1898 * We can have double detach due to exit/hot-unplug + close.
1900 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1903 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1906 * If this is a sibling, remove it from its group.
1908 if (event
->group_leader
!= event
) {
1909 list_del_init(&event
->sibling_list
);
1910 event
->group_leader
->nr_siblings
--;
1915 * If this was a group event with sibling events then
1916 * upgrade the siblings to singleton events by adding them
1917 * to whatever list we are on.
1919 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, sibling_list
) {
1921 sibling
->group_leader
= sibling
;
1922 list_del_init(&sibling
->sibling_list
);
1924 /* Inherit group flags from the previous leader */
1925 sibling
->group_caps
= event
->group_caps
;
1927 if (!RB_EMPTY_NODE(&event
->group_node
)) {
1928 add_event_to_groups(sibling
, event
->ctx
);
1930 if (sibling
->state
== PERF_EVENT_STATE_ACTIVE
) {
1931 struct list_head
*list
= sibling
->attr
.pinned
?
1932 &ctx
->pinned_active
: &ctx
->flexible_active
;
1934 list_add_tail(&sibling
->active_list
, list
);
1938 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1942 perf_event__header_size(event
->group_leader
);
1944 for_each_sibling_event(tmp
, event
->group_leader
)
1945 perf_event__header_size(tmp
);
1948 static bool is_orphaned_event(struct perf_event
*event
)
1950 return event
->state
== PERF_EVENT_STATE_DEAD
;
1953 static inline int __pmu_filter_match(struct perf_event
*event
)
1955 struct pmu
*pmu
= event
->pmu
;
1956 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1960 * Check whether we should attempt to schedule an event group based on
1961 * PMU-specific filtering. An event group can consist of HW and SW events,
1962 * potentially with a SW leader, so we must check all the filters, to
1963 * determine whether a group is schedulable:
1965 static inline int pmu_filter_match(struct perf_event
*event
)
1967 struct perf_event
*sibling
;
1969 if (!__pmu_filter_match(event
))
1972 for_each_sibling_event(sibling
, event
) {
1973 if (!__pmu_filter_match(sibling
))
1981 event_filter_match(struct perf_event
*event
)
1983 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
1984 perf_cgroup_match(event
) && pmu_filter_match(event
);
1988 event_sched_out(struct perf_event
*event
,
1989 struct perf_cpu_context
*cpuctx
,
1990 struct perf_event_context
*ctx
)
1992 enum perf_event_state state
= PERF_EVENT_STATE_INACTIVE
;
1994 WARN_ON_ONCE(event
->ctx
!= ctx
);
1995 lockdep_assert_held(&ctx
->lock
);
1997 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 * we can schedule events _OUT_ individually through things like
2003 * __perf_remove_from_context().
2005 list_del_init(&event
->active_list
);
2007 perf_pmu_disable(event
->pmu
);
2009 event
->pmu
->del(event
, 0);
2012 if (event
->pending_disable
) {
2013 event
->pending_disable
= 0;
2014 state
= PERF_EVENT_STATE_OFF
;
2016 perf_event_set_state(event
, state
);
2018 if (!is_software_event(event
))
2019 cpuctx
->active_oncpu
--;
2020 if (!--ctx
->nr_active
)
2021 perf_event_ctx_deactivate(ctx
);
2022 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2024 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
2025 cpuctx
->exclusive
= 0;
2027 perf_pmu_enable(event
->pmu
);
2031 group_sched_out(struct perf_event
*group_event
,
2032 struct perf_cpu_context
*cpuctx
,
2033 struct perf_event_context
*ctx
)
2035 struct perf_event
*event
;
2037 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2040 perf_pmu_disable(ctx
->pmu
);
2042 event_sched_out(group_event
, cpuctx
, ctx
);
2045 * Schedule out siblings (if any):
2047 for_each_sibling_event(event
, group_event
)
2048 event_sched_out(event
, cpuctx
, ctx
);
2050 perf_pmu_enable(ctx
->pmu
);
2052 if (group_event
->attr
.exclusive
)
2053 cpuctx
->exclusive
= 0;
2056 #define DETACH_GROUP 0x01UL
2059 * Cross CPU call to remove a performance event
2061 * We disable the event on the hardware level first. After that we
2062 * remove it from the context list.
2065 __perf_remove_from_context(struct perf_event
*event
,
2066 struct perf_cpu_context
*cpuctx
,
2067 struct perf_event_context
*ctx
,
2070 unsigned long flags
= (unsigned long)info
;
2072 if (ctx
->is_active
& EVENT_TIME
) {
2073 update_context_time(ctx
);
2074 update_cgrp_time_from_cpuctx(cpuctx
);
2077 event_sched_out(event
, cpuctx
, ctx
);
2078 if (flags
& DETACH_GROUP
)
2079 perf_group_detach(event
);
2080 list_del_event(event
, ctx
);
2082 if (!ctx
->nr_events
&& ctx
->is_active
) {
2085 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2086 cpuctx
->task_ctx
= NULL
;
2092 * Remove the event from a task's (or a CPU's) list of events.
2094 * If event->ctx is a cloned context, callers must make sure that
2095 * every task struct that event->ctx->task could possibly point to
2096 * remains valid. This is OK when called from perf_release since
2097 * that only calls us on the top-level context, which can't be a clone.
2098 * When called from perf_event_exit_task, it's OK because the
2099 * context has been detached from its task.
2101 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
2103 struct perf_event_context
*ctx
= event
->ctx
;
2105 lockdep_assert_held(&ctx
->mutex
);
2107 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
2110 * The above event_function_call() can NO-OP when it hits
2111 * TASK_TOMBSTONE. In that case we must already have been detached
2112 * from the context (by perf_event_exit_event()) but the grouping
2113 * might still be in-tact.
2115 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
2116 if ((flags
& DETACH_GROUP
) &&
2117 (event
->attach_state
& PERF_ATTACH_GROUP
)) {
2119 * Since in that case we cannot possibly be scheduled, simply
2122 raw_spin_lock_irq(&ctx
->lock
);
2123 perf_group_detach(event
);
2124 raw_spin_unlock_irq(&ctx
->lock
);
2129 * Cross CPU call to disable a performance event
2131 static void __perf_event_disable(struct perf_event
*event
,
2132 struct perf_cpu_context
*cpuctx
,
2133 struct perf_event_context
*ctx
,
2136 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
2139 if (ctx
->is_active
& EVENT_TIME
) {
2140 update_context_time(ctx
);
2141 update_cgrp_time_from_event(event
);
2144 if (event
== event
->group_leader
)
2145 group_sched_out(event
, cpuctx
, ctx
);
2147 event_sched_out(event
, cpuctx
, ctx
);
2149 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
2157 * remains valid. This condition is satisifed when called through
2158 * perf_event_for_each_child or perf_event_for_each because they
2159 * hold the top-level event's child_mutex, so any descendant that
2160 * goes to exit will block in perf_event_exit_event().
2162 * When called from perf_pending_event it's OK because event->ctx
2163 * is the current context on this CPU and preemption is disabled,
2164 * hence we can't get into perf_event_task_sched_out for this context.
2166 static void _perf_event_disable(struct perf_event
*event
)
2168 struct perf_event_context
*ctx
= event
->ctx
;
2170 raw_spin_lock_irq(&ctx
->lock
);
2171 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
2172 raw_spin_unlock_irq(&ctx
->lock
);
2175 raw_spin_unlock_irq(&ctx
->lock
);
2177 event_function_call(event
, __perf_event_disable
, NULL
);
2180 void perf_event_disable_local(struct perf_event
*event
)
2182 event_function_local(event
, __perf_event_disable
, NULL
);
2186 * Strictly speaking kernel users cannot create groups and therefore this
2187 * interface does not need the perf_event_ctx_lock() magic.
2189 void perf_event_disable(struct perf_event
*event
)
2191 struct perf_event_context
*ctx
;
2193 ctx
= perf_event_ctx_lock(event
);
2194 _perf_event_disable(event
);
2195 perf_event_ctx_unlock(event
, ctx
);
2197 EXPORT_SYMBOL_GPL(perf_event_disable
);
2199 void perf_event_disable_inatomic(struct perf_event
*event
)
2201 event
->pending_disable
= 1;
2202 irq_work_queue(&event
->pending
);
2205 static void perf_set_shadow_time(struct perf_event
*event
,
2206 struct perf_event_context
*ctx
)
2209 * use the correct time source for the time snapshot
2211 * We could get by without this by leveraging the
2212 * fact that to get to this function, the caller
2213 * has most likely already called update_context_time()
2214 * and update_cgrp_time_xx() and thus both timestamp
2215 * are identical (or very close). Given that tstamp is,
2216 * already adjusted for cgroup, we could say that:
2217 * tstamp - ctx->timestamp
2219 * tstamp - cgrp->timestamp.
2221 * Then, in perf_output_read(), the calculation would
2222 * work with no changes because:
2223 * - event is guaranteed scheduled in
2224 * - no scheduled out in between
2225 * - thus the timestamp would be the same
2227 * But this is a bit hairy.
2229 * So instead, we have an explicit cgroup call to remain
2230 * within the time time source all along. We believe it
2231 * is cleaner and simpler to understand.
2233 if (is_cgroup_event(event
))
2234 perf_cgroup_set_shadow_time(event
, event
->tstamp
);
2236 event
->shadow_ctx_time
= event
->tstamp
- ctx
->timestamp
;
2239 #define MAX_INTERRUPTS (~0ULL)
2241 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2242 static void perf_log_itrace_start(struct perf_event
*event
);
2245 event_sched_in(struct perf_event
*event
,
2246 struct perf_cpu_context
*cpuctx
,
2247 struct perf_event_context
*ctx
)
2251 lockdep_assert_held(&ctx
->lock
);
2253 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2256 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2258 * Order event::oncpu write to happen before the ACTIVE state is
2259 * visible. This allows perf_event_{stop,read}() to observe the correct
2260 * ->oncpu if it sees ACTIVE.
2263 perf_event_set_state(event
, PERF_EVENT_STATE_ACTIVE
);
2266 * Unthrottle events, since we scheduled we might have missed several
2267 * ticks already, also for a heavily scheduling task there is little
2268 * guarantee it'll get a tick in a timely manner.
2270 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2271 perf_log_throttle(event
, 1);
2272 event
->hw
.interrupts
= 0;
2275 perf_pmu_disable(event
->pmu
);
2277 perf_set_shadow_time(event
, ctx
);
2279 perf_log_itrace_start(event
);
2281 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2282 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2288 if (!is_software_event(event
))
2289 cpuctx
->active_oncpu
++;
2290 if (!ctx
->nr_active
++)
2291 perf_event_ctx_activate(ctx
);
2292 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2295 if (event
->attr
.exclusive
)
2296 cpuctx
->exclusive
= 1;
2299 perf_pmu_enable(event
->pmu
);
2305 group_sched_in(struct perf_event
*group_event
,
2306 struct perf_cpu_context
*cpuctx
,
2307 struct perf_event_context
*ctx
)
2309 struct perf_event
*event
, *partial_group
= NULL
;
2310 struct pmu
*pmu
= ctx
->pmu
;
2312 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2315 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2317 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2318 pmu
->cancel_txn(pmu
);
2319 perf_mux_hrtimer_restart(cpuctx
);
2324 * Schedule in siblings as one group (if any):
2326 for_each_sibling_event(event
, group_event
) {
2327 if (event_sched_in(event
, cpuctx
, ctx
)) {
2328 partial_group
= event
;
2333 if (!pmu
->commit_txn(pmu
))
2338 * Groups can be scheduled in as one unit only, so undo any
2339 * partial group before returning:
2340 * The events up to the failed event are scheduled out normally.
2342 for_each_sibling_event(event
, group_event
) {
2343 if (event
== partial_group
)
2346 event_sched_out(event
, cpuctx
, ctx
);
2348 event_sched_out(group_event
, cpuctx
, ctx
);
2350 pmu
->cancel_txn(pmu
);
2352 perf_mux_hrtimer_restart(cpuctx
);
2358 * Work out whether we can put this event group on the CPU now.
2360 static int group_can_go_on(struct perf_event
*event
,
2361 struct perf_cpu_context
*cpuctx
,
2365 * Groups consisting entirely of software events can always go on.
2367 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2370 * If an exclusive group is already on, no other hardware
2373 if (cpuctx
->exclusive
)
2376 * If this group is exclusive and there are already
2377 * events on the CPU, it can't go on.
2379 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2382 * Otherwise, try to add it if all previous groups were able
2388 static void add_event_to_ctx(struct perf_event
*event
,
2389 struct perf_event_context
*ctx
)
2391 list_add_event(event
, ctx
);
2392 perf_group_attach(event
);
2395 static void ctx_sched_out(struct perf_event_context
*ctx
,
2396 struct perf_cpu_context
*cpuctx
,
2397 enum event_type_t event_type
);
2399 ctx_sched_in(struct perf_event_context
*ctx
,
2400 struct perf_cpu_context
*cpuctx
,
2401 enum event_type_t event_type
,
2402 struct task_struct
*task
);
2404 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2405 struct perf_event_context
*ctx
,
2406 enum event_type_t event_type
)
2408 if (!cpuctx
->task_ctx
)
2411 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2414 ctx_sched_out(ctx
, cpuctx
, event_type
);
2417 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2418 struct perf_event_context
*ctx
,
2419 struct task_struct
*task
)
2421 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2423 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2424 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2426 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2430 * We want to maintain the following priority of scheduling:
2431 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2432 * - task pinned (EVENT_PINNED)
2433 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2434 * - task flexible (EVENT_FLEXIBLE).
2436 * In order to avoid unscheduling and scheduling back in everything every
2437 * time an event is added, only do it for the groups of equal priority and
2440 * This can be called after a batch operation on task events, in which case
2441 * event_type is a bit mask of the types of events involved. For CPU events,
2442 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2445 struct perf_event_context
*task_ctx
,
2446 enum event_type_t event_type
)
2448 enum event_type_t ctx_event_type
;
2449 bool cpu_event
= !!(event_type
& EVENT_CPU
);
2452 * If pinned groups are involved, flexible groups also need to be
2455 if (event_type
& EVENT_PINNED
)
2456 event_type
|= EVENT_FLEXIBLE
;
2458 ctx_event_type
= event_type
& EVENT_ALL
;
2460 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2462 task_ctx_sched_out(cpuctx
, task_ctx
, event_type
);
2465 * Decide which cpu ctx groups to schedule out based on the types
2466 * of events that caused rescheduling:
2467 * - EVENT_CPU: schedule out corresponding groups;
2468 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2469 * - otherwise, do nothing more.
2472 cpu_ctx_sched_out(cpuctx
, ctx_event_type
);
2473 else if (ctx_event_type
& EVENT_PINNED
)
2474 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2476 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2477 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2481 * Cross CPU call to install and enable a performance event
2483 * Very similar to remote_function() + event_function() but cannot assume that
2484 * things like ctx->is_active and cpuctx->task_ctx are set.
2486 static int __perf_install_in_context(void *info
)
2488 struct perf_event
*event
= info
;
2489 struct perf_event_context
*ctx
= event
->ctx
;
2490 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2491 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2492 bool reprogram
= true;
2495 raw_spin_lock(&cpuctx
->ctx
.lock
);
2497 raw_spin_lock(&ctx
->lock
);
2500 reprogram
= (ctx
->task
== current
);
2503 * If the task is running, it must be running on this CPU,
2504 * otherwise we cannot reprogram things.
2506 * If its not running, we don't care, ctx->lock will
2507 * serialize against it becoming runnable.
2509 if (task_curr(ctx
->task
) && !reprogram
) {
2514 WARN_ON_ONCE(reprogram
&& cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2515 } else if (task_ctx
) {
2516 raw_spin_lock(&task_ctx
->lock
);
2519 #ifdef CONFIG_CGROUP_PERF
2520 if (is_cgroup_event(event
)) {
2522 * If the current cgroup doesn't match the event's
2523 * cgroup, we should not try to schedule it.
2525 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
2526 reprogram
= cgroup_is_descendant(cgrp
->css
.cgroup
,
2527 event
->cgrp
->css
.cgroup
);
2532 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2533 add_event_to_ctx(event
, ctx
);
2534 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2536 add_event_to_ctx(event
, ctx
);
2540 perf_ctx_unlock(cpuctx
, task_ctx
);
2546 * Attach a performance event to a context.
2548 * Very similar to event_function_call, see comment there.
2551 perf_install_in_context(struct perf_event_context
*ctx
,
2552 struct perf_event
*event
,
2555 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2557 lockdep_assert_held(&ctx
->mutex
);
2559 if (event
->cpu
!= -1)
2563 * Ensures that if we can observe event->ctx, both the event and ctx
2564 * will be 'complete'. See perf_iterate_sb_cpu().
2566 smp_store_release(&event
->ctx
, ctx
);
2569 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2574 * Should not happen, we validate the ctx is still alive before calling.
2576 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2580 * Installing events is tricky because we cannot rely on ctx->is_active
2581 * to be set in case this is the nr_events 0 -> 1 transition.
2583 * Instead we use task_curr(), which tells us if the task is running.
2584 * However, since we use task_curr() outside of rq::lock, we can race
2585 * against the actual state. This means the result can be wrong.
2587 * If we get a false positive, we retry, this is harmless.
2589 * If we get a false negative, things are complicated. If we are after
2590 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2591 * value must be correct. If we're before, it doesn't matter since
2592 * perf_event_context_sched_in() will program the counter.
2594 * However, this hinges on the remote context switch having observed
2595 * our task->perf_event_ctxp[] store, such that it will in fact take
2596 * ctx::lock in perf_event_context_sched_in().
2598 * We do this by task_function_call(), if the IPI fails to hit the task
2599 * we know any future context switch of task must see the
2600 * perf_event_ctpx[] store.
2604 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2605 * task_cpu() load, such that if the IPI then does not find the task
2606 * running, a future context switch of that task must observe the
2611 if (!task_function_call(task
, __perf_install_in_context
, event
))
2614 raw_spin_lock_irq(&ctx
->lock
);
2616 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2618 * Cannot happen because we already checked above (which also
2619 * cannot happen), and we hold ctx->mutex, which serializes us
2620 * against perf_event_exit_task_context().
2622 raw_spin_unlock_irq(&ctx
->lock
);
2626 * If the task is not running, ctx->lock will avoid it becoming so,
2627 * thus we can safely install the event.
2629 if (task_curr(task
)) {
2630 raw_spin_unlock_irq(&ctx
->lock
);
2633 add_event_to_ctx(event
, ctx
);
2634 raw_spin_unlock_irq(&ctx
->lock
);
2638 * Cross CPU call to enable a performance event
2640 static void __perf_event_enable(struct perf_event
*event
,
2641 struct perf_cpu_context
*cpuctx
,
2642 struct perf_event_context
*ctx
,
2645 struct perf_event
*leader
= event
->group_leader
;
2646 struct perf_event_context
*task_ctx
;
2648 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2649 event
->state
<= PERF_EVENT_STATE_ERROR
)
2653 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2655 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2657 if (!ctx
->is_active
)
2660 if (!event_filter_match(event
)) {
2661 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2666 * If the event is in a group and isn't the group leader,
2667 * then don't put it on unless the group is on.
2669 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2670 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2674 task_ctx
= cpuctx
->task_ctx
;
2676 WARN_ON_ONCE(task_ctx
!= ctx
);
2678 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2684 * If event->ctx is a cloned context, callers must make sure that
2685 * every task struct that event->ctx->task could possibly point to
2686 * remains valid. This condition is satisfied when called through
2687 * perf_event_for_each_child or perf_event_for_each as described
2688 * for perf_event_disable.
2690 static void _perf_event_enable(struct perf_event
*event
)
2692 struct perf_event_context
*ctx
= event
->ctx
;
2694 raw_spin_lock_irq(&ctx
->lock
);
2695 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2696 event
->state
< PERF_EVENT_STATE_ERROR
) {
2697 raw_spin_unlock_irq(&ctx
->lock
);
2702 * If the event is in error state, clear that first.
2704 * That way, if we see the event in error state below, we know that it
2705 * has gone back into error state, as distinct from the task having
2706 * been scheduled away before the cross-call arrived.
2708 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2709 event
->state
= PERF_EVENT_STATE_OFF
;
2710 raw_spin_unlock_irq(&ctx
->lock
);
2712 event_function_call(event
, __perf_event_enable
, NULL
);
2716 * See perf_event_disable();
2718 void perf_event_enable(struct perf_event
*event
)
2720 struct perf_event_context
*ctx
;
2722 ctx
= perf_event_ctx_lock(event
);
2723 _perf_event_enable(event
);
2724 perf_event_ctx_unlock(event
, ctx
);
2726 EXPORT_SYMBOL_GPL(perf_event_enable
);
2728 struct stop_event_data
{
2729 struct perf_event
*event
;
2730 unsigned int restart
;
2733 static int __perf_event_stop(void *info
)
2735 struct stop_event_data
*sd
= info
;
2736 struct perf_event
*event
= sd
->event
;
2738 /* if it's already INACTIVE, do nothing */
2739 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2742 /* matches smp_wmb() in event_sched_in() */
2746 * There is a window with interrupts enabled before we get here,
2747 * so we need to check again lest we try to stop another CPU's event.
2749 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
2752 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2755 * May race with the actual stop (through perf_pmu_output_stop()),
2756 * but it is only used for events with AUX ring buffer, and such
2757 * events will refuse to restart because of rb::aux_mmap_count==0,
2758 * see comments in perf_aux_output_begin().
2760 * Since this is happening on an event-local CPU, no trace is lost
2764 event
->pmu
->start(event
, 0);
2769 static int perf_event_stop(struct perf_event
*event
, int restart
)
2771 struct stop_event_data sd
= {
2778 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2781 /* matches smp_wmb() in event_sched_in() */
2785 * We only want to restart ACTIVE events, so if the event goes
2786 * inactive here (event->oncpu==-1), there's nothing more to do;
2787 * fall through with ret==-ENXIO.
2789 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
2790 __perf_event_stop
, &sd
);
2791 } while (ret
== -EAGAIN
);
2797 * In order to contain the amount of racy and tricky in the address filter
2798 * configuration management, it is a two part process:
2800 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2801 * we update the addresses of corresponding vmas in
2802 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
2803 * (p2) when an event is scheduled in (pmu::add), it calls
2804 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2805 * if the generation has changed since the previous call.
2807 * If (p1) happens while the event is active, we restart it to force (p2).
2809 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2810 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2812 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2813 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2815 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2818 void perf_event_addr_filters_sync(struct perf_event
*event
)
2820 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
2822 if (!has_addr_filter(event
))
2825 raw_spin_lock(&ifh
->lock
);
2826 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
2827 event
->pmu
->addr_filters_sync(event
);
2828 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
2830 raw_spin_unlock(&ifh
->lock
);
2832 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
2834 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2837 * not supported on inherited events
2839 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2842 atomic_add(refresh
, &event
->event_limit
);
2843 _perf_event_enable(event
);
2849 * See perf_event_disable()
2851 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2853 struct perf_event_context
*ctx
;
2856 ctx
= perf_event_ctx_lock(event
);
2857 ret
= _perf_event_refresh(event
, refresh
);
2858 perf_event_ctx_unlock(event
, ctx
);
2862 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2864 static int perf_event_modify_breakpoint(struct perf_event
*bp
,
2865 struct perf_event_attr
*attr
)
2869 _perf_event_disable(bp
);
2871 err
= modify_user_hw_breakpoint_check(bp
, attr
, true);
2873 if (!bp
->attr
.disabled
)
2874 _perf_event_enable(bp
);
2879 static int perf_event_modify_attr(struct perf_event
*event
,
2880 struct perf_event_attr
*attr
)
2882 if (event
->attr
.type
!= attr
->type
)
2885 switch (event
->attr
.type
) {
2886 case PERF_TYPE_BREAKPOINT
:
2887 return perf_event_modify_breakpoint(event
, attr
);
2889 /* Place holder for future additions. */
2894 static void ctx_sched_out(struct perf_event_context
*ctx
,
2895 struct perf_cpu_context
*cpuctx
,
2896 enum event_type_t event_type
)
2898 struct perf_event
*event
, *tmp
;
2899 int is_active
= ctx
->is_active
;
2901 lockdep_assert_held(&ctx
->lock
);
2903 if (likely(!ctx
->nr_events
)) {
2905 * See __perf_remove_from_context().
2907 WARN_ON_ONCE(ctx
->is_active
);
2909 WARN_ON_ONCE(cpuctx
->task_ctx
);
2913 ctx
->is_active
&= ~event_type
;
2914 if (!(ctx
->is_active
& EVENT_ALL
))
2918 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2919 if (!ctx
->is_active
)
2920 cpuctx
->task_ctx
= NULL
;
2924 * Always update time if it was set; not only when it changes.
2925 * Otherwise we can 'forget' to update time for any but the last
2926 * context we sched out. For example:
2928 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2929 * ctx_sched_out(.event_type = EVENT_PINNED)
2931 * would only update time for the pinned events.
2933 if (is_active
& EVENT_TIME
) {
2934 /* update (and stop) ctx time */
2935 update_context_time(ctx
);
2936 update_cgrp_time_from_cpuctx(cpuctx
);
2939 is_active
^= ctx
->is_active
; /* changed bits */
2941 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
2944 perf_pmu_disable(ctx
->pmu
);
2945 if (is_active
& EVENT_PINNED
) {
2946 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_active
, active_list
)
2947 group_sched_out(event
, cpuctx
, ctx
);
2950 if (is_active
& EVENT_FLEXIBLE
) {
2951 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_active
, active_list
)
2952 group_sched_out(event
, cpuctx
, ctx
);
2954 perf_pmu_enable(ctx
->pmu
);
2958 * Test whether two contexts are equivalent, i.e. whether they have both been
2959 * cloned from the same version of the same context.
2961 * Equivalence is measured using a generation number in the context that is
2962 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2963 * and list_del_event().
2965 static int context_equiv(struct perf_event_context
*ctx1
,
2966 struct perf_event_context
*ctx2
)
2968 lockdep_assert_held(&ctx1
->lock
);
2969 lockdep_assert_held(&ctx2
->lock
);
2971 /* Pinning disables the swap optimization */
2972 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2975 /* If ctx1 is the parent of ctx2 */
2976 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2979 /* If ctx2 is the parent of ctx1 */
2980 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2984 * If ctx1 and ctx2 have the same parent; we flatten the parent
2985 * hierarchy, see perf_event_init_context().
2987 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2988 ctx1
->parent_gen
== ctx2
->parent_gen
)
2995 static void __perf_event_sync_stat(struct perf_event
*event
,
2996 struct perf_event
*next_event
)
3000 if (!event
->attr
.inherit_stat
)
3004 * Update the event value, we cannot use perf_event_read()
3005 * because we're in the middle of a context switch and have IRQs
3006 * disabled, which upsets smp_call_function_single(), however
3007 * we know the event must be on the current CPU, therefore we
3008 * don't need to use it.
3010 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3011 event
->pmu
->read(event
);
3013 perf_event_update_time(event
);
3016 * In order to keep per-task stats reliable we need to flip the event
3017 * values when we flip the contexts.
3019 value
= local64_read(&next_event
->count
);
3020 value
= local64_xchg(&event
->count
, value
);
3021 local64_set(&next_event
->count
, value
);
3023 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
3024 swap(event
->total_time_running
, next_event
->total_time_running
);
3027 * Since we swizzled the values, update the user visible data too.
3029 perf_event_update_userpage(event
);
3030 perf_event_update_userpage(next_event
);
3033 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
3034 struct perf_event_context
*next_ctx
)
3036 struct perf_event
*event
, *next_event
;
3041 update_context_time(ctx
);
3043 event
= list_first_entry(&ctx
->event_list
,
3044 struct perf_event
, event_entry
);
3046 next_event
= list_first_entry(&next_ctx
->event_list
,
3047 struct perf_event
, event_entry
);
3049 while (&event
->event_entry
!= &ctx
->event_list
&&
3050 &next_event
->event_entry
!= &next_ctx
->event_list
) {
3052 __perf_event_sync_stat(event
, next_event
);
3054 event
= list_next_entry(event
, event_entry
);
3055 next_event
= list_next_entry(next_event
, event_entry
);
3059 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
3060 struct task_struct
*next
)
3062 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
3063 struct perf_event_context
*next_ctx
;
3064 struct perf_event_context
*parent
, *next_parent
;
3065 struct perf_cpu_context
*cpuctx
;
3071 cpuctx
= __get_cpu_context(ctx
);
3072 if (!cpuctx
->task_ctx
)
3076 next_ctx
= next
->perf_event_ctxp
[ctxn
];
3080 parent
= rcu_dereference(ctx
->parent_ctx
);
3081 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
3083 /* If neither context have a parent context; they cannot be clones. */
3084 if (!parent
&& !next_parent
)
3087 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
3089 * Looks like the two contexts are clones, so we might be
3090 * able to optimize the context switch. We lock both
3091 * contexts and check that they are clones under the
3092 * lock (including re-checking that neither has been
3093 * uncloned in the meantime). It doesn't matter which
3094 * order we take the locks because no other cpu could
3095 * be trying to lock both of these tasks.
3097 raw_spin_lock(&ctx
->lock
);
3098 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
3099 if (context_equiv(ctx
, next_ctx
)) {
3100 WRITE_ONCE(ctx
->task
, next
);
3101 WRITE_ONCE(next_ctx
->task
, task
);
3103 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
3106 * RCU_INIT_POINTER here is safe because we've not
3107 * modified the ctx and the above modification of
3108 * ctx->task and ctx->task_ctx_data are immaterial
3109 * since those values are always verified under
3110 * ctx->lock which we're now holding.
3112 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
3113 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
3117 perf_event_sync_stat(ctx
, next_ctx
);
3119 raw_spin_unlock(&next_ctx
->lock
);
3120 raw_spin_unlock(&ctx
->lock
);
3126 raw_spin_lock(&ctx
->lock
);
3127 task_ctx_sched_out(cpuctx
, ctx
, EVENT_ALL
);
3128 raw_spin_unlock(&ctx
->lock
);
3132 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
3134 void perf_sched_cb_dec(struct pmu
*pmu
)
3136 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3138 this_cpu_dec(perf_sched_cb_usages
);
3140 if (!--cpuctx
->sched_cb_usage
)
3141 list_del(&cpuctx
->sched_cb_entry
);
3145 void perf_sched_cb_inc(struct pmu
*pmu
)
3147 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3149 if (!cpuctx
->sched_cb_usage
++)
3150 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
3152 this_cpu_inc(perf_sched_cb_usages
);
3156 * This function provides the context switch callback to the lower code
3157 * layer. It is invoked ONLY when the context switch callback is enabled.
3159 * This callback is relevant even to per-cpu events; for example multi event
3160 * PEBS requires this to provide PID/TID information. This requires we flush
3161 * all queued PEBS records before we context switch to a new task.
3163 static void perf_pmu_sched_task(struct task_struct
*prev
,
3164 struct task_struct
*next
,
3167 struct perf_cpu_context
*cpuctx
;
3173 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
3174 pmu
= cpuctx
->ctx
.pmu
; /* software PMUs will not have sched_task */
3176 if (WARN_ON_ONCE(!pmu
->sched_task
))
3179 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3180 perf_pmu_disable(pmu
);
3182 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
3184 perf_pmu_enable(pmu
);
3185 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3189 static void perf_event_switch(struct task_struct
*task
,
3190 struct task_struct
*next_prev
, bool sched_in
);
3192 #define for_each_task_context_nr(ctxn) \
3193 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3196 * Called from scheduler to remove the events of the current task,
3197 * with interrupts disabled.
3199 * We stop each event and update the event value in event->count.
3201 * This does not protect us against NMI, but disable()
3202 * sets the disabled bit in the control field of event _before_
3203 * accessing the event control register. If a NMI hits, then it will
3204 * not restart the event.
3206 void __perf_event_task_sched_out(struct task_struct
*task
,
3207 struct task_struct
*next
)
3211 if (__this_cpu_read(perf_sched_cb_usages
))
3212 perf_pmu_sched_task(task
, next
, false);
3214 if (atomic_read(&nr_switch_events
))
3215 perf_event_switch(task
, next
, false);
3217 for_each_task_context_nr(ctxn
)
3218 perf_event_context_sched_out(task
, ctxn
, next
);
3221 * if cgroup events exist on this CPU, then we need
3222 * to check if we have to switch out PMU state.
3223 * cgroup event are system-wide mode only
3225 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3226 perf_cgroup_sched_out(task
, next
);
3230 * Called with IRQs disabled
3232 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
3233 enum event_type_t event_type
)
3235 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
3238 static int visit_groups_merge(struct perf_event_groups
*groups
, int cpu
,
3239 int (*func
)(struct perf_event
*, void *), void *data
)
3241 struct perf_event
**evt
, *evt1
, *evt2
;
3244 evt1
= perf_event_groups_first(groups
, -1);
3245 evt2
= perf_event_groups_first(groups
, cpu
);
3247 while (evt1
|| evt2
) {
3249 if (evt1
->group_index
< evt2
->group_index
)
3259 ret
= func(*evt
, data
);
3263 *evt
= perf_event_groups_next(*evt
);
3269 struct sched_in_data
{
3270 struct perf_event_context
*ctx
;
3271 struct perf_cpu_context
*cpuctx
;
3275 static int pinned_sched_in(struct perf_event
*event
, void *data
)
3277 struct sched_in_data
*sid
= data
;
3279 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3282 if (!event_filter_match(event
))
3285 if (group_can_go_on(event
, sid
->cpuctx
, sid
->can_add_hw
)) {
3286 if (!group_sched_in(event
, sid
->cpuctx
, sid
->ctx
))
3287 list_add_tail(&event
->active_list
, &sid
->ctx
->pinned_active
);
3291 * If this pinned group hasn't been scheduled,
3292 * put it in error state.
3294 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
3295 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
3300 static int flexible_sched_in(struct perf_event
*event
, void *data
)
3302 struct sched_in_data
*sid
= data
;
3304 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3307 if (!event_filter_match(event
))
3310 if (group_can_go_on(event
, sid
->cpuctx
, sid
->can_add_hw
)) {
3311 if (!group_sched_in(event
, sid
->cpuctx
, sid
->ctx
))
3312 list_add_tail(&event
->active_list
, &sid
->ctx
->flexible_active
);
3314 sid
->can_add_hw
= 0;
3321 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
3322 struct perf_cpu_context
*cpuctx
)
3324 struct sched_in_data sid
= {
3330 visit_groups_merge(&ctx
->pinned_groups
,
3332 pinned_sched_in
, &sid
);
3336 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
3337 struct perf_cpu_context
*cpuctx
)
3339 struct sched_in_data sid
= {
3345 visit_groups_merge(&ctx
->flexible_groups
,
3347 flexible_sched_in
, &sid
);
3351 ctx_sched_in(struct perf_event_context
*ctx
,
3352 struct perf_cpu_context
*cpuctx
,
3353 enum event_type_t event_type
,
3354 struct task_struct
*task
)
3356 int is_active
= ctx
->is_active
;
3359 lockdep_assert_held(&ctx
->lock
);
3361 if (likely(!ctx
->nr_events
))
3364 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3367 cpuctx
->task_ctx
= ctx
;
3369 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3372 is_active
^= ctx
->is_active
; /* changed bits */
3374 if (is_active
& EVENT_TIME
) {
3375 /* start ctx time */
3377 ctx
->timestamp
= now
;
3378 perf_cgroup_set_timestamp(task
, ctx
);
3382 * First go through the list and put on any pinned groups
3383 * in order to give them the best chance of going on.
3385 if (is_active
& EVENT_PINNED
)
3386 ctx_pinned_sched_in(ctx
, cpuctx
);
3388 /* Then walk through the lower prio flexible groups */
3389 if (is_active
& EVENT_FLEXIBLE
)
3390 ctx_flexible_sched_in(ctx
, cpuctx
);
3393 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3394 enum event_type_t event_type
,
3395 struct task_struct
*task
)
3397 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3399 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3402 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3403 struct task_struct
*task
)
3405 struct perf_cpu_context
*cpuctx
;
3407 cpuctx
= __get_cpu_context(ctx
);
3408 if (cpuctx
->task_ctx
== ctx
)
3411 perf_ctx_lock(cpuctx
, ctx
);
3413 * We must check ctx->nr_events while holding ctx->lock, such
3414 * that we serialize against perf_install_in_context().
3416 if (!ctx
->nr_events
)
3419 perf_pmu_disable(ctx
->pmu
);
3421 * We want to keep the following priority order:
3422 * cpu pinned (that don't need to move), task pinned,
3423 * cpu flexible, task flexible.
3425 * However, if task's ctx is not carrying any pinned
3426 * events, no need to flip the cpuctx's events around.
3428 if (!RB_EMPTY_ROOT(&ctx
->pinned_groups
.tree
))
3429 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3430 perf_event_sched_in(cpuctx
, ctx
, task
);
3431 perf_pmu_enable(ctx
->pmu
);
3434 perf_ctx_unlock(cpuctx
, ctx
);
3438 * Called from scheduler to add the events of the current task
3439 * with interrupts disabled.
3441 * We restore the event value and then enable it.
3443 * This does not protect us against NMI, but enable()
3444 * sets the enabled bit in the control field of event _before_
3445 * accessing the event control register. If a NMI hits, then it will
3446 * keep the event running.
3448 void __perf_event_task_sched_in(struct task_struct
*prev
,
3449 struct task_struct
*task
)
3451 struct perf_event_context
*ctx
;
3455 * If cgroup events exist on this CPU, then we need to check if we have
3456 * to switch in PMU state; cgroup event are system-wide mode only.
3458 * Since cgroup events are CPU events, we must schedule these in before
3459 * we schedule in the task events.
3461 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3462 perf_cgroup_sched_in(prev
, task
);
3464 for_each_task_context_nr(ctxn
) {
3465 ctx
= task
->perf_event_ctxp
[ctxn
];
3469 perf_event_context_sched_in(ctx
, task
);
3472 if (atomic_read(&nr_switch_events
))
3473 perf_event_switch(task
, prev
, true);
3475 if (__this_cpu_read(perf_sched_cb_usages
))
3476 perf_pmu_sched_task(prev
, task
, true);
3479 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3481 u64 frequency
= event
->attr
.sample_freq
;
3482 u64 sec
= NSEC_PER_SEC
;
3483 u64 divisor
, dividend
;
3485 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3487 count_fls
= fls64(count
);
3488 nsec_fls
= fls64(nsec
);
3489 frequency_fls
= fls64(frequency
);
3493 * We got @count in @nsec, with a target of sample_freq HZ
3494 * the target period becomes:
3497 * period = -------------------
3498 * @nsec * sample_freq
3503 * Reduce accuracy by one bit such that @a and @b converge
3504 * to a similar magnitude.
3506 #define REDUCE_FLS(a, b) \
3508 if (a##_fls > b##_fls) { \
3518 * Reduce accuracy until either term fits in a u64, then proceed with
3519 * the other, so that finally we can do a u64/u64 division.
3521 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3522 REDUCE_FLS(nsec
, frequency
);
3523 REDUCE_FLS(sec
, count
);
3526 if (count_fls
+ sec_fls
> 64) {
3527 divisor
= nsec
* frequency
;
3529 while (count_fls
+ sec_fls
> 64) {
3530 REDUCE_FLS(count
, sec
);
3534 dividend
= count
* sec
;
3536 dividend
= count
* sec
;
3538 while (nsec_fls
+ frequency_fls
> 64) {
3539 REDUCE_FLS(nsec
, frequency
);
3543 divisor
= nsec
* frequency
;
3549 return div64_u64(dividend
, divisor
);
3552 static DEFINE_PER_CPU(int, perf_throttled_count
);
3553 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3555 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3557 struct hw_perf_event
*hwc
= &event
->hw
;
3558 s64 period
, sample_period
;
3561 period
= perf_calculate_period(event
, nsec
, count
);
3563 delta
= (s64
)(period
- hwc
->sample_period
);
3564 delta
= (delta
+ 7) / 8; /* low pass filter */
3566 sample_period
= hwc
->sample_period
+ delta
;
3571 hwc
->sample_period
= sample_period
;
3573 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3575 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3577 local64_set(&hwc
->period_left
, 0);
3580 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3585 * combine freq adjustment with unthrottling to avoid two passes over the
3586 * events. At the same time, make sure, having freq events does not change
3587 * the rate of unthrottling as that would introduce bias.
3589 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3592 struct perf_event
*event
;
3593 struct hw_perf_event
*hwc
;
3594 u64 now
, period
= TICK_NSEC
;
3598 * only need to iterate over all events iff:
3599 * - context have events in frequency mode (needs freq adjust)
3600 * - there are events to unthrottle on this cpu
3602 if (!(ctx
->nr_freq
|| needs_unthr
))
3605 raw_spin_lock(&ctx
->lock
);
3606 perf_pmu_disable(ctx
->pmu
);
3608 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3609 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3612 if (!event_filter_match(event
))
3615 perf_pmu_disable(event
->pmu
);
3619 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3620 hwc
->interrupts
= 0;
3621 perf_log_throttle(event
, 1);
3622 event
->pmu
->start(event
, 0);
3625 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3629 * stop the event and update event->count
3631 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3633 now
= local64_read(&event
->count
);
3634 delta
= now
- hwc
->freq_count_stamp
;
3635 hwc
->freq_count_stamp
= now
;
3639 * reload only if value has changed
3640 * we have stopped the event so tell that
3641 * to perf_adjust_period() to avoid stopping it
3645 perf_adjust_period(event
, period
, delta
, false);
3647 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3649 perf_pmu_enable(event
->pmu
);
3652 perf_pmu_enable(ctx
->pmu
);
3653 raw_spin_unlock(&ctx
->lock
);
3657 * Move @event to the tail of the @ctx's elegible events.
3659 static void rotate_ctx(struct perf_event_context
*ctx
, struct perf_event
*event
)
3662 * Rotate the first entry last of non-pinned groups. Rotation might be
3663 * disabled by the inheritance code.
3665 if (ctx
->rotate_disable
)
3668 perf_event_groups_delete(&ctx
->flexible_groups
, event
);
3669 perf_event_groups_insert(&ctx
->flexible_groups
, event
);
3672 static inline struct perf_event
*
3673 ctx_first_active(struct perf_event_context
*ctx
)
3675 return list_first_entry_or_null(&ctx
->flexible_active
,
3676 struct perf_event
, active_list
);
3679 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3681 struct perf_event
*cpu_event
= NULL
, *task_event
= NULL
;
3682 bool cpu_rotate
= false, task_rotate
= false;
3683 struct perf_event_context
*ctx
= NULL
;
3686 * Since we run this from IRQ context, nobody can install new
3687 * events, thus the event count values are stable.
3690 if (cpuctx
->ctx
.nr_events
) {
3691 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3695 ctx
= cpuctx
->task_ctx
;
3696 if (ctx
&& ctx
->nr_events
) {
3697 if (ctx
->nr_events
!= ctx
->nr_active
)
3701 if (!(cpu_rotate
|| task_rotate
))
3704 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3705 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3708 task_event
= ctx_first_active(ctx
);
3710 cpu_event
= ctx_first_active(&cpuctx
->ctx
);
3713 * As per the order given at ctx_resched() first 'pop' task flexible
3714 * and then, if needed CPU flexible.
3716 if (task_event
|| (ctx
&& cpu_event
))
3717 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3719 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3722 rotate_ctx(ctx
, task_event
);
3724 rotate_ctx(&cpuctx
->ctx
, cpu_event
);
3726 perf_event_sched_in(cpuctx
, ctx
, current
);
3728 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3729 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3734 void perf_event_task_tick(void)
3736 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3737 struct perf_event_context
*ctx
, *tmp
;
3740 lockdep_assert_irqs_disabled();
3742 __this_cpu_inc(perf_throttled_seq
);
3743 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3744 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3746 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3747 perf_adjust_freq_unthr_context(ctx
, throttled
);
3750 static int event_enable_on_exec(struct perf_event
*event
,
3751 struct perf_event_context
*ctx
)
3753 if (!event
->attr
.enable_on_exec
)
3756 event
->attr
.enable_on_exec
= 0;
3757 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3760 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
3766 * Enable all of a task's events that have been marked enable-on-exec.
3767 * This expects task == current.
3769 static void perf_event_enable_on_exec(int ctxn
)
3771 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3772 enum event_type_t event_type
= 0;
3773 struct perf_cpu_context
*cpuctx
;
3774 struct perf_event
*event
;
3775 unsigned long flags
;
3778 local_irq_save(flags
);
3779 ctx
= current
->perf_event_ctxp
[ctxn
];
3780 if (!ctx
|| !ctx
->nr_events
)
3783 cpuctx
= __get_cpu_context(ctx
);
3784 perf_ctx_lock(cpuctx
, ctx
);
3785 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3786 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3787 enabled
|= event_enable_on_exec(event
, ctx
);
3788 event_type
|= get_event_type(event
);
3792 * Unclone and reschedule this context if we enabled any event.
3795 clone_ctx
= unclone_ctx(ctx
);
3796 ctx_resched(cpuctx
, ctx
, event_type
);
3798 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
3800 perf_ctx_unlock(cpuctx
, ctx
);
3803 local_irq_restore(flags
);
3809 struct perf_read_data
{
3810 struct perf_event
*event
;
3815 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
3817 u16 local_pkg
, event_pkg
;
3819 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
3820 int local_cpu
= smp_processor_id();
3822 event_pkg
= topology_physical_package_id(event_cpu
);
3823 local_pkg
= topology_physical_package_id(local_cpu
);
3825 if (event_pkg
== local_pkg
)
3833 * Cross CPU call to read the hardware event
3835 static void __perf_event_read(void *info
)
3837 struct perf_read_data
*data
= info
;
3838 struct perf_event
*sub
, *event
= data
->event
;
3839 struct perf_event_context
*ctx
= event
->ctx
;
3840 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3841 struct pmu
*pmu
= event
->pmu
;
3844 * If this is a task context, we need to check whether it is
3845 * the current task context of this cpu. If not it has been
3846 * scheduled out before the smp call arrived. In that case
3847 * event->count would have been updated to a recent sample
3848 * when the event was scheduled out.
3850 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3853 raw_spin_lock(&ctx
->lock
);
3854 if (ctx
->is_active
& EVENT_TIME
) {
3855 update_context_time(ctx
);
3856 update_cgrp_time_from_event(event
);
3859 perf_event_update_time(event
);
3861 perf_event_update_sibling_time(event
);
3863 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3872 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3876 for_each_sibling_event(sub
, event
) {
3877 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3879 * Use sibling's PMU rather than @event's since
3880 * sibling could be on different (eg: software) PMU.
3882 sub
->pmu
->read(sub
);
3886 data
->ret
= pmu
->commit_txn(pmu
);
3889 raw_spin_unlock(&ctx
->lock
);
3892 static inline u64
perf_event_count(struct perf_event
*event
)
3894 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
3898 * NMI-safe method to read a local event, that is an event that
3900 * - either for the current task, or for this CPU
3901 * - does not have inherit set, for inherited task events
3902 * will not be local and we cannot read them atomically
3903 * - must not have a pmu::count method
3905 int perf_event_read_local(struct perf_event
*event
, u64
*value
,
3906 u64
*enabled
, u64
*running
)
3908 unsigned long flags
;
3912 * Disabling interrupts avoids all counter scheduling (context
3913 * switches, timer based rotation and IPIs).
3915 local_irq_save(flags
);
3918 * It must not be an event with inherit set, we cannot read
3919 * all child counters from atomic context.
3921 if (event
->attr
.inherit
) {
3926 /* If this is a per-task event, it must be for current */
3927 if ((event
->attach_state
& PERF_ATTACH_TASK
) &&
3928 event
->hw
.target
!= current
) {
3933 /* If this is a per-CPU event, it must be for this CPU */
3934 if (!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3935 event
->cpu
!= smp_processor_id()) {
3940 /* If this is a pinned event it must be running on this CPU */
3941 if (event
->attr
.pinned
&& event
->oncpu
!= smp_processor_id()) {
3947 * If the event is currently on this CPU, its either a per-task event,
3948 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3951 if (event
->oncpu
== smp_processor_id())
3952 event
->pmu
->read(event
);
3954 *value
= local64_read(&event
->count
);
3955 if (enabled
|| running
) {
3956 u64 now
= event
->shadow_ctx_time
+ perf_clock();
3957 u64 __enabled
, __running
;
3959 __perf_update_times(event
, now
, &__enabled
, &__running
);
3961 *enabled
= __enabled
;
3963 *running
= __running
;
3966 local_irq_restore(flags
);
3971 static int perf_event_read(struct perf_event
*event
, bool group
)
3973 enum perf_event_state state
= READ_ONCE(event
->state
);
3974 int event_cpu
, ret
= 0;
3977 * If event is enabled and currently active on a CPU, update the
3978 * value in the event structure:
3981 if (state
== PERF_EVENT_STATE_ACTIVE
) {
3982 struct perf_read_data data
;
3985 * Orders the ->state and ->oncpu loads such that if we see
3986 * ACTIVE we must also see the right ->oncpu.
3988 * Matches the smp_wmb() from event_sched_in().
3992 event_cpu
= READ_ONCE(event
->oncpu
);
3993 if ((unsigned)event_cpu
>= nr_cpu_ids
)
3996 data
= (struct perf_read_data
){
4003 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
4006 * Purposely ignore the smp_call_function_single() return
4009 * If event_cpu isn't a valid CPU it means the event got
4010 * scheduled out and that will have updated the event count.
4012 * Therefore, either way, we'll have an up-to-date event count
4015 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
4019 } else if (state
== PERF_EVENT_STATE_INACTIVE
) {
4020 struct perf_event_context
*ctx
= event
->ctx
;
4021 unsigned long flags
;
4023 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4024 state
= event
->state
;
4025 if (state
!= PERF_EVENT_STATE_INACTIVE
) {
4026 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4031 * May read while context is not active (e.g., thread is
4032 * blocked), in that case we cannot update context time
4034 if (ctx
->is_active
& EVENT_TIME
) {
4035 update_context_time(ctx
);
4036 update_cgrp_time_from_event(event
);
4039 perf_event_update_time(event
);
4041 perf_event_update_sibling_time(event
);
4042 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4049 * Initialize the perf_event context in a task_struct:
4051 static void __perf_event_init_context(struct perf_event_context
*ctx
)
4053 raw_spin_lock_init(&ctx
->lock
);
4054 mutex_init(&ctx
->mutex
);
4055 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
4056 perf_event_groups_init(&ctx
->pinned_groups
);
4057 perf_event_groups_init(&ctx
->flexible_groups
);
4058 INIT_LIST_HEAD(&ctx
->event_list
);
4059 INIT_LIST_HEAD(&ctx
->pinned_active
);
4060 INIT_LIST_HEAD(&ctx
->flexible_active
);
4061 refcount_set(&ctx
->refcount
, 1);
4064 static struct perf_event_context
*
4065 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
4067 struct perf_event_context
*ctx
;
4069 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4073 __perf_event_init_context(ctx
);
4076 get_task_struct(task
);
4083 static struct task_struct
*
4084 find_lively_task_by_vpid(pid_t vpid
)
4086 struct task_struct
*task
;
4092 task
= find_task_by_vpid(vpid
);
4094 get_task_struct(task
);
4098 return ERR_PTR(-ESRCH
);
4104 * Returns a matching context with refcount and pincount.
4106 static struct perf_event_context
*
4107 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
4108 struct perf_event
*event
)
4110 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
4111 struct perf_cpu_context
*cpuctx
;
4112 void *task_ctx_data
= NULL
;
4113 unsigned long flags
;
4115 int cpu
= event
->cpu
;
4118 /* Must be root to operate on a CPU event: */
4119 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
4120 return ERR_PTR(-EACCES
);
4122 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
4131 ctxn
= pmu
->task_ctx_nr
;
4135 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
4136 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
4137 if (!task_ctx_data
) {
4144 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
4146 clone_ctx
= unclone_ctx(ctx
);
4149 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
4150 ctx
->task_ctx_data
= task_ctx_data
;
4151 task_ctx_data
= NULL
;
4153 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4158 ctx
= alloc_perf_context(pmu
, task
);
4163 if (task_ctx_data
) {
4164 ctx
->task_ctx_data
= task_ctx_data
;
4165 task_ctx_data
= NULL
;
4169 mutex_lock(&task
->perf_event_mutex
);
4171 * If it has already passed perf_event_exit_task().
4172 * we must see PF_EXITING, it takes this mutex too.
4174 if (task
->flags
& PF_EXITING
)
4176 else if (task
->perf_event_ctxp
[ctxn
])
4181 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
4183 mutex_unlock(&task
->perf_event_mutex
);
4185 if (unlikely(err
)) {
4194 kfree(task_ctx_data
);
4198 kfree(task_ctx_data
);
4199 return ERR_PTR(err
);
4202 static void perf_event_free_filter(struct perf_event
*event
);
4203 static void perf_event_free_bpf_prog(struct perf_event
*event
);
4205 static void free_event_rcu(struct rcu_head
*head
)
4207 struct perf_event
*event
;
4209 event
= container_of(head
, struct perf_event
, rcu_head
);
4211 put_pid_ns(event
->ns
);
4212 perf_event_free_filter(event
);
4216 static void ring_buffer_attach(struct perf_event
*event
,
4217 struct ring_buffer
*rb
);
4219 static void detach_sb_event(struct perf_event
*event
)
4221 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
4223 raw_spin_lock(&pel
->lock
);
4224 list_del_rcu(&event
->sb_list
);
4225 raw_spin_unlock(&pel
->lock
);
4228 static bool is_sb_event(struct perf_event
*event
)
4230 struct perf_event_attr
*attr
= &event
->attr
;
4235 if (event
->attach_state
& PERF_ATTACH_TASK
)
4238 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
4239 attr
->comm
|| attr
->comm_exec
||
4240 attr
->task
|| attr
->ksymbol
||
4241 attr
->context_switch
||
4247 static void unaccount_pmu_sb_event(struct perf_event
*event
)
4249 if (is_sb_event(event
))
4250 detach_sb_event(event
);
4253 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
4258 if (is_cgroup_event(event
))
4259 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
4262 #ifdef CONFIG_NO_HZ_FULL
4263 static DEFINE_SPINLOCK(nr_freq_lock
);
4266 static void unaccount_freq_event_nohz(void)
4268 #ifdef CONFIG_NO_HZ_FULL
4269 spin_lock(&nr_freq_lock
);
4270 if (atomic_dec_and_test(&nr_freq_events
))
4271 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
4272 spin_unlock(&nr_freq_lock
);
4276 static void unaccount_freq_event(void)
4278 if (tick_nohz_full_enabled())
4279 unaccount_freq_event_nohz();
4281 atomic_dec(&nr_freq_events
);
4284 static void unaccount_event(struct perf_event
*event
)
4291 if (event
->attach_state
& PERF_ATTACH_TASK
)
4293 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
4294 atomic_dec(&nr_mmap_events
);
4295 if (event
->attr
.comm
)
4296 atomic_dec(&nr_comm_events
);
4297 if (event
->attr
.namespaces
)
4298 atomic_dec(&nr_namespaces_events
);
4299 if (event
->attr
.task
)
4300 atomic_dec(&nr_task_events
);
4301 if (event
->attr
.freq
)
4302 unaccount_freq_event();
4303 if (event
->attr
.context_switch
) {
4305 atomic_dec(&nr_switch_events
);
4307 if (is_cgroup_event(event
))
4309 if (has_branch_stack(event
))
4311 if (event
->attr
.ksymbol
)
4312 atomic_dec(&nr_ksymbol_events
);
4313 if (event
->attr
.bpf_event
)
4314 atomic_dec(&nr_bpf_events
);
4317 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
4318 schedule_delayed_work(&perf_sched_work
, HZ
);
4321 unaccount_event_cpu(event
, event
->cpu
);
4323 unaccount_pmu_sb_event(event
);
4326 static void perf_sched_delayed(struct work_struct
*work
)
4328 mutex_lock(&perf_sched_mutex
);
4329 if (atomic_dec_and_test(&perf_sched_count
))
4330 static_branch_disable(&perf_sched_events
);
4331 mutex_unlock(&perf_sched_mutex
);
4335 * The following implement mutual exclusion of events on "exclusive" pmus
4336 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4337 * at a time, so we disallow creating events that might conflict, namely:
4339 * 1) cpu-wide events in the presence of per-task events,
4340 * 2) per-task events in the presence of cpu-wide events,
4341 * 3) two matching events on the same context.
4343 * The former two cases are handled in the allocation path (perf_event_alloc(),
4344 * _free_event()), the latter -- before the first perf_install_in_context().
4346 static int exclusive_event_init(struct perf_event
*event
)
4348 struct pmu
*pmu
= event
->pmu
;
4350 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4354 * Prevent co-existence of per-task and cpu-wide events on the
4355 * same exclusive pmu.
4357 * Negative pmu::exclusive_cnt means there are cpu-wide
4358 * events on this "exclusive" pmu, positive means there are
4361 * Since this is called in perf_event_alloc() path, event::ctx
4362 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4363 * to mean "per-task event", because unlike other attach states it
4364 * never gets cleared.
4366 if (event
->attach_state
& PERF_ATTACH_TASK
) {
4367 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
4370 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
4377 static void exclusive_event_destroy(struct perf_event
*event
)
4379 struct pmu
*pmu
= event
->pmu
;
4381 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4384 /* see comment in exclusive_event_init() */
4385 if (event
->attach_state
& PERF_ATTACH_TASK
)
4386 atomic_dec(&pmu
->exclusive_cnt
);
4388 atomic_inc(&pmu
->exclusive_cnt
);
4391 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
4393 if ((e1
->pmu
== e2
->pmu
) &&
4394 (e1
->cpu
== e2
->cpu
||
4401 /* Called under the same ctx::mutex as perf_install_in_context() */
4402 static bool exclusive_event_installable(struct perf_event
*event
,
4403 struct perf_event_context
*ctx
)
4405 struct perf_event
*iter_event
;
4406 struct pmu
*pmu
= event
->pmu
;
4408 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4411 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
4412 if (exclusive_event_match(iter_event
, event
))
4419 static void perf_addr_filters_splice(struct perf_event
*event
,
4420 struct list_head
*head
);
4422 static void _free_event(struct perf_event
*event
)
4424 irq_work_sync(&event
->pending
);
4426 unaccount_event(event
);
4430 * Can happen when we close an event with re-directed output.
4432 * Since we have a 0 refcount, perf_mmap_close() will skip
4433 * over us; possibly making our ring_buffer_put() the last.
4435 mutex_lock(&event
->mmap_mutex
);
4436 ring_buffer_attach(event
, NULL
);
4437 mutex_unlock(&event
->mmap_mutex
);
4440 if (is_cgroup_event(event
))
4441 perf_detach_cgroup(event
);
4443 if (!event
->parent
) {
4444 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4445 put_callchain_buffers();
4448 perf_event_free_bpf_prog(event
);
4449 perf_addr_filters_splice(event
, NULL
);
4450 kfree(event
->addr_filter_ranges
);
4453 event
->destroy(event
);
4456 put_ctx(event
->ctx
);
4458 if (event
->hw
.target
)
4459 put_task_struct(event
->hw
.target
);
4461 exclusive_event_destroy(event
);
4462 module_put(event
->pmu
->module
);
4464 call_rcu(&event
->rcu_head
, free_event_rcu
);
4468 * Used to free events which have a known refcount of 1, such as in error paths
4469 * where the event isn't exposed yet and inherited events.
4471 static void free_event(struct perf_event
*event
)
4473 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4474 "unexpected event refcount: %ld; ptr=%p\n",
4475 atomic_long_read(&event
->refcount
), event
)) {
4476 /* leak to avoid use-after-free */
4484 * Remove user event from the owner task.
4486 static void perf_remove_from_owner(struct perf_event
*event
)
4488 struct task_struct
*owner
;
4492 * Matches the smp_store_release() in perf_event_exit_task(). If we
4493 * observe !owner it means the list deletion is complete and we can
4494 * indeed free this event, otherwise we need to serialize on
4495 * owner->perf_event_mutex.
4497 owner
= READ_ONCE(event
->owner
);
4500 * Since delayed_put_task_struct() also drops the last
4501 * task reference we can safely take a new reference
4502 * while holding the rcu_read_lock().
4504 get_task_struct(owner
);
4510 * If we're here through perf_event_exit_task() we're already
4511 * holding ctx->mutex which would be an inversion wrt. the
4512 * normal lock order.
4514 * However we can safely take this lock because its the child
4517 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4520 * We have to re-check the event->owner field, if it is cleared
4521 * we raced with perf_event_exit_task(), acquiring the mutex
4522 * ensured they're done, and we can proceed with freeing the
4526 list_del_init(&event
->owner_entry
);
4527 smp_store_release(&event
->owner
, NULL
);
4529 mutex_unlock(&owner
->perf_event_mutex
);
4530 put_task_struct(owner
);
4534 static void put_event(struct perf_event
*event
)
4536 if (!atomic_long_dec_and_test(&event
->refcount
))
4543 * Kill an event dead; while event:refcount will preserve the event
4544 * object, it will not preserve its functionality. Once the last 'user'
4545 * gives up the object, we'll destroy the thing.
4547 int perf_event_release_kernel(struct perf_event
*event
)
4549 struct perf_event_context
*ctx
= event
->ctx
;
4550 struct perf_event
*child
, *tmp
;
4551 LIST_HEAD(free_list
);
4554 * If we got here through err_file: fput(event_file); we will not have
4555 * attached to a context yet.
4558 WARN_ON_ONCE(event
->attach_state
&
4559 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4563 if (!is_kernel_event(event
))
4564 perf_remove_from_owner(event
);
4566 ctx
= perf_event_ctx_lock(event
);
4567 WARN_ON_ONCE(ctx
->parent_ctx
);
4568 perf_remove_from_context(event
, DETACH_GROUP
);
4570 raw_spin_lock_irq(&ctx
->lock
);
4572 * Mark this event as STATE_DEAD, there is no external reference to it
4575 * Anybody acquiring event->child_mutex after the below loop _must_
4576 * also see this, most importantly inherit_event() which will avoid
4577 * placing more children on the list.
4579 * Thus this guarantees that we will in fact observe and kill _ALL_
4582 event
->state
= PERF_EVENT_STATE_DEAD
;
4583 raw_spin_unlock_irq(&ctx
->lock
);
4585 perf_event_ctx_unlock(event
, ctx
);
4588 mutex_lock(&event
->child_mutex
);
4589 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4592 * Cannot change, child events are not migrated, see the
4593 * comment with perf_event_ctx_lock_nested().
4595 ctx
= READ_ONCE(child
->ctx
);
4597 * Since child_mutex nests inside ctx::mutex, we must jump
4598 * through hoops. We start by grabbing a reference on the ctx.
4600 * Since the event cannot get freed while we hold the
4601 * child_mutex, the context must also exist and have a !0
4607 * Now that we have a ctx ref, we can drop child_mutex, and
4608 * acquire ctx::mutex without fear of it going away. Then we
4609 * can re-acquire child_mutex.
4611 mutex_unlock(&event
->child_mutex
);
4612 mutex_lock(&ctx
->mutex
);
4613 mutex_lock(&event
->child_mutex
);
4616 * Now that we hold ctx::mutex and child_mutex, revalidate our
4617 * state, if child is still the first entry, it didn't get freed
4618 * and we can continue doing so.
4620 tmp
= list_first_entry_or_null(&event
->child_list
,
4621 struct perf_event
, child_list
);
4623 perf_remove_from_context(child
, DETACH_GROUP
);
4624 list_move(&child
->child_list
, &free_list
);
4626 * This matches the refcount bump in inherit_event();
4627 * this can't be the last reference.
4632 mutex_unlock(&event
->child_mutex
);
4633 mutex_unlock(&ctx
->mutex
);
4637 mutex_unlock(&event
->child_mutex
);
4639 list_for_each_entry_safe(child
, tmp
, &free_list
, child_list
) {
4640 list_del(&child
->child_list
);
4645 put_event(event
); /* Must be the 'last' reference */
4648 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
4651 * Called when the last reference to the file is gone.
4653 static int perf_release(struct inode
*inode
, struct file
*file
)
4655 perf_event_release_kernel(file
->private_data
);
4659 static u64
__perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4661 struct perf_event
*child
;
4667 mutex_lock(&event
->child_mutex
);
4669 (void)perf_event_read(event
, false);
4670 total
+= perf_event_count(event
);
4672 *enabled
+= event
->total_time_enabled
+
4673 atomic64_read(&event
->child_total_time_enabled
);
4674 *running
+= event
->total_time_running
+
4675 atomic64_read(&event
->child_total_time_running
);
4677 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4678 (void)perf_event_read(child
, false);
4679 total
+= perf_event_count(child
);
4680 *enabled
+= child
->total_time_enabled
;
4681 *running
+= child
->total_time_running
;
4683 mutex_unlock(&event
->child_mutex
);
4688 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4690 struct perf_event_context
*ctx
;
4693 ctx
= perf_event_ctx_lock(event
);
4694 count
= __perf_event_read_value(event
, enabled
, running
);
4695 perf_event_ctx_unlock(event
, ctx
);
4699 EXPORT_SYMBOL_GPL(perf_event_read_value
);
4701 static int __perf_read_group_add(struct perf_event
*leader
,
4702 u64 read_format
, u64
*values
)
4704 struct perf_event_context
*ctx
= leader
->ctx
;
4705 struct perf_event
*sub
;
4706 unsigned long flags
;
4707 int n
= 1; /* skip @nr */
4710 ret
= perf_event_read(leader
, true);
4714 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4717 * Since we co-schedule groups, {enabled,running} times of siblings
4718 * will be identical to those of the leader, so we only publish one
4721 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4722 values
[n
++] += leader
->total_time_enabled
+
4723 atomic64_read(&leader
->child_total_time_enabled
);
4726 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4727 values
[n
++] += leader
->total_time_running
+
4728 atomic64_read(&leader
->child_total_time_running
);
4732 * Write {count,id} tuples for every sibling.
4734 values
[n
++] += perf_event_count(leader
);
4735 if (read_format
& PERF_FORMAT_ID
)
4736 values
[n
++] = primary_event_id(leader
);
4738 for_each_sibling_event(sub
, leader
) {
4739 values
[n
++] += perf_event_count(sub
);
4740 if (read_format
& PERF_FORMAT_ID
)
4741 values
[n
++] = primary_event_id(sub
);
4744 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4748 static int perf_read_group(struct perf_event
*event
,
4749 u64 read_format
, char __user
*buf
)
4751 struct perf_event
*leader
= event
->group_leader
, *child
;
4752 struct perf_event_context
*ctx
= leader
->ctx
;
4756 lockdep_assert_held(&ctx
->mutex
);
4758 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4762 values
[0] = 1 + leader
->nr_siblings
;
4765 * By locking the child_mutex of the leader we effectively
4766 * lock the child list of all siblings.. XXX explain how.
4768 mutex_lock(&leader
->child_mutex
);
4770 ret
= __perf_read_group_add(leader
, read_format
, values
);
4774 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4775 ret
= __perf_read_group_add(child
, read_format
, values
);
4780 mutex_unlock(&leader
->child_mutex
);
4782 ret
= event
->read_size
;
4783 if (copy_to_user(buf
, values
, event
->read_size
))
4788 mutex_unlock(&leader
->child_mutex
);
4794 static int perf_read_one(struct perf_event
*event
,
4795 u64 read_format
, char __user
*buf
)
4797 u64 enabled
, running
;
4801 values
[n
++] = __perf_event_read_value(event
, &enabled
, &running
);
4802 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4803 values
[n
++] = enabled
;
4804 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4805 values
[n
++] = running
;
4806 if (read_format
& PERF_FORMAT_ID
)
4807 values
[n
++] = primary_event_id(event
);
4809 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4812 return n
* sizeof(u64
);
4815 static bool is_event_hup(struct perf_event
*event
)
4819 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4822 mutex_lock(&event
->child_mutex
);
4823 no_children
= list_empty(&event
->child_list
);
4824 mutex_unlock(&event
->child_mutex
);
4829 * Read the performance event - simple non blocking version for now
4832 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
4834 u64 read_format
= event
->attr
.read_format
;
4838 * Return end-of-file for a read on an event that is in
4839 * error state (i.e. because it was pinned but it couldn't be
4840 * scheduled on to the CPU at some point).
4842 if (event
->state
== PERF_EVENT_STATE_ERROR
)
4845 if (count
< event
->read_size
)
4848 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4849 if (read_format
& PERF_FORMAT_GROUP
)
4850 ret
= perf_read_group(event
, read_format
, buf
);
4852 ret
= perf_read_one(event
, read_format
, buf
);
4858 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4860 struct perf_event
*event
= file
->private_data
;
4861 struct perf_event_context
*ctx
;
4864 ctx
= perf_event_ctx_lock(event
);
4865 ret
= __perf_read(event
, buf
, count
);
4866 perf_event_ctx_unlock(event
, ctx
);
4871 static __poll_t
perf_poll(struct file
*file
, poll_table
*wait
)
4873 struct perf_event
*event
= file
->private_data
;
4874 struct ring_buffer
*rb
;
4875 __poll_t events
= EPOLLHUP
;
4877 poll_wait(file
, &event
->waitq
, wait
);
4879 if (is_event_hup(event
))
4883 * Pin the event->rb by taking event->mmap_mutex; otherwise
4884 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4886 mutex_lock(&event
->mmap_mutex
);
4889 events
= atomic_xchg(&rb
->poll
, 0);
4890 mutex_unlock(&event
->mmap_mutex
);
4894 static void _perf_event_reset(struct perf_event
*event
)
4896 (void)perf_event_read(event
, false);
4897 local64_set(&event
->count
, 0);
4898 perf_event_update_userpage(event
);
4902 * Holding the top-level event's child_mutex means that any
4903 * descendant process that has inherited this event will block
4904 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4905 * task existence requirements of perf_event_enable/disable.
4907 static void perf_event_for_each_child(struct perf_event
*event
,
4908 void (*func
)(struct perf_event
*))
4910 struct perf_event
*child
;
4912 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4914 mutex_lock(&event
->child_mutex
);
4916 list_for_each_entry(child
, &event
->child_list
, child_list
)
4918 mutex_unlock(&event
->child_mutex
);
4921 static void perf_event_for_each(struct perf_event
*event
,
4922 void (*func
)(struct perf_event
*))
4924 struct perf_event_context
*ctx
= event
->ctx
;
4925 struct perf_event
*sibling
;
4927 lockdep_assert_held(&ctx
->mutex
);
4929 event
= event
->group_leader
;
4931 perf_event_for_each_child(event
, func
);
4932 for_each_sibling_event(sibling
, event
)
4933 perf_event_for_each_child(sibling
, func
);
4936 static void __perf_event_period(struct perf_event
*event
,
4937 struct perf_cpu_context
*cpuctx
,
4938 struct perf_event_context
*ctx
,
4941 u64 value
= *((u64
*)info
);
4944 if (event
->attr
.freq
) {
4945 event
->attr
.sample_freq
= value
;
4947 event
->attr
.sample_period
= value
;
4948 event
->hw
.sample_period
= value
;
4951 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4953 perf_pmu_disable(ctx
->pmu
);
4955 * We could be throttled; unthrottle now to avoid the tick
4956 * trying to unthrottle while we already re-started the event.
4958 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
4959 event
->hw
.interrupts
= 0;
4960 perf_log_throttle(event
, 1);
4962 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4965 local64_set(&event
->hw
.period_left
, 0);
4968 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4969 perf_pmu_enable(ctx
->pmu
);
4973 static int perf_event_check_period(struct perf_event
*event
, u64 value
)
4975 return event
->pmu
->check_period(event
, value
);
4978 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4982 if (!is_sampling_event(event
))
4985 if (copy_from_user(&value
, arg
, sizeof(value
)))
4991 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4994 if (perf_event_check_period(event
, value
))
4997 event_function_call(event
, __perf_event_period
, &value
);
5002 static const struct file_operations perf_fops
;
5004 static inline int perf_fget_light(int fd
, struct fd
*p
)
5006 struct fd f
= fdget(fd
);
5010 if (f
.file
->f_op
!= &perf_fops
) {
5018 static int perf_event_set_output(struct perf_event
*event
,
5019 struct perf_event
*output_event
);
5020 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
5021 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
5022 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5023 struct perf_event_attr
*attr
);
5025 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
5027 void (*func
)(struct perf_event
*);
5031 case PERF_EVENT_IOC_ENABLE
:
5032 func
= _perf_event_enable
;
5034 case PERF_EVENT_IOC_DISABLE
:
5035 func
= _perf_event_disable
;
5037 case PERF_EVENT_IOC_RESET
:
5038 func
= _perf_event_reset
;
5041 case PERF_EVENT_IOC_REFRESH
:
5042 return _perf_event_refresh(event
, arg
);
5044 case PERF_EVENT_IOC_PERIOD
:
5045 return perf_event_period(event
, (u64 __user
*)arg
);
5047 case PERF_EVENT_IOC_ID
:
5049 u64 id
= primary_event_id(event
);
5051 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
5056 case PERF_EVENT_IOC_SET_OUTPUT
:
5060 struct perf_event
*output_event
;
5062 ret
= perf_fget_light(arg
, &output
);
5065 output_event
= output
.file
->private_data
;
5066 ret
= perf_event_set_output(event
, output_event
);
5069 ret
= perf_event_set_output(event
, NULL
);
5074 case PERF_EVENT_IOC_SET_FILTER
:
5075 return perf_event_set_filter(event
, (void __user
*)arg
);
5077 case PERF_EVENT_IOC_SET_BPF
:
5078 return perf_event_set_bpf_prog(event
, arg
);
5080 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
5081 struct ring_buffer
*rb
;
5084 rb
= rcu_dereference(event
->rb
);
5085 if (!rb
|| !rb
->nr_pages
) {
5089 rb_toggle_paused(rb
, !!arg
);
5094 case PERF_EVENT_IOC_QUERY_BPF
:
5095 return perf_event_query_prog_array(event
, (void __user
*)arg
);
5097 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES
: {
5098 struct perf_event_attr new_attr
;
5099 int err
= perf_copy_attr((struct perf_event_attr __user
*)arg
,
5105 return perf_event_modify_attr(event
, &new_attr
);
5111 if (flags
& PERF_IOC_FLAG_GROUP
)
5112 perf_event_for_each(event
, func
);
5114 perf_event_for_each_child(event
, func
);
5119 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5121 struct perf_event
*event
= file
->private_data
;
5122 struct perf_event_context
*ctx
;
5125 ctx
= perf_event_ctx_lock(event
);
5126 ret
= _perf_ioctl(event
, cmd
, arg
);
5127 perf_event_ctx_unlock(event
, ctx
);
5132 #ifdef CONFIG_COMPAT
5133 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
5136 switch (_IOC_NR(cmd
)) {
5137 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
5138 case _IOC_NR(PERF_EVENT_IOC_ID
):
5139 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF
):
5140 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES
):
5141 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5142 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
5143 cmd
&= ~IOCSIZE_MASK
;
5144 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
5148 return perf_ioctl(file
, cmd
, arg
);
5151 # define perf_compat_ioctl NULL
5154 int perf_event_task_enable(void)
5156 struct perf_event_context
*ctx
;
5157 struct perf_event
*event
;
5159 mutex_lock(¤t
->perf_event_mutex
);
5160 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5161 ctx
= perf_event_ctx_lock(event
);
5162 perf_event_for_each_child(event
, _perf_event_enable
);
5163 perf_event_ctx_unlock(event
, ctx
);
5165 mutex_unlock(¤t
->perf_event_mutex
);
5170 int perf_event_task_disable(void)
5172 struct perf_event_context
*ctx
;
5173 struct perf_event
*event
;
5175 mutex_lock(¤t
->perf_event_mutex
);
5176 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5177 ctx
= perf_event_ctx_lock(event
);
5178 perf_event_for_each_child(event
, _perf_event_disable
);
5179 perf_event_ctx_unlock(event
, ctx
);
5181 mutex_unlock(¤t
->perf_event_mutex
);
5186 static int perf_event_index(struct perf_event
*event
)
5188 if (event
->hw
.state
& PERF_HES_STOPPED
)
5191 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5194 return event
->pmu
->event_idx(event
);
5197 static void calc_timer_values(struct perf_event
*event
,
5204 *now
= perf_clock();
5205 ctx_time
= event
->shadow_ctx_time
+ *now
;
5206 __perf_update_times(event
, ctx_time
, enabled
, running
);
5209 static void perf_event_init_userpage(struct perf_event
*event
)
5211 struct perf_event_mmap_page
*userpg
;
5212 struct ring_buffer
*rb
;
5215 rb
= rcu_dereference(event
->rb
);
5219 userpg
= rb
->user_page
;
5221 /* Allow new userspace to detect that bit 0 is deprecated */
5222 userpg
->cap_bit0_is_deprecated
= 1;
5223 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
5224 userpg
->data_offset
= PAGE_SIZE
;
5225 userpg
->data_size
= perf_data_size(rb
);
5231 void __weak
arch_perf_update_userpage(
5232 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
5237 * Callers need to ensure there can be no nesting of this function, otherwise
5238 * the seqlock logic goes bad. We can not serialize this because the arch
5239 * code calls this from NMI context.
5241 void perf_event_update_userpage(struct perf_event
*event
)
5243 struct perf_event_mmap_page
*userpg
;
5244 struct ring_buffer
*rb
;
5245 u64 enabled
, running
, now
;
5248 rb
= rcu_dereference(event
->rb
);
5253 * compute total_time_enabled, total_time_running
5254 * based on snapshot values taken when the event
5255 * was last scheduled in.
5257 * we cannot simply called update_context_time()
5258 * because of locking issue as we can be called in
5261 calc_timer_values(event
, &now
, &enabled
, &running
);
5263 userpg
= rb
->user_page
;
5265 * Disable preemption to guarantee consistent time stamps are stored to
5271 userpg
->index
= perf_event_index(event
);
5272 userpg
->offset
= perf_event_count(event
);
5274 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
5276 userpg
->time_enabled
= enabled
+
5277 atomic64_read(&event
->child_total_time_enabled
);
5279 userpg
->time_running
= running
+
5280 atomic64_read(&event
->child_total_time_running
);
5282 arch_perf_update_userpage(event
, userpg
, now
);
5290 EXPORT_SYMBOL_GPL(perf_event_update_userpage
);
5292 static vm_fault_t
perf_mmap_fault(struct vm_fault
*vmf
)
5294 struct perf_event
*event
= vmf
->vma
->vm_file
->private_data
;
5295 struct ring_buffer
*rb
;
5296 vm_fault_t ret
= VM_FAULT_SIGBUS
;
5298 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
5299 if (vmf
->pgoff
== 0)
5305 rb
= rcu_dereference(event
->rb
);
5309 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
5312 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
5316 get_page(vmf
->page
);
5317 vmf
->page
->mapping
= vmf
->vma
->vm_file
->f_mapping
;
5318 vmf
->page
->index
= vmf
->pgoff
;
5327 static void ring_buffer_attach(struct perf_event
*event
,
5328 struct ring_buffer
*rb
)
5330 struct ring_buffer
*old_rb
= NULL
;
5331 unsigned long flags
;
5335 * Should be impossible, we set this when removing
5336 * event->rb_entry and wait/clear when adding event->rb_entry.
5338 WARN_ON_ONCE(event
->rcu_pending
);
5341 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
5342 list_del_rcu(&event
->rb_entry
);
5343 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
5345 event
->rcu_batches
= get_state_synchronize_rcu();
5346 event
->rcu_pending
= 1;
5350 if (event
->rcu_pending
) {
5351 cond_synchronize_rcu(event
->rcu_batches
);
5352 event
->rcu_pending
= 0;
5355 spin_lock_irqsave(&rb
->event_lock
, flags
);
5356 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
5357 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
5361 * Avoid racing with perf_mmap_close(AUX): stop the event
5362 * before swizzling the event::rb pointer; if it's getting
5363 * unmapped, its aux_mmap_count will be 0 and it won't
5364 * restart. See the comment in __perf_pmu_output_stop().
5366 * Data will inevitably be lost when set_output is done in
5367 * mid-air, but then again, whoever does it like this is
5368 * not in for the data anyway.
5371 perf_event_stop(event
, 0);
5373 rcu_assign_pointer(event
->rb
, rb
);
5376 ring_buffer_put(old_rb
);
5378 * Since we detached before setting the new rb, so that we
5379 * could attach the new rb, we could have missed a wakeup.
5382 wake_up_all(&event
->waitq
);
5386 static void ring_buffer_wakeup(struct perf_event
*event
)
5388 struct ring_buffer
*rb
;
5391 rb
= rcu_dereference(event
->rb
);
5393 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
5394 wake_up_all(&event
->waitq
);
5399 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
5401 struct ring_buffer
*rb
;
5404 rb
= rcu_dereference(event
->rb
);
5406 if (!refcount_inc_not_zero(&rb
->refcount
))
5414 void ring_buffer_put(struct ring_buffer
*rb
)
5416 if (!refcount_dec_and_test(&rb
->refcount
))
5419 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
5421 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
5424 static void perf_mmap_open(struct vm_area_struct
*vma
)
5426 struct perf_event
*event
= vma
->vm_file
->private_data
;
5428 atomic_inc(&event
->mmap_count
);
5429 atomic_inc(&event
->rb
->mmap_count
);
5432 atomic_inc(&event
->rb
->aux_mmap_count
);
5434 if (event
->pmu
->event_mapped
)
5435 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
5438 static void perf_pmu_output_stop(struct perf_event
*event
);
5441 * A buffer can be mmap()ed multiple times; either directly through the same
5442 * event, or through other events by use of perf_event_set_output().
5444 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5445 * the buffer here, where we still have a VM context. This means we need
5446 * to detach all events redirecting to us.
5448 static void perf_mmap_close(struct vm_area_struct
*vma
)
5450 struct perf_event
*event
= vma
->vm_file
->private_data
;
5452 struct ring_buffer
*rb
= ring_buffer_get(event
);
5453 struct user_struct
*mmap_user
= rb
->mmap_user
;
5454 int mmap_locked
= rb
->mmap_locked
;
5455 unsigned long size
= perf_data_size(rb
);
5457 if (event
->pmu
->event_unmapped
)
5458 event
->pmu
->event_unmapped(event
, vma
->vm_mm
);
5461 * rb->aux_mmap_count will always drop before rb->mmap_count and
5462 * event->mmap_count, so it is ok to use event->mmap_mutex to
5463 * serialize with perf_mmap here.
5465 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
5466 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
5468 * Stop all AUX events that are writing to this buffer,
5469 * so that we can free its AUX pages and corresponding PMU
5470 * data. Note that after rb::aux_mmap_count dropped to zero,
5471 * they won't start any more (see perf_aux_output_begin()).
5473 perf_pmu_output_stop(event
);
5475 /* now it's safe to free the pages */
5476 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
5477 atomic64_sub(rb
->aux_mmap_locked
, &vma
->vm_mm
->pinned_vm
);
5479 /* this has to be the last one */
5481 WARN_ON_ONCE(refcount_read(&rb
->aux_refcount
));
5483 mutex_unlock(&event
->mmap_mutex
);
5486 atomic_dec(&rb
->mmap_count
);
5488 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5491 ring_buffer_attach(event
, NULL
);
5492 mutex_unlock(&event
->mmap_mutex
);
5494 /* If there's still other mmap()s of this buffer, we're done. */
5495 if (atomic_read(&rb
->mmap_count
))
5499 * No other mmap()s, detach from all other events that might redirect
5500 * into the now unreachable buffer. Somewhat complicated by the
5501 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5505 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5506 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5508 * This event is en-route to free_event() which will
5509 * detach it and remove it from the list.
5515 mutex_lock(&event
->mmap_mutex
);
5517 * Check we didn't race with perf_event_set_output() which can
5518 * swizzle the rb from under us while we were waiting to
5519 * acquire mmap_mutex.
5521 * If we find a different rb; ignore this event, a next
5522 * iteration will no longer find it on the list. We have to
5523 * still restart the iteration to make sure we're not now
5524 * iterating the wrong list.
5526 if (event
->rb
== rb
)
5527 ring_buffer_attach(event
, NULL
);
5529 mutex_unlock(&event
->mmap_mutex
);
5533 * Restart the iteration; either we're on the wrong list or
5534 * destroyed its integrity by doing a deletion.
5541 * It could be there's still a few 0-ref events on the list; they'll
5542 * get cleaned up by free_event() -- they'll also still have their
5543 * ref on the rb and will free it whenever they are done with it.
5545 * Aside from that, this buffer is 'fully' detached and unmapped,
5546 * undo the VM accounting.
5549 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
5550 atomic64_sub(mmap_locked
, &vma
->vm_mm
->pinned_vm
);
5551 free_uid(mmap_user
);
5554 ring_buffer_put(rb
); /* could be last */
5557 static const struct vm_operations_struct perf_mmap_vmops
= {
5558 .open
= perf_mmap_open
,
5559 .close
= perf_mmap_close
, /* non mergeable */
5560 .fault
= perf_mmap_fault
,
5561 .page_mkwrite
= perf_mmap_fault
,
5564 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5566 struct perf_event
*event
= file
->private_data
;
5567 unsigned long user_locked
, user_lock_limit
;
5568 struct user_struct
*user
= current_user();
5569 unsigned long locked
, lock_limit
;
5570 struct ring_buffer
*rb
= NULL
;
5571 unsigned long vma_size
;
5572 unsigned long nr_pages
;
5573 long user_extra
= 0, extra
= 0;
5574 int ret
= 0, flags
= 0;
5577 * Don't allow mmap() of inherited per-task counters. This would
5578 * create a performance issue due to all children writing to the
5581 if (event
->cpu
== -1 && event
->attr
.inherit
)
5584 if (!(vma
->vm_flags
& VM_SHARED
))
5587 vma_size
= vma
->vm_end
- vma
->vm_start
;
5589 if (vma
->vm_pgoff
== 0) {
5590 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
5593 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5594 * mapped, all subsequent mappings should have the same size
5595 * and offset. Must be above the normal perf buffer.
5597 u64 aux_offset
, aux_size
;
5602 nr_pages
= vma_size
/ PAGE_SIZE
;
5604 mutex_lock(&event
->mmap_mutex
);
5611 aux_offset
= READ_ONCE(rb
->user_page
->aux_offset
);
5612 aux_size
= READ_ONCE(rb
->user_page
->aux_size
);
5614 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
5617 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
5620 /* already mapped with a different offset */
5621 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
5624 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
5627 /* already mapped with a different size */
5628 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
5631 if (!is_power_of_2(nr_pages
))
5634 if (!atomic_inc_not_zero(&rb
->mmap_count
))
5637 if (rb_has_aux(rb
)) {
5638 atomic_inc(&rb
->aux_mmap_count
);
5643 atomic_set(&rb
->aux_mmap_count
, 1);
5644 user_extra
= nr_pages
;
5650 * If we have rb pages ensure they're a power-of-two number, so we
5651 * can do bitmasks instead of modulo.
5653 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
5656 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
5659 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5661 mutex_lock(&event
->mmap_mutex
);
5663 if (event
->rb
->nr_pages
!= nr_pages
) {
5668 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
5670 * Raced against perf_mmap_close() through
5671 * perf_event_set_output(). Try again, hope for better
5674 mutex_unlock(&event
->mmap_mutex
);
5681 user_extra
= nr_pages
+ 1;
5684 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
5687 * Increase the limit linearly with more CPUs:
5689 user_lock_limit
*= num_online_cpus();
5691 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
5693 if (user_locked
> user_lock_limit
)
5694 extra
= user_locked
- user_lock_limit
;
5696 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
5697 lock_limit
>>= PAGE_SHIFT
;
5698 locked
= atomic64_read(&vma
->vm_mm
->pinned_vm
) + extra
;
5700 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
5701 !capable(CAP_IPC_LOCK
)) {
5706 WARN_ON(!rb
&& event
->rb
);
5708 if (vma
->vm_flags
& VM_WRITE
)
5709 flags
|= RING_BUFFER_WRITABLE
;
5712 rb
= rb_alloc(nr_pages
,
5713 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
5721 atomic_set(&rb
->mmap_count
, 1);
5722 rb
->mmap_user
= get_current_user();
5723 rb
->mmap_locked
= extra
;
5725 ring_buffer_attach(event
, rb
);
5727 perf_event_init_userpage(event
);
5728 perf_event_update_userpage(event
);
5730 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
5731 event
->attr
.aux_watermark
, flags
);
5733 rb
->aux_mmap_locked
= extra
;
5738 atomic_long_add(user_extra
, &user
->locked_vm
);
5739 atomic64_add(extra
, &vma
->vm_mm
->pinned_vm
);
5741 atomic_inc(&event
->mmap_count
);
5743 atomic_dec(&rb
->mmap_count
);
5746 mutex_unlock(&event
->mmap_mutex
);
5749 * Since pinned accounting is per vm we cannot allow fork() to copy our
5752 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
5753 vma
->vm_ops
= &perf_mmap_vmops
;
5755 if (event
->pmu
->event_mapped
)
5756 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
5761 static int perf_fasync(int fd
, struct file
*filp
, int on
)
5763 struct inode
*inode
= file_inode(filp
);
5764 struct perf_event
*event
= filp
->private_data
;
5768 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
5769 inode_unlock(inode
);
5777 static const struct file_operations perf_fops
= {
5778 .llseek
= no_llseek
,
5779 .release
= perf_release
,
5782 .unlocked_ioctl
= perf_ioctl
,
5783 .compat_ioctl
= perf_compat_ioctl
,
5785 .fasync
= perf_fasync
,
5791 * If there's data, ensure we set the poll() state and publish everything
5792 * to user-space before waking everybody up.
5795 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
5797 /* only the parent has fasync state */
5799 event
= event
->parent
;
5800 return &event
->fasync
;
5803 void perf_event_wakeup(struct perf_event
*event
)
5805 ring_buffer_wakeup(event
);
5807 if (event
->pending_kill
) {
5808 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
5809 event
->pending_kill
= 0;
5813 static void perf_pending_event(struct irq_work
*entry
)
5815 struct perf_event
*event
= container_of(entry
,
5816 struct perf_event
, pending
);
5819 rctx
= perf_swevent_get_recursion_context();
5821 * If we 'fail' here, that's OK, it means recursion is already disabled
5822 * and we won't recurse 'further'.
5825 if (event
->pending_disable
) {
5826 event
->pending_disable
= 0;
5827 perf_event_disable_local(event
);
5830 if (event
->pending_wakeup
) {
5831 event
->pending_wakeup
= 0;
5832 perf_event_wakeup(event
);
5836 perf_swevent_put_recursion_context(rctx
);
5840 * We assume there is only KVM supporting the callbacks.
5841 * Later on, we might change it to a list if there is
5842 * another virtualization implementation supporting the callbacks.
5844 struct perf_guest_info_callbacks
*perf_guest_cbs
;
5846 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5848 perf_guest_cbs
= cbs
;
5851 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
5853 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5855 perf_guest_cbs
= NULL
;
5858 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
5861 perf_output_sample_regs(struct perf_output_handle
*handle
,
5862 struct pt_regs
*regs
, u64 mask
)
5865 DECLARE_BITMAP(_mask
, 64);
5867 bitmap_from_u64(_mask
, mask
);
5868 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
5871 val
= perf_reg_value(regs
, bit
);
5872 perf_output_put(handle
, val
);
5876 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
5877 struct pt_regs
*regs
,
5878 struct pt_regs
*regs_user_copy
)
5880 if (user_mode(regs
)) {
5881 regs_user
->abi
= perf_reg_abi(current
);
5882 regs_user
->regs
= regs
;
5883 } else if (current
->mm
) {
5884 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
5886 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
5887 regs_user
->regs
= NULL
;
5891 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
5892 struct pt_regs
*regs
)
5894 regs_intr
->regs
= regs
;
5895 regs_intr
->abi
= perf_reg_abi(current
);
5900 * Get remaining task size from user stack pointer.
5902 * It'd be better to take stack vma map and limit this more
5903 * precisly, but there's no way to get it safely under interrupt,
5904 * so using TASK_SIZE as limit.
5906 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5908 unsigned long addr
= perf_user_stack_pointer(regs
);
5910 if (!addr
|| addr
>= TASK_SIZE
)
5913 return TASK_SIZE
- addr
;
5917 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5918 struct pt_regs
*regs
)
5922 /* No regs, no stack pointer, no dump. */
5927 * Check if we fit in with the requested stack size into the:
5929 * If we don't, we limit the size to the TASK_SIZE.
5931 * - remaining sample size
5932 * If we don't, we customize the stack size to
5933 * fit in to the remaining sample size.
5936 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5937 stack_size
= min(stack_size
, (u16
) task_size
);
5939 /* Current header size plus static size and dynamic size. */
5940 header_size
+= 2 * sizeof(u64
);
5942 /* Do we fit in with the current stack dump size? */
5943 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5945 * If we overflow the maximum size for the sample,
5946 * we customize the stack dump size to fit in.
5948 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5949 stack_size
= round_up(stack_size
, sizeof(u64
));
5956 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5957 struct pt_regs
*regs
)
5959 /* Case of a kernel thread, nothing to dump */
5962 perf_output_put(handle
, size
);
5972 * - the size requested by user or the best one we can fit
5973 * in to the sample max size
5975 * - user stack dump data
5977 * - the actual dumped size
5981 perf_output_put(handle
, dump_size
);
5984 sp
= perf_user_stack_pointer(regs
);
5987 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5989 dyn_size
= dump_size
- rem
;
5991 perf_output_skip(handle
, rem
);
5994 perf_output_put(handle
, dyn_size
);
5998 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5999 struct perf_sample_data
*data
,
6000 struct perf_event
*event
)
6002 u64 sample_type
= event
->attr
.sample_type
;
6004 data
->type
= sample_type
;
6005 header
->size
+= event
->id_header_size
;
6007 if (sample_type
& PERF_SAMPLE_TID
) {
6008 /* namespace issues */
6009 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
6010 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
6013 if (sample_type
& PERF_SAMPLE_TIME
)
6014 data
->time
= perf_event_clock(event
);
6016 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
6017 data
->id
= primary_event_id(event
);
6019 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6020 data
->stream_id
= event
->id
;
6022 if (sample_type
& PERF_SAMPLE_CPU
) {
6023 data
->cpu_entry
.cpu
= raw_smp_processor_id();
6024 data
->cpu_entry
.reserved
= 0;
6028 void perf_event_header__init_id(struct perf_event_header
*header
,
6029 struct perf_sample_data
*data
,
6030 struct perf_event
*event
)
6032 if (event
->attr
.sample_id_all
)
6033 __perf_event_header__init_id(header
, data
, event
);
6036 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
6037 struct perf_sample_data
*data
)
6039 u64 sample_type
= data
->type
;
6041 if (sample_type
& PERF_SAMPLE_TID
)
6042 perf_output_put(handle
, data
->tid_entry
);
6044 if (sample_type
& PERF_SAMPLE_TIME
)
6045 perf_output_put(handle
, data
->time
);
6047 if (sample_type
& PERF_SAMPLE_ID
)
6048 perf_output_put(handle
, data
->id
);
6050 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6051 perf_output_put(handle
, data
->stream_id
);
6053 if (sample_type
& PERF_SAMPLE_CPU
)
6054 perf_output_put(handle
, data
->cpu_entry
);
6056 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6057 perf_output_put(handle
, data
->id
);
6060 void perf_event__output_id_sample(struct perf_event
*event
,
6061 struct perf_output_handle
*handle
,
6062 struct perf_sample_data
*sample
)
6064 if (event
->attr
.sample_id_all
)
6065 __perf_event__output_id_sample(handle
, sample
);
6068 static void perf_output_read_one(struct perf_output_handle
*handle
,
6069 struct perf_event
*event
,
6070 u64 enabled
, u64 running
)
6072 u64 read_format
= event
->attr
.read_format
;
6076 values
[n
++] = perf_event_count(event
);
6077 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
6078 values
[n
++] = enabled
+
6079 atomic64_read(&event
->child_total_time_enabled
);
6081 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
6082 values
[n
++] = running
+
6083 atomic64_read(&event
->child_total_time_running
);
6085 if (read_format
& PERF_FORMAT_ID
)
6086 values
[n
++] = primary_event_id(event
);
6088 __output_copy(handle
, values
, n
* sizeof(u64
));
6091 static void perf_output_read_group(struct perf_output_handle
*handle
,
6092 struct perf_event
*event
,
6093 u64 enabled
, u64 running
)
6095 struct perf_event
*leader
= event
->group_leader
, *sub
;
6096 u64 read_format
= event
->attr
.read_format
;
6100 values
[n
++] = 1 + leader
->nr_siblings
;
6102 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
6103 values
[n
++] = enabled
;
6105 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
6106 values
[n
++] = running
;
6108 if ((leader
!= event
) &&
6109 (leader
->state
== PERF_EVENT_STATE_ACTIVE
))
6110 leader
->pmu
->read(leader
);
6112 values
[n
++] = perf_event_count(leader
);
6113 if (read_format
& PERF_FORMAT_ID
)
6114 values
[n
++] = primary_event_id(leader
);
6116 __output_copy(handle
, values
, n
* sizeof(u64
));
6118 for_each_sibling_event(sub
, leader
) {
6121 if ((sub
!= event
) &&
6122 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
6123 sub
->pmu
->read(sub
);
6125 values
[n
++] = perf_event_count(sub
);
6126 if (read_format
& PERF_FORMAT_ID
)
6127 values
[n
++] = primary_event_id(sub
);
6129 __output_copy(handle
, values
, n
* sizeof(u64
));
6133 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6134 PERF_FORMAT_TOTAL_TIME_RUNNING)
6137 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6139 * The problem is that its both hard and excessively expensive to iterate the
6140 * child list, not to mention that its impossible to IPI the children running
6141 * on another CPU, from interrupt/NMI context.
6143 static void perf_output_read(struct perf_output_handle
*handle
,
6144 struct perf_event
*event
)
6146 u64 enabled
= 0, running
= 0, now
;
6147 u64 read_format
= event
->attr
.read_format
;
6150 * compute total_time_enabled, total_time_running
6151 * based on snapshot values taken when the event
6152 * was last scheduled in.
6154 * we cannot simply called update_context_time()
6155 * because of locking issue as we are called in
6158 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
6159 calc_timer_values(event
, &now
, &enabled
, &running
);
6161 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
6162 perf_output_read_group(handle
, event
, enabled
, running
);
6164 perf_output_read_one(handle
, event
, enabled
, running
);
6167 void perf_output_sample(struct perf_output_handle
*handle
,
6168 struct perf_event_header
*header
,
6169 struct perf_sample_data
*data
,
6170 struct perf_event
*event
)
6172 u64 sample_type
= data
->type
;
6174 perf_output_put(handle
, *header
);
6176 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6177 perf_output_put(handle
, data
->id
);
6179 if (sample_type
& PERF_SAMPLE_IP
)
6180 perf_output_put(handle
, data
->ip
);
6182 if (sample_type
& PERF_SAMPLE_TID
)
6183 perf_output_put(handle
, data
->tid_entry
);
6185 if (sample_type
& PERF_SAMPLE_TIME
)
6186 perf_output_put(handle
, data
->time
);
6188 if (sample_type
& PERF_SAMPLE_ADDR
)
6189 perf_output_put(handle
, data
->addr
);
6191 if (sample_type
& PERF_SAMPLE_ID
)
6192 perf_output_put(handle
, data
->id
);
6194 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6195 perf_output_put(handle
, data
->stream_id
);
6197 if (sample_type
& PERF_SAMPLE_CPU
)
6198 perf_output_put(handle
, data
->cpu_entry
);
6200 if (sample_type
& PERF_SAMPLE_PERIOD
)
6201 perf_output_put(handle
, data
->period
);
6203 if (sample_type
& PERF_SAMPLE_READ
)
6204 perf_output_read(handle
, event
);
6206 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6209 size
+= data
->callchain
->nr
;
6210 size
*= sizeof(u64
);
6211 __output_copy(handle
, data
->callchain
, size
);
6214 if (sample_type
& PERF_SAMPLE_RAW
) {
6215 struct perf_raw_record
*raw
= data
->raw
;
6218 struct perf_raw_frag
*frag
= &raw
->frag
;
6220 perf_output_put(handle
, raw
->size
);
6223 __output_custom(handle
, frag
->copy
,
6224 frag
->data
, frag
->size
);
6226 __output_copy(handle
, frag
->data
,
6229 if (perf_raw_frag_last(frag
))
6234 __output_skip(handle
, NULL
, frag
->pad
);
6240 .size
= sizeof(u32
),
6243 perf_output_put(handle
, raw
);
6247 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6248 if (data
->br_stack
) {
6251 size
= data
->br_stack
->nr
6252 * sizeof(struct perf_branch_entry
);
6254 perf_output_put(handle
, data
->br_stack
->nr
);
6255 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
6258 * we always store at least the value of nr
6261 perf_output_put(handle
, nr
);
6265 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6266 u64 abi
= data
->regs_user
.abi
;
6269 * If there are no regs to dump, notice it through
6270 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6272 perf_output_put(handle
, abi
);
6275 u64 mask
= event
->attr
.sample_regs_user
;
6276 perf_output_sample_regs(handle
,
6277 data
->regs_user
.regs
,
6282 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6283 perf_output_sample_ustack(handle
,
6284 data
->stack_user_size
,
6285 data
->regs_user
.regs
);
6288 if (sample_type
& PERF_SAMPLE_WEIGHT
)
6289 perf_output_put(handle
, data
->weight
);
6291 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
6292 perf_output_put(handle
, data
->data_src
.val
);
6294 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
6295 perf_output_put(handle
, data
->txn
);
6297 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6298 u64 abi
= data
->regs_intr
.abi
;
6300 * If there are no regs to dump, notice it through
6301 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6303 perf_output_put(handle
, abi
);
6306 u64 mask
= event
->attr
.sample_regs_intr
;
6308 perf_output_sample_regs(handle
,
6309 data
->regs_intr
.regs
,
6314 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
6315 perf_output_put(handle
, data
->phys_addr
);
6317 if (!event
->attr
.watermark
) {
6318 int wakeup_events
= event
->attr
.wakeup_events
;
6320 if (wakeup_events
) {
6321 struct ring_buffer
*rb
= handle
->rb
;
6322 int events
= local_inc_return(&rb
->events
);
6324 if (events
>= wakeup_events
) {
6325 local_sub(wakeup_events
, &rb
->events
);
6326 local_inc(&rb
->wakeup
);
6332 static u64
perf_virt_to_phys(u64 virt
)
6335 struct page
*p
= NULL
;
6340 if (virt
>= TASK_SIZE
) {
6341 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6342 if (virt_addr_valid((void *)(uintptr_t)virt
) &&
6343 !(virt
>= VMALLOC_START
&& virt
< VMALLOC_END
))
6344 phys_addr
= (u64
)virt_to_phys((void *)(uintptr_t)virt
);
6347 * Walking the pages tables for user address.
6348 * Interrupts are disabled, so it prevents any tear down
6349 * of the page tables.
6350 * Try IRQ-safe __get_user_pages_fast first.
6351 * If failed, leave phys_addr as 0.
6353 if ((current
->mm
!= NULL
) &&
6354 (__get_user_pages_fast(virt
, 1, 0, &p
) == 1))
6355 phys_addr
= page_to_phys(p
) + virt
% PAGE_SIZE
;
6364 static struct perf_callchain_entry __empty_callchain
= { .nr
= 0, };
6366 struct perf_callchain_entry
*
6367 perf_callchain(struct perf_event
*event
, struct pt_regs
*regs
)
6369 bool kernel
= !event
->attr
.exclude_callchain_kernel
;
6370 bool user
= !event
->attr
.exclude_callchain_user
;
6371 /* Disallow cross-task user callchains. */
6372 bool crosstask
= event
->ctx
->task
&& event
->ctx
->task
!= current
;
6373 const u32 max_stack
= event
->attr
.sample_max_stack
;
6374 struct perf_callchain_entry
*callchain
;
6376 if (!kernel
&& !user
)
6377 return &__empty_callchain
;
6379 callchain
= get_perf_callchain(regs
, 0, kernel
, user
,
6380 max_stack
, crosstask
, true);
6381 return callchain
?: &__empty_callchain
;
6384 void perf_prepare_sample(struct perf_event_header
*header
,
6385 struct perf_sample_data
*data
,
6386 struct perf_event
*event
,
6387 struct pt_regs
*regs
)
6389 u64 sample_type
= event
->attr
.sample_type
;
6391 header
->type
= PERF_RECORD_SAMPLE
;
6392 header
->size
= sizeof(*header
) + event
->header_size
;
6395 header
->misc
|= perf_misc_flags(regs
);
6397 __perf_event_header__init_id(header
, data
, event
);
6399 if (sample_type
& PERF_SAMPLE_IP
)
6400 data
->ip
= perf_instruction_pointer(regs
);
6402 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6405 if (!(sample_type
& __PERF_SAMPLE_CALLCHAIN_EARLY
))
6406 data
->callchain
= perf_callchain(event
, regs
);
6408 size
+= data
->callchain
->nr
;
6410 header
->size
+= size
* sizeof(u64
);
6413 if (sample_type
& PERF_SAMPLE_RAW
) {
6414 struct perf_raw_record
*raw
= data
->raw
;
6418 struct perf_raw_frag
*frag
= &raw
->frag
;
6423 if (perf_raw_frag_last(frag
))
6428 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
6429 raw
->size
= size
- sizeof(u32
);
6430 frag
->pad
= raw
->size
- sum
;
6435 header
->size
+= size
;
6438 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6439 int size
= sizeof(u64
); /* nr */
6440 if (data
->br_stack
) {
6441 size
+= data
->br_stack
->nr
6442 * sizeof(struct perf_branch_entry
);
6444 header
->size
+= size
;
6447 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
6448 perf_sample_regs_user(&data
->regs_user
, regs
,
6449 &data
->regs_user_copy
);
6451 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6452 /* regs dump ABI info */
6453 int size
= sizeof(u64
);
6455 if (data
->regs_user
.regs
) {
6456 u64 mask
= event
->attr
.sample_regs_user
;
6457 size
+= hweight64(mask
) * sizeof(u64
);
6460 header
->size
+= size
;
6463 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6465 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6466 * processed as the last one or have additional check added
6467 * in case new sample type is added, because we could eat
6468 * up the rest of the sample size.
6470 u16 stack_size
= event
->attr
.sample_stack_user
;
6471 u16 size
= sizeof(u64
);
6473 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
6474 data
->regs_user
.regs
);
6477 * If there is something to dump, add space for the dump
6478 * itself and for the field that tells the dynamic size,
6479 * which is how many have been actually dumped.
6482 size
+= sizeof(u64
) + stack_size
;
6484 data
->stack_user_size
= stack_size
;
6485 header
->size
+= size
;
6488 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6489 /* regs dump ABI info */
6490 int size
= sizeof(u64
);
6492 perf_sample_regs_intr(&data
->regs_intr
, regs
);
6494 if (data
->regs_intr
.regs
) {
6495 u64 mask
= event
->attr
.sample_regs_intr
;
6497 size
+= hweight64(mask
) * sizeof(u64
);
6500 header
->size
+= size
;
6503 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
6504 data
->phys_addr
= perf_virt_to_phys(data
->addr
);
6507 static __always_inline
int
6508 __perf_event_output(struct perf_event
*event
,
6509 struct perf_sample_data
*data
,
6510 struct pt_regs
*regs
,
6511 int (*output_begin
)(struct perf_output_handle
*,
6512 struct perf_event
*,
6515 struct perf_output_handle handle
;
6516 struct perf_event_header header
;
6519 /* protect the callchain buffers */
6522 perf_prepare_sample(&header
, data
, event
, regs
);
6524 err
= output_begin(&handle
, event
, header
.size
);
6528 perf_output_sample(&handle
, &header
, data
, event
);
6530 perf_output_end(&handle
);
6538 perf_event_output_forward(struct perf_event
*event
,
6539 struct perf_sample_data
*data
,
6540 struct pt_regs
*regs
)
6542 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
6546 perf_event_output_backward(struct perf_event
*event
,
6547 struct perf_sample_data
*data
,
6548 struct pt_regs
*regs
)
6550 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
6554 perf_event_output(struct perf_event
*event
,
6555 struct perf_sample_data
*data
,
6556 struct pt_regs
*regs
)
6558 return __perf_event_output(event
, data
, regs
, perf_output_begin
);
6565 struct perf_read_event
{
6566 struct perf_event_header header
;
6573 perf_event_read_event(struct perf_event
*event
,
6574 struct task_struct
*task
)
6576 struct perf_output_handle handle
;
6577 struct perf_sample_data sample
;
6578 struct perf_read_event read_event
= {
6580 .type
= PERF_RECORD_READ
,
6582 .size
= sizeof(read_event
) + event
->read_size
,
6584 .pid
= perf_event_pid(event
, task
),
6585 .tid
= perf_event_tid(event
, task
),
6589 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
6590 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
6594 perf_output_put(&handle
, read_event
);
6595 perf_output_read(&handle
, event
);
6596 perf_event__output_id_sample(event
, &handle
, &sample
);
6598 perf_output_end(&handle
);
6601 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
6604 perf_iterate_ctx(struct perf_event_context
*ctx
,
6605 perf_iterate_f output
,
6606 void *data
, bool all
)
6608 struct perf_event
*event
;
6610 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6612 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6614 if (!event_filter_match(event
))
6618 output(event
, data
);
6622 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
6624 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
6625 struct perf_event
*event
;
6627 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
6629 * Skip events that are not fully formed yet; ensure that
6630 * if we observe event->ctx, both event and ctx will be
6631 * complete enough. See perf_install_in_context().
6633 if (!smp_load_acquire(&event
->ctx
))
6636 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6638 if (!event_filter_match(event
))
6640 output(event
, data
);
6645 * Iterate all events that need to receive side-band events.
6647 * For new callers; ensure that account_pmu_sb_event() includes
6648 * your event, otherwise it might not get delivered.
6651 perf_iterate_sb(perf_iterate_f output
, void *data
,
6652 struct perf_event_context
*task_ctx
)
6654 struct perf_event_context
*ctx
;
6661 * If we have task_ctx != NULL we only notify the task context itself.
6662 * The task_ctx is set only for EXIT events before releasing task
6666 perf_iterate_ctx(task_ctx
, output
, data
, false);
6670 perf_iterate_sb_cpu(output
, data
);
6672 for_each_task_context_nr(ctxn
) {
6673 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6675 perf_iterate_ctx(ctx
, output
, data
, false);
6683 * Clear all file-based filters at exec, they'll have to be
6684 * re-instated when/if these objects are mmapped again.
6686 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
6688 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6689 struct perf_addr_filter
*filter
;
6690 unsigned int restart
= 0, count
= 0;
6691 unsigned long flags
;
6693 if (!has_addr_filter(event
))
6696 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6697 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6698 if (filter
->path
.dentry
) {
6699 event
->addr_filter_ranges
[count
].start
= 0;
6700 event
->addr_filter_ranges
[count
].size
= 0;
6708 event
->addr_filters_gen
++;
6709 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6712 perf_event_stop(event
, 1);
6715 void perf_event_exec(void)
6717 struct perf_event_context
*ctx
;
6721 for_each_task_context_nr(ctxn
) {
6722 ctx
= current
->perf_event_ctxp
[ctxn
];
6726 perf_event_enable_on_exec(ctxn
);
6728 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
6734 struct remote_output
{
6735 struct ring_buffer
*rb
;
6739 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
6741 struct perf_event
*parent
= event
->parent
;
6742 struct remote_output
*ro
= data
;
6743 struct ring_buffer
*rb
= ro
->rb
;
6744 struct stop_event_data sd
= {
6748 if (!has_aux(event
))
6755 * In case of inheritance, it will be the parent that links to the
6756 * ring-buffer, but it will be the child that's actually using it.
6758 * We are using event::rb to determine if the event should be stopped,
6759 * however this may race with ring_buffer_attach() (through set_output),
6760 * which will make us skip the event that actually needs to be stopped.
6761 * So ring_buffer_attach() has to stop an aux event before re-assigning
6764 if (rcu_dereference(parent
->rb
) == rb
)
6765 ro
->err
= __perf_event_stop(&sd
);
6768 static int __perf_pmu_output_stop(void *info
)
6770 struct perf_event
*event
= info
;
6771 struct pmu
*pmu
= event
->pmu
;
6772 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6773 struct remote_output ro
= {
6778 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
6779 if (cpuctx
->task_ctx
)
6780 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
6787 static void perf_pmu_output_stop(struct perf_event
*event
)
6789 struct perf_event
*iter
;
6794 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
6796 * For per-CPU events, we need to make sure that neither they
6797 * nor their children are running; for cpu==-1 events it's
6798 * sufficient to stop the event itself if it's active, since
6799 * it can't have children.
6803 cpu
= READ_ONCE(iter
->oncpu
);
6808 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
6809 if (err
== -EAGAIN
) {
6818 * task tracking -- fork/exit
6820 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6823 struct perf_task_event
{
6824 struct task_struct
*task
;
6825 struct perf_event_context
*task_ctx
;
6828 struct perf_event_header header
;
6838 static int perf_event_task_match(struct perf_event
*event
)
6840 return event
->attr
.comm
|| event
->attr
.mmap
||
6841 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
6845 static void perf_event_task_output(struct perf_event
*event
,
6848 struct perf_task_event
*task_event
= data
;
6849 struct perf_output_handle handle
;
6850 struct perf_sample_data sample
;
6851 struct task_struct
*task
= task_event
->task
;
6852 int ret
, size
= task_event
->event_id
.header
.size
;
6854 if (!perf_event_task_match(event
))
6857 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
6859 ret
= perf_output_begin(&handle
, event
,
6860 task_event
->event_id
.header
.size
);
6864 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
6865 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
6867 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
6868 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
6870 task_event
->event_id
.time
= perf_event_clock(event
);
6872 perf_output_put(&handle
, task_event
->event_id
);
6874 perf_event__output_id_sample(event
, &handle
, &sample
);
6876 perf_output_end(&handle
);
6878 task_event
->event_id
.header
.size
= size
;
6881 static void perf_event_task(struct task_struct
*task
,
6882 struct perf_event_context
*task_ctx
,
6885 struct perf_task_event task_event
;
6887 if (!atomic_read(&nr_comm_events
) &&
6888 !atomic_read(&nr_mmap_events
) &&
6889 !atomic_read(&nr_task_events
))
6892 task_event
= (struct perf_task_event
){
6894 .task_ctx
= task_ctx
,
6897 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
6899 .size
= sizeof(task_event
.event_id
),
6909 perf_iterate_sb(perf_event_task_output
,
6914 void perf_event_fork(struct task_struct
*task
)
6916 perf_event_task(task
, NULL
, 1);
6917 perf_event_namespaces(task
);
6924 struct perf_comm_event
{
6925 struct task_struct
*task
;
6930 struct perf_event_header header
;
6937 static int perf_event_comm_match(struct perf_event
*event
)
6939 return event
->attr
.comm
;
6942 static void perf_event_comm_output(struct perf_event
*event
,
6945 struct perf_comm_event
*comm_event
= data
;
6946 struct perf_output_handle handle
;
6947 struct perf_sample_data sample
;
6948 int size
= comm_event
->event_id
.header
.size
;
6951 if (!perf_event_comm_match(event
))
6954 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
6955 ret
= perf_output_begin(&handle
, event
,
6956 comm_event
->event_id
.header
.size
);
6961 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
6962 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
6964 perf_output_put(&handle
, comm_event
->event_id
);
6965 __output_copy(&handle
, comm_event
->comm
,
6966 comm_event
->comm_size
);
6968 perf_event__output_id_sample(event
, &handle
, &sample
);
6970 perf_output_end(&handle
);
6972 comm_event
->event_id
.header
.size
= size
;
6975 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
6977 char comm
[TASK_COMM_LEN
];
6980 memset(comm
, 0, sizeof(comm
));
6981 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
6982 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
6984 comm_event
->comm
= comm
;
6985 comm_event
->comm_size
= size
;
6987 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
6989 perf_iterate_sb(perf_event_comm_output
,
6994 void perf_event_comm(struct task_struct
*task
, bool exec
)
6996 struct perf_comm_event comm_event
;
6998 if (!atomic_read(&nr_comm_events
))
7001 comm_event
= (struct perf_comm_event
){
7007 .type
= PERF_RECORD_COMM
,
7008 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
7016 perf_event_comm_event(&comm_event
);
7020 * namespaces tracking
7023 struct perf_namespaces_event
{
7024 struct task_struct
*task
;
7027 struct perf_event_header header
;
7032 struct perf_ns_link_info link_info
[NR_NAMESPACES
];
7036 static int perf_event_namespaces_match(struct perf_event
*event
)
7038 return event
->attr
.namespaces
;
7041 static void perf_event_namespaces_output(struct perf_event
*event
,
7044 struct perf_namespaces_event
*namespaces_event
= data
;
7045 struct perf_output_handle handle
;
7046 struct perf_sample_data sample
;
7047 u16 header_size
= namespaces_event
->event_id
.header
.size
;
7050 if (!perf_event_namespaces_match(event
))
7053 perf_event_header__init_id(&namespaces_event
->event_id
.header
,
7055 ret
= perf_output_begin(&handle
, event
,
7056 namespaces_event
->event_id
.header
.size
);
7060 namespaces_event
->event_id
.pid
= perf_event_pid(event
,
7061 namespaces_event
->task
);
7062 namespaces_event
->event_id
.tid
= perf_event_tid(event
,
7063 namespaces_event
->task
);
7065 perf_output_put(&handle
, namespaces_event
->event_id
);
7067 perf_event__output_id_sample(event
, &handle
, &sample
);
7069 perf_output_end(&handle
);
7071 namespaces_event
->event_id
.header
.size
= header_size
;
7074 static void perf_fill_ns_link_info(struct perf_ns_link_info
*ns_link_info
,
7075 struct task_struct
*task
,
7076 const struct proc_ns_operations
*ns_ops
)
7078 struct path ns_path
;
7079 struct inode
*ns_inode
;
7082 error
= ns_get_path(&ns_path
, task
, ns_ops
);
7084 ns_inode
= ns_path
.dentry
->d_inode
;
7085 ns_link_info
->dev
= new_encode_dev(ns_inode
->i_sb
->s_dev
);
7086 ns_link_info
->ino
= ns_inode
->i_ino
;
7091 void perf_event_namespaces(struct task_struct
*task
)
7093 struct perf_namespaces_event namespaces_event
;
7094 struct perf_ns_link_info
*ns_link_info
;
7096 if (!atomic_read(&nr_namespaces_events
))
7099 namespaces_event
= (struct perf_namespaces_event
){
7103 .type
= PERF_RECORD_NAMESPACES
,
7105 .size
= sizeof(namespaces_event
.event_id
),
7109 .nr_namespaces
= NR_NAMESPACES
,
7110 /* .link_info[NR_NAMESPACES] */
7114 ns_link_info
= namespaces_event
.event_id
.link_info
;
7116 perf_fill_ns_link_info(&ns_link_info
[MNT_NS_INDEX
],
7117 task
, &mntns_operations
);
7119 #ifdef CONFIG_USER_NS
7120 perf_fill_ns_link_info(&ns_link_info
[USER_NS_INDEX
],
7121 task
, &userns_operations
);
7123 #ifdef CONFIG_NET_NS
7124 perf_fill_ns_link_info(&ns_link_info
[NET_NS_INDEX
],
7125 task
, &netns_operations
);
7127 #ifdef CONFIG_UTS_NS
7128 perf_fill_ns_link_info(&ns_link_info
[UTS_NS_INDEX
],
7129 task
, &utsns_operations
);
7131 #ifdef CONFIG_IPC_NS
7132 perf_fill_ns_link_info(&ns_link_info
[IPC_NS_INDEX
],
7133 task
, &ipcns_operations
);
7135 #ifdef CONFIG_PID_NS
7136 perf_fill_ns_link_info(&ns_link_info
[PID_NS_INDEX
],
7137 task
, &pidns_operations
);
7139 #ifdef CONFIG_CGROUPS
7140 perf_fill_ns_link_info(&ns_link_info
[CGROUP_NS_INDEX
],
7141 task
, &cgroupns_operations
);
7144 perf_iterate_sb(perf_event_namespaces_output
,
7153 struct perf_mmap_event
{
7154 struct vm_area_struct
*vma
;
7156 const char *file_name
;
7164 struct perf_event_header header
;
7174 static int perf_event_mmap_match(struct perf_event
*event
,
7177 struct perf_mmap_event
*mmap_event
= data
;
7178 struct vm_area_struct
*vma
= mmap_event
->vma
;
7179 int executable
= vma
->vm_flags
& VM_EXEC
;
7181 return (!executable
&& event
->attr
.mmap_data
) ||
7182 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
7185 static void perf_event_mmap_output(struct perf_event
*event
,
7188 struct perf_mmap_event
*mmap_event
= data
;
7189 struct perf_output_handle handle
;
7190 struct perf_sample_data sample
;
7191 int size
= mmap_event
->event_id
.header
.size
;
7194 if (!perf_event_mmap_match(event
, data
))
7197 if (event
->attr
.mmap2
) {
7198 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
7199 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
7200 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
7201 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
7202 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
7203 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
7204 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
7207 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
7208 ret
= perf_output_begin(&handle
, event
,
7209 mmap_event
->event_id
.header
.size
);
7213 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
7214 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
7216 perf_output_put(&handle
, mmap_event
->event_id
);
7218 if (event
->attr
.mmap2
) {
7219 perf_output_put(&handle
, mmap_event
->maj
);
7220 perf_output_put(&handle
, mmap_event
->min
);
7221 perf_output_put(&handle
, mmap_event
->ino
);
7222 perf_output_put(&handle
, mmap_event
->ino_generation
);
7223 perf_output_put(&handle
, mmap_event
->prot
);
7224 perf_output_put(&handle
, mmap_event
->flags
);
7227 __output_copy(&handle
, mmap_event
->file_name
,
7228 mmap_event
->file_size
);
7230 perf_event__output_id_sample(event
, &handle
, &sample
);
7232 perf_output_end(&handle
);
7234 mmap_event
->event_id
.header
.size
= size
;
7237 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
7239 struct vm_area_struct
*vma
= mmap_event
->vma
;
7240 struct file
*file
= vma
->vm_file
;
7241 int maj
= 0, min
= 0;
7242 u64 ino
= 0, gen
= 0;
7243 u32 prot
= 0, flags
= 0;
7249 if (vma
->vm_flags
& VM_READ
)
7251 if (vma
->vm_flags
& VM_WRITE
)
7253 if (vma
->vm_flags
& VM_EXEC
)
7256 if (vma
->vm_flags
& VM_MAYSHARE
)
7259 flags
= MAP_PRIVATE
;
7261 if (vma
->vm_flags
& VM_DENYWRITE
)
7262 flags
|= MAP_DENYWRITE
;
7263 if (vma
->vm_flags
& VM_MAYEXEC
)
7264 flags
|= MAP_EXECUTABLE
;
7265 if (vma
->vm_flags
& VM_LOCKED
)
7266 flags
|= MAP_LOCKED
;
7267 if (vma
->vm_flags
& VM_HUGETLB
)
7268 flags
|= MAP_HUGETLB
;
7271 struct inode
*inode
;
7274 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
7280 * d_path() works from the end of the rb backwards, so we
7281 * need to add enough zero bytes after the string to handle
7282 * the 64bit alignment we do later.
7284 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
7289 inode
= file_inode(vma
->vm_file
);
7290 dev
= inode
->i_sb
->s_dev
;
7292 gen
= inode
->i_generation
;
7298 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
7299 name
= (char *) vma
->vm_ops
->name(vma
);
7304 name
= (char *)arch_vma_name(vma
);
7308 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
7309 vma
->vm_end
>= vma
->vm_mm
->brk
) {
7313 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
7314 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
7324 strlcpy(tmp
, name
, sizeof(tmp
));
7328 * Since our buffer works in 8 byte units we need to align our string
7329 * size to a multiple of 8. However, we must guarantee the tail end is
7330 * zero'd out to avoid leaking random bits to userspace.
7332 size
= strlen(name
)+1;
7333 while (!IS_ALIGNED(size
, sizeof(u64
)))
7334 name
[size
++] = '\0';
7336 mmap_event
->file_name
= name
;
7337 mmap_event
->file_size
= size
;
7338 mmap_event
->maj
= maj
;
7339 mmap_event
->min
= min
;
7340 mmap_event
->ino
= ino
;
7341 mmap_event
->ino_generation
= gen
;
7342 mmap_event
->prot
= prot
;
7343 mmap_event
->flags
= flags
;
7345 if (!(vma
->vm_flags
& VM_EXEC
))
7346 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
7348 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
7350 perf_iterate_sb(perf_event_mmap_output
,
7358 * Check whether inode and address range match filter criteria.
7360 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
7361 struct file
*file
, unsigned long offset
,
7364 /* d_inode(NULL) won't be equal to any mapped user-space file */
7365 if (!filter
->path
.dentry
)
7368 if (d_inode(filter
->path
.dentry
) != file_inode(file
))
7371 if (filter
->offset
> offset
+ size
)
7374 if (filter
->offset
+ filter
->size
< offset
)
7380 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter
*filter
,
7381 struct vm_area_struct
*vma
,
7382 struct perf_addr_filter_range
*fr
)
7384 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
7385 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
7386 struct file
*file
= vma
->vm_file
;
7388 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
7391 if (filter
->offset
< off
) {
7392 fr
->start
= vma
->vm_start
;
7393 fr
->size
= min(vma_size
, filter
->size
- (off
- filter
->offset
));
7395 fr
->start
= vma
->vm_start
+ filter
->offset
- off
;
7396 fr
->size
= min(vma
->vm_end
- fr
->start
, filter
->size
);
7402 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
7404 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
7405 struct vm_area_struct
*vma
= data
;
7406 struct perf_addr_filter
*filter
;
7407 unsigned int restart
= 0, count
= 0;
7408 unsigned long flags
;
7410 if (!has_addr_filter(event
))
7416 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
7417 list_for_each_entry(filter
, &ifh
->list
, entry
) {
7418 if (perf_addr_filter_vma_adjust(filter
, vma
,
7419 &event
->addr_filter_ranges
[count
]))
7426 event
->addr_filters_gen
++;
7427 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
7430 perf_event_stop(event
, 1);
7434 * Adjust all task's events' filters to the new vma
7436 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
7438 struct perf_event_context
*ctx
;
7442 * Data tracing isn't supported yet and as such there is no need
7443 * to keep track of anything that isn't related to executable code:
7445 if (!(vma
->vm_flags
& VM_EXEC
))
7449 for_each_task_context_nr(ctxn
) {
7450 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
7454 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
7459 void perf_event_mmap(struct vm_area_struct
*vma
)
7461 struct perf_mmap_event mmap_event
;
7463 if (!atomic_read(&nr_mmap_events
))
7466 mmap_event
= (struct perf_mmap_event
){
7472 .type
= PERF_RECORD_MMAP
,
7473 .misc
= PERF_RECORD_MISC_USER
,
7478 .start
= vma
->vm_start
,
7479 .len
= vma
->vm_end
- vma
->vm_start
,
7480 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
7482 /* .maj (attr_mmap2 only) */
7483 /* .min (attr_mmap2 only) */
7484 /* .ino (attr_mmap2 only) */
7485 /* .ino_generation (attr_mmap2 only) */
7486 /* .prot (attr_mmap2 only) */
7487 /* .flags (attr_mmap2 only) */
7490 perf_addr_filters_adjust(vma
);
7491 perf_event_mmap_event(&mmap_event
);
7494 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
7495 unsigned long size
, u64 flags
)
7497 struct perf_output_handle handle
;
7498 struct perf_sample_data sample
;
7499 struct perf_aux_event
{
7500 struct perf_event_header header
;
7506 .type
= PERF_RECORD_AUX
,
7508 .size
= sizeof(rec
),
7516 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7517 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7522 perf_output_put(&handle
, rec
);
7523 perf_event__output_id_sample(event
, &handle
, &sample
);
7525 perf_output_end(&handle
);
7529 * Lost/dropped samples logging
7531 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
7533 struct perf_output_handle handle
;
7534 struct perf_sample_data sample
;
7538 struct perf_event_header header
;
7540 } lost_samples_event
= {
7542 .type
= PERF_RECORD_LOST_SAMPLES
,
7544 .size
= sizeof(lost_samples_event
),
7549 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
7551 ret
= perf_output_begin(&handle
, event
,
7552 lost_samples_event
.header
.size
);
7556 perf_output_put(&handle
, lost_samples_event
);
7557 perf_event__output_id_sample(event
, &handle
, &sample
);
7558 perf_output_end(&handle
);
7562 * context_switch tracking
7565 struct perf_switch_event
{
7566 struct task_struct
*task
;
7567 struct task_struct
*next_prev
;
7570 struct perf_event_header header
;
7576 static int perf_event_switch_match(struct perf_event
*event
)
7578 return event
->attr
.context_switch
;
7581 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
7583 struct perf_switch_event
*se
= data
;
7584 struct perf_output_handle handle
;
7585 struct perf_sample_data sample
;
7588 if (!perf_event_switch_match(event
))
7591 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7592 if (event
->ctx
->task
) {
7593 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
7594 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
7596 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
7597 se
->event_id
.header
.size
= sizeof(se
->event_id
);
7598 se
->event_id
.next_prev_pid
=
7599 perf_event_pid(event
, se
->next_prev
);
7600 se
->event_id
.next_prev_tid
=
7601 perf_event_tid(event
, se
->next_prev
);
7604 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
7606 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
7610 if (event
->ctx
->task
)
7611 perf_output_put(&handle
, se
->event_id
.header
);
7613 perf_output_put(&handle
, se
->event_id
);
7615 perf_event__output_id_sample(event
, &handle
, &sample
);
7617 perf_output_end(&handle
);
7620 static void perf_event_switch(struct task_struct
*task
,
7621 struct task_struct
*next_prev
, bool sched_in
)
7623 struct perf_switch_event switch_event
;
7625 /* N.B. caller checks nr_switch_events != 0 */
7627 switch_event
= (struct perf_switch_event
){
7629 .next_prev
= next_prev
,
7633 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
7636 /* .next_prev_pid */
7637 /* .next_prev_tid */
7641 if (!sched_in
&& task
->state
== TASK_RUNNING
)
7642 switch_event
.event_id
.header
.misc
|=
7643 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT
;
7645 perf_iterate_sb(perf_event_switch_output
,
7651 * IRQ throttle logging
7654 static void perf_log_throttle(struct perf_event
*event
, int enable
)
7656 struct perf_output_handle handle
;
7657 struct perf_sample_data sample
;
7661 struct perf_event_header header
;
7665 } throttle_event
= {
7667 .type
= PERF_RECORD_THROTTLE
,
7669 .size
= sizeof(throttle_event
),
7671 .time
= perf_event_clock(event
),
7672 .id
= primary_event_id(event
),
7673 .stream_id
= event
->id
,
7677 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
7679 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
7681 ret
= perf_output_begin(&handle
, event
,
7682 throttle_event
.header
.size
);
7686 perf_output_put(&handle
, throttle_event
);
7687 perf_event__output_id_sample(event
, &handle
, &sample
);
7688 perf_output_end(&handle
);
7692 * ksymbol register/unregister tracking
7695 struct perf_ksymbol_event
{
7699 struct perf_event_header header
;
7707 static int perf_event_ksymbol_match(struct perf_event
*event
)
7709 return event
->attr
.ksymbol
;
7712 static void perf_event_ksymbol_output(struct perf_event
*event
, void *data
)
7714 struct perf_ksymbol_event
*ksymbol_event
= data
;
7715 struct perf_output_handle handle
;
7716 struct perf_sample_data sample
;
7719 if (!perf_event_ksymbol_match(event
))
7722 perf_event_header__init_id(&ksymbol_event
->event_id
.header
,
7724 ret
= perf_output_begin(&handle
, event
,
7725 ksymbol_event
->event_id
.header
.size
);
7729 perf_output_put(&handle
, ksymbol_event
->event_id
);
7730 __output_copy(&handle
, ksymbol_event
->name
, ksymbol_event
->name_len
);
7731 perf_event__output_id_sample(event
, &handle
, &sample
);
7733 perf_output_end(&handle
);
7736 void perf_event_ksymbol(u16 ksym_type
, u64 addr
, u32 len
, bool unregister
,
7739 struct perf_ksymbol_event ksymbol_event
;
7740 char name
[KSYM_NAME_LEN
];
7744 if (!atomic_read(&nr_ksymbol_events
))
7747 if (ksym_type
>= PERF_RECORD_KSYMBOL_TYPE_MAX
||
7748 ksym_type
== PERF_RECORD_KSYMBOL_TYPE_UNKNOWN
)
7751 strlcpy(name
, sym
, KSYM_NAME_LEN
);
7752 name_len
= strlen(name
) + 1;
7753 while (!IS_ALIGNED(name_len
, sizeof(u64
)))
7754 name
[name_len
++] = '\0';
7755 BUILD_BUG_ON(KSYM_NAME_LEN
% sizeof(u64
));
7758 flags
|= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER
;
7760 ksymbol_event
= (struct perf_ksymbol_event
){
7762 .name_len
= name_len
,
7765 .type
= PERF_RECORD_KSYMBOL
,
7766 .size
= sizeof(ksymbol_event
.event_id
) +
7771 .ksym_type
= ksym_type
,
7776 perf_iterate_sb(perf_event_ksymbol_output
, &ksymbol_event
, NULL
);
7779 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__
, ksym_type
);
7783 * bpf program load/unload tracking
7786 struct perf_bpf_event
{
7787 struct bpf_prog
*prog
;
7789 struct perf_event_header header
;
7793 u8 tag
[BPF_TAG_SIZE
];
7797 static int perf_event_bpf_match(struct perf_event
*event
)
7799 return event
->attr
.bpf_event
;
7802 static void perf_event_bpf_output(struct perf_event
*event
, void *data
)
7804 struct perf_bpf_event
*bpf_event
= data
;
7805 struct perf_output_handle handle
;
7806 struct perf_sample_data sample
;
7809 if (!perf_event_bpf_match(event
))
7812 perf_event_header__init_id(&bpf_event
->event_id
.header
,
7814 ret
= perf_output_begin(&handle
, event
,
7815 bpf_event
->event_id
.header
.size
);
7819 perf_output_put(&handle
, bpf_event
->event_id
);
7820 perf_event__output_id_sample(event
, &handle
, &sample
);
7822 perf_output_end(&handle
);
7825 static void perf_event_bpf_emit_ksymbols(struct bpf_prog
*prog
,
7826 enum perf_bpf_event_type type
)
7828 bool unregister
= type
== PERF_BPF_EVENT_PROG_UNLOAD
;
7829 char sym
[KSYM_NAME_LEN
];
7832 if (prog
->aux
->func_cnt
== 0) {
7833 bpf_get_prog_name(prog
, sym
);
7834 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF
,
7835 (u64
)(unsigned long)prog
->bpf_func
,
7836 prog
->jited_len
, unregister
, sym
);
7838 for (i
= 0; i
< prog
->aux
->func_cnt
; i
++) {
7839 struct bpf_prog
*subprog
= prog
->aux
->func
[i
];
7841 bpf_get_prog_name(subprog
, sym
);
7843 PERF_RECORD_KSYMBOL_TYPE_BPF
,
7844 (u64
)(unsigned long)subprog
->bpf_func
,
7845 subprog
->jited_len
, unregister
, sym
);
7850 void perf_event_bpf_event(struct bpf_prog
*prog
,
7851 enum perf_bpf_event_type type
,
7854 struct perf_bpf_event bpf_event
;
7856 if (type
<= PERF_BPF_EVENT_UNKNOWN
||
7857 type
>= PERF_BPF_EVENT_MAX
)
7861 case PERF_BPF_EVENT_PROG_LOAD
:
7862 case PERF_BPF_EVENT_PROG_UNLOAD
:
7863 if (atomic_read(&nr_ksymbol_events
))
7864 perf_event_bpf_emit_ksymbols(prog
, type
);
7870 if (!atomic_read(&nr_bpf_events
))
7873 bpf_event
= (struct perf_bpf_event
){
7877 .type
= PERF_RECORD_BPF_EVENT
,
7878 .size
= sizeof(bpf_event
.event_id
),
7882 .id
= prog
->aux
->id
,
7886 BUILD_BUG_ON(BPF_TAG_SIZE
% sizeof(u64
));
7888 memcpy(bpf_event
.event_id
.tag
, prog
->tag
, BPF_TAG_SIZE
);
7889 perf_iterate_sb(perf_event_bpf_output
, &bpf_event
, NULL
);
7892 void perf_event_itrace_started(struct perf_event
*event
)
7894 event
->attach_state
|= PERF_ATTACH_ITRACE
;
7897 static void perf_log_itrace_start(struct perf_event
*event
)
7899 struct perf_output_handle handle
;
7900 struct perf_sample_data sample
;
7901 struct perf_aux_event
{
7902 struct perf_event_header header
;
7909 event
= event
->parent
;
7911 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
7912 event
->attach_state
& PERF_ATTACH_ITRACE
)
7915 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
7916 rec
.header
.misc
= 0;
7917 rec
.header
.size
= sizeof(rec
);
7918 rec
.pid
= perf_event_pid(event
, current
);
7919 rec
.tid
= perf_event_tid(event
, current
);
7921 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7922 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7927 perf_output_put(&handle
, rec
);
7928 perf_event__output_id_sample(event
, &handle
, &sample
);
7930 perf_output_end(&handle
);
7934 __perf_event_account_interrupt(struct perf_event
*event
, int throttle
)
7936 struct hw_perf_event
*hwc
= &event
->hw
;
7940 seq
= __this_cpu_read(perf_throttled_seq
);
7941 if (seq
!= hwc
->interrupts_seq
) {
7942 hwc
->interrupts_seq
= seq
;
7943 hwc
->interrupts
= 1;
7946 if (unlikely(throttle
7947 && hwc
->interrupts
>= max_samples_per_tick
)) {
7948 __this_cpu_inc(perf_throttled_count
);
7949 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
7950 hwc
->interrupts
= MAX_INTERRUPTS
;
7951 perf_log_throttle(event
, 0);
7956 if (event
->attr
.freq
) {
7957 u64 now
= perf_clock();
7958 s64 delta
= now
- hwc
->freq_time_stamp
;
7960 hwc
->freq_time_stamp
= now
;
7962 if (delta
> 0 && delta
< 2*TICK_NSEC
)
7963 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
7969 int perf_event_account_interrupt(struct perf_event
*event
)
7971 return __perf_event_account_interrupt(event
, 1);
7975 * Generic event overflow handling, sampling.
7978 static int __perf_event_overflow(struct perf_event
*event
,
7979 int throttle
, struct perf_sample_data
*data
,
7980 struct pt_regs
*regs
)
7982 int events
= atomic_read(&event
->event_limit
);
7986 * Non-sampling counters might still use the PMI to fold short
7987 * hardware counters, ignore those.
7989 if (unlikely(!is_sampling_event(event
)))
7992 ret
= __perf_event_account_interrupt(event
, throttle
);
7995 * XXX event_limit might not quite work as expected on inherited
7999 event
->pending_kill
= POLL_IN
;
8000 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
8002 event
->pending_kill
= POLL_HUP
;
8004 perf_event_disable_inatomic(event
);
8007 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
8009 if (*perf_event_fasync(event
) && event
->pending_kill
) {
8010 event
->pending_wakeup
= 1;
8011 irq_work_queue(&event
->pending
);
8017 int perf_event_overflow(struct perf_event
*event
,
8018 struct perf_sample_data
*data
,
8019 struct pt_regs
*regs
)
8021 return __perf_event_overflow(event
, 1, data
, regs
);
8025 * Generic software event infrastructure
8028 struct swevent_htable
{
8029 struct swevent_hlist
*swevent_hlist
;
8030 struct mutex hlist_mutex
;
8033 /* Recursion avoidance in each contexts */
8034 int recursion
[PERF_NR_CONTEXTS
];
8037 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
8040 * We directly increment event->count and keep a second value in
8041 * event->hw.period_left to count intervals. This period event
8042 * is kept in the range [-sample_period, 0] so that we can use the
8046 u64
perf_swevent_set_period(struct perf_event
*event
)
8048 struct hw_perf_event
*hwc
= &event
->hw
;
8049 u64 period
= hwc
->last_period
;
8053 hwc
->last_period
= hwc
->sample_period
;
8056 old
= val
= local64_read(&hwc
->period_left
);
8060 nr
= div64_u64(period
+ val
, period
);
8061 offset
= nr
* period
;
8063 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
8069 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
8070 struct perf_sample_data
*data
,
8071 struct pt_regs
*regs
)
8073 struct hw_perf_event
*hwc
= &event
->hw
;
8077 overflow
= perf_swevent_set_period(event
);
8079 if (hwc
->interrupts
== MAX_INTERRUPTS
)
8082 for (; overflow
; overflow
--) {
8083 if (__perf_event_overflow(event
, throttle
,
8086 * We inhibit the overflow from happening when
8087 * hwc->interrupts == MAX_INTERRUPTS.
8095 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
8096 struct perf_sample_data
*data
,
8097 struct pt_regs
*regs
)
8099 struct hw_perf_event
*hwc
= &event
->hw
;
8101 local64_add(nr
, &event
->count
);
8106 if (!is_sampling_event(event
))
8109 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
8111 return perf_swevent_overflow(event
, 1, data
, regs
);
8113 data
->period
= event
->hw
.last_period
;
8115 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
8116 return perf_swevent_overflow(event
, 1, data
, regs
);
8118 if (local64_add_negative(nr
, &hwc
->period_left
))
8121 perf_swevent_overflow(event
, 0, data
, regs
);
8124 static int perf_exclude_event(struct perf_event
*event
,
8125 struct pt_regs
*regs
)
8127 if (event
->hw
.state
& PERF_HES_STOPPED
)
8131 if (event
->attr
.exclude_user
&& user_mode(regs
))
8134 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
8141 static int perf_swevent_match(struct perf_event
*event
,
8142 enum perf_type_id type
,
8144 struct perf_sample_data
*data
,
8145 struct pt_regs
*regs
)
8147 if (event
->attr
.type
!= type
)
8150 if (event
->attr
.config
!= event_id
)
8153 if (perf_exclude_event(event
, regs
))
8159 static inline u64
swevent_hash(u64 type
, u32 event_id
)
8161 u64 val
= event_id
| (type
<< 32);
8163 return hash_64(val
, SWEVENT_HLIST_BITS
);
8166 static inline struct hlist_head
*
8167 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
8169 u64 hash
= swevent_hash(type
, event_id
);
8171 return &hlist
->heads
[hash
];
8174 /* For the read side: events when they trigger */
8175 static inline struct hlist_head
*
8176 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
8178 struct swevent_hlist
*hlist
;
8180 hlist
= rcu_dereference(swhash
->swevent_hlist
);
8184 return __find_swevent_head(hlist
, type
, event_id
);
8187 /* For the event head insertion and removal in the hlist */
8188 static inline struct hlist_head
*
8189 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
8191 struct swevent_hlist
*hlist
;
8192 u32 event_id
= event
->attr
.config
;
8193 u64 type
= event
->attr
.type
;
8196 * Event scheduling is always serialized against hlist allocation
8197 * and release. Which makes the protected version suitable here.
8198 * The context lock guarantees that.
8200 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
8201 lockdep_is_held(&event
->ctx
->lock
));
8205 return __find_swevent_head(hlist
, type
, event_id
);
8208 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
8210 struct perf_sample_data
*data
,
8211 struct pt_regs
*regs
)
8213 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8214 struct perf_event
*event
;
8215 struct hlist_head
*head
;
8218 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
8222 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
8223 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
8224 perf_swevent_event(event
, nr
, data
, regs
);
8230 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
8232 int perf_swevent_get_recursion_context(void)
8234 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8236 return get_recursion_context(swhash
->recursion
);
8238 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
8240 void perf_swevent_put_recursion_context(int rctx
)
8242 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8244 put_recursion_context(swhash
->recursion
, rctx
);
8247 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
8249 struct perf_sample_data data
;
8251 if (WARN_ON_ONCE(!regs
))
8254 perf_sample_data_init(&data
, addr
, 0);
8255 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
8258 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
8262 preempt_disable_notrace();
8263 rctx
= perf_swevent_get_recursion_context();
8264 if (unlikely(rctx
< 0))
8267 ___perf_sw_event(event_id
, nr
, regs
, addr
);
8269 perf_swevent_put_recursion_context(rctx
);
8271 preempt_enable_notrace();
8274 static void perf_swevent_read(struct perf_event
*event
)
8278 static int perf_swevent_add(struct perf_event
*event
, int flags
)
8280 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8281 struct hw_perf_event
*hwc
= &event
->hw
;
8282 struct hlist_head
*head
;
8284 if (is_sampling_event(event
)) {
8285 hwc
->last_period
= hwc
->sample_period
;
8286 perf_swevent_set_period(event
);
8289 hwc
->state
= !(flags
& PERF_EF_START
);
8291 head
= find_swevent_head(swhash
, event
);
8292 if (WARN_ON_ONCE(!head
))
8295 hlist_add_head_rcu(&event
->hlist_entry
, head
);
8296 perf_event_update_userpage(event
);
8301 static void perf_swevent_del(struct perf_event
*event
, int flags
)
8303 hlist_del_rcu(&event
->hlist_entry
);
8306 static void perf_swevent_start(struct perf_event
*event
, int flags
)
8308 event
->hw
.state
= 0;
8311 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
8313 event
->hw
.state
= PERF_HES_STOPPED
;
8316 /* Deref the hlist from the update side */
8317 static inline struct swevent_hlist
*
8318 swevent_hlist_deref(struct swevent_htable
*swhash
)
8320 return rcu_dereference_protected(swhash
->swevent_hlist
,
8321 lockdep_is_held(&swhash
->hlist_mutex
));
8324 static void swevent_hlist_release(struct swevent_htable
*swhash
)
8326 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
8331 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
8332 kfree_rcu(hlist
, rcu_head
);
8335 static void swevent_hlist_put_cpu(int cpu
)
8337 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8339 mutex_lock(&swhash
->hlist_mutex
);
8341 if (!--swhash
->hlist_refcount
)
8342 swevent_hlist_release(swhash
);
8344 mutex_unlock(&swhash
->hlist_mutex
);
8347 static void swevent_hlist_put(void)
8351 for_each_possible_cpu(cpu
)
8352 swevent_hlist_put_cpu(cpu
);
8355 static int swevent_hlist_get_cpu(int cpu
)
8357 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8360 mutex_lock(&swhash
->hlist_mutex
);
8361 if (!swevent_hlist_deref(swhash
) &&
8362 cpumask_test_cpu(cpu
, perf_online_mask
)) {
8363 struct swevent_hlist
*hlist
;
8365 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
8370 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
8372 swhash
->hlist_refcount
++;
8374 mutex_unlock(&swhash
->hlist_mutex
);
8379 static int swevent_hlist_get(void)
8381 int err
, cpu
, failed_cpu
;
8383 mutex_lock(&pmus_lock
);
8384 for_each_possible_cpu(cpu
) {
8385 err
= swevent_hlist_get_cpu(cpu
);
8391 mutex_unlock(&pmus_lock
);
8394 for_each_possible_cpu(cpu
) {
8395 if (cpu
== failed_cpu
)
8397 swevent_hlist_put_cpu(cpu
);
8399 mutex_unlock(&pmus_lock
);
8403 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
8405 static void sw_perf_event_destroy(struct perf_event
*event
)
8407 u64 event_id
= event
->attr
.config
;
8409 WARN_ON(event
->parent
);
8411 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
8412 swevent_hlist_put();
8415 static int perf_swevent_init(struct perf_event
*event
)
8417 u64 event_id
= event
->attr
.config
;
8419 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8423 * no branch sampling for software events
8425 if (has_branch_stack(event
))
8429 case PERF_COUNT_SW_CPU_CLOCK
:
8430 case PERF_COUNT_SW_TASK_CLOCK
:
8437 if (event_id
>= PERF_COUNT_SW_MAX
)
8440 if (!event
->parent
) {
8443 err
= swevent_hlist_get();
8447 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
8448 event
->destroy
= sw_perf_event_destroy
;
8454 static struct pmu perf_swevent
= {
8455 .task_ctx_nr
= perf_sw_context
,
8457 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8459 .event_init
= perf_swevent_init
,
8460 .add
= perf_swevent_add
,
8461 .del
= perf_swevent_del
,
8462 .start
= perf_swevent_start
,
8463 .stop
= perf_swevent_stop
,
8464 .read
= perf_swevent_read
,
8467 #ifdef CONFIG_EVENT_TRACING
8469 static int perf_tp_filter_match(struct perf_event
*event
,
8470 struct perf_sample_data
*data
)
8472 void *record
= data
->raw
->frag
.data
;
8474 /* only top level events have filters set */
8476 event
= event
->parent
;
8478 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
8483 static int perf_tp_event_match(struct perf_event
*event
,
8484 struct perf_sample_data
*data
,
8485 struct pt_regs
*regs
)
8487 if (event
->hw
.state
& PERF_HES_STOPPED
)
8490 * All tracepoints are from kernel-space.
8492 if (event
->attr
.exclude_kernel
)
8495 if (!perf_tp_filter_match(event
, data
))
8501 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
8502 struct trace_event_call
*call
, u64 count
,
8503 struct pt_regs
*regs
, struct hlist_head
*head
,
8504 struct task_struct
*task
)
8506 if (bpf_prog_array_valid(call
)) {
8507 *(struct pt_regs
**)raw_data
= regs
;
8508 if (!trace_call_bpf(call
, raw_data
) || hlist_empty(head
)) {
8509 perf_swevent_put_recursion_context(rctx
);
8513 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
8516 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
8518 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
8519 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
8520 struct task_struct
*task
)
8522 struct perf_sample_data data
;
8523 struct perf_event
*event
;
8525 struct perf_raw_record raw
= {
8532 perf_sample_data_init(&data
, 0, 0);
8535 perf_trace_buf_update(record
, event_type
);
8537 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
8538 if (perf_tp_event_match(event
, &data
, regs
))
8539 perf_swevent_event(event
, count
, &data
, regs
);
8543 * If we got specified a target task, also iterate its context and
8544 * deliver this event there too.
8546 if (task
&& task
!= current
) {
8547 struct perf_event_context
*ctx
;
8548 struct trace_entry
*entry
= record
;
8551 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
8555 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
8556 if (event
->cpu
!= smp_processor_id())
8558 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
8560 if (event
->attr
.config
!= entry
->type
)
8562 if (perf_tp_event_match(event
, &data
, regs
))
8563 perf_swevent_event(event
, count
, &data
, regs
);
8569 perf_swevent_put_recursion_context(rctx
);
8571 EXPORT_SYMBOL_GPL(perf_tp_event
);
8573 static void tp_perf_event_destroy(struct perf_event
*event
)
8575 perf_trace_destroy(event
);
8578 static int perf_tp_event_init(struct perf_event
*event
)
8582 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
8586 * no branch sampling for tracepoint events
8588 if (has_branch_stack(event
))
8591 err
= perf_trace_init(event
);
8595 event
->destroy
= tp_perf_event_destroy
;
8600 static struct pmu perf_tracepoint
= {
8601 .task_ctx_nr
= perf_sw_context
,
8603 .event_init
= perf_tp_event_init
,
8604 .add
= perf_trace_add
,
8605 .del
= perf_trace_del
,
8606 .start
= perf_swevent_start
,
8607 .stop
= perf_swevent_stop
,
8608 .read
= perf_swevent_read
,
8611 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8613 * Flags in config, used by dynamic PMU kprobe and uprobe
8614 * The flags should match following PMU_FORMAT_ATTR().
8616 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8617 * if not set, create kprobe/uprobe
8619 * The following values specify a reference counter (or semaphore in the
8620 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8621 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8623 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8624 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
8626 enum perf_probe_config
{
8627 PERF_PROBE_CONFIG_IS_RETPROBE
= 1U << 0, /* [k,u]retprobe */
8628 PERF_UPROBE_REF_CTR_OFFSET_BITS
= 32,
8629 PERF_UPROBE_REF_CTR_OFFSET_SHIFT
= 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS
,
8632 PMU_FORMAT_ATTR(retprobe
, "config:0");
8635 #ifdef CONFIG_KPROBE_EVENTS
8636 static struct attribute
*kprobe_attrs
[] = {
8637 &format_attr_retprobe
.attr
,
8641 static struct attribute_group kprobe_format_group
= {
8643 .attrs
= kprobe_attrs
,
8646 static const struct attribute_group
*kprobe_attr_groups
[] = {
8647 &kprobe_format_group
,
8651 static int perf_kprobe_event_init(struct perf_event
*event
);
8652 static struct pmu perf_kprobe
= {
8653 .task_ctx_nr
= perf_sw_context
,
8654 .event_init
= perf_kprobe_event_init
,
8655 .add
= perf_trace_add
,
8656 .del
= perf_trace_del
,
8657 .start
= perf_swevent_start
,
8658 .stop
= perf_swevent_stop
,
8659 .read
= perf_swevent_read
,
8660 .attr_groups
= kprobe_attr_groups
,
8663 static int perf_kprobe_event_init(struct perf_event
*event
)
8668 if (event
->attr
.type
!= perf_kprobe
.type
)
8671 if (!capable(CAP_SYS_ADMIN
))
8675 * no branch sampling for probe events
8677 if (has_branch_stack(event
))
8680 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
8681 err
= perf_kprobe_init(event
, is_retprobe
);
8685 event
->destroy
= perf_kprobe_destroy
;
8689 #endif /* CONFIG_KPROBE_EVENTS */
8691 #ifdef CONFIG_UPROBE_EVENTS
8692 PMU_FORMAT_ATTR(ref_ctr_offset
, "config:32-63");
8694 static struct attribute
*uprobe_attrs
[] = {
8695 &format_attr_retprobe
.attr
,
8696 &format_attr_ref_ctr_offset
.attr
,
8700 static struct attribute_group uprobe_format_group
= {
8702 .attrs
= uprobe_attrs
,
8705 static const struct attribute_group
*uprobe_attr_groups
[] = {
8706 &uprobe_format_group
,
8710 static int perf_uprobe_event_init(struct perf_event
*event
);
8711 static struct pmu perf_uprobe
= {
8712 .task_ctx_nr
= perf_sw_context
,
8713 .event_init
= perf_uprobe_event_init
,
8714 .add
= perf_trace_add
,
8715 .del
= perf_trace_del
,
8716 .start
= perf_swevent_start
,
8717 .stop
= perf_swevent_stop
,
8718 .read
= perf_swevent_read
,
8719 .attr_groups
= uprobe_attr_groups
,
8722 static int perf_uprobe_event_init(struct perf_event
*event
)
8725 unsigned long ref_ctr_offset
;
8728 if (event
->attr
.type
!= perf_uprobe
.type
)
8731 if (!capable(CAP_SYS_ADMIN
))
8735 * no branch sampling for probe events
8737 if (has_branch_stack(event
))
8740 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
8741 ref_ctr_offset
= event
->attr
.config
>> PERF_UPROBE_REF_CTR_OFFSET_SHIFT
;
8742 err
= perf_uprobe_init(event
, ref_ctr_offset
, is_retprobe
);
8746 event
->destroy
= perf_uprobe_destroy
;
8750 #endif /* CONFIG_UPROBE_EVENTS */
8752 static inline void perf_tp_register(void)
8754 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
8755 #ifdef CONFIG_KPROBE_EVENTS
8756 perf_pmu_register(&perf_kprobe
, "kprobe", -1);
8758 #ifdef CONFIG_UPROBE_EVENTS
8759 perf_pmu_register(&perf_uprobe
, "uprobe", -1);
8763 static void perf_event_free_filter(struct perf_event
*event
)
8765 ftrace_profile_free_filter(event
);
8768 #ifdef CONFIG_BPF_SYSCALL
8769 static void bpf_overflow_handler(struct perf_event
*event
,
8770 struct perf_sample_data
*data
,
8771 struct pt_regs
*regs
)
8773 struct bpf_perf_event_data_kern ctx
= {
8779 ctx
.regs
= perf_arch_bpf_user_pt_regs(regs
);
8781 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
8784 ret
= BPF_PROG_RUN(event
->prog
, &ctx
);
8787 __this_cpu_dec(bpf_prog_active
);
8792 event
->orig_overflow_handler(event
, data
, regs
);
8795 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
8797 struct bpf_prog
*prog
;
8799 if (event
->overflow_handler_context
)
8800 /* hw breakpoint or kernel counter */
8806 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
8808 return PTR_ERR(prog
);
8811 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
8812 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
8816 static void perf_event_free_bpf_handler(struct perf_event
*event
)
8818 struct bpf_prog
*prog
= event
->prog
;
8823 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
8828 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
8832 static void perf_event_free_bpf_handler(struct perf_event
*event
)
8838 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8839 * with perf_event_open()
8841 static inline bool perf_event_is_tracing(struct perf_event
*event
)
8843 if (event
->pmu
== &perf_tracepoint
)
8845 #ifdef CONFIG_KPROBE_EVENTS
8846 if (event
->pmu
== &perf_kprobe
)
8849 #ifdef CONFIG_UPROBE_EVENTS
8850 if (event
->pmu
== &perf_uprobe
)
8856 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
8858 bool is_kprobe
, is_tracepoint
, is_syscall_tp
;
8859 struct bpf_prog
*prog
;
8862 if (!perf_event_is_tracing(event
))
8863 return perf_event_set_bpf_handler(event
, prog_fd
);
8865 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
8866 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
8867 is_syscall_tp
= is_syscall_trace_event(event
->tp_event
);
8868 if (!is_kprobe
&& !is_tracepoint
&& !is_syscall_tp
)
8869 /* bpf programs can only be attached to u/kprobe or tracepoint */
8872 prog
= bpf_prog_get(prog_fd
);
8874 return PTR_ERR(prog
);
8876 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
8877 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
) ||
8878 (is_syscall_tp
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
8879 /* valid fd, but invalid bpf program type */
8884 /* Kprobe override only works for kprobes, not uprobes. */
8885 if (prog
->kprobe_override
&&
8886 !(event
->tp_event
->flags
& TRACE_EVENT_FL_KPROBE
)) {
8891 if (is_tracepoint
|| is_syscall_tp
) {
8892 int off
= trace_event_get_offsets(event
->tp_event
);
8894 if (prog
->aux
->max_ctx_offset
> off
) {
8900 ret
= perf_event_attach_bpf_prog(event
, prog
);
8906 static void perf_event_free_bpf_prog(struct perf_event
*event
)
8908 if (!perf_event_is_tracing(event
)) {
8909 perf_event_free_bpf_handler(event
);
8912 perf_event_detach_bpf_prog(event
);
8917 static inline void perf_tp_register(void)
8921 static void perf_event_free_filter(struct perf_event
*event
)
8925 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
8930 static void perf_event_free_bpf_prog(struct perf_event
*event
)
8933 #endif /* CONFIG_EVENT_TRACING */
8935 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8936 void perf_bp_event(struct perf_event
*bp
, void *data
)
8938 struct perf_sample_data sample
;
8939 struct pt_regs
*regs
= data
;
8941 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
8943 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
8944 perf_swevent_event(bp
, 1, &sample
, regs
);
8949 * Allocate a new address filter
8951 static struct perf_addr_filter
*
8952 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
8954 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
8955 struct perf_addr_filter
*filter
;
8957 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
8961 INIT_LIST_HEAD(&filter
->entry
);
8962 list_add_tail(&filter
->entry
, filters
);
8967 static void free_filters_list(struct list_head
*filters
)
8969 struct perf_addr_filter
*filter
, *iter
;
8971 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
8972 path_put(&filter
->path
);
8973 list_del(&filter
->entry
);
8979 * Free existing address filters and optionally install new ones
8981 static void perf_addr_filters_splice(struct perf_event
*event
,
8982 struct list_head
*head
)
8984 unsigned long flags
;
8987 if (!has_addr_filter(event
))
8990 /* don't bother with children, they don't have their own filters */
8994 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
8996 list_splice_init(&event
->addr_filters
.list
, &list
);
8998 list_splice(head
, &event
->addr_filters
.list
);
9000 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
9002 free_filters_list(&list
);
9006 * Scan through mm's vmas and see if one of them matches the
9007 * @filter; if so, adjust filter's address range.
9008 * Called with mm::mmap_sem down for reading.
9010 static void perf_addr_filter_apply(struct perf_addr_filter
*filter
,
9011 struct mm_struct
*mm
,
9012 struct perf_addr_filter_range
*fr
)
9014 struct vm_area_struct
*vma
;
9016 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
9020 if (perf_addr_filter_vma_adjust(filter
, vma
, fr
))
9026 * Update event's address range filters based on the
9027 * task's existing mappings, if any.
9029 static void perf_event_addr_filters_apply(struct perf_event
*event
)
9031 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
9032 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
9033 struct perf_addr_filter
*filter
;
9034 struct mm_struct
*mm
= NULL
;
9035 unsigned int count
= 0;
9036 unsigned long flags
;
9039 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9040 * will stop on the parent's child_mutex that our caller is also holding
9042 if (task
== TASK_TOMBSTONE
)
9045 if (!ifh
->nr_file_filters
)
9048 mm
= get_task_mm(event
->ctx
->task
);
9052 down_read(&mm
->mmap_sem
);
9054 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
9055 list_for_each_entry(filter
, &ifh
->list
, entry
) {
9056 event
->addr_filter_ranges
[count
].start
= 0;
9057 event
->addr_filter_ranges
[count
].size
= 0;
9060 * Adjust base offset if the filter is associated to a binary
9061 * that needs to be mapped:
9063 if (filter
->path
.dentry
)
9064 perf_addr_filter_apply(filter
, mm
, &event
->addr_filter_ranges
[count
]);
9069 event
->addr_filters_gen
++;
9070 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
9072 up_read(&mm
->mmap_sem
);
9077 perf_event_stop(event
, 1);
9081 * Address range filtering: limiting the data to certain
9082 * instruction address ranges. Filters are ioctl()ed to us from
9083 * userspace as ascii strings.
9085 * Filter string format:
9088 * where ACTION is one of the
9089 * * "filter": limit the trace to this region
9090 * * "start": start tracing from this address
9091 * * "stop": stop tracing at this address/region;
9093 * * for kernel addresses: <start address>[/<size>]
9094 * * for object files: <start address>[/<size>]@</path/to/object/file>
9096 * if <size> is not specified or is zero, the range is treated as a single
9097 * address; not valid for ACTION=="filter".
9111 IF_STATE_ACTION
= 0,
9116 static const match_table_t if_tokens
= {
9117 { IF_ACT_FILTER
, "filter" },
9118 { IF_ACT_START
, "start" },
9119 { IF_ACT_STOP
, "stop" },
9120 { IF_SRC_FILE
, "%u/%u@%s" },
9121 { IF_SRC_KERNEL
, "%u/%u" },
9122 { IF_SRC_FILEADDR
, "%u@%s" },
9123 { IF_SRC_KERNELADDR
, "%u" },
9124 { IF_ACT_NONE
, NULL
},
9128 * Address filter string parser
9131 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
9132 struct list_head
*filters
)
9134 struct perf_addr_filter
*filter
= NULL
;
9135 char *start
, *orig
, *filename
= NULL
;
9136 substring_t args
[MAX_OPT_ARGS
];
9137 int state
= IF_STATE_ACTION
, token
;
9138 unsigned int kernel
= 0;
9141 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
9145 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
9146 static const enum perf_addr_filter_action_t actions
[] = {
9147 [IF_ACT_FILTER
] = PERF_ADDR_FILTER_ACTION_FILTER
,
9148 [IF_ACT_START
] = PERF_ADDR_FILTER_ACTION_START
,
9149 [IF_ACT_STOP
] = PERF_ADDR_FILTER_ACTION_STOP
,
9156 /* filter definition begins */
9157 if (state
== IF_STATE_ACTION
) {
9158 filter
= perf_addr_filter_new(event
, filters
);
9163 token
= match_token(start
, if_tokens
, args
);
9168 if (state
!= IF_STATE_ACTION
)
9171 filter
->action
= actions
[token
];
9172 state
= IF_STATE_SOURCE
;
9175 case IF_SRC_KERNELADDR
:
9180 case IF_SRC_FILEADDR
:
9182 if (state
!= IF_STATE_SOURCE
)
9186 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
9190 if (token
== IF_SRC_KERNEL
|| token
== IF_SRC_FILE
) {
9192 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
9197 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
9198 int fpos
= token
== IF_SRC_FILE
? 2 : 1;
9200 filename
= match_strdup(&args
[fpos
]);
9207 state
= IF_STATE_END
;
9215 * Filter definition is fully parsed, validate and install it.
9216 * Make sure that it doesn't contradict itself or the event's
9219 if (state
== IF_STATE_END
) {
9221 if (kernel
&& event
->attr
.exclude_kernel
)
9225 * ACTION "filter" must have a non-zero length region
9228 if (filter
->action
== PERF_ADDR_FILTER_ACTION_FILTER
&&
9237 * For now, we only support file-based filters
9238 * in per-task events; doing so for CPU-wide
9239 * events requires additional context switching
9240 * trickery, since same object code will be
9241 * mapped at different virtual addresses in
9242 * different processes.
9245 if (!event
->ctx
->task
)
9246 goto fail_free_name
;
9248 /* look up the path and grab its inode */
9249 ret
= kern_path(filename
, LOOKUP_FOLLOW
,
9252 goto fail_free_name
;
9258 if (!filter
->path
.dentry
||
9259 !S_ISREG(d_inode(filter
->path
.dentry
)
9263 event
->addr_filters
.nr_file_filters
++;
9266 /* ready to consume more filters */
9267 state
= IF_STATE_ACTION
;
9272 if (state
!= IF_STATE_ACTION
)
9282 free_filters_list(filters
);
9289 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
9295 * Since this is called in perf_ioctl() path, we're already holding
9298 lockdep_assert_held(&event
->ctx
->mutex
);
9300 if (WARN_ON_ONCE(event
->parent
))
9303 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
9305 goto fail_clear_files
;
9307 ret
= event
->pmu
->addr_filters_validate(&filters
);
9309 goto fail_free_filters
;
9311 /* remove existing filters, if any */
9312 perf_addr_filters_splice(event
, &filters
);
9314 /* install new filters */
9315 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
9320 free_filters_list(&filters
);
9323 event
->addr_filters
.nr_file_filters
= 0;
9328 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
9333 filter_str
= strndup_user(arg
, PAGE_SIZE
);
9334 if (IS_ERR(filter_str
))
9335 return PTR_ERR(filter_str
);
9337 #ifdef CONFIG_EVENT_TRACING
9338 if (perf_event_is_tracing(event
)) {
9339 struct perf_event_context
*ctx
= event
->ctx
;
9342 * Beware, here be dragons!!
9344 * the tracepoint muck will deadlock against ctx->mutex, but
9345 * the tracepoint stuff does not actually need it. So
9346 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9347 * already have a reference on ctx.
9349 * This can result in event getting moved to a different ctx,
9350 * but that does not affect the tracepoint state.
9352 mutex_unlock(&ctx
->mutex
);
9353 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
9354 mutex_lock(&ctx
->mutex
);
9357 if (has_addr_filter(event
))
9358 ret
= perf_event_set_addr_filter(event
, filter_str
);
9365 * hrtimer based swevent callback
9368 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
9370 enum hrtimer_restart ret
= HRTIMER_RESTART
;
9371 struct perf_sample_data data
;
9372 struct pt_regs
*regs
;
9373 struct perf_event
*event
;
9376 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
9378 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
9379 return HRTIMER_NORESTART
;
9381 event
->pmu
->read(event
);
9383 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
9384 regs
= get_irq_regs();
9386 if (regs
&& !perf_exclude_event(event
, regs
)) {
9387 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
9388 if (__perf_event_overflow(event
, 1, &data
, regs
))
9389 ret
= HRTIMER_NORESTART
;
9392 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
9393 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
9398 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
9400 struct hw_perf_event
*hwc
= &event
->hw
;
9403 if (!is_sampling_event(event
))
9406 period
= local64_read(&hwc
->period_left
);
9411 local64_set(&hwc
->period_left
, 0);
9413 period
= max_t(u64
, 10000, hwc
->sample_period
);
9415 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
9416 HRTIMER_MODE_REL_PINNED
);
9419 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
9421 struct hw_perf_event
*hwc
= &event
->hw
;
9423 if (is_sampling_event(event
)) {
9424 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
9425 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
9427 hrtimer_cancel(&hwc
->hrtimer
);
9431 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
9433 struct hw_perf_event
*hwc
= &event
->hw
;
9435 if (!is_sampling_event(event
))
9438 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
9439 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
9442 * Since hrtimers have a fixed rate, we can do a static freq->period
9443 * mapping and avoid the whole period adjust feedback stuff.
9445 if (event
->attr
.freq
) {
9446 long freq
= event
->attr
.sample_freq
;
9448 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
9449 hwc
->sample_period
= event
->attr
.sample_period
;
9450 local64_set(&hwc
->period_left
, hwc
->sample_period
);
9451 hwc
->last_period
= hwc
->sample_period
;
9452 event
->attr
.freq
= 0;
9457 * Software event: cpu wall time clock
9460 static void cpu_clock_event_update(struct perf_event
*event
)
9465 now
= local_clock();
9466 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
9467 local64_add(now
- prev
, &event
->count
);
9470 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
9472 local64_set(&event
->hw
.prev_count
, local_clock());
9473 perf_swevent_start_hrtimer(event
);
9476 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
9478 perf_swevent_cancel_hrtimer(event
);
9479 cpu_clock_event_update(event
);
9482 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
9484 if (flags
& PERF_EF_START
)
9485 cpu_clock_event_start(event
, flags
);
9486 perf_event_update_userpage(event
);
9491 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
9493 cpu_clock_event_stop(event
, flags
);
9496 static void cpu_clock_event_read(struct perf_event
*event
)
9498 cpu_clock_event_update(event
);
9501 static int cpu_clock_event_init(struct perf_event
*event
)
9503 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
9506 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
9510 * no branch sampling for software events
9512 if (has_branch_stack(event
))
9515 perf_swevent_init_hrtimer(event
);
9520 static struct pmu perf_cpu_clock
= {
9521 .task_ctx_nr
= perf_sw_context
,
9523 .capabilities
= PERF_PMU_CAP_NO_NMI
,
9525 .event_init
= cpu_clock_event_init
,
9526 .add
= cpu_clock_event_add
,
9527 .del
= cpu_clock_event_del
,
9528 .start
= cpu_clock_event_start
,
9529 .stop
= cpu_clock_event_stop
,
9530 .read
= cpu_clock_event_read
,
9534 * Software event: task time clock
9537 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
9542 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
9544 local64_add(delta
, &event
->count
);
9547 static void task_clock_event_start(struct perf_event
*event
, int flags
)
9549 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
9550 perf_swevent_start_hrtimer(event
);
9553 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
9555 perf_swevent_cancel_hrtimer(event
);
9556 task_clock_event_update(event
, event
->ctx
->time
);
9559 static int task_clock_event_add(struct perf_event
*event
, int flags
)
9561 if (flags
& PERF_EF_START
)
9562 task_clock_event_start(event
, flags
);
9563 perf_event_update_userpage(event
);
9568 static void task_clock_event_del(struct perf_event
*event
, int flags
)
9570 task_clock_event_stop(event
, PERF_EF_UPDATE
);
9573 static void task_clock_event_read(struct perf_event
*event
)
9575 u64 now
= perf_clock();
9576 u64 delta
= now
- event
->ctx
->timestamp
;
9577 u64 time
= event
->ctx
->time
+ delta
;
9579 task_clock_event_update(event
, time
);
9582 static int task_clock_event_init(struct perf_event
*event
)
9584 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
9587 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
9591 * no branch sampling for software events
9593 if (has_branch_stack(event
))
9596 perf_swevent_init_hrtimer(event
);
9601 static struct pmu perf_task_clock
= {
9602 .task_ctx_nr
= perf_sw_context
,
9604 .capabilities
= PERF_PMU_CAP_NO_NMI
,
9606 .event_init
= task_clock_event_init
,
9607 .add
= task_clock_event_add
,
9608 .del
= task_clock_event_del
,
9609 .start
= task_clock_event_start
,
9610 .stop
= task_clock_event_stop
,
9611 .read
= task_clock_event_read
,
9614 static void perf_pmu_nop_void(struct pmu
*pmu
)
9618 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
9622 static int perf_pmu_nop_int(struct pmu
*pmu
)
9627 static int perf_event_nop_int(struct perf_event
*event
, u64 value
)
9632 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
9634 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
9636 __this_cpu_write(nop_txn_flags
, flags
);
9638 if (flags
& ~PERF_PMU_TXN_ADD
)
9641 perf_pmu_disable(pmu
);
9644 static int perf_pmu_commit_txn(struct pmu
*pmu
)
9646 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
9648 __this_cpu_write(nop_txn_flags
, 0);
9650 if (flags
& ~PERF_PMU_TXN_ADD
)
9653 perf_pmu_enable(pmu
);
9657 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
9659 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
9661 __this_cpu_write(nop_txn_flags
, 0);
9663 if (flags
& ~PERF_PMU_TXN_ADD
)
9666 perf_pmu_enable(pmu
);
9669 static int perf_event_idx_default(struct perf_event
*event
)
9675 * Ensures all contexts with the same task_ctx_nr have the same
9676 * pmu_cpu_context too.
9678 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
9685 list_for_each_entry(pmu
, &pmus
, entry
) {
9686 if (pmu
->task_ctx_nr
== ctxn
)
9687 return pmu
->pmu_cpu_context
;
9693 static void free_pmu_context(struct pmu
*pmu
)
9696 * Static contexts such as perf_sw_context have a global lifetime
9697 * and may be shared between different PMUs. Avoid freeing them
9698 * when a single PMU is going away.
9700 if (pmu
->task_ctx_nr
> perf_invalid_context
)
9703 free_percpu(pmu
->pmu_cpu_context
);
9707 * Let userspace know that this PMU supports address range filtering:
9709 static ssize_t
nr_addr_filters_show(struct device
*dev
,
9710 struct device_attribute
*attr
,
9713 struct pmu
*pmu
= dev_get_drvdata(dev
);
9715 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
9717 DEVICE_ATTR_RO(nr_addr_filters
);
9719 static struct idr pmu_idr
;
9722 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
9724 struct pmu
*pmu
= dev_get_drvdata(dev
);
9726 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
9728 static DEVICE_ATTR_RO(type
);
9731 perf_event_mux_interval_ms_show(struct device
*dev
,
9732 struct device_attribute
*attr
,
9735 struct pmu
*pmu
= dev_get_drvdata(dev
);
9737 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
9740 static DEFINE_MUTEX(mux_interval_mutex
);
9743 perf_event_mux_interval_ms_store(struct device
*dev
,
9744 struct device_attribute
*attr
,
9745 const char *buf
, size_t count
)
9747 struct pmu
*pmu
= dev_get_drvdata(dev
);
9748 int timer
, cpu
, ret
;
9750 ret
= kstrtoint(buf
, 0, &timer
);
9757 /* same value, noting to do */
9758 if (timer
== pmu
->hrtimer_interval_ms
)
9761 mutex_lock(&mux_interval_mutex
);
9762 pmu
->hrtimer_interval_ms
= timer
;
9764 /* update all cpuctx for this PMU */
9766 for_each_online_cpu(cpu
) {
9767 struct perf_cpu_context
*cpuctx
;
9768 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
9769 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
9771 cpu_function_call(cpu
,
9772 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
9775 mutex_unlock(&mux_interval_mutex
);
9779 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
9781 static struct attribute
*pmu_dev_attrs
[] = {
9782 &dev_attr_type
.attr
,
9783 &dev_attr_perf_event_mux_interval_ms
.attr
,
9786 ATTRIBUTE_GROUPS(pmu_dev
);
9788 static int pmu_bus_running
;
9789 static struct bus_type pmu_bus
= {
9790 .name
= "event_source",
9791 .dev_groups
= pmu_dev_groups
,
9794 static void pmu_dev_release(struct device
*dev
)
9799 static int pmu_dev_alloc(struct pmu
*pmu
)
9803 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
9807 pmu
->dev
->groups
= pmu
->attr_groups
;
9808 device_initialize(pmu
->dev
);
9809 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
9813 dev_set_drvdata(pmu
->dev
, pmu
);
9814 pmu
->dev
->bus
= &pmu_bus
;
9815 pmu
->dev
->release
= pmu_dev_release
;
9816 ret
= device_add(pmu
->dev
);
9820 /* For PMUs with address filters, throw in an extra attribute: */
9821 if (pmu
->nr_addr_filters
)
9822 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
9831 device_del(pmu
->dev
);
9834 put_device(pmu
->dev
);
9838 static struct lock_class_key cpuctx_mutex
;
9839 static struct lock_class_key cpuctx_lock
;
9841 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
9845 mutex_lock(&pmus_lock
);
9847 pmu
->pmu_disable_count
= alloc_percpu(int);
9848 if (!pmu
->pmu_disable_count
)
9857 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
9865 if (pmu_bus_running
) {
9866 ret
= pmu_dev_alloc(pmu
);
9872 if (pmu
->task_ctx_nr
== perf_hw_context
) {
9873 static int hw_context_taken
= 0;
9876 * Other than systems with heterogeneous CPUs, it never makes
9877 * sense for two PMUs to share perf_hw_context. PMUs which are
9878 * uncore must use perf_invalid_context.
9880 if (WARN_ON_ONCE(hw_context_taken
&&
9881 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
9882 pmu
->task_ctx_nr
= perf_invalid_context
;
9884 hw_context_taken
= 1;
9887 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
9888 if (pmu
->pmu_cpu_context
)
9889 goto got_cpu_context
;
9892 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
9893 if (!pmu
->pmu_cpu_context
)
9896 for_each_possible_cpu(cpu
) {
9897 struct perf_cpu_context
*cpuctx
;
9899 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
9900 __perf_event_init_context(&cpuctx
->ctx
);
9901 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
9902 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
9903 cpuctx
->ctx
.pmu
= pmu
;
9904 cpuctx
->online
= cpumask_test_cpu(cpu
, perf_online_mask
);
9906 __perf_mux_hrtimer_init(cpuctx
, cpu
);
9910 if (!pmu
->start_txn
) {
9911 if (pmu
->pmu_enable
) {
9913 * If we have pmu_enable/pmu_disable calls, install
9914 * transaction stubs that use that to try and batch
9915 * hardware accesses.
9917 pmu
->start_txn
= perf_pmu_start_txn
;
9918 pmu
->commit_txn
= perf_pmu_commit_txn
;
9919 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
9921 pmu
->start_txn
= perf_pmu_nop_txn
;
9922 pmu
->commit_txn
= perf_pmu_nop_int
;
9923 pmu
->cancel_txn
= perf_pmu_nop_void
;
9927 if (!pmu
->pmu_enable
) {
9928 pmu
->pmu_enable
= perf_pmu_nop_void
;
9929 pmu
->pmu_disable
= perf_pmu_nop_void
;
9932 if (!pmu
->check_period
)
9933 pmu
->check_period
= perf_event_nop_int
;
9935 if (!pmu
->event_idx
)
9936 pmu
->event_idx
= perf_event_idx_default
;
9938 list_add_rcu(&pmu
->entry
, &pmus
);
9939 atomic_set(&pmu
->exclusive_cnt
, 0);
9942 mutex_unlock(&pmus_lock
);
9947 device_del(pmu
->dev
);
9948 put_device(pmu
->dev
);
9951 if (pmu
->type
>= PERF_TYPE_MAX
)
9952 idr_remove(&pmu_idr
, pmu
->type
);
9955 free_percpu(pmu
->pmu_disable_count
);
9958 EXPORT_SYMBOL_GPL(perf_pmu_register
);
9960 void perf_pmu_unregister(struct pmu
*pmu
)
9962 mutex_lock(&pmus_lock
);
9963 list_del_rcu(&pmu
->entry
);
9966 * We dereference the pmu list under both SRCU and regular RCU, so
9967 * synchronize against both of those.
9969 synchronize_srcu(&pmus_srcu
);
9972 free_percpu(pmu
->pmu_disable_count
);
9973 if (pmu
->type
>= PERF_TYPE_MAX
)
9974 idr_remove(&pmu_idr
, pmu
->type
);
9975 if (pmu_bus_running
) {
9976 if (pmu
->nr_addr_filters
)
9977 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
9978 device_del(pmu
->dev
);
9979 put_device(pmu
->dev
);
9981 free_pmu_context(pmu
);
9982 mutex_unlock(&pmus_lock
);
9984 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
9986 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
9988 struct perf_event_context
*ctx
= NULL
;
9991 if (!try_module_get(pmu
->module
))
9995 * A number of pmu->event_init() methods iterate the sibling_list to,
9996 * for example, validate if the group fits on the PMU. Therefore,
9997 * if this is a sibling event, acquire the ctx->mutex to protect
10000 if (event
->group_leader
!= event
&& pmu
->task_ctx_nr
!= perf_sw_context
) {
10002 * This ctx->mutex can nest when we're called through
10003 * inheritance. See the perf_event_ctx_lock_nested() comment.
10005 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
10006 SINGLE_DEPTH_NESTING
);
10011 ret
= pmu
->event_init(event
);
10014 perf_event_ctx_unlock(event
->group_leader
, ctx
);
10017 if (pmu
->capabilities
& PERF_PMU_CAP_NO_EXCLUDE
&&
10018 event_has_any_exclude_flag(event
)) {
10019 if (event
->destroy
)
10020 event
->destroy(event
);
10026 module_put(pmu
->module
);
10031 static struct pmu
*perf_init_event(struct perf_event
*event
)
10037 idx
= srcu_read_lock(&pmus_srcu
);
10039 /* Try parent's PMU first: */
10040 if (event
->parent
&& event
->parent
->pmu
) {
10041 pmu
= event
->parent
->pmu
;
10042 ret
= perf_try_init_event(pmu
, event
);
10048 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
10051 ret
= perf_try_init_event(pmu
, event
);
10053 pmu
= ERR_PTR(ret
);
10057 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
10058 ret
= perf_try_init_event(pmu
, event
);
10062 if (ret
!= -ENOENT
) {
10063 pmu
= ERR_PTR(ret
);
10067 pmu
= ERR_PTR(-ENOENT
);
10069 srcu_read_unlock(&pmus_srcu
, idx
);
10074 static void attach_sb_event(struct perf_event
*event
)
10076 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
10078 raw_spin_lock(&pel
->lock
);
10079 list_add_rcu(&event
->sb_list
, &pel
->list
);
10080 raw_spin_unlock(&pel
->lock
);
10084 * We keep a list of all !task (and therefore per-cpu) events
10085 * that need to receive side-band records.
10087 * This avoids having to scan all the various PMU per-cpu contexts
10088 * looking for them.
10090 static void account_pmu_sb_event(struct perf_event
*event
)
10092 if (is_sb_event(event
))
10093 attach_sb_event(event
);
10096 static void account_event_cpu(struct perf_event
*event
, int cpu
)
10101 if (is_cgroup_event(event
))
10102 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
10105 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10106 static void account_freq_event_nohz(void)
10108 #ifdef CONFIG_NO_HZ_FULL
10109 /* Lock so we don't race with concurrent unaccount */
10110 spin_lock(&nr_freq_lock
);
10111 if (atomic_inc_return(&nr_freq_events
) == 1)
10112 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
10113 spin_unlock(&nr_freq_lock
);
10117 static void account_freq_event(void)
10119 if (tick_nohz_full_enabled())
10120 account_freq_event_nohz();
10122 atomic_inc(&nr_freq_events
);
10126 static void account_event(struct perf_event
*event
)
10133 if (event
->attach_state
& PERF_ATTACH_TASK
)
10135 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
10136 atomic_inc(&nr_mmap_events
);
10137 if (event
->attr
.comm
)
10138 atomic_inc(&nr_comm_events
);
10139 if (event
->attr
.namespaces
)
10140 atomic_inc(&nr_namespaces_events
);
10141 if (event
->attr
.task
)
10142 atomic_inc(&nr_task_events
);
10143 if (event
->attr
.freq
)
10144 account_freq_event();
10145 if (event
->attr
.context_switch
) {
10146 atomic_inc(&nr_switch_events
);
10149 if (has_branch_stack(event
))
10151 if (is_cgroup_event(event
))
10153 if (event
->attr
.ksymbol
)
10154 atomic_inc(&nr_ksymbol_events
);
10155 if (event
->attr
.bpf_event
)
10156 atomic_inc(&nr_bpf_events
);
10160 * We need the mutex here because static_branch_enable()
10161 * must complete *before* the perf_sched_count increment
10164 if (atomic_inc_not_zero(&perf_sched_count
))
10167 mutex_lock(&perf_sched_mutex
);
10168 if (!atomic_read(&perf_sched_count
)) {
10169 static_branch_enable(&perf_sched_events
);
10171 * Guarantee that all CPUs observe they key change and
10172 * call the perf scheduling hooks before proceeding to
10173 * install events that need them.
10178 * Now that we have waited for the sync_sched(), allow further
10179 * increments to by-pass the mutex.
10181 atomic_inc(&perf_sched_count
);
10182 mutex_unlock(&perf_sched_mutex
);
10186 account_event_cpu(event
, event
->cpu
);
10188 account_pmu_sb_event(event
);
10192 * Allocate and initialize an event structure
10194 static struct perf_event
*
10195 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
10196 struct task_struct
*task
,
10197 struct perf_event
*group_leader
,
10198 struct perf_event
*parent_event
,
10199 perf_overflow_handler_t overflow_handler
,
10200 void *context
, int cgroup_fd
)
10203 struct perf_event
*event
;
10204 struct hw_perf_event
*hwc
;
10205 long err
= -EINVAL
;
10207 if ((unsigned)cpu
>= nr_cpu_ids
) {
10208 if (!task
|| cpu
!= -1)
10209 return ERR_PTR(-EINVAL
);
10212 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
10214 return ERR_PTR(-ENOMEM
);
10217 * Single events are their own group leaders, with an
10218 * empty sibling list:
10221 group_leader
= event
;
10223 mutex_init(&event
->child_mutex
);
10224 INIT_LIST_HEAD(&event
->child_list
);
10226 INIT_LIST_HEAD(&event
->event_entry
);
10227 INIT_LIST_HEAD(&event
->sibling_list
);
10228 INIT_LIST_HEAD(&event
->active_list
);
10229 init_event_group(event
);
10230 INIT_LIST_HEAD(&event
->rb_entry
);
10231 INIT_LIST_HEAD(&event
->active_entry
);
10232 INIT_LIST_HEAD(&event
->addr_filters
.list
);
10233 INIT_HLIST_NODE(&event
->hlist_entry
);
10236 init_waitqueue_head(&event
->waitq
);
10237 init_irq_work(&event
->pending
, perf_pending_event
);
10239 mutex_init(&event
->mmap_mutex
);
10240 raw_spin_lock_init(&event
->addr_filters
.lock
);
10242 atomic_long_set(&event
->refcount
, 1);
10244 event
->attr
= *attr
;
10245 event
->group_leader
= group_leader
;
10249 event
->parent
= parent_event
;
10251 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
10252 event
->id
= atomic64_inc_return(&perf_event_id
);
10254 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10257 event
->attach_state
= PERF_ATTACH_TASK
;
10259 * XXX pmu::event_init needs to know what task to account to
10260 * and we cannot use the ctx information because we need the
10261 * pmu before we get a ctx.
10263 get_task_struct(task
);
10264 event
->hw
.target
= task
;
10267 event
->clock
= &local_clock
;
10269 event
->clock
= parent_event
->clock
;
10271 if (!overflow_handler
&& parent_event
) {
10272 overflow_handler
= parent_event
->overflow_handler
;
10273 context
= parent_event
->overflow_handler_context
;
10274 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10275 if (overflow_handler
== bpf_overflow_handler
) {
10276 struct bpf_prog
*prog
= bpf_prog_inc(parent_event
->prog
);
10278 if (IS_ERR(prog
)) {
10279 err
= PTR_ERR(prog
);
10282 event
->prog
= prog
;
10283 event
->orig_overflow_handler
=
10284 parent_event
->orig_overflow_handler
;
10289 if (overflow_handler
) {
10290 event
->overflow_handler
= overflow_handler
;
10291 event
->overflow_handler_context
= context
;
10292 } else if (is_write_backward(event
)){
10293 event
->overflow_handler
= perf_event_output_backward
;
10294 event
->overflow_handler_context
= NULL
;
10296 event
->overflow_handler
= perf_event_output_forward
;
10297 event
->overflow_handler_context
= NULL
;
10300 perf_event__state_init(event
);
10305 hwc
->sample_period
= attr
->sample_period
;
10306 if (attr
->freq
&& attr
->sample_freq
)
10307 hwc
->sample_period
= 1;
10308 hwc
->last_period
= hwc
->sample_period
;
10310 local64_set(&hwc
->period_left
, hwc
->sample_period
);
10313 * We currently do not support PERF_SAMPLE_READ on inherited events.
10314 * See perf_output_read().
10316 if (attr
->inherit
&& (attr
->sample_type
& PERF_SAMPLE_READ
))
10319 if (!has_branch_stack(event
))
10320 event
->attr
.branch_sample_type
= 0;
10322 if (cgroup_fd
!= -1) {
10323 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
10328 pmu
= perf_init_event(event
);
10330 err
= PTR_ERR(pmu
);
10334 err
= exclusive_event_init(event
);
10338 if (has_addr_filter(event
)) {
10339 event
->addr_filter_ranges
= kcalloc(pmu
->nr_addr_filters
,
10340 sizeof(struct perf_addr_filter_range
),
10342 if (!event
->addr_filter_ranges
) {
10348 * Clone the parent's vma offsets: they are valid until exec()
10349 * even if the mm is not shared with the parent.
10351 if (event
->parent
) {
10352 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
10354 raw_spin_lock_irq(&ifh
->lock
);
10355 memcpy(event
->addr_filter_ranges
,
10356 event
->parent
->addr_filter_ranges
,
10357 pmu
->nr_addr_filters
* sizeof(struct perf_addr_filter_range
));
10358 raw_spin_unlock_irq(&ifh
->lock
);
10361 /* force hw sync on the address filters */
10362 event
->addr_filters_gen
= 1;
10365 if (!event
->parent
) {
10366 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
10367 err
= get_callchain_buffers(attr
->sample_max_stack
);
10369 goto err_addr_filters
;
10373 /* symmetric to unaccount_event() in _free_event() */
10374 account_event(event
);
10379 kfree(event
->addr_filter_ranges
);
10382 exclusive_event_destroy(event
);
10385 if (event
->destroy
)
10386 event
->destroy(event
);
10387 module_put(pmu
->module
);
10389 if (is_cgroup_event(event
))
10390 perf_detach_cgroup(event
);
10392 put_pid_ns(event
->ns
);
10393 if (event
->hw
.target
)
10394 put_task_struct(event
->hw
.target
);
10397 return ERR_PTR(err
);
10400 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
10401 struct perf_event_attr
*attr
)
10406 if (!access_ok(uattr
, PERF_ATTR_SIZE_VER0
))
10410 * zero the full structure, so that a short copy will be nice.
10412 memset(attr
, 0, sizeof(*attr
));
10414 ret
= get_user(size
, &uattr
->size
);
10418 if (size
> PAGE_SIZE
) /* silly large */
10421 if (!size
) /* abi compat */
10422 size
= PERF_ATTR_SIZE_VER0
;
10424 if (size
< PERF_ATTR_SIZE_VER0
)
10428 * If we're handed a bigger struct than we know of,
10429 * ensure all the unknown bits are 0 - i.e. new
10430 * user-space does not rely on any kernel feature
10431 * extensions we dont know about yet.
10433 if (size
> sizeof(*attr
)) {
10434 unsigned char __user
*addr
;
10435 unsigned char __user
*end
;
10438 addr
= (void __user
*)uattr
+ sizeof(*attr
);
10439 end
= (void __user
*)uattr
+ size
;
10441 for (; addr
< end
; addr
++) {
10442 ret
= get_user(val
, addr
);
10448 size
= sizeof(*attr
);
10451 ret
= copy_from_user(attr
, uattr
, size
);
10457 if (attr
->__reserved_1
)
10460 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
10463 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
10466 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
10467 u64 mask
= attr
->branch_sample_type
;
10469 /* only using defined bits */
10470 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
10473 /* at least one branch bit must be set */
10474 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
10477 /* propagate priv level, when not set for branch */
10478 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
10480 /* exclude_kernel checked on syscall entry */
10481 if (!attr
->exclude_kernel
)
10482 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
10484 if (!attr
->exclude_user
)
10485 mask
|= PERF_SAMPLE_BRANCH_USER
;
10487 if (!attr
->exclude_hv
)
10488 mask
|= PERF_SAMPLE_BRANCH_HV
;
10490 * adjust user setting (for HW filter setup)
10492 attr
->branch_sample_type
= mask
;
10494 /* privileged levels capture (kernel, hv): check permissions */
10495 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
10496 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
10500 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
10501 ret
= perf_reg_validate(attr
->sample_regs_user
);
10506 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
10507 if (!arch_perf_have_user_stack_dump())
10511 * We have __u32 type for the size, but so far
10512 * we can only use __u16 as maximum due to the
10513 * __u16 sample size limit.
10515 if (attr
->sample_stack_user
>= USHRT_MAX
)
10517 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
10521 if (!attr
->sample_max_stack
)
10522 attr
->sample_max_stack
= sysctl_perf_event_max_stack
;
10524 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
10525 ret
= perf_reg_validate(attr
->sample_regs_intr
);
10530 put_user(sizeof(*attr
), &uattr
->size
);
10536 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
10538 struct ring_buffer
*rb
= NULL
;
10544 /* don't allow circular references */
10545 if (event
== output_event
)
10549 * Don't allow cross-cpu buffers
10551 if (output_event
->cpu
!= event
->cpu
)
10555 * If its not a per-cpu rb, it must be the same task.
10557 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
10561 * Mixing clocks in the same buffer is trouble you don't need.
10563 if (output_event
->clock
!= event
->clock
)
10567 * Either writing ring buffer from beginning or from end.
10568 * Mixing is not allowed.
10570 if (is_write_backward(output_event
) != is_write_backward(event
))
10574 * If both events generate aux data, they must be on the same PMU
10576 if (has_aux(event
) && has_aux(output_event
) &&
10577 event
->pmu
!= output_event
->pmu
)
10581 mutex_lock(&event
->mmap_mutex
);
10582 /* Can't redirect output if we've got an active mmap() */
10583 if (atomic_read(&event
->mmap_count
))
10586 if (output_event
) {
10587 /* get the rb we want to redirect to */
10588 rb
= ring_buffer_get(output_event
);
10593 ring_buffer_attach(event
, rb
);
10597 mutex_unlock(&event
->mmap_mutex
);
10603 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
10609 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
10612 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
10614 bool nmi_safe
= false;
10617 case CLOCK_MONOTONIC
:
10618 event
->clock
= &ktime_get_mono_fast_ns
;
10622 case CLOCK_MONOTONIC_RAW
:
10623 event
->clock
= &ktime_get_raw_fast_ns
;
10627 case CLOCK_REALTIME
:
10628 event
->clock
= &ktime_get_real_ns
;
10631 case CLOCK_BOOTTIME
:
10632 event
->clock
= &ktime_get_boot_ns
;
10636 event
->clock
= &ktime_get_tai_ns
;
10643 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
10650 * Variation on perf_event_ctx_lock_nested(), except we take two context
10653 static struct perf_event_context
*
10654 __perf_event_ctx_lock_double(struct perf_event
*group_leader
,
10655 struct perf_event_context
*ctx
)
10657 struct perf_event_context
*gctx
;
10661 gctx
= READ_ONCE(group_leader
->ctx
);
10662 if (!refcount_inc_not_zero(&gctx
->refcount
)) {
10668 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
10670 if (group_leader
->ctx
!= gctx
) {
10671 mutex_unlock(&ctx
->mutex
);
10672 mutex_unlock(&gctx
->mutex
);
10681 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10683 * @attr_uptr: event_id type attributes for monitoring/sampling
10686 * @group_fd: group leader event fd
10688 SYSCALL_DEFINE5(perf_event_open
,
10689 struct perf_event_attr __user
*, attr_uptr
,
10690 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
10692 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
10693 struct perf_event
*event
, *sibling
;
10694 struct perf_event_attr attr
;
10695 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
10696 struct file
*event_file
= NULL
;
10697 struct fd group
= {NULL
, 0};
10698 struct task_struct
*task
= NULL
;
10701 int move_group
= 0;
10703 int f_flags
= O_RDWR
;
10704 int cgroup_fd
= -1;
10706 /* for future expandability... */
10707 if (flags
& ~PERF_FLAG_ALL
)
10710 err
= perf_copy_attr(attr_uptr
, &attr
);
10714 if (!attr
.exclude_kernel
) {
10715 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
10719 if (attr
.namespaces
) {
10720 if (!capable(CAP_SYS_ADMIN
))
10725 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
10728 if (attr
.sample_period
& (1ULL << 63))
10732 /* Only privileged users can get physical addresses */
10733 if ((attr
.sample_type
& PERF_SAMPLE_PHYS_ADDR
) &&
10734 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
10738 * In cgroup mode, the pid argument is used to pass the fd
10739 * opened to the cgroup directory in cgroupfs. The cpu argument
10740 * designates the cpu on which to monitor threads from that
10743 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
10746 if (flags
& PERF_FLAG_FD_CLOEXEC
)
10747 f_flags
|= O_CLOEXEC
;
10749 event_fd
= get_unused_fd_flags(f_flags
);
10753 if (group_fd
!= -1) {
10754 err
= perf_fget_light(group_fd
, &group
);
10757 group_leader
= group
.file
->private_data
;
10758 if (flags
& PERF_FLAG_FD_OUTPUT
)
10759 output_event
= group_leader
;
10760 if (flags
& PERF_FLAG_FD_NO_GROUP
)
10761 group_leader
= NULL
;
10764 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
10765 task
= find_lively_task_by_vpid(pid
);
10766 if (IS_ERR(task
)) {
10767 err
= PTR_ERR(task
);
10772 if (task
&& group_leader
&&
10773 group_leader
->attr
.inherit
!= attr
.inherit
) {
10779 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
10784 * Reuse ptrace permission checks for now.
10786 * We must hold cred_guard_mutex across this and any potential
10787 * perf_install_in_context() call for this new event to
10788 * serialize against exec() altering our credentials (and the
10789 * perf_event_exit_task() that could imply).
10792 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
10796 if (flags
& PERF_FLAG_PID_CGROUP
)
10799 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
10800 NULL
, NULL
, cgroup_fd
);
10801 if (IS_ERR(event
)) {
10802 err
= PTR_ERR(event
);
10806 if (is_sampling_event(event
)) {
10807 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
10814 * Special case software events and allow them to be part of
10815 * any hardware group.
10819 if (attr
.use_clockid
) {
10820 err
= perf_event_set_clock(event
, attr
.clockid
);
10825 if (pmu
->task_ctx_nr
== perf_sw_context
)
10826 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
10828 if (group_leader
) {
10829 if (is_software_event(event
) &&
10830 !in_software_context(group_leader
)) {
10832 * If the event is a sw event, but the group_leader
10833 * is on hw context.
10835 * Allow the addition of software events to hw
10836 * groups, this is safe because software events
10837 * never fail to schedule.
10839 pmu
= group_leader
->ctx
->pmu
;
10840 } else if (!is_software_event(event
) &&
10841 is_software_event(group_leader
) &&
10842 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
10844 * In case the group is a pure software group, and we
10845 * try to add a hardware event, move the whole group to
10846 * the hardware context.
10853 * Get the target context (task or percpu):
10855 ctx
= find_get_context(pmu
, task
, event
);
10857 err
= PTR_ERR(ctx
);
10861 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
10867 * Look up the group leader (we will attach this event to it):
10869 if (group_leader
) {
10873 * Do not allow a recursive hierarchy (this new sibling
10874 * becoming part of another group-sibling):
10876 if (group_leader
->group_leader
!= group_leader
)
10879 /* All events in a group should have the same clock */
10880 if (group_leader
->clock
!= event
->clock
)
10884 * Make sure we're both events for the same CPU;
10885 * grouping events for different CPUs is broken; since
10886 * you can never concurrently schedule them anyhow.
10888 if (group_leader
->cpu
!= event
->cpu
)
10892 * Make sure we're both on the same task, or both
10895 if (group_leader
->ctx
->task
!= ctx
->task
)
10899 * Do not allow to attach to a group in a different task
10900 * or CPU context. If we're moving SW events, we'll fix
10901 * this up later, so allow that.
10903 if (!move_group
&& group_leader
->ctx
!= ctx
)
10907 * Only a group leader can be exclusive or pinned
10909 if (attr
.exclusive
|| attr
.pinned
)
10913 if (output_event
) {
10914 err
= perf_event_set_output(event
, output_event
);
10919 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
10921 if (IS_ERR(event_file
)) {
10922 err
= PTR_ERR(event_file
);
10928 gctx
= __perf_event_ctx_lock_double(group_leader
, ctx
);
10930 if (gctx
->task
== TASK_TOMBSTONE
) {
10936 * Check if we raced against another sys_perf_event_open() call
10937 * moving the software group underneath us.
10939 if (!(group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
10941 * If someone moved the group out from under us, check
10942 * if this new event wound up on the same ctx, if so
10943 * its the regular !move_group case, otherwise fail.
10949 perf_event_ctx_unlock(group_leader
, gctx
);
10954 mutex_lock(&ctx
->mutex
);
10957 if (ctx
->task
== TASK_TOMBSTONE
) {
10962 if (!perf_event_validate_size(event
)) {
10969 * Check if the @cpu we're creating an event for is online.
10971 * We use the perf_cpu_context::ctx::mutex to serialize against
10972 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10974 struct perf_cpu_context
*cpuctx
=
10975 container_of(ctx
, struct perf_cpu_context
, ctx
);
10977 if (!cpuctx
->online
) {
10985 * Must be under the same ctx::mutex as perf_install_in_context(),
10986 * because we need to serialize with concurrent event creation.
10988 if (!exclusive_event_installable(event
, ctx
)) {
10989 /* exclusive and group stuff are assumed mutually exclusive */
10990 WARN_ON_ONCE(move_group
);
10996 WARN_ON_ONCE(ctx
->parent_ctx
);
10999 * This is the point on no return; we cannot fail hereafter. This is
11000 * where we start modifying current state.
11005 * See perf_event_ctx_lock() for comments on the details
11006 * of swizzling perf_event::ctx.
11008 perf_remove_from_context(group_leader
, 0);
11011 for_each_sibling_event(sibling
, group_leader
) {
11012 perf_remove_from_context(sibling
, 0);
11017 * Wait for everybody to stop referencing the events through
11018 * the old lists, before installing it on new lists.
11023 * Install the group siblings before the group leader.
11025 * Because a group leader will try and install the entire group
11026 * (through the sibling list, which is still in-tact), we can
11027 * end up with siblings installed in the wrong context.
11029 * By installing siblings first we NO-OP because they're not
11030 * reachable through the group lists.
11032 for_each_sibling_event(sibling
, group_leader
) {
11033 perf_event__state_init(sibling
);
11034 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
11039 * Removing from the context ends up with disabled
11040 * event. What we want here is event in the initial
11041 * startup state, ready to be add into new context.
11043 perf_event__state_init(group_leader
);
11044 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
11049 * Precalculate sample_data sizes; do while holding ctx::mutex such
11050 * that we're serialized against further additions and before
11051 * perf_install_in_context() which is the point the event is active and
11052 * can use these values.
11054 perf_event__header_size(event
);
11055 perf_event__id_header_size(event
);
11057 event
->owner
= current
;
11059 perf_install_in_context(ctx
, event
, event
->cpu
);
11060 perf_unpin_context(ctx
);
11063 perf_event_ctx_unlock(group_leader
, gctx
);
11064 mutex_unlock(&ctx
->mutex
);
11067 mutex_unlock(&task
->signal
->cred_guard_mutex
);
11068 put_task_struct(task
);
11071 mutex_lock(¤t
->perf_event_mutex
);
11072 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
11073 mutex_unlock(¤t
->perf_event_mutex
);
11076 * Drop the reference on the group_event after placing the
11077 * new event on the sibling_list. This ensures destruction
11078 * of the group leader will find the pointer to itself in
11079 * perf_group_detach().
11082 fd_install(event_fd
, event_file
);
11087 perf_event_ctx_unlock(group_leader
, gctx
);
11088 mutex_unlock(&ctx
->mutex
);
11092 perf_unpin_context(ctx
);
11096 * If event_file is set, the fput() above will have called ->release()
11097 * and that will take care of freeing the event.
11103 mutex_unlock(&task
->signal
->cred_guard_mutex
);
11106 put_task_struct(task
);
11110 put_unused_fd(event_fd
);
11115 * perf_event_create_kernel_counter
11117 * @attr: attributes of the counter to create
11118 * @cpu: cpu in which the counter is bound
11119 * @task: task to profile (NULL for percpu)
11121 struct perf_event
*
11122 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
11123 struct task_struct
*task
,
11124 perf_overflow_handler_t overflow_handler
,
11127 struct perf_event_context
*ctx
;
11128 struct perf_event
*event
;
11132 * Get the target context (task or percpu):
11135 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
11136 overflow_handler
, context
, -1);
11137 if (IS_ERR(event
)) {
11138 err
= PTR_ERR(event
);
11142 /* Mark owner so we could distinguish it from user events. */
11143 event
->owner
= TASK_TOMBSTONE
;
11145 ctx
= find_get_context(event
->pmu
, task
, event
);
11147 err
= PTR_ERR(ctx
);
11151 WARN_ON_ONCE(ctx
->parent_ctx
);
11152 mutex_lock(&ctx
->mutex
);
11153 if (ctx
->task
== TASK_TOMBSTONE
) {
11160 * Check if the @cpu we're creating an event for is online.
11162 * We use the perf_cpu_context::ctx::mutex to serialize against
11163 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11165 struct perf_cpu_context
*cpuctx
=
11166 container_of(ctx
, struct perf_cpu_context
, ctx
);
11167 if (!cpuctx
->online
) {
11173 if (!exclusive_event_installable(event
, ctx
)) {
11178 perf_install_in_context(ctx
, event
, cpu
);
11179 perf_unpin_context(ctx
);
11180 mutex_unlock(&ctx
->mutex
);
11185 mutex_unlock(&ctx
->mutex
);
11186 perf_unpin_context(ctx
);
11191 return ERR_PTR(err
);
11193 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
11195 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
11197 struct perf_event_context
*src_ctx
;
11198 struct perf_event_context
*dst_ctx
;
11199 struct perf_event
*event
, *tmp
;
11202 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
11203 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
11206 * See perf_event_ctx_lock() for comments on the details
11207 * of swizzling perf_event::ctx.
11209 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
11210 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
11212 perf_remove_from_context(event
, 0);
11213 unaccount_event_cpu(event
, src_cpu
);
11215 list_add(&event
->migrate_entry
, &events
);
11219 * Wait for the events to quiesce before re-instating them.
11224 * Re-instate events in 2 passes.
11226 * Skip over group leaders and only install siblings on this first
11227 * pass, siblings will not get enabled without a leader, however a
11228 * leader will enable its siblings, even if those are still on the old
11231 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
11232 if (event
->group_leader
== event
)
11235 list_del(&event
->migrate_entry
);
11236 if (event
->state
>= PERF_EVENT_STATE_OFF
)
11237 event
->state
= PERF_EVENT_STATE_INACTIVE
;
11238 account_event_cpu(event
, dst_cpu
);
11239 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
11244 * Once all the siblings are setup properly, install the group leaders
11247 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
11248 list_del(&event
->migrate_entry
);
11249 if (event
->state
>= PERF_EVENT_STATE_OFF
)
11250 event
->state
= PERF_EVENT_STATE_INACTIVE
;
11251 account_event_cpu(event
, dst_cpu
);
11252 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
11255 mutex_unlock(&dst_ctx
->mutex
);
11256 mutex_unlock(&src_ctx
->mutex
);
11258 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
11260 static void sync_child_event(struct perf_event
*child_event
,
11261 struct task_struct
*child
)
11263 struct perf_event
*parent_event
= child_event
->parent
;
11266 if (child_event
->attr
.inherit_stat
)
11267 perf_event_read_event(child_event
, child
);
11269 child_val
= perf_event_count(child_event
);
11272 * Add back the child's count to the parent's count:
11274 atomic64_add(child_val
, &parent_event
->child_count
);
11275 atomic64_add(child_event
->total_time_enabled
,
11276 &parent_event
->child_total_time_enabled
);
11277 atomic64_add(child_event
->total_time_running
,
11278 &parent_event
->child_total_time_running
);
11282 perf_event_exit_event(struct perf_event
*child_event
,
11283 struct perf_event_context
*child_ctx
,
11284 struct task_struct
*child
)
11286 struct perf_event
*parent_event
= child_event
->parent
;
11289 * Do not destroy the 'original' grouping; because of the context
11290 * switch optimization the original events could've ended up in a
11291 * random child task.
11293 * If we were to destroy the original group, all group related
11294 * operations would cease to function properly after this random
11297 * Do destroy all inherited groups, we don't care about those
11298 * and being thorough is better.
11300 raw_spin_lock_irq(&child_ctx
->lock
);
11301 WARN_ON_ONCE(child_ctx
->is_active
);
11304 perf_group_detach(child_event
);
11305 list_del_event(child_event
, child_ctx
);
11306 perf_event_set_state(child_event
, PERF_EVENT_STATE_EXIT
); /* is_event_hup() */
11307 raw_spin_unlock_irq(&child_ctx
->lock
);
11310 * Parent events are governed by their filedesc, retain them.
11312 if (!parent_event
) {
11313 perf_event_wakeup(child_event
);
11317 * Child events can be cleaned up.
11320 sync_child_event(child_event
, child
);
11323 * Remove this event from the parent's list
11325 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
11326 mutex_lock(&parent_event
->child_mutex
);
11327 list_del_init(&child_event
->child_list
);
11328 mutex_unlock(&parent_event
->child_mutex
);
11331 * Kick perf_poll() for is_event_hup().
11333 perf_event_wakeup(parent_event
);
11334 free_event(child_event
);
11335 put_event(parent_event
);
11338 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
11340 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
11341 struct perf_event
*child_event
, *next
;
11343 WARN_ON_ONCE(child
!= current
);
11345 child_ctx
= perf_pin_task_context(child
, ctxn
);
11350 * In order to reduce the amount of tricky in ctx tear-down, we hold
11351 * ctx::mutex over the entire thing. This serializes against almost
11352 * everything that wants to access the ctx.
11354 * The exception is sys_perf_event_open() /
11355 * perf_event_create_kernel_count() which does find_get_context()
11356 * without ctx::mutex (it cannot because of the move_group double mutex
11357 * lock thing). See the comments in perf_install_in_context().
11359 mutex_lock(&child_ctx
->mutex
);
11362 * In a single ctx::lock section, de-schedule the events and detach the
11363 * context from the task such that we cannot ever get it scheduled back
11366 raw_spin_lock_irq(&child_ctx
->lock
);
11367 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
, EVENT_ALL
);
11370 * Now that the context is inactive, destroy the task <-> ctx relation
11371 * and mark the context dead.
11373 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
11374 put_ctx(child_ctx
); /* cannot be last */
11375 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
11376 put_task_struct(current
); /* cannot be last */
11378 clone_ctx
= unclone_ctx(child_ctx
);
11379 raw_spin_unlock_irq(&child_ctx
->lock
);
11382 put_ctx(clone_ctx
);
11385 * Report the task dead after unscheduling the events so that we
11386 * won't get any samples after PERF_RECORD_EXIT. We can however still
11387 * get a few PERF_RECORD_READ events.
11389 perf_event_task(child
, child_ctx
, 0);
11391 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
11392 perf_event_exit_event(child_event
, child_ctx
, child
);
11394 mutex_unlock(&child_ctx
->mutex
);
11396 put_ctx(child_ctx
);
11400 * When a child task exits, feed back event values to parent events.
11402 * Can be called with cred_guard_mutex held when called from
11403 * install_exec_creds().
11405 void perf_event_exit_task(struct task_struct
*child
)
11407 struct perf_event
*event
, *tmp
;
11410 mutex_lock(&child
->perf_event_mutex
);
11411 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
11413 list_del_init(&event
->owner_entry
);
11416 * Ensure the list deletion is visible before we clear
11417 * the owner, closes a race against perf_release() where
11418 * we need to serialize on the owner->perf_event_mutex.
11420 smp_store_release(&event
->owner
, NULL
);
11422 mutex_unlock(&child
->perf_event_mutex
);
11424 for_each_task_context_nr(ctxn
)
11425 perf_event_exit_task_context(child
, ctxn
);
11428 * The perf_event_exit_task_context calls perf_event_task
11429 * with child's task_ctx, which generates EXIT events for
11430 * child contexts and sets child->perf_event_ctxp[] to NULL.
11431 * At this point we need to send EXIT events to cpu contexts.
11433 perf_event_task(child
, NULL
, 0);
11436 static void perf_free_event(struct perf_event
*event
,
11437 struct perf_event_context
*ctx
)
11439 struct perf_event
*parent
= event
->parent
;
11441 if (WARN_ON_ONCE(!parent
))
11444 mutex_lock(&parent
->child_mutex
);
11445 list_del_init(&event
->child_list
);
11446 mutex_unlock(&parent
->child_mutex
);
11450 raw_spin_lock_irq(&ctx
->lock
);
11451 perf_group_detach(event
);
11452 list_del_event(event
, ctx
);
11453 raw_spin_unlock_irq(&ctx
->lock
);
11458 * Free an unexposed, unused context as created by inheritance by
11459 * perf_event_init_task below, used by fork() in case of fail.
11461 * Not all locks are strictly required, but take them anyway to be nice and
11462 * help out with the lockdep assertions.
11464 void perf_event_free_task(struct task_struct
*task
)
11466 struct perf_event_context
*ctx
;
11467 struct perf_event
*event
, *tmp
;
11470 for_each_task_context_nr(ctxn
) {
11471 ctx
= task
->perf_event_ctxp
[ctxn
];
11475 mutex_lock(&ctx
->mutex
);
11476 raw_spin_lock_irq(&ctx
->lock
);
11478 * Destroy the task <-> ctx relation and mark the context dead.
11480 * This is important because even though the task hasn't been
11481 * exposed yet the context has been (through child_list).
11483 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], NULL
);
11484 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
11485 put_task_struct(task
); /* cannot be last */
11486 raw_spin_unlock_irq(&ctx
->lock
);
11488 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
)
11489 perf_free_event(event
, ctx
);
11491 mutex_unlock(&ctx
->mutex
);
11496 void perf_event_delayed_put(struct task_struct
*task
)
11500 for_each_task_context_nr(ctxn
)
11501 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
11504 struct file
*perf_event_get(unsigned int fd
)
11508 file
= fget_raw(fd
);
11510 return ERR_PTR(-EBADF
);
11512 if (file
->f_op
!= &perf_fops
) {
11514 return ERR_PTR(-EBADF
);
11520 const struct perf_event
*perf_get_event(struct file
*file
)
11522 if (file
->f_op
!= &perf_fops
)
11523 return ERR_PTR(-EINVAL
);
11525 return file
->private_data
;
11528 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
11531 return ERR_PTR(-EINVAL
);
11533 return &event
->attr
;
11537 * Inherit an event from parent task to child task.
11540 * - valid pointer on success
11541 * - NULL for orphaned events
11542 * - IS_ERR() on error
11544 static struct perf_event
*
11545 inherit_event(struct perf_event
*parent_event
,
11546 struct task_struct
*parent
,
11547 struct perf_event_context
*parent_ctx
,
11548 struct task_struct
*child
,
11549 struct perf_event
*group_leader
,
11550 struct perf_event_context
*child_ctx
)
11552 enum perf_event_state parent_state
= parent_event
->state
;
11553 struct perf_event
*child_event
;
11554 unsigned long flags
;
11557 * Instead of creating recursive hierarchies of events,
11558 * we link inherited events back to the original parent,
11559 * which has a filp for sure, which we use as the reference
11562 if (parent_event
->parent
)
11563 parent_event
= parent_event
->parent
;
11565 child_event
= perf_event_alloc(&parent_event
->attr
,
11568 group_leader
, parent_event
,
11570 if (IS_ERR(child_event
))
11571 return child_event
;
11574 if ((child_event
->attach_state
& PERF_ATTACH_TASK_DATA
) &&
11575 !child_ctx
->task_ctx_data
) {
11576 struct pmu
*pmu
= child_event
->pmu
;
11578 child_ctx
->task_ctx_data
= kzalloc(pmu
->task_ctx_size
,
11580 if (!child_ctx
->task_ctx_data
) {
11581 free_event(child_event
);
11587 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11588 * must be under the same lock in order to serialize against
11589 * perf_event_release_kernel(), such that either we must observe
11590 * is_orphaned_event() or they will observe us on the child_list.
11592 mutex_lock(&parent_event
->child_mutex
);
11593 if (is_orphaned_event(parent_event
) ||
11594 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
11595 mutex_unlock(&parent_event
->child_mutex
);
11596 /* task_ctx_data is freed with child_ctx */
11597 free_event(child_event
);
11601 get_ctx(child_ctx
);
11604 * Make the child state follow the state of the parent event,
11605 * not its attr.disabled bit. We hold the parent's mutex,
11606 * so we won't race with perf_event_{en, dis}able_family.
11608 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
11609 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
11611 child_event
->state
= PERF_EVENT_STATE_OFF
;
11613 if (parent_event
->attr
.freq
) {
11614 u64 sample_period
= parent_event
->hw
.sample_period
;
11615 struct hw_perf_event
*hwc
= &child_event
->hw
;
11617 hwc
->sample_period
= sample_period
;
11618 hwc
->last_period
= sample_period
;
11620 local64_set(&hwc
->period_left
, sample_period
);
11623 child_event
->ctx
= child_ctx
;
11624 child_event
->overflow_handler
= parent_event
->overflow_handler
;
11625 child_event
->overflow_handler_context
11626 = parent_event
->overflow_handler_context
;
11629 * Precalculate sample_data sizes
11631 perf_event__header_size(child_event
);
11632 perf_event__id_header_size(child_event
);
11635 * Link it up in the child's context:
11637 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
11638 add_event_to_ctx(child_event
, child_ctx
);
11639 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
11642 * Link this into the parent event's child list
11644 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
11645 mutex_unlock(&parent_event
->child_mutex
);
11647 return child_event
;
11651 * Inherits an event group.
11653 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11654 * This matches with perf_event_release_kernel() removing all child events.
11660 static int inherit_group(struct perf_event
*parent_event
,
11661 struct task_struct
*parent
,
11662 struct perf_event_context
*parent_ctx
,
11663 struct task_struct
*child
,
11664 struct perf_event_context
*child_ctx
)
11666 struct perf_event
*leader
;
11667 struct perf_event
*sub
;
11668 struct perf_event
*child_ctr
;
11670 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
11671 child
, NULL
, child_ctx
);
11672 if (IS_ERR(leader
))
11673 return PTR_ERR(leader
);
11675 * @leader can be NULL here because of is_orphaned_event(). In this
11676 * case inherit_event() will create individual events, similar to what
11677 * perf_group_detach() would do anyway.
11679 for_each_sibling_event(sub
, parent_event
) {
11680 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
11681 child
, leader
, child_ctx
);
11682 if (IS_ERR(child_ctr
))
11683 return PTR_ERR(child_ctr
);
11689 * Creates the child task context and tries to inherit the event-group.
11691 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11692 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11693 * consistent with perf_event_release_kernel() removing all child events.
11700 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
11701 struct perf_event_context
*parent_ctx
,
11702 struct task_struct
*child
, int ctxn
,
11703 int *inherited_all
)
11706 struct perf_event_context
*child_ctx
;
11708 if (!event
->attr
.inherit
) {
11709 *inherited_all
= 0;
11713 child_ctx
= child
->perf_event_ctxp
[ctxn
];
11716 * This is executed from the parent task context, so
11717 * inherit events that have been marked for cloning.
11718 * First allocate and initialize a context for the
11721 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
11725 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
11728 ret
= inherit_group(event
, parent
, parent_ctx
,
11732 *inherited_all
= 0;
11738 * Initialize the perf_event context in task_struct
11740 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
11742 struct perf_event_context
*child_ctx
, *parent_ctx
;
11743 struct perf_event_context
*cloned_ctx
;
11744 struct perf_event
*event
;
11745 struct task_struct
*parent
= current
;
11746 int inherited_all
= 1;
11747 unsigned long flags
;
11750 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
11754 * If the parent's context is a clone, pin it so it won't get
11755 * swapped under us.
11757 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
11762 * No need to check if parent_ctx != NULL here; since we saw
11763 * it non-NULL earlier, the only reason for it to become NULL
11764 * is if we exit, and since we're currently in the middle of
11765 * a fork we can't be exiting at the same time.
11769 * Lock the parent list. No need to lock the child - not PID
11770 * hashed yet and not running, so nobody can access it.
11772 mutex_lock(&parent_ctx
->mutex
);
11775 * We dont have to disable NMIs - we are only looking at
11776 * the list, not manipulating it:
11778 perf_event_groups_for_each(event
, &parent_ctx
->pinned_groups
) {
11779 ret
= inherit_task_group(event
, parent
, parent_ctx
,
11780 child
, ctxn
, &inherited_all
);
11786 * We can't hold ctx->lock when iterating the ->flexible_group list due
11787 * to allocations, but we need to prevent rotation because
11788 * rotate_ctx() will change the list from interrupt context.
11790 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
11791 parent_ctx
->rotate_disable
= 1;
11792 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
11794 perf_event_groups_for_each(event
, &parent_ctx
->flexible_groups
) {
11795 ret
= inherit_task_group(event
, parent
, parent_ctx
,
11796 child
, ctxn
, &inherited_all
);
11801 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
11802 parent_ctx
->rotate_disable
= 0;
11804 child_ctx
= child
->perf_event_ctxp
[ctxn
];
11806 if (child_ctx
&& inherited_all
) {
11808 * Mark the child context as a clone of the parent
11809 * context, or of whatever the parent is a clone of.
11811 * Note that if the parent is a clone, the holding of
11812 * parent_ctx->lock avoids it from being uncloned.
11814 cloned_ctx
= parent_ctx
->parent_ctx
;
11816 child_ctx
->parent_ctx
= cloned_ctx
;
11817 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
11819 child_ctx
->parent_ctx
= parent_ctx
;
11820 child_ctx
->parent_gen
= parent_ctx
->generation
;
11822 get_ctx(child_ctx
->parent_ctx
);
11825 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
11827 mutex_unlock(&parent_ctx
->mutex
);
11829 perf_unpin_context(parent_ctx
);
11830 put_ctx(parent_ctx
);
11836 * Initialize the perf_event context in task_struct
11838 int perf_event_init_task(struct task_struct
*child
)
11842 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
11843 mutex_init(&child
->perf_event_mutex
);
11844 INIT_LIST_HEAD(&child
->perf_event_list
);
11846 for_each_task_context_nr(ctxn
) {
11847 ret
= perf_event_init_context(child
, ctxn
);
11849 perf_event_free_task(child
);
11857 static void __init
perf_event_init_all_cpus(void)
11859 struct swevent_htable
*swhash
;
11862 zalloc_cpumask_var(&perf_online_mask
, GFP_KERNEL
);
11864 for_each_possible_cpu(cpu
) {
11865 swhash
= &per_cpu(swevent_htable
, cpu
);
11866 mutex_init(&swhash
->hlist_mutex
);
11867 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
11869 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
11870 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
11872 #ifdef CONFIG_CGROUP_PERF
11873 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list
, cpu
));
11875 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
11879 void perf_swevent_init_cpu(unsigned int cpu
)
11881 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
11883 mutex_lock(&swhash
->hlist_mutex
);
11884 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
11885 struct swevent_hlist
*hlist
;
11887 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
11889 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
11891 mutex_unlock(&swhash
->hlist_mutex
);
11894 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11895 static void __perf_event_exit_context(void *__info
)
11897 struct perf_event_context
*ctx
= __info
;
11898 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
11899 struct perf_event
*event
;
11901 raw_spin_lock(&ctx
->lock
);
11902 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
11903 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
11904 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
11905 raw_spin_unlock(&ctx
->lock
);
11908 static void perf_event_exit_cpu_context(int cpu
)
11910 struct perf_cpu_context
*cpuctx
;
11911 struct perf_event_context
*ctx
;
11914 mutex_lock(&pmus_lock
);
11915 list_for_each_entry(pmu
, &pmus
, entry
) {
11916 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
11917 ctx
= &cpuctx
->ctx
;
11919 mutex_lock(&ctx
->mutex
);
11920 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
11921 cpuctx
->online
= 0;
11922 mutex_unlock(&ctx
->mutex
);
11924 cpumask_clear_cpu(cpu
, perf_online_mask
);
11925 mutex_unlock(&pmus_lock
);
11929 static void perf_event_exit_cpu_context(int cpu
) { }
11933 int perf_event_init_cpu(unsigned int cpu
)
11935 struct perf_cpu_context
*cpuctx
;
11936 struct perf_event_context
*ctx
;
11939 perf_swevent_init_cpu(cpu
);
11941 mutex_lock(&pmus_lock
);
11942 cpumask_set_cpu(cpu
, perf_online_mask
);
11943 list_for_each_entry(pmu
, &pmus
, entry
) {
11944 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
11945 ctx
= &cpuctx
->ctx
;
11947 mutex_lock(&ctx
->mutex
);
11948 cpuctx
->online
= 1;
11949 mutex_unlock(&ctx
->mutex
);
11951 mutex_unlock(&pmus_lock
);
11956 int perf_event_exit_cpu(unsigned int cpu
)
11958 perf_event_exit_cpu_context(cpu
);
11963 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
11967 for_each_online_cpu(cpu
)
11968 perf_event_exit_cpu(cpu
);
11974 * Run the perf reboot notifier at the very last possible moment so that
11975 * the generic watchdog code runs as long as possible.
11977 static struct notifier_block perf_reboot_notifier
= {
11978 .notifier_call
= perf_reboot
,
11979 .priority
= INT_MIN
,
11982 void __init
perf_event_init(void)
11986 idr_init(&pmu_idr
);
11988 perf_event_init_all_cpus();
11989 init_srcu_struct(&pmus_srcu
);
11990 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
11991 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
11992 perf_pmu_register(&perf_task_clock
, NULL
, -1);
11993 perf_tp_register();
11994 perf_event_init_cpu(smp_processor_id());
11995 register_reboot_notifier(&perf_reboot_notifier
);
11997 ret
= init_hw_breakpoint();
11998 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
12001 * Build time assertion that we keep the data_head at the intended
12002 * location. IOW, validation we got the __reserved[] size right.
12004 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
12008 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
12011 struct perf_pmu_events_attr
*pmu_attr
=
12012 container_of(attr
, struct perf_pmu_events_attr
, attr
);
12014 if (pmu_attr
->event_str
)
12015 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
12019 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
12021 static int __init
perf_event_sysfs_init(void)
12026 mutex_lock(&pmus_lock
);
12028 ret
= bus_register(&pmu_bus
);
12032 list_for_each_entry(pmu
, &pmus
, entry
) {
12033 if (!pmu
->name
|| pmu
->type
< 0)
12036 ret
= pmu_dev_alloc(pmu
);
12037 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
12039 pmu_bus_running
= 1;
12043 mutex_unlock(&pmus_lock
);
12047 device_initcall(perf_event_sysfs_init
);
12049 #ifdef CONFIG_CGROUP_PERF
12050 static struct cgroup_subsys_state
*
12051 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
12053 struct perf_cgroup
*jc
;
12055 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
12057 return ERR_PTR(-ENOMEM
);
12059 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
12062 return ERR_PTR(-ENOMEM
);
12068 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
12070 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
12072 free_percpu(jc
->info
);
12076 static int __perf_cgroup_move(void *info
)
12078 struct task_struct
*task
= info
;
12080 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
12085 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
12087 struct task_struct
*task
;
12088 struct cgroup_subsys_state
*css
;
12090 cgroup_taskset_for_each(task
, css
, tset
)
12091 task_function_call(task
, __perf_cgroup_move
, task
);
12094 struct cgroup_subsys perf_event_cgrp_subsys
= {
12095 .css_alloc
= perf_cgroup_css_alloc
,
12096 .css_free
= perf_cgroup_css_free
,
12097 .attach
= perf_cgroup_attach
,
12099 * Implicitly enable on dfl hierarchy so that perf events can
12100 * always be filtered by cgroup2 path as long as perf_event
12101 * controller is not mounted on a legacy hierarchy.
12103 .implicit_on_dfl
= true,
12106 #endif /* CONFIG_CGROUP_PERF */