arm/arm64: KVM: Fix BE accesses to GICv2 EISR and ELRSR regs
[linux/fpc-iii.git] / arch / arm / kvm / arm.c
blob9e193c8a959eaa1492838ae2913548aa7c6a80de
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
64 static bool vgic_present;
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
68 BUG_ON(preemptible());
69 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
72 /**
73 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74 * Must be called from non-preemptible context
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
78 BUG_ON(preemptible());
79 return __this_cpu_read(kvm_arm_running_vcpu);
82 /**
83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
87 return &kvm_arm_running_vcpu;
90 int kvm_arch_hardware_enable(void)
92 return 0;
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
100 int kvm_arch_hardware_setup(void)
102 return 0;
105 void kvm_arch_check_processor_compat(void *rtn)
107 *(int *)rtn = 0;
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 int ret = 0;
119 if (type)
120 return -EINVAL;
122 ret = kvm_alloc_stage2_pgd(kvm);
123 if (ret)
124 goto out_fail_alloc;
126 ret = create_hyp_mappings(kvm, kvm + 1);
127 if (ret)
128 goto out_free_stage2_pgd;
130 kvm_timer_init(kvm);
132 /* Mark the initial VMID generation invalid */
133 kvm->arch.vmid_gen = 0;
135 return ret;
136 out_free_stage2_pgd:
137 kvm_free_stage2_pgd(kvm);
138 out_fail_alloc:
139 return ret;
142 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 return VM_FAULT_SIGBUS;
149 * kvm_arch_destroy_vm - destroy the VM data structure
150 * @kvm: pointer to the KVM struct
152 void kvm_arch_destroy_vm(struct kvm *kvm)
154 int i;
156 kvm_free_stage2_pgd(kvm);
158 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
159 if (kvm->vcpus[i]) {
160 kvm_arch_vcpu_free(kvm->vcpus[i]);
161 kvm->vcpus[i] = NULL;
165 kvm_vgic_destroy(kvm);
168 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 int r;
171 switch (ext) {
172 case KVM_CAP_IRQCHIP:
173 r = vgic_present;
174 break;
175 case KVM_CAP_DEVICE_CTRL:
176 case KVM_CAP_USER_MEMORY:
177 case KVM_CAP_SYNC_MMU:
178 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
179 case KVM_CAP_ONE_REG:
180 case KVM_CAP_ARM_PSCI:
181 case KVM_CAP_ARM_PSCI_0_2:
182 case KVM_CAP_READONLY_MEM:
183 r = 1;
184 break;
185 case KVM_CAP_COALESCED_MMIO:
186 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
187 break;
188 case KVM_CAP_ARM_SET_DEVICE_ADDR:
189 r = 1;
190 break;
191 case KVM_CAP_NR_VCPUS:
192 r = num_online_cpus();
193 break;
194 case KVM_CAP_MAX_VCPUS:
195 r = KVM_MAX_VCPUS;
196 break;
197 default:
198 r = kvm_arch_dev_ioctl_check_extension(ext);
199 break;
201 return r;
204 long kvm_arch_dev_ioctl(struct file *filp,
205 unsigned int ioctl, unsigned long arg)
207 return -EINVAL;
211 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
213 int err;
214 struct kvm_vcpu *vcpu;
216 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
217 if (!vcpu) {
218 err = -ENOMEM;
219 goto out;
222 err = kvm_vcpu_init(vcpu, kvm, id);
223 if (err)
224 goto free_vcpu;
226 err = create_hyp_mappings(vcpu, vcpu + 1);
227 if (err)
228 goto vcpu_uninit;
230 return vcpu;
231 vcpu_uninit:
232 kvm_vcpu_uninit(vcpu);
233 free_vcpu:
234 kmem_cache_free(kvm_vcpu_cache, vcpu);
235 out:
236 return ERR_PTR(err);
239 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
241 return 0;
244 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
246 kvm_mmu_free_memory_caches(vcpu);
247 kvm_timer_vcpu_terminate(vcpu);
248 kvm_vgic_vcpu_destroy(vcpu);
249 kmem_cache_free(kvm_vcpu_cache, vcpu);
252 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
254 kvm_arch_vcpu_free(vcpu);
257 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
259 return 0;
262 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
264 /* Force users to call KVM_ARM_VCPU_INIT */
265 vcpu->arch.target = -1;
267 /* Set up the timer */
268 kvm_timer_vcpu_init(vcpu);
270 return 0;
273 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
275 vcpu->cpu = cpu;
276 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
279 * Check whether this vcpu requires the cache to be flushed on
280 * this physical CPU. This is a consequence of doing dcache
281 * operations by set/way on this vcpu. We do it here to be in
282 * a non-preemptible section.
284 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
285 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
287 kvm_arm_set_running_vcpu(vcpu);
290 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
293 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
294 * if the vcpu is no longer assigned to a cpu. This is used for the
295 * optimized make_all_cpus_request path.
297 vcpu->cpu = -1;
299 kvm_arm_set_running_vcpu(NULL);
302 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
303 struct kvm_guest_debug *dbg)
305 return -EINVAL;
309 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
310 struct kvm_mp_state *mp_state)
312 return -EINVAL;
315 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
316 struct kvm_mp_state *mp_state)
318 return -EINVAL;
322 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
323 * @v: The VCPU pointer
325 * If the guest CPU is not waiting for interrupts or an interrupt line is
326 * asserted, the CPU is by definition runnable.
328 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
330 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
333 /* Just ensure a guest exit from a particular CPU */
334 static void exit_vm_noop(void *info)
338 void force_vm_exit(const cpumask_t *mask)
340 smp_call_function_many(mask, exit_vm_noop, NULL, true);
344 * need_new_vmid_gen - check that the VMID is still valid
345 * @kvm: The VM's VMID to checkt
347 * return true if there is a new generation of VMIDs being used
349 * The hardware supports only 256 values with the value zero reserved for the
350 * host, so we check if an assigned value belongs to a previous generation,
351 * which which requires us to assign a new value. If we're the first to use a
352 * VMID for the new generation, we must flush necessary caches and TLBs on all
353 * CPUs.
355 static bool need_new_vmid_gen(struct kvm *kvm)
357 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
361 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
362 * @kvm The guest that we are about to run
364 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
365 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
366 * caches and TLBs.
368 static void update_vttbr(struct kvm *kvm)
370 phys_addr_t pgd_phys;
371 u64 vmid;
373 if (!need_new_vmid_gen(kvm))
374 return;
376 spin_lock(&kvm_vmid_lock);
379 * We need to re-check the vmid_gen here to ensure that if another vcpu
380 * already allocated a valid vmid for this vm, then this vcpu should
381 * use the same vmid.
383 if (!need_new_vmid_gen(kvm)) {
384 spin_unlock(&kvm_vmid_lock);
385 return;
388 /* First user of a new VMID generation? */
389 if (unlikely(kvm_next_vmid == 0)) {
390 atomic64_inc(&kvm_vmid_gen);
391 kvm_next_vmid = 1;
394 * On SMP we know no other CPUs can use this CPU's or each
395 * other's VMID after force_vm_exit returns since the
396 * kvm_vmid_lock blocks them from reentry to the guest.
398 force_vm_exit(cpu_all_mask);
400 * Now broadcast TLB + ICACHE invalidation over the inner
401 * shareable domain to make sure all data structures are
402 * clean.
404 kvm_call_hyp(__kvm_flush_vm_context);
407 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
408 kvm->arch.vmid = kvm_next_vmid;
409 kvm_next_vmid++;
411 /* update vttbr to be used with the new vmid */
412 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
413 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
414 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
415 kvm->arch.vttbr = pgd_phys | vmid;
417 spin_unlock(&kvm_vmid_lock);
420 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
422 int ret;
424 if (likely(vcpu->arch.has_run_once))
425 return 0;
427 vcpu->arch.has_run_once = true;
430 * Initialize the VGIC before running a vcpu the first time on
431 * this VM.
433 if (unlikely(!vgic_initialized(vcpu->kvm))) {
434 ret = kvm_vgic_init(vcpu->kvm);
435 if (ret)
436 return ret;
439 return 0;
442 static void vcpu_pause(struct kvm_vcpu *vcpu)
444 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
446 wait_event_interruptible(*wq, !vcpu->arch.pause);
449 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
451 return vcpu->arch.target >= 0;
455 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
456 * @vcpu: The VCPU pointer
457 * @run: The kvm_run structure pointer used for userspace state exchange
459 * This function is called through the VCPU_RUN ioctl called from user space. It
460 * will execute VM code in a loop until the time slice for the process is used
461 * or some emulation is needed from user space in which case the function will
462 * return with return value 0 and with the kvm_run structure filled in with the
463 * required data for the requested emulation.
465 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
467 int ret;
468 sigset_t sigsaved;
470 if (unlikely(!kvm_vcpu_initialized(vcpu)))
471 return -ENOEXEC;
473 ret = kvm_vcpu_first_run_init(vcpu);
474 if (ret)
475 return ret;
477 if (run->exit_reason == KVM_EXIT_MMIO) {
478 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
479 if (ret)
480 return ret;
483 if (vcpu->sigset_active)
484 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
486 ret = 1;
487 run->exit_reason = KVM_EXIT_UNKNOWN;
488 while (ret > 0) {
490 * Check conditions before entering the guest
492 cond_resched();
494 update_vttbr(vcpu->kvm);
496 if (vcpu->arch.pause)
497 vcpu_pause(vcpu);
499 kvm_vgic_flush_hwstate(vcpu);
500 kvm_timer_flush_hwstate(vcpu);
502 local_irq_disable();
505 * Re-check atomic conditions
507 if (signal_pending(current)) {
508 ret = -EINTR;
509 run->exit_reason = KVM_EXIT_INTR;
512 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
513 local_irq_enable();
514 kvm_timer_sync_hwstate(vcpu);
515 kvm_vgic_sync_hwstate(vcpu);
516 continue;
519 /**************************************************************
520 * Enter the guest
522 trace_kvm_entry(*vcpu_pc(vcpu));
523 kvm_guest_enter();
524 vcpu->mode = IN_GUEST_MODE;
526 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
528 vcpu->mode = OUTSIDE_GUEST_MODE;
529 vcpu->arch.last_pcpu = smp_processor_id();
530 kvm_guest_exit();
531 trace_kvm_exit(*vcpu_pc(vcpu));
533 * We may have taken a host interrupt in HYP mode (ie
534 * while executing the guest). This interrupt is still
535 * pending, as we haven't serviced it yet!
537 * We're now back in SVC mode, with interrupts
538 * disabled. Enabling the interrupts now will have
539 * the effect of taking the interrupt again, in SVC
540 * mode this time.
542 local_irq_enable();
545 * Back from guest
546 *************************************************************/
548 kvm_timer_sync_hwstate(vcpu);
549 kvm_vgic_sync_hwstate(vcpu);
551 ret = handle_exit(vcpu, run, ret);
554 if (vcpu->sigset_active)
555 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
556 return ret;
559 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
561 int bit_index;
562 bool set;
563 unsigned long *ptr;
565 if (number == KVM_ARM_IRQ_CPU_IRQ)
566 bit_index = __ffs(HCR_VI);
567 else /* KVM_ARM_IRQ_CPU_FIQ */
568 bit_index = __ffs(HCR_VF);
570 ptr = (unsigned long *)&vcpu->arch.irq_lines;
571 if (level)
572 set = test_and_set_bit(bit_index, ptr);
573 else
574 set = test_and_clear_bit(bit_index, ptr);
577 * If we didn't change anything, no need to wake up or kick other CPUs
579 if (set == level)
580 return 0;
583 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
584 * trigger a world-switch round on the running physical CPU to set the
585 * virtual IRQ/FIQ fields in the HCR appropriately.
587 kvm_vcpu_kick(vcpu);
589 return 0;
592 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
593 bool line_status)
595 u32 irq = irq_level->irq;
596 unsigned int irq_type, vcpu_idx, irq_num;
597 int nrcpus = atomic_read(&kvm->online_vcpus);
598 struct kvm_vcpu *vcpu = NULL;
599 bool level = irq_level->level;
601 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
602 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
603 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
605 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
607 switch (irq_type) {
608 case KVM_ARM_IRQ_TYPE_CPU:
609 if (irqchip_in_kernel(kvm))
610 return -ENXIO;
612 if (vcpu_idx >= nrcpus)
613 return -EINVAL;
615 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
616 if (!vcpu)
617 return -EINVAL;
619 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
620 return -EINVAL;
622 return vcpu_interrupt_line(vcpu, irq_num, level);
623 case KVM_ARM_IRQ_TYPE_PPI:
624 if (!irqchip_in_kernel(kvm))
625 return -ENXIO;
627 if (vcpu_idx >= nrcpus)
628 return -EINVAL;
630 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
631 if (!vcpu)
632 return -EINVAL;
634 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
635 return -EINVAL;
637 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
638 case KVM_ARM_IRQ_TYPE_SPI:
639 if (!irqchip_in_kernel(kvm))
640 return -ENXIO;
642 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
643 irq_num > KVM_ARM_IRQ_GIC_MAX)
644 return -EINVAL;
646 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
649 return -EINVAL;
652 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
653 struct kvm_vcpu_init *init)
655 int ret;
657 ret = kvm_vcpu_set_target(vcpu, init);
658 if (ret)
659 return ret;
662 * Handle the "start in power-off" case by marking the VCPU as paused.
664 if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
665 vcpu->arch.pause = true;
667 return 0;
670 long kvm_arch_vcpu_ioctl(struct file *filp,
671 unsigned int ioctl, unsigned long arg)
673 struct kvm_vcpu *vcpu = filp->private_data;
674 void __user *argp = (void __user *)arg;
676 switch (ioctl) {
677 case KVM_ARM_VCPU_INIT: {
678 struct kvm_vcpu_init init;
680 if (copy_from_user(&init, argp, sizeof(init)))
681 return -EFAULT;
683 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
685 case KVM_SET_ONE_REG:
686 case KVM_GET_ONE_REG: {
687 struct kvm_one_reg reg;
689 if (unlikely(!kvm_vcpu_initialized(vcpu)))
690 return -ENOEXEC;
692 if (copy_from_user(&reg, argp, sizeof(reg)))
693 return -EFAULT;
694 if (ioctl == KVM_SET_ONE_REG)
695 return kvm_arm_set_reg(vcpu, &reg);
696 else
697 return kvm_arm_get_reg(vcpu, &reg);
699 case KVM_GET_REG_LIST: {
700 struct kvm_reg_list __user *user_list = argp;
701 struct kvm_reg_list reg_list;
702 unsigned n;
704 if (unlikely(!kvm_vcpu_initialized(vcpu)))
705 return -ENOEXEC;
707 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
708 return -EFAULT;
709 n = reg_list.n;
710 reg_list.n = kvm_arm_num_regs(vcpu);
711 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
712 return -EFAULT;
713 if (n < reg_list.n)
714 return -E2BIG;
715 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
717 default:
718 return -EINVAL;
722 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
724 return -EINVAL;
727 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
728 struct kvm_arm_device_addr *dev_addr)
730 unsigned long dev_id, type;
732 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
733 KVM_ARM_DEVICE_ID_SHIFT;
734 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
735 KVM_ARM_DEVICE_TYPE_SHIFT;
737 switch (dev_id) {
738 case KVM_ARM_DEVICE_VGIC_V2:
739 if (!vgic_present)
740 return -ENXIO;
741 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
742 default:
743 return -ENODEV;
747 long kvm_arch_vm_ioctl(struct file *filp,
748 unsigned int ioctl, unsigned long arg)
750 struct kvm *kvm = filp->private_data;
751 void __user *argp = (void __user *)arg;
753 switch (ioctl) {
754 case KVM_CREATE_IRQCHIP: {
755 if (vgic_present)
756 return kvm_vgic_create(kvm);
757 else
758 return -ENXIO;
760 case KVM_ARM_SET_DEVICE_ADDR: {
761 struct kvm_arm_device_addr dev_addr;
763 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
764 return -EFAULT;
765 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
767 case KVM_ARM_PREFERRED_TARGET: {
768 int err;
769 struct kvm_vcpu_init init;
771 err = kvm_vcpu_preferred_target(&init);
772 if (err)
773 return err;
775 if (copy_to_user(argp, &init, sizeof(init)))
776 return -EFAULT;
778 return 0;
780 default:
781 return -EINVAL;
785 static void cpu_init_hyp_mode(void *dummy)
787 phys_addr_t boot_pgd_ptr;
788 phys_addr_t pgd_ptr;
789 unsigned long hyp_stack_ptr;
790 unsigned long stack_page;
791 unsigned long vector_ptr;
793 /* Switch from the HYP stub to our own HYP init vector */
794 __hyp_set_vectors(kvm_get_idmap_vector());
796 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
797 pgd_ptr = kvm_mmu_get_httbr();
798 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
799 hyp_stack_ptr = stack_page + PAGE_SIZE;
800 vector_ptr = (unsigned long)__kvm_hyp_vector;
802 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
805 static int hyp_init_cpu_notify(struct notifier_block *self,
806 unsigned long action, void *cpu)
808 switch (action) {
809 case CPU_STARTING:
810 case CPU_STARTING_FROZEN:
811 if (__hyp_get_vectors() == hyp_default_vectors)
812 cpu_init_hyp_mode(NULL);
813 break;
816 return NOTIFY_OK;
819 static struct notifier_block hyp_init_cpu_nb = {
820 .notifier_call = hyp_init_cpu_notify,
823 #ifdef CONFIG_CPU_PM
824 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
825 unsigned long cmd,
826 void *v)
828 if (cmd == CPU_PM_EXIT &&
829 __hyp_get_vectors() == hyp_default_vectors) {
830 cpu_init_hyp_mode(NULL);
831 return NOTIFY_OK;
834 return NOTIFY_DONE;
837 static struct notifier_block hyp_init_cpu_pm_nb = {
838 .notifier_call = hyp_init_cpu_pm_notifier,
841 static void __init hyp_cpu_pm_init(void)
843 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
845 #else
846 static inline void hyp_cpu_pm_init(void)
849 #endif
852 * Inits Hyp-mode on all online CPUs
854 static int init_hyp_mode(void)
856 int cpu;
857 int err = 0;
860 * Allocate Hyp PGD and setup Hyp identity mapping
862 err = kvm_mmu_init();
863 if (err)
864 goto out_err;
867 * It is probably enough to obtain the default on one
868 * CPU. It's unlikely to be different on the others.
870 hyp_default_vectors = __hyp_get_vectors();
873 * Allocate stack pages for Hypervisor-mode
875 for_each_possible_cpu(cpu) {
876 unsigned long stack_page;
878 stack_page = __get_free_page(GFP_KERNEL);
879 if (!stack_page) {
880 err = -ENOMEM;
881 goto out_free_stack_pages;
884 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
888 * Map the Hyp-code called directly from the host
890 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
891 if (err) {
892 kvm_err("Cannot map world-switch code\n");
893 goto out_free_mappings;
897 * Map the Hyp stack pages
899 for_each_possible_cpu(cpu) {
900 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
901 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
903 if (err) {
904 kvm_err("Cannot map hyp stack\n");
905 goto out_free_mappings;
910 * Map the host CPU structures
912 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
913 if (!kvm_host_cpu_state) {
914 err = -ENOMEM;
915 kvm_err("Cannot allocate host CPU state\n");
916 goto out_free_mappings;
919 for_each_possible_cpu(cpu) {
920 kvm_cpu_context_t *cpu_ctxt;
922 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
923 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
925 if (err) {
926 kvm_err("Cannot map host CPU state: %d\n", err);
927 goto out_free_context;
932 * Execute the init code on each CPU.
934 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
937 * Init HYP view of VGIC
939 err = kvm_vgic_hyp_init();
940 if (err)
941 goto out_free_context;
943 #ifdef CONFIG_KVM_ARM_VGIC
944 vgic_present = true;
945 #endif
948 * Init HYP architected timer support
950 err = kvm_timer_hyp_init();
951 if (err)
952 goto out_free_mappings;
954 #ifndef CONFIG_HOTPLUG_CPU
955 free_boot_hyp_pgd();
956 #endif
958 kvm_perf_init();
960 kvm_info("Hyp mode initialized successfully\n");
962 return 0;
963 out_free_context:
964 free_percpu(kvm_host_cpu_state);
965 out_free_mappings:
966 free_hyp_pgds();
967 out_free_stack_pages:
968 for_each_possible_cpu(cpu)
969 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
970 out_err:
971 kvm_err("error initializing Hyp mode: %d\n", err);
972 return err;
975 static void check_kvm_target_cpu(void *ret)
977 *(int *)ret = kvm_target_cpu();
981 * Initialize Hyp-mode and memory mappings on all CPUs.
983 int kvm_arch_init(void *opaque)
985 int err;
986 int ret, cpu;
988 if (!is_hyp_mode_available()) {
989 kvm_err("HYP mode not available\n");
990 return -ENODEV;
993 for_each_online_cpu(cpu) {
994 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
995 if (ret < 0) {
996 kvm_err("Error, CPU %d not supported!\n", cpu);
997 return -ENODEV;
1001 cpu_notifier_register_begin();
1003 err = init_hyp_mode();
1004 if (err)
1005 goto out_err;
1007 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1008 if (err) {
1009 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1010 goto out_err;
1013 cpu_notifier_register_done();
1015 hyp_cpu_pm_init();
1017 kvm_coproc_table_init();
1018 return 0;
1019 out_err:
1020 cpu_notifier_register_done();
1021 return err;
1024 /* NOP: Compiling as a module not supported */
1025 void kvm_arch_exit(void)
1027 kvm_perf_teardown();
1030 static int arm_init(void)
1032 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1033 return rc;
1036 module_init(arm_init);