arm/arm64: KVM: Fix BE accesses to GICv2 EISR and ELRSR regs
[linux/fpc-iii.git] / security / keys / keyring.c
blob8314a7d2104df95ead666466213819504a31d5c2
1 /* Keyring handling
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
29 #define KEYRING_SEARCH_MAX_DEPTH 6
32 * We keep all named keyrings in a hash to speed looking them up.
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
40 #define KEYRING_PTR_SUBTYPE 0x2UL
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
51 static inline void *keyring_key_to_ptr(struct key *key)
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
61 static inline unsigned keyring_hash(const char *desc)
63 unsigned bucket = 0;
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .match = user_match,
93 .revoke = keyring_revoke,
94 .destroy = keyring_destroy,
95 .describe = keyring_describe,
96 .read = keyring_read,
98 EXPORT_SYMBOL(key_type_keyring);
101 * Semaphore to serialise link/link calls to prevent two link calls in parallel
102 * introducing a cycle.
104 static DECLARE_RWSEM(keyring_serialise_link_sem);
107 * Publish the name of a keyring so that it can be found by name (if it has
108 * one).
110 static void keyring_publish_name(struct key *keyring)
112 int bucket;
114 if (keyring->description) {
115 bucket = keyring_hash(keyring->description);
117 write_lock(&keyring_name_lock);
119 if (!keyring_name_hash[bucket].next)
120 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
122 list_add_tail(&keyring->type_data.link,
123 &keyring_name_hash[bucket]);
125 write_unlock(&keyring_name_lock);
130 * Preparse a keyring payload
132 static int keyring_preparse(struct key_preparsed_payload *prep)
134 return prep->datalen != 0 ? -EINVAL : 0;
138 * Free a preparse of a user defined key payload
140 static void keyring_free_preparse(struct key_preparsed_payload *prep)
145 * Initialise a keyring.
147 * Returns 0 on success, -EINVAL if given any data.
149 static int keyring_instantiate(struct key *keyring,
150 struct key_preparsed_payload *prep)
152 assoc_array_init(&keyring->keys);
153 /* make the keyring available by name if it has one */
154 keyring_publish_name(keyring);
155 return 0;
159 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
160 * fold the carry back too, but that requires inline asm.
162 static u64 mult_64x32_and_fold(u64 x, u32 y)
164 u64 hi = (u64)(u32)(x >> 32) * y;
165 u64 lo = (u64)(u32)(x) * y;
166 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
170 * Hash a key type and description.
172 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
174 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
175 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
176 const char *description = index_key->description;
177 unsigned long hash, type;
178 u32 piece;
179 u64 acc;
180 int n, desc_len = index_key->desc_len;
182 type = (unsigned long)index_key->type;
184 acc = mult_64x32_and_fold(type, desc_len + 13);
185 acc = mult_64x32_and_fold(acc, 9207);
186 for (;;) {
187 n = desc_len;
188 if (n <= 0)
189 break;
190 if (n > 4)
191 n = 4;
192 piece = 0;
193 memcpy(&piece, description, n);
194 description += n;
195 desc_len -= n;
196 acc = mult_64x32_and_fold(acc, piece);
197 acc = mult_64x32_and_fold(acc, 9207);
200 /* Fold the hash down to 32 bits if need be. */
201 hash = acc;
202 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
203 hash ^= acc >> 32;
205 /* Squidge all the keyrings into a separate part of the tree to
206 * ordinary keys by making sure the lowest level segment in the hash is
207 * zero for keyrings and non-zero otherwise.
209 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
210 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
211 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
212 return (hash + (hash << level_shift)) & ~fan_mask;
213 return hash;
217 * Build the next index key chunk.
219 * On 32-bit systems the index key is laid out as:
221 * 0 4 5 9...
222 * hash desclen typeptr desc[]
224 * On 64-bit systems:
226 * 0 8 9 17...
227 * hash desclen typeptr desc[]
229 * We return it one word-sized chunk at a time.
231 static unsigned long keyring_get_key_chunk(const void *data, int level)
233 const struct keyring_index_key *index_key = data;
234 unsigned long chunk = 0;
235 long offset = 0;
236 int desc_len = index_key->desc_len, n = sizeof(chunk);
238 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
239 switch (level) {
240 case 0:
241 return hash_key_type_and_desc(index_key);
242 case 1:
243 return ((unsigned long)index_key->type << 8) | desc_len;
244 case 2:
245 if (desc_len == 0)
246 return (u8)((unsigned long)index_key->type >>
247 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
248 n--;
249 offset = 1;
250 default:
251 offset += sizeof(chunk) - 1;
252 offset += (level - 3) * sizeof(chunk);
253 if (offset >= desc_len)
254 return 0;
255 desc_len -= offset;
256 if (desc_len > n)
257 desc_len = n;
258 offset += desc_len;
259 do {
260 chunk <<= 8;
261 chunk |= ((u8*)index_key->description)[--offset];
262 } while (--desc_len > 0);
264 if (level == 2) {
265 chunk <<= 8;
266 chunk |= (u8)((unsigned long)index_key->type >>
267 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
269 return chunk;
273 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
275 const struct key *key = keyring_ptr_to_key(object);
276 return keyring_get_key_chunk(&key->index_key, level);
279 static bool keyring_compare_object(const void *object, const void *data)
281 const struct keyring_index_key *index_key = data;
282 const struct key *key = keyring_ptr_to_key(object);
284 return key->index_key.type == index_key->type &&
285 key->index_key.desc_len == index_key->desc_len &&
286 memcmp(key->index_key.description, index_key->description,
287 index_key->desc_len) == 0;
291 * Compare the index keys of a pair of objects and determine the bit position
292 * at which they differ - if they differ.
294 static int keyring_diff_objects(const void *object, const void *data)
296 const struct key *key_a = keyring_ptr_to_key(object);
297 const struct keyring_index_key *a = &key_a->index_key;
298 const struct keyring_index_key *b = data;
299 unsigned long seg_a, seg_b;
300 int level, i;
302 level = 0;
303 seg_a = hash_key_type_and_desc(a);
304 seg_b = hash_key_type_and_desc(b);
305 if ((seg_a ^ seg_b) != 0)
306 goto differ;
308 /* The number of bits contributed by the hash is controlled by a
309 * constant in the assoc_array headers. Everything else thereafter we
310 * can deal with as being machine word-size dependent.
312 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
313 seg_a = a->desc_len;
314 seg_b = b->desc_len;
315 if ((seg_a ^ seg_b) != 0)
316 goto differ;
318 /* The next bit may not work on big endian */
319 level++;
320 seg_a = (unsigned long)a->type;
321 seg_b = (unsigned long)b->type;
322 if ((seg_a ^ seg_b) != 0)
323 goto differ;
325 level += sizeof(unsigned long);
326 if (a->desc_len == 0)
327 goto same;
329 i = 0;
330 if (((unsigned long)a->description | (unsigned long)b->description) &
331 (sizeof(unsigned long) - 1)) {
332 do {
333 seg_a = *(unsigned long *)(a->description + i);
334 seg_b = *(unsigned long *)(b->description + i);
335 if ((seg_a ^ seg_b) != 0)
336 goto differ_plus_i;
337 i += sizeof(unsigned long);
338 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
341 for (; i < a->desc_len; i++) {
342 seg_a = *(unsigned char *)(a->description + i);
343 seg_b = *(unsigned char *)(b->description + i);
344 if ((seg_a ^ seg_b) != 0)
345 goto differ_plus_i;
348 same:
349 return -1;
351 differ_plus_i:
352 level += i;
353 differ:
354 i = level * 8 + __ffs(seg_a ^ seg_b);
355 return i;
359 * Free an object after stripping the keyring flag off of the pointer.
361 static void keyring_free_object(void *object)
363 key_put(keyring_ptr_to_key(object));
367 * Operations for keyring management by the index-tree routines.
369 static const struct assoc_array_ops keyring_assoc_array_ops = {
370 .get_key_chunk = keyring_get_key_chunk,
371 .get_object_key_chunk = keyring_get_object_key_chunk,
372 .compare_object = keyring_compare_object,
373 .diff_objects = keyring_diff_objects,
374 .free_object = keyring_free_object,
378 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
379 * and dispose of its data.
381 * The garbage collector detects the final key_put(), removes the keyring from
382 * the serial number tree and then does RCU synchronisation before coming here,
383 * so we shouldn't need to worry about code poking around here with the RCU
384 * readlock held by this time.
386 static void keyring_destroy(struct key *keyring)
388 if (keyring->description) {
389 write_lock(&keyring_name_lock);
391 if (keyring->type_data.link.next != NULL &&
392 !list_empty(&keyring->type_data.link))
393 list_del(&keyring->type_data.link);
395 write_unlock(&keyring_name_lock);
398 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
402 * Describe a keyring for /proc.
404 static void keyring_describe(const struct key *keyring, struct seq_file *m)
406 if (keyring->description)
407 seq_puts(m, keyring->description);
408 else
409 seq_puts(m, "[anon]");
411 if (key_is_instantiated(keyring)) {
412 if (keyring->keys.nr_leaves_on_tree != 0)
413 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
414 else
415 seq_puts(m, ": empty");
419 struct keyring_read_iterator_context {
420 size_t qty;
421 size_t count;
422 key_serial_t __user *buffer;
425 static int keyring_read_iterator(const void *object, void *data)
427 struct keyring_read_iterator_context *ctx = data;
428 const struct key *key = keyring_ptr_to_key(object);
429 int ret;
431 kenter("{%s,%d},,{%zu/%zu}",
432 key->type->name, key->serial, ctx->count, ctx->qty);
434 if (ctx->count >= ctx->qty)
435 return 1;
437 ret = put_user(key->serial, ctx->buffer);
438 if (ret < 0)
439 return ret;
440 ctx->buffer++;
441 ctx->count += sizeof(key->serial);
442 return 0;
446 * Read a list of key IDs from the keyring's contents in binary form
448 * The keyring's semaphore is read-locked by the caller. This prevents someone
449 * from modifying it under us - which could cause us to read key IDs multiple
450 * times.
452 static long keyring_read(const struct key *keyring,
453 char __user *buffer, size_t buflen)
455 struct keyring_read_iterator_context ctx;
456 unsigned long nr_keys;
457 int ret;
459 kenter("{%d},,%zu", key_serial(keyring), buflen);
461 if (buflen & (sizeof(key_serial_t) - 1))
462 return -EINVAL;
464 nr_keys = keyring->keys.nr_leaves_on_tree;
465 if (nr_keys == 0)
466 return 0;
468 /* Calculate how much data we could return */
469 ctx.qty = nr_keys * sizeof(key_serial_t);
471 if (!buffer || !buflen)
472 return ctx.qty;
474 if (buflen > ctx.qty)
475 ctx.qty = buflen;
477 /* Copy the IDs of the subscribed keys into the buffer */
478 ctx.buffer = (key_serial_t __user *)buffer;
479 ctx.count = 0;
480 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
481 if (ret < 0) {
482 kleave(" = %d [iterate]", ret);
483 return ret;
486 kleave(" = %zu [ok]", ctx.count);
487 return ctx.count;
491 * Allocate a keyring and link into the destination keyring.
493 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
494 const struct cred *cred, key_perm_t perm,
495 unsigned long flags, struct key *dest)
497 struct key *keyring;
498 int ret;
500 keyring = key_alloc(&key_type_keyring, description,
501 uid, gid, cred, perm, flags);
502 if (!IS_ERR(keyring)) {
503 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
504 if (ret < 0) {
505 key_put(keyring);
506 keyring = ERR_PTR(ret);
510 return keyring;
512 EXPORT_SYMBOL(keyring_alloc);
515 * Iteration function to consider each key found.
517 static int keyring_search_iterator(const void *object, void *iterator_data)
519 struct keyring_search_context *ctx = iterator_data;
520 const struct key *key = keyring_ptr_to_key(object);
521 unsigned long kflags = key->flags;
523 kenter("{%d}", key->serial);
525 /* ignore keys not of this type */
526 if (key->type != ctx->index_key.type) {
527 kleave(" = 0 [!type]");
528 return 0;
531 /* skip invalidated, revoked and expired keys */
532 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
533 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
534 (1 << KEY_FLAG_REVOKED))) {
535 ctx->result = ERR_PTR(-EKEYREVOKED);
536 kleave(" = %d [invrev]", ctx->skipped_ret);
537 goto skipped;
540 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
541 ctx->result = ERR_PTR(-EKEYEXPIRED);
542 kleave(" = %d [expire]", ctx->skipped_ret);
543 goto skipped;
547 /* keys that don't match */
548 if (!ctx->match(key, ctx->match_data)) {
549 kleave(" = 0 [!match]");
550 return 0;
553 /* key must have search permissions */
554 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
555 key_task_permission(make_key_ref(key, ctx->possessed),
556 ctx->cred, KEY_NEED_SEARCH) < 0) {
557 ctx->result = ERR_PTR(-EACCES);
558 kleave(" = %d [!perm]", ctx->skipped_ret);
559 goto skipped;
562 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
563 /* we set a different error code if we pass a negative key */
564 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
565 smp_rmb();
566 ctx->result = ERR_PTR(key->type_data.reject_error);
567 kleave(" = %d [neg]", ctx->skipped_ret);
568 goto skipped;
572 /* Found */
573 ctx->result = make_key_ref(key, ctx->possessed);
574 kleave(" = 1 [found]");
575 return 1;
577 skipped:
578 return ctx->skipped_ret;
582 * Search inside a keyring for a key. We can search by walking to it
583 * directly based on its index-key or we can iterate over the entire
584 * tree looking for it, based on the match function.
586 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
588 if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
589 KEYRING_SEARCH_LOOKUP_DIRECT) {
590 const void *object;
592 object = assoc_array_find(&keyring->keys,
593 &keyring_assoc_array_ops,
594 &ctx->index_key);
595 return object ? ctx->iterator(object, ctx) : 0;
597 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
601 * Search a tree of keyrings that point to other keyrings up to the maximum
602 * depth.
604 static bool search_nested_keyrings(struct key *keyring,
605 struct keyring_search_context *ctx)
607 struct {
608 struct key *keyring;
609 struct assoc_array_node *node;
610 int slot;
611 } stack[KEYRING_SEARCH_MAX_DEPTH];
613 struct assoc_array_shortcut *shortcut;
614 struct assoc_array_node *node;
615 struct assoc_array_ptr *ptr;
616 struct key *key;
617 int sp = 0, slot;
619 kenter("{%d},{%s,%s}",
620 keyring->serial,
621 ctx->index_key.type->name,
622 ctx->index_key.description);
624 if (ctx->index_key.description)
625 ctx->index_key.desc_len = strlen(ctx->index_key.description);
627 /* Check to see if this top-level keyring is what we are looking for
628 * and whether it is valid or not.
630 if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
631 keyring_compare_object(keyring, &ctx->index_key)) {
632 ctx->skipped_ret = 2;
633 ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
634 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
635 case 1:
636 goto found;
637 case 2:
638 return false;
639 default:
640 break;
644 ctx->skipped_ret = 0;
645 if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
646 ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
648 /* Start processing a new keyring */
649 descend_to_keyring:
650 kdebug("descend to %d", keyring->serial);
651 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
652 (1 << KEY_FLAG_REVOKED)))
653 goto not_this_keyring;
655 /* Search through the keys in this keyring before its searching its
656 * subtrees.
658 if (search_keyring(keyring, ctx))
659 goto found;
661 /* Then manually iterate through the keyrings nested in this one.
663 * Start from the root node of the index tree. Because of the way the
664 * hash function has been set up, keyrings cluster on the leftmost
665 * branch of the root node (root slot 0) or in the root node itself.
666 * Non-keyrings avoid the leftmost branch of the root entirely (root
667 * slots 1-15).
669 ptr = ACCESS_ONCE(keyring->keys.root);
670 if (!ptr)
671 goto not_this_keyring;
673 if (assoc_array_ptr_is_shortcut(ptr)) {
674 /* If the root is a shortcut, either the keyring only contains
675 * keyring pointers (everything clusters behind root slot 0) or
676 * doesn't contain any keyring pointers.
678 shortcut = assoc_array_ptr_to_shortcut(ptr);
679 smp_read_barrier_depends();
680 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
681 goto not_this_keyring;
683 ptr = ACCESS_ONCE(shortcut->next_node);
684 node = assoc_array_ptr_to_node(ptr);
685 goto begin_node;
688 node = assoc_array_ptr_to_node(ptr);
689 smp_read_barrier_depends();
691 ptr = node->slots[0];
692 if (!assoc_array_ptr_is_meta(ptr))
693 goto begin_node;
695 descend_to_node:
696 /* Descend to a more distal node in this keyring's content tree and go
697 * through that.
699 kdebug("descend");
700 if (assoc_array_ptr_is_shortcut(ptr)) {
701 shortcut = assoc_array_ptr_to_shortcut(ptr);
702 smp_read_barrier_depends();
703 ptr = ACCESS_ONCE(shortcut->next_node);
704 BUG_ON(!assoc_array_ptr_is_node(ptr));
706 node = assoc_array_ptr_to_node(ptr);
708 begin_node:
709 kdebug("begin_node");
710 smp_read_barrier_depends();
711 slot = 0;
712 ascend_to_node:
713 /* Go through the slots in a node */
714 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
715 ptr = ACCESS_ONCE(node->slots[slot]);
717 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
718 goto descend_to_node;
720 if (!keyring_ptr_is_keyring(ptr))
721 continue;
723 key = keyring_ptr_to_key(ptr);
725 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
726 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
727 ctx->result = ERR_PTR(-ELOOP);
728 return false;
730 goto not_this_keyring;
733 /* Search a nested keyring */
734 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
735 key_task_permission(make_key_ref(key, ctx->possessed),
736 ctx->cred, KEY_NEED_SEARCH) < 0)
737 continue;
739 /* stack the current position */
740 stack[sp].keyring = keyring;
741 stack[sp].node = node;
742 stack[sp].slot = slot;
743 sp++;
745 /* begin again with the new keyring */
746 keyring = key;
747 goto descend_to_keyring;
750 /* We've dealt with all the slots in the current node, so now we need
751 * to ascend to the parent and continue processing there.
753 ptr = ACCESS_ONCE(node->back_pointer);
754 slot = node->parent_slot;
756 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
757 shortcut = assoc_array_ptr_to_shortcut(ptr);
758 smp_read_barrier_depends();
759 ptr = ACCESS_ONCE(shortcut->back_pointer);
760 slot = shortcut->parent_slot;
762 if (!ptr)
763 goto not_this_keyring;
764 node = assoc_array_ptr_to_node(ptr);
765 smp_read_barrier_depends();
766 slot++;
768 /* If we've ascended to the root (zero backpointer), we must have just
769 * finished processing the leftmost branch rather than the root slots -
770 * so there can't be any more keyrings for us to find.
772 if (node->back_pointer) {
773 kdebug("ascend %d", slot);
774 goto ascend_to_node;
777 /* The keyring we're looking at was disqualified or didn't contain a
778 * matching key.
780 not_this_keyring:
781 kdebug("not_this_keyring %d", sp);
782 if (sp <= 0) {
783 kleave(" = false");
784 return false;
787 /* Resume the processing of a keyring higher up in the tree */
788 sp--;
789 keyring = stack[sp].keyring;
790 node = stack[sp].node;
791 slot = stack[sp].slot + 1;
792 kdebug("ascend to %d [%d]", keyring->serial, slot);
793 goto ascend_to_node;
795 /* We found a viable match */
796 found:
797 key = key_ref_to_ptr(ctx->result);
798 key_check(key);
799 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
800 key->last_used_at = ctx->now.tv_sec;
801 keyring->last_used_at = ctx->now.tv_sec;
802 while (sp > 0)
803 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
805 kleave(" = true");
806 return true;
810 * keyring_search_aux - Search a keyring tree for a key matching some criteria
811 * @keyring_ref: A pointer to the keyring with possession indicator.
812 * @ctx: The keyring search context.
814 * Search the supplied keyring tree for a key that matches the criteria given.
815 * The root keyring and any linked keyrings must grant Search permission to the
816 * caller to be searchable and keys can only be found if they too grant Search
817 * to the caller. The possession flag on the root keyring pointer controls use
818 * of the possessor bits in permissions checking of the entire tree. In
819 * addition, the LSM gets to forbid keyring searches and key matches.
821 * The search is performed as a breadth-then-depth search up to the prescribed
822 * limit (KEYRING_SEARCH_MAX_DEPTH).
824 * Keys are matched to the type provided and are then filtered by the match
825 * function, which is given the description to use in any way it sees fit. The
826 * match function may use any attributes of a key that it wishes to to
827 * determine the match. Normally the match function from the key type would be
828 * used.
830 * RCU can be used to prevent the keyring key lists from disappearing without
831 * the need to take lots of locks.
833 * Returns a pointer to the found key and increments the key usage count if
834 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
835 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
836 * specified keyring wasn't a keyring.
838 * In the case of a successful return, the possession attribute from
839 * @keyring_ref is propagated to the returned key reference.
841 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
842 struct keyring_search_context *ctx)
844 struct key *keyring;
845 long err;
847 ctx->iterator = keyring_search_iterator;
848 ctx->possessed = is_key_possessed(keyring_ref);
849 ctx->result = ERR_PTR(-EAGAIN);
851 keyring = key_ref_to_ptr(keyring_ref);
852 key_check(keyring);
854 if (keyring->type != &key_type_keyring)
855 return ERR_PTR(-ENOTDIR);
857 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
858 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
859 if (err < 0)
860 return ERR_PTR(err);
863 rcu_read_lock();
864 ctx->now = current_kernel_time();
865 if (search_nested_keyrings(keyring, ctx))
866 __key_get(key_ref_to_ptr(ctx->result));
867 rcu_read_unlock();
868 return ctx->result;
872 * keyring_search - Search the supplied keyring tree for a matching key
873 * @keyring: The root of the keyring tree to be searched.
874 * @type: The type of keyring we want to find.
875 * @description: The name of the keyring we want to find.
877 * As keyring_search_aux() above, but using the current task's credentials and
878 * type's default matching function and preferred search method.
880 key_ref_t keyring_search(key_ref_t keyring,
881 struct key_type *type,
882 const char *description)
884 struct keyring_search_context ctx = {
885 .index_key.type = type,
886 .index_key.description = description,
887 .cred = current_cred(),
888 .match = type->match,
889 .match_data = description,
890 .flags = (type->def_lookup_type |
891 KEYRING_SEARCH_DO_STATE_CHECK),
894 if (!ctx.match)
895 return ERR_PTR(-ENOKEY);
897 return keyring_search_aux(keyring, &ctx);
899 EXPORT_SYMBOL(keyring_search);
902 * Search the given keyring for a key that might be updated.
904 * The caller must guarantee that the keyring is a keyring and that the
905 * permission is granted to modify the keyring as no check is made here. The
906 * caller must also hold a lock on the keyring semaphore.
908 * Returns a pointer to the found key with usage count incremented if
909 * successful and returns NULL if not found. Revoked and invalidated keys are
910 * skipped over.
912 * If successful, the possession indicator is propagated from the keyring ref
913 * to the returned key reference.
915 key_ref_t find_key_to_update(key_ref_t keyring_ref,
916 const struct keyring_index_key *index_key)
918 struct key *keyring, *key;
919 const void *object;
921 keyring = key_ref_to_ptr(keyring_ref);
923 kenter("{%d},{%s,%s}",
924 keyring->serial, index_key->type->name, index_key->description);
926 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
927 index_key);
929 if (object)
930 goto found;
932 kleave(" = NULL");
933 return NULL;
935 found:
936 key = keyring_ptr_to_key(object);
937 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
938 (1 << KEY_FLAG_REVOKED))) {
939 kleave(" = NULL [x]");
940 return NULL;
942 __key_get(key);
943 kleave(" = {%d}", key->serial);
944 return make_key_ref(key, is_key_possessed(keyring_ref));
948 * Find a keyring with the specified name.
950 * All named keyrings in the current user namespace are searched, provided they
951 * grant Search permission directly to the caller (unless this check is
952 * skipped). Keyrings whose usage points have reached zero or who have been
953 * revoked are skipped.
955 * Returns a pointer to the keyring with the keyring's refcount having being
956 * incremented on success. -ENOKEY is returned if a key could not be found.
958 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
960 struct key *keyring;
961 int bucket;
963 if (!name)
964 return ERR_PTR(-EINVAL);
966 bucket = keyring_hash(name);
968 read_lock(&keyring_name_lock);
970 if (keyring_name_hash[bucket].next) {
971 /* search this hash bucket for a keyring with a matching name
972 * that's readable and that hasn't been revoked */
973 list_for_each_entry(keyring,
974 &keyring_name_hash[bucket],
975 type_data.link
977 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
978 continue;
980 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
981 continue;
983 if (strcmp(keyring->description, name) != 0)
984 continue;
986 if (!skip_perm_check &&
987 key_permission(make_key_ref(keyring, 0),
988 KEY_NEED_SEARCH) < 0)
989 continue;
991 /* we've got a match but we might end up racing with
992 * key_cleanup() if the keyring is currently 'dead'
993 * (ie. it has a zero usage count) */
994 if (!atomic_inc_not_zero(&keyring->usage))
995 continue;
996 keyring->last_used_at = current_kernel_time().tv_sec;
997 goto out;
1001 keyring = ERR_PTR(-ENOKEY);
1002 out:
1003 read_unlock(&keyring_name_lock);
1004 return keyring;
1007 static int keyring_detect_cycle_iterator(const void *object,
1008 void *iterator_data)
1010 struct keyring_search_context *ctx = iterator_data;
1011 const struct key *key = keyring_ptr_to_key(object);
1013 kenter("{%d}", key->serial);
1015 /* We might get a keyring with matching index-key that is nonetheless a
1016 * different keyring. */
1017 if (key != ctx->match_data)
1018 return 0;
1020 ctx->result = ERR_PTR(-EDEADLK);
1021 return 1;
1025 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1026 * tree A at the topmost level (ie: as a direct child of A).
1028 * Since we are adding B to A at the top level, checking for cycles should just
1029 * be a matter of seeing if node A is somewhere in tree B.
1031 static int keyring_detect_cycle(struct key *A, struct key *B)
1033 struct keyring_search_context ctx = {
1034 .index_key = A->index_key,
1035 .match_data = A,
1036 .iterator = keyring_detect_cycle_iterator,
1037 .flags = (KEYRING_SEARCH_LOOKUP_DIRECT |
1038 KEYRING_SEARCH_NO_STATE_CHECK |
1039 KEYRING_SEARCH_NO_UPDATE_TIME |
1040 KEYRING_SEARCH_NO_CHECK_PERM |
1041 KEYRING_SEARCH_DETECT_TOO_DEEP),
1044 rcu_read_lock();
1045 search_nested_keyrings(B, &ctx);
1046 rcu_read_unlock();
1047 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1051 * Preallocate memory so that a key can be linked into to a keyring.
1053 int __key_link_begin(struct key *keyring,
1054 const struct keyring_index_key *index_key,
1055 struct assoc_array_edit **_edit)
1056 __acquires(&keyring->sem)
1057 __acquires(&keyring_serialise_link_sem)
1059 struct assoc_array_edit *edit;
1060 int ret;
1062 kenter("%d,%s,%s,",
1063 keyring->serial, index_key->type->name, index_key->description);
1065 BUG_ON(index_key->desc_len == 0);
1067 if (keyring->type != &key_type_keyring)
1068 return -ENOTDIR;
1070 down_write(&keyring->sem);
1072 ret = -EKEYREVOKED;
1073 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1074 goto error_krsem;
1076 /* serialise link/link calls to prevent parallel calls causing a cycle
1077 * when linking two keyring in opposite orders */
1078 if (index_key->type == &key_type_keyring)
1079 down_write(&keyring_serialise_link_sem);
1081 /* Create an edit script that will insert/replace the key in the
1082 * keyring tree.
1084 edit = assoc_array_insert(&keyring->keys,
1085 &keyring_assoc_array_ops,
1086 index_key,
1087 NULL);
1088 if (IS_ERR(edit)) {
1089 ret = PTR_ERR(edit);
1090 goto error_sem;
1093 /* If we're not replacing a link in-place then we're going to need some
1094 * extra quota.
1096 if (!edit->dead_leaf) {
1097 ret = key_payload_reserve(keyring,
1098 keyring->datalen + KEYQUOTA_LINK_BYTES);
1099 if (ret < 0)
1100 goto error_cancel;
1103 *_edit = edit;
1104 kleave(" = 0");
1105 return 0;
1107 error_cancel:
1108 assoc_array_cancel_edit(edit);
1109 error_sem:
1110 if (index_key->type == &key_type_keyring)
1111 up_write(&keyring_serialise_link_sem);
1112 error_krsem:
1113 up_write(&keyring->sem);
1114 kleave(" = %d", ret);
1115 return ret;
1119 * Check already instantiated keys aren't going to be a problem.
1121 * The caller must have called __key_link_begin(). Don't need to call this for
1122 * keys that were created since __key_link_begin() was called.
1124 int __key_link_check_live_key(struct key *keyring, struct key *key)
1126 if (key->type == &key_type_keyring)
1127 /* check that we aren't going to create a cycle by linking one
1128 * keyring to another */
1129 return keyring_detect_cycle(keyring, key);
1130 return 0;
1134 * Link a key into to a keyring.
1136 * Must be called with __key_link_begin() having being called. Discards any
1137 * already extant link to matching key if there is one, so that each keyring
1138 * holds at most one link to any given key of a particular type+description
1139 * combination.
1141 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1143 __key_get(key);
1144 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1145 assoc_array_apply_edit(*_edit);
1146 *_edit = NULL;
1150 * Finish linking a key into to a keyring.
1152 * Must be called with __key_link_begin() having being called.
1154 void __key_link_end(struct key *keyring,
1155 const struct keyring_index_key *index_key,
1156 struct assoc_array_edit *edit)
1157 __releases(&keyring->sem)
1158 __releases(&keyring_serialise_link_sem)
1160 BUG_ON(index_key->type == NULL);
1161 kenter("%d,%s,", keyring->serial, index_key->type->name);
1163 if (index_key->type == &key_type_keyring)
1164 up_write(&keyring_serialise_link_sem);
1166 if (edit && !edit->dead_leaf) {
1167 key_payload_reserve(keyring,
1168 keyring->datalen - KEYQUOTA_LINK_BYTES);
1169 assoc_array_cancel_edit(edit);
1171 up_write(&keyring->sem);
1175 * key_link - Link a key to a keyring
1176 * @keyring: The keyring to make the link in.
1177 * @key: The key to link to.
1179 * Make a link in a keyring to a key, such that the keyring holds a reference
1180 * on that key and the key can potentially be found by searching that keyring.
1182 * This function will write-lock the keyring's semaphore and will consume some
1183 * of the user's key data quota to hold the link.
1185 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1186 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1187 * full, -EDQUOT if there is insufficient key data quota remaining to add
1188 * another link or -ENOMEM if there's insufficient memory.
1190 * It is assumed that the caller has checked that it is permitted for a link to
1191 * be made (the keyring should have Write permission and the key Link
1192 * permission).
1194 int key_link(struct key *keyring, struct key *key)
1196 struct assoc_array_edit *edit;
1197 int ret;
1199 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1201 key_check(keyring);
1202 key_check(key);
1204 if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1205 !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1206 return -EPERM;
1208 ret = __key_link_begin(keyring, &key->index_key, &edit);
1209 if (ret == 0) {
1210 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1211 ret = __key_link_check_live_key(keyring, key);
1212 if (ret == 0)
1213 __key_link(key, &edit);
1214 __key_link_end(keyring, &key->index_key, edit);
1217 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1218 return ret;
1220 EXPORT_SYMBOL(key_link);
1223 * key_unlink - Unlink the first link to a key from a keyring.
1224 * @keyring: The keyring to remove the link from.
1225 * @key: The key the link is to.
1227 * Remove a link from a keyring to a key.
1229 * This function will write-lock the keyring's semaphore.
1231 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1232 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1233 * memory.
1235 * It is assumed that the caller has checked that it is permitted for a link to
1236 * be removed (the keyring should have Write permission; no permissions are
1237 * required on the key).
1239 int key_unlink(struct key *keyring, struct key *key)
1241 struct assoc_array_edit *edit;
1242 int ret;
1244 key_check(keyring);
1245 key_check(key);
1247 if (keyring->type != &key_type_keyring)
1248 return -ENOTDIR;
1250 down_write(&keyring->sem);
1252 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1253 &key->index_key);
1254 if (IS_ERR(edit)) {
1255 ret = PTR_ERR(edit);
1256 goto error;
1258 ret = -ENOENT;
1259 if (edit == NULL)
1260 goto error;
1262 assoc_array_apply_edit(edit);
1263 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1264 ret = 0;
1266 error:
1267 up_write(&keyring->sem);
1268 return ret;
1270 EXPORT_SYMBOL(key_unlink);
1273 * keyring_clear - Clear a keyring
1274 * @keyring: The keyring to clear.
1276 * Clear the contents of the specified keyring.
1278 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1280 int keyring_clear(struct key *keyring)
1282 struct assoc_array_edit *edit;
1283 int ret;
1285 if (keyring->type != &key_type_keyring)
1286 return -ENOTDIR;
1288 down_write(&keyring->sem);
1290 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1291 if (IS_ERR(edit)) {
1292 ret = PTR_ERR(edit);
1293 } else {
1294 if (edit)
1295 assoc_array_apply_edit(edit);
1296 key_payload_reserve(keyring, 0);
1297 ret = 0;
1300 up_write(&keyring->sem);
1301 return ret;
1303 EXPORT_SYMBOL(keyring_clear);
1306 * Dispose of the links from a revoked keyring.
1308 * This is called with the key sem write-locked.
1310 static void keyring_revoke(struct key *keyring)
1312 struct assoc_array_edit *edit;
1314 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1315 if (!IS_ERR(edit)) {
1316 if (edit)
1317 assoc_array_apply_edit(edit);
1318 key_payload_reserve(keyring, 0);
1322 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1324 struct key *key = keyring_ptr_to_key(object);
1325 time_t *limit = iterator_data;
1327 if (key_is_dead(key, *limit))
1328 return false;
1329 key_get(key);
1330 return true;
1333 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1335 const struct key *key = keyring_ptr_to_key(object);
1336 time_t *limit = iterator_data;
1338 key_check(key);
1339 return key_is_dead(key, *limit);
1343 * Garbage collect pointers from a keyring.
1345 * Not called with any locks held. The keyring's key struct will not be
1346 * deallocated under us as only our caller may deallocate it.
1348 void keyring_gc(struct key *keyring, time_t limit)
1350 int result;
1352 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1354 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1355 (1 << KEY_FLAG_REVOKED)))
1356 goto dont_gc;
1358 /* scan the keyring looking for dead keys */
1359 rcu_read_lock();
1360 result = assoc_array_iterate(&keyring->keys,
1361 keyring_gc_check_iterator, &limit);
1362 rcu_read_unlock();
1363 if (result == true)
1364 goto do_gc;
1366 dont_gc:
1367 kleave(" [no gc]");
1368 return;
1370 do_gc:
1371 down_write(&keyring->sem);
1372 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1373 keyring_gc_select_iterator, &limit);
1374 up_write(&keyring->sem);
1375 kleave(" [gc]");