4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/uaccess.h>
19 #include <linux/irq.h>
20 #include <linux/irqdesc.h>
22 #include <asm/irq_regs.h>
24 #include <asm/stacktrace.h>
27 armpmu_map_cache_event(const unsigned (*cache_map
)
28 [PERF_COUNT_HW_CACHE_MAX
]
29 [PERF_COUNT_HW_CACHE_OP_MAX
]
30 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
33 unsigned int cache_type
, cache_op
, cache_result
, ret
;
35 cache_type
= (config
>> 0) & 0xff;
36 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
39 cache_op
= (config
>> 8) & 0xff;
40 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
43 cache_result
= (config
>> 16) & 0xff;
44 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
47 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
49 if (ret
== CACHE_OP_UNSUPPORTED
)
56 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
60 if (config
>= PERF_COUNT_HW_MAX
)
63 mapping
= (*event_map
)[config
];
64 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
68 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
70 return (int)(config
& raw_event_mask
);
74 armpmu_map_event(struct perf_event
*event
,
75 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
76 const unsigned (*cache_map
)
77 [PERF_COUNT_HW_CACHE_MAX
]
78 [PERF_COUNT_HW_CACHE_OP_MAX
]
79 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
82 u64 config
= event
->attr
.config
;
84 switch (event
->attr
.type
) {
85 case PERF_TYPE_HARDWARE
:
86 return armpmu_map_hw_event(event_map
, config
);
87 case PERF_TYPE_HW_CACHE
:
88 return armpmu_map_cache_event(cache_map
, config
);
90 return armpmu_map_raw_event(raw_event_mask
, config
);
96 int armpmu_event_set_period(struct perf_event
*event
)
98 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
99 struct hw_perf_event
*hwc
= &event
->hw
;
100 s64 left
= local64_read(&hwc
->period_left
);
101 s64 period
= hwc
->sample_period
;
104 if (unlikely(left
<= -period
)) {
106 local64_set(&hwc
->period_left
, left
);
107 hwc
->last_period
= period
;
111 if (unlikely(left
<= 0)) {
113 local64_set(&hwc
->period_left
, left
);
114 hwc
->last_period
= period
;
118 if (left
> (s64
)armpmu
->max_period
)
119 left
= armpmu
->max_period
;
121 local64_set(&hwc
->prev_count
, (u64
)-left
);
123 armpmu
->write_counter(event
, (u64
)(-left
) & 0xffffffff);
125 perf_event_update_userpage(event
);
130 u64
armpmu_event_update(struct perf_event
*event
)
132 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
133 struct hw_perf_event
*hwc
= &event
->hw
;
134 u64 delta
, prev_raw_count
, new_raw_count
;
137 prev_raw_count
= local64_read(&hwc
->prev_count
);
138 new_raw_count
= armpmu
->read_counter(event
);
140 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
141 new_raw_count
) != prev_raw_count
)
144 delta
= (new_raw_count
- prev_raw_count
) & armpmu
->max_period
;
146 local64_add(delta
, &event
->count
);
147 local64_sub(delta
, &hwc
->period_left
);
149 return new_raw_count
;
153 armpmu_read(struct perf_event
*event
)
155 armpmu_event_update(event
);
159 armpmu_stop(struct perf_event
*event
, int flags
)
161 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
162 struct hw_perf_event
*hwc
= &event
->hw
;
165 * ARM pmu always has to update the counter, so ignore
166 * PERF_EF_UPDATE, see comments in armpmu_start().
168 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
169 armpmu
->disable(event
);
170 armpmu_event_update(event
);
171 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
175 static void armpmu_start(struct perf_event
*event
, int flags
)
177 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
178 struct hw_perf_event
*hwc
= &event
->hw
;
181 * ARM pmu always has to reprogram the period, so ignore
182 * PERF_EF_RELOAD, see the comment below.
184 if (flags
& PERF_EF_RELOAD
)
185 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
189 * Set the period again. Some counters can't be stopped, so when we
190 * were stopped we simply disabled the IRQ source and the counter
191 * may have been left counting. If we don't do this step then we may
192 * get an interrupt too soon or *way* too late if the overflow has
193 * happened since disabling.
195 armpmu_event_set_period(event
);
196 armpmu
->enable(event
);
200 armpmu_del(struct perf_event
*event
, int flags
)
202 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
203 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
204 struct hw_perf_event
*hwc
= &event
->hw
;
207 armpmu_stop(event
, PERF_EF_UPDATE
);
208 hw_events
->events
[idx
] = NULL
;
209 clear_bit(idx
, hw_events
->used_mask
);
210 if (armpmu
->clear_event_idx
)
211 armpmu
->clear_event_idx(hw_events
, event
);
213 perf_event_update_userpage(event
);
217 armpmu_add(struct perf_event
*event
, int flags
)
219 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
220 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
221 struct hw_perf_event
*hwc
= &event
->hw
;
225 perf_pmu_disable(event
->pmu
);
227 /* If we don't have a space for the counter then finish early. */
228 idx
= armpmu
->get_event_idx(hw_events
, event
);
235 * If there is an event in the counter we are going to use then make
236 * sure it is disabled.
239 armpmu
->disable(event
);
240 hw_events
->events
[idx
] = event
;
242 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
243 if (flags
& PERF_EF_START
)
244 armpmu_start(event
, PERF_EF_RELOAD
);
246 /* Propagate our changes to the userspace mapping. */
247 perf_event_update_userpage(event
);
250 perf_pmu_enable(event
->pmu
);
255 validate_event(struct pmu_hw_events
*hw_events
,
256 struct perf_event
*event
)
258 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
260 if (is_software_event(event
))
263 if (event
->state
< PERF_EVENT_STATE_OFF
)
266 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
269 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
273 validate_group(struct perf_event
*event
)
275 struct perf_event
*sibling
, *leader
= event
->group_leader
;
276 struct pmu_hw_events fake_pmu
;
277 DECLARE_BITMAP(fake_used_mask
, ARMPMU_MAX_HWEVENTS
);
280 * Initialise the fake PMU. We only need to populate the
281 * used_mask for the purposes of validation.
283 memset(fake_used_mask
, 0, sizeof(fake_used_mask
));
284 fake_pmu
.used_mask
= fake_used_mask
;
286 if (!validate_event(&fake_pmu
, leader
))
289 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
290 if (!validate_event(&fake_pmu
, sibling
))
294 if (!validate_event(&fake_pmu
, event
))
300 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
302 struct arm_pmu
*armpmu
;
303 struct platform_device
*plat_device
;
304 struct arm_pmu_platdata
*plat
;
306 u64 start_clock
, finish_clock
;
308 if (irq_is_percpu(irq
))
311 plat_device
= armpmu
->plat_device
;
312 plat
= dev_get_platdata(&plat_device
->dev
);
314 start_clock
= sched_clock();
315 if (plat
&& plat
->handle_irq
)
316 ret
= plat
->handle_irq(irq
, dev
, armpmu
->handle_irq
);
318 ret
= armpmu
->handle_irq(irq
, dev
);
319 finish_clock
= sched_clock();
321 perf_sample_event_took(finish_clock
- start_clock
);
326 armpmu_release_hardware(struct arm_pmu
*armpmu
)
328 armpmu
->free_irq(armpmu
);
329 pm_runtime_put_sync(&armpmu
->plat_device
->dev
);
333 armpmu_reserve_hardware(struct arm_pmu
*armpmu
)
336 struct platform_device
*pmu_device
= armpmu
->plat_device
;
341 pm_runtime_get_sync(&pmu_device
->dev
);
342 err
= armpmu
->request_irq(armpmu
, armpmu_dispatch_irq
);
344 armpmu_release_hardware(armpmu
);
352 hw_perf_event_destroy(struct perf_event
*event
)
354 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
355 atomic_t
*active_events
= &armpmu
->active_events
;
356 struct mutex
*pmu_reserve_mutex
= &armpmu
->reserve_mutex
;
358 if (atomic_dec_and_mutex_lock(active_events
, pmu_reserve_mutex
)) {
359 armpmu_release_hardware(armpmu
);
360 mutex_unlock(pmu_reserve_mutex
);
365 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
367 return attr
->exclude_idle
|| attr
->exclude_user
||
368 attr
->exclude_kernel
|| attr
->exclude_hv
;
372 __hw_perf_event_init(struct perf_event
*event
)
374 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
375 struct hw_perf_event
*hwc
= &event
->hw
;
378 mapping
= armpmu
->map_event(event
);
381 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
387 * We don't assign an index until we actually place the event onto
388 * hardware. Use -1 to signify that we haven't decided where to put it
389 * yet. For SMP systems, each core has it's own PMU so we can't do any
390 * clever allocation or constraints checking at this point.
393 hwc
->config_base
= 0;
398 * Check whether we need to exclude the counter from certain modes.
400 if ((!armpmu
->set_event_filter
||
401 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
402 event_requires_mode_exclusion(&event
->attr
)) {
403 pr_debug("ARM performance counters do not support "
409 * Store the event encoding into the config_base field.
411 hwc
->config_base
|= (unsigned long)mapping
;
413 if (!is_sampling_event(event
)) {
415 * For non-sampling runs, limit the sample_period to half
416 * of the counter width. That way, the new counter value
417 * is far less likely to overtake the previous one unless
418 * you have some serious IRQ latency issues.
420 hwc
->sample_period
= armpmu
->max_period
>> 1;
421 hwc
->last_period
= hwc
->sample_period
;
422 local64_set(&hwc
->period_left
, hwc
->sample_period
);
425 if (event
->group_leader
!= event
) {
426 if (validate_group(event
) != 0)
433 static int armpmu_event_init(struct perf_event
*event
)
435 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
437 atomic_t
*active_events
= &armpmu
->active_events
;
439 /* does not support taken branch sampling */
440 if (has_branch_stack(event
))
443 if (armpmu
->map_event(event
) == -ENOENT
)
446 event
->destroy
= hw_perf_event_destroy
;
448 if (!atomic_inc_not_zero(active_events
)) {
449 mutex_lock(&armpmu
->reserve_mutex
);
450 if (atomic_read(active_events
) == 0)
451 err
= armpmu_reserve_hardware(armpmu
);
454 atomic_inc(active_events
);
455 mutex_unlock(&armpmu
->reserve_mutex
);
461 err
= __hw_perf_event_init(event
);
463 hw_perf_event_destroy(event
);
468 static void armpmu_enable(struct pmu
*pmu
)
470 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
471 struct pmu_hw_events
*hw_events
= armpmu
->get_hw_events();
472 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
475 armpmu
->start(armpmu
);
478 static void armpmu_disable(struct pmu
*pmu
)
480 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
481 armpmu
->stop(armpmu
);
484 #ifdef CONFIG_PM_RUNTIME
485 static int armpmu_runtime_resume(struct device
*dev
)
487 struct arm_pmu_platdata
*plat
= dev_get_platdata(dev
);
489 if (plat
&& plat
->runtime_resume
)
490 return plat
->runtime_resume(dev
);
495 static int armpmu_runtime_suspend(struct device
*dev
)
497 struct arm_pmu_platdata
*plat
= dev_get_platdata(dev
);
499 if (plat
&& plat
->runtime_suspend
)
500 return plat
->runtime_suspend(dev
);
506 const struct dev_pm_ops armpmu_dev_pm_ops
= {
507 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend
, armpmu_runtime_resume
, NULL
)
510 static void armpmu_init(struct arm_pmu
*armpmu
)
512 atomic_set(&armpmu
->active_events
, 0);
513 mutex_init(&armpmu
->reserve_mutex
);
515 armpmu
->pmu
= (struct pmu
) {
516 .pmu_enable
= armpmu_enable
,
517 .pmu_disable
= armpmu_disable
,
518 .event_init
= armpmu_event_init
,
521 .start
= armpmu_start
,
527 int armpmu_register(struct arm_pmu
*armpmu
, int type
)
530 pm_runtime_enable(&armpmu
->plat_device
->dev
);
531 pr_info("enabled with %s PMU driver, %d counters available\n",
532 armpmu
->name
, armpmu
->num_events
);
533 return perf_pmu_register(&armpmu
->pmu
, armpmu
->name
, type
);
537 * Callchain handling code.
541 * The registers we're interested in are at the end of the variable
542 * length saved register structure. The fp points at the end of this
543 * structure so the address of this struct is:
544 * (struct frame_tail *)(xxx->fp)-1
546 * This code has been adapted from the ARM OProfile support.
549 struct frame_tail __user
*fp
;
552 } __attribute__((packed
));
555 * Get the return address for a single stackframe and return a pointer to the
558 static struct frame_tail __user
*
559 user_backtrace(struct frame_tail __user
*tail
,
560 struct perf_callchain_entry
*entry
)
562 struct frame_tail buftail
;
564 /* Also check accessibility of one struct frame_tail beyond */
565 if (!access_ok(VERIFY_READ
, tail
, sizeof(buftail
)))
567 if (__copy_from_user_inatomic(&buftail
, tail
, sizeof(buftail
)))
570 perf_callchain_store(entry
, buftail
.lr
);
573 * Frame pointers should strictly progress back up the stack
574 * (towards higher addresses).
576 if (tail
+ 1 >= buftail
.fp
)
579 return buftail
.fp
- 1;
583 perf_callchain_user(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
585 struct frame_tail __user
*tail
;
587 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
588 /* We don't support guest os callchain now */
592 perf_callchain_store(entry
, regs
->ARM_pc
);
593 tail
= (struct frame_tail __user
*)regs
->ARM_fp
- 1;
595 while ((entry
->nr
< PERF_MAX_STACK_DEPTH
) &&
596 tail
&& !((unsigned long)tail
& 0x3))
597 tail
= user_backtrace(tail
, entry
);
601 * Gets called by walk_stackframe() for every stackframe. This will be called
602 * whist unwinding the stackframe and is like a subroutine return so we use
606 callchain_trace(struct stackframe
*fr
,
609 struct perf_callchain_entry
*entry
= data
;
610 perf_callchain_store(entry
, fr
->pc
);
615 perf_callchain_kernel(struct perf_callchain_entry
*entry
, struct pt_regs
*regs
)
617 struct stackframe fr
;
619 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
620 /* We don't support guest os callchain now */
624 fr
.fp
= regs
->ARM_fp
;
625 fr
.sp
= regs
->ARM_sp
;
626 fr
.lr
= regs
->ARM_lr
;
627 fr
.pc
= regs
->ARM_pc
;
628 walk_stackframe(&fr
, callchain_trace
, entry
);
631 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
633 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest())
634 return perf_guest_cbs
->get_guest_ip();
636 return instruction_pointer(regs
);
639 unsigned long perf_misc_flags(struct pt_regs
*regs
)
643 if (perf_guest_cbs
&& perf_guest_cbs
->is_in_guest()) {
644 if (perf_guest_cbs
->is_user_mode())
645 misc
|= PERF_RECORD_MISC_GUEST_USER
;
647 misc
|= PERF_RECORD_MISC_GUEST_KERNEL
;
650 misc
|= PERF_RECORD_MISC_USER
;
652 misc
|= PERF_RECORD_MISC_KERNEL
;