Merge tag 'locks-v3.16-2' of git://git.samba.org/jlayton/linux
[linux/fpc-iii.git] / arch / arm / kernel / probes.c
bloba8ab540d7e73a0b34533e8b22979fffa221501a8
1 /*
2 * arch/arm/kernel/probes.c
4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
6 * Some contents moved here from arch/arm/include/asm/kprobes-arm.c which is
7 * Copyright (C) 2006, 2007 Motorola Inc.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <asm/system_info.h>
17 #include <asm/ptrace.h>
18 #include <linux/bug.h>
20 #include "probes.h"
23 #ifndef find_str_pc_offset
26 * For STR and STM instructions, an ARM core may choose to use either
27 * a +8 or a +12 displacement from the current instruction's address.
28 * Whichever value is chosen for a given core, it must be the same for
29 * both instructions and may not change. This function measures it.
32 int str_pc_offset;
34 void __init find_str_pc_offset(void)
36 int addr, scratch, ret;
38 __asm__ (
39 "sub %[ret], pc, #4 \n\t"
40 "str pc, %[addr] \n\t"
41 "ldr %[scr], %[addr] \n\t"
42 "sub %[ret], %[scr], %[ret] \n\t"
43 : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
45 str_pc_offset = ret;
48 #endif /* !find_str_pc_offset */
51 #ifndef test_load_write_pc_interworking
53 bool load_write_pc_interworks;
55 void __init test_load_write_pc_interworking(void)
57 int arch = cpu_architecture();
58 BUG_ON(arch == CPU_ARCH_UNKNOWN);
59 load_write_pc_interworks = arch >= CPU_ARCH_ARMv5T;
62 #endif /* !test_load_write_pc_interworking */
65 #ifndef test_alu_write_pc_interworking
67 bool alu_write_pc_interworks;
69 void __init test_alu_write_pc_interworking(void)
71 int arch = cpu_architecture();
72 BUG_ON(arch == CPU_ARCH_UNKNOWN);
73 alu_write_pc_interworks = arch >= CPU_ARCH_ARMv7;
76 #endif /* !test_alu_write_pc_interworking */
79 void __init arm_probes_decode_init(void)
81 find_str_pc_offset();
82 test_load_write_pc_interworking();
83 test_alu_write_pc_interworking();
87 static unsigned long __kprobes __check_eq(unsigned long cpsr)
89 return cpsr & PSR_Z_BIT;
92 static unsigned long __kprobes __check_ne(unsigned long cpsr)
94 return (~cpsr) & PSR_Z_BIT;
97 static unsigned long __kprobes __check_cs(unsigned long cpsr)
99 return cpsr & PSR_C_BIT;
102 static unsigned long __kprobes __check_cc(unsigned long cpsr)
104 return (~cpsr) & PSR_C_BIT;
107 static unsigned long __kprobes __check_mi(unsigned long cpsr)
109 return cpsr & PSR_N_BIT;
112 static unsigned long __kprobes __check_pl(unsigned long cpsr)
114 return (~cpsr) & PSR_N_BIT;
117 static unsigned long __kprobes __check_vs(unsigned long cpsr)
119 return cpsr & PSR_V_BIT;
122 static unsigned long __kprobes __check_vc(unsigned long cpsr)
124 return (~cpsr) & PSR_V_BIT;
127 static unsigned long __kprobes __check_hi(unsigned long cpsr)
129 cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
130 return cpsr & PSR_C_BIT;
133 static unsigned long __kprobes __check_ls(unsigned long cpsr)
135 cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
136 return (~cpsr) & PSR_C_BIT;
139 static unsigned long __kprobes __check_ge(unsigned long cpsr)
141 cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
142 return (~cpsr) & PSR_N_BIT;
145 static unsigned long __kprobes __check_lt(unsigned long cpsr)
147 cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
148 return cpsr & PSR_N_BIT;
151 static unsigned long __kprobes __check_gt(unsigned long cpsr)
153 unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
154 temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
155 return (~temp) & PSR_N_BIT;
158 static unsigned long __kprobes __check_le(unsigned long cpsr)
160 unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
161 temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
162 return temp & PSR_N_BIT;
165 static unsigned long __kprobes __check_al(unsigned long cpsr)
167 return true;
170 probes_check_cc * const probes_condition_checks[16] = {
171 &__check_eq, &__check_ne, &__check_cs, &__check_cc,
172 &__check_mi, &__check_pl, &__check_vs, &__check_vc,
173 &__check_hi, &__check_ls, &__check_ge, &__check_lt,
174 &__check_gt, &__check_le, &__check_al, &__check_al
178 void __kprobes probes_simulate_nop(probes_opcode_t opcode,
179 struct arch_probes_insn *asi,
180 struct pt_regs *regs)
184 void __kprobes probes_emulate_none(probes_opcode_t opcode,
185 struct arch_probes_insn *asi,
186 struct pt_regs *regs)
188 asi->insn_fn();
192 * Prepare an instruction slot to receive an instruction for emulating.
193 * This is done by placing a subroutine return after the location where the
194 * instruction will be placed. We also modify ARM instructions to be
195 * unconditional as the condition code will already be checked before any
196 * emulation handler is called.
198 static probes_opcode_t __kprobes
199 prepare_emulated_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
200 bool thumb)
202 #ifdef CONFIG_THUMB2_KERNEL
203 if (thumb) {
204 u16 *thumb_insn = (u16 *)asi->insn;
205 /* Thumb bx lr */
206 thumb_insn[1] = __opcode_to_mem_thumb16(0x4770);
207 thumb_insn[2] = __opcode_to_mem_thumb16(0x4770);
208 return insn;
210 asi->insn[1] = __opcode_to_mem_arm(0xe12fff1e); /* ARM bx lr */
211 #else
212 asi->insn[1] = __opcode_to_mem_arm(0xe1a0f00e); /* mov pc, lr */
213 #endif
214 /* Make an ARM instruction unconditional */
215 if (insn < 0xe0000000)
216 insn = (insn | 0xe0000000) & ~0x10000000;
217 return insn;
221 * Write a (probably modified) instruction into the slot previously prepared by
222 * prepare_emulated_insn
224 static void __kprobes
225 set_emulated_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
226 bool thumb)
228 #ifdef CONFIG_THUMB2_KERNEL
229 if (thumb) {
230 u16 *ip = (u16 *)asi->insn;
231 if (is_wide_instruction(insn))
232 *ip++ = __opcode_to_mem_thumb16(insn >> 16);
233 *ip++ = __opcode_to_mem_thumb16(insn);
234 return;
236 #endif
237 asi->insn[0] = __opcode_to_mem_arm(insn);
241 * When we modify the register numbers encoded in an instruction to be emulated,
242 * the new values come from this define. For ARM and 32-bit Thumb instructions
243 * this gives...
245 * bit position 16 12 8 4 0
246 * ---------------+---+---+---+---+---+
247 * register r2 r0 r1 -- r3
249 #define INSN_NEW_BITS 0x00020103
251 /* Each nibble has same value as that at INSN_NEW_BITS bit 16 */
252 #define INSN_SAMEAS16_BITS 0x22222222
255 * Validate and modify each of the registers encoded in an instruction.
257 * Each nibble in regs contains a value from enum decode_reg_type. For each
258 * non-zero value, the corresponding nibble in pinsn is validated and modified
259 * according to the type.
261 static bool __kprobes decode_regs(probes_opcode_t *pinsn, u32 regs, bool modify)
263 probes_opcode_t insn = *pinsn;
264 probes_opcode_t mask = 0xf; /* Start at least significant nibble */
266 for (; regs != 0; regs >>= 4, mask <<= 4) {
268 probes_opcode_t new_bits = INSN_NEW_BITS;
270 switch (regs & 0xf) {
272 case REG_TYPE_NONE:
273 /* Nibble not a register, skip to next */
274 continue;
276 case REG_TYPE_ANY:
277 /* Any register is allowed */
278 break;
280 case REG_TYPE_SAMEAS16:
281 /* Replace register with same as at bit position 16 */
282 new_bits = INSN_SAMEAS16_BITS;
283 break;
285 case REG_TYPE_SP:
286 /* Only allow SP (R13) */
287 if ((insn ^ 0xdddddddd) & mask)
288 goto reject;
289 break;
291 case REG_TYPE_PC:
292 /* Only allow PC (R15) */
293 if ((insn ^ 0xffffffff) & mask)
294 goto reject;
295 break;
297 case REG_TYPE_NOSP:
298 /* Reject SP (R13) */
299 if (((insn ^ 0xdddddddd) & mask) == 0)
300 goto reject;
301 break;
303 case REG_TYPE_NOSPPC:
304 case REG_TYPE_NOSPPCX:
305 /* Reject SP and PC (R13 and R15) */
306 if (((insn ^ 0xdddddddd) & 0xdddddddd & mask) == 0)
307 goto reject;
308 break;
310 case REG_TYPE_NOPCWB:
311 if (!is_writeback(insn))
312 break; /* No writeback, so any register is OK */
313 /* fall through... */
314 case REG_TYPE_NOPC:
315 case REG_TYPE_NOPCX:
316 /* Reject PC (R15) */
317 if (((insn ^ 0xffffffff) & mask) == 0)
318 goto reject;
319 break;
322 /* Replace value of nibble with new register number... */
323 insn &= ~mask;
324 insn |= new_bits & mask;
327 if (modify)
328 *pinsn = insn;
330 return true;
332 reject:
333 return false;
336 static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
337 [DECODE_TYPE_TABLE] = sizeof(struct decode_table),
338 [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
339 [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
340 [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
341 [DECODE_TYPE_OR] = sizeof(struct decode_or),
342 [DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
346 * probes_decode_insn operates on data tables in order to decode an ARM
347 * architecture instruction onto which a kprobe has been placed.
349 * These instruction decoding tables are a concatenation of entries each
350 * of which consist of one of the following structs:
352 * decode_table
353 * decode_custom
354 * decode_simulate
355 * decode_emulate
356 * decode_or
357 * decode_reject
359 * Each of these starts with a struct decode_header which has the following
360 * fields:
362 * type_regs
363 * mask
364 * value
366 * The least significant DECODE_TYPE_BITS of type_regs contains a value
367 * from enum decode_type, this indicates which of the decode_* structs
368 * the entry contains. The value DECODE_TYPE_END indicates the end of the
369 * table.
371 * When the table is parsed, each entry is checked in turn to see if it
372 * matches the instruction to be decoded using the test:
374 * (insn & mask) == value
376 * If no match is found before the end of the table is reached then decoding
377 * fails with INSN_REJECTED.
379 * When a match is found, decode_regs() is called to validate and modify each
380 * of the registers encoded in the instruction; the data it uses to do this
381 * is (type_regs >> DECODE_TYPE_BITS). A validation failure will cause decoding
382 * to fail with INSN_REJECTED.
384 * Once the instruction has passed the above tests, further processing
385 * depends on the type of the table entry's decode struct.
388 int __kprobes
389 probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
390 const union decode_item *table, bool thumb,
391 bool emulate, const union decode_action *actions)
393 const struct decode_header *h = (struct decode_header *)table;
394 const struct decode_header *next;
395 bool matched = false;
397 if (emulate)
398 insn = prepare_emulated_insn(insn, asi, thumb);
400 for (;; h = next) {
401 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
402 u32 regs = h->type_regs.bits >> DECODE_TYPE_BITS;
404 if (type == DECODE_TYPE_END)
405 return INSN_REJECTED;
407 next = (struct decode_header *)
408 ((uintptr_t)h + decode_struct_sizes[type]);
410 if (!matched && (insn & h->mask.bits) != h->value.bits)
411 continue;
413 if (!decode_regs(&insn, regs, emulate))
414 return INSN_REJECTED;
416 switch (type) {
418 case DECODE_TYPE_TABLE: {
419 struct decode_table *d = (struct decode_table *)h;
420 next = (struct decode_header *)d->table.table;
421 break;
424 case DECODE_TYPE_CUSTOM: {
425 struct decode_custom *d = (struct decode_custom *)h;
426 return actions[d->decoder.action].decoder(insn, asi, h);
429 case DECODE_TYPE_SIMULATE: {
430 struct decode_simulate *d = (struct decode_simulate *)h;
431 asi->insn_handler = actions[d->handler.action].handler;
432 return INSN_GOOD_NO_SLOT;
435 case DECODE_TYPE_EMULATE: {
436 struct decode_emulate *d = (struct decode_emulate *)h;
438 if (!emulate)
439 return actions[d->handler.action].decoder(insn,
440 asi, h);
442 asi->insn_handler = actions[d->handler.action].handler;
443 set_emulated_insn(insn, asi, thumb);
444 return INSN_GOOD;
447 case DECODE_TYPE_OR:
448 matched = true;
449 break;
451 case DECODE_TYPE_REJECT:
452 default:
453 return INSN_REJECTED;