2 * linux/arch/arm/kernel/setup.c
4 * Copyright (C) 1995-2001 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_platform.h>
22 #include <linux/init.h>
23 #include <linux/kexec.h>
24 #include <linux/of_fdt.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
28 #include <linux/proc_fs.h>
29 #include <linux/memblock.h>
30 #include <linux/bug.h>
31 #include <linux/compiler.h>
32 #include <linux/sort.h>
34 #include <asm/unified.h>
37 #include <asm/cputype.h>
39 #include <asm/procinfo.h>
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 #include <asm/smp_plat.h>
44 #include <asm/mach-types.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cachetype.h>
47 #include <asm/tlbflush.h>
50 #include <asm/mach/arch.h>
51 #include <asm/mach/irq.h>
52 #include <asm/mach/time.h>
53 #include <asm/system_info.h>
54 #include <asm/system_misc.h>
55 #include <asm/traps.h>
56 #include <asm/unwind.h>
57 #include <asm/memblock.h>
63 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
66 static int __init
fpe_setup(char *line
)
68 memcpy(fpe_type
, line
, 8);
72 __setup("fpe=", fpe_setup
);
75 extern void init_default_cache_policy(unsigned long);
76 extern void paging_init(const struct machine_desc
*desc
);
77 extern void early_paging_init(const struct machine_desc
*,
78 struct proc_info_list
*);
79 extern void sanity_check_meminfo(void);
80 extern enum reboot_mode reboot_mode
;
81 extern void setup_dma_zone(const struct machine_desc
*desc
);
83 unsigned int processor_id
;
84 EXPORT_SYMBOL(processor_id
);
85 unsigned int __machine_arch_type __read_mostly
;
86 EXPORT_SYMBOL(__machine_arch_type
);
87 unsigned int cacheid __read_mostly
;
88 EXPORT_SYMBOL(cacheid
);
90 unsigned int __atags_pointer __initdata
;
92 unsigned int system_rev
;
93 EXPORT_SYMBOL(system_rev
);
95 unsigned int system_serial_low
;
96 EXPORT_SYMBOL(system_serial_low
);
98 unsigned int system_serial_high
;
99 EXPORT_SYMBOL(system_serial_high
);
101 unsigned int elf_hwcap __read_mostly
;
102 EXPORT_SYMBOL(elf_hwcap
);
104 unsigned int elf_hwcap2 __read_mostly
;
105 EXPORT_SYMBOL(elf_hwcap2
);
109 struct processor processor __read_mostly
;
112 struct cpu_tlb_fns cpu_tlb __read_mostly
;
115 struct cpu_user_fns cpu_user __read_mostly
;
118 struct cpu_cache_fns cpu_cache __read_mostly
;
120 #ifdef CONFIG_OUTER_CACHE
121 struct outer_cache_fns outer_cache __read_mostly
;
122 EXPORT_SYMBOL(outer_cache
);
126 * Cached cpu_architecture() result for use by assembler code.
127 * C code should use the cpu_architecture() function instead of accessing this
130 int __cpu_architecture __read_mostly
= CPU_ARCH_UNKNOWN
;
136 } ____cacheline_aligned
;
138 #ifndef CONFIG_CPU_V7M
139 static struct stack stacks
[NR_CPUS
];
142 char elf_platform
[ELF_PLATFORM_SIZE
];
143 EXPORT_SYMBOL(elf_platform
);
145 static const char *cpu_name
;
146 static const char *machine_name
;
147 static char __initdata cmd_line
[COMMAND_LINE_SIZE
];
148 const struct machine_desc
*machine_desc __initdata
;
150 static union { char c
[4]; unsigned long l
; } endian_test __initdata
= { { 'l', '?', '?', 'b' } };
151 #define ENDIANNESS ((char)endian_test.l)
153 DEFINE_PER_CPU(struct cpuinfo_arm
, cpu_data
);
156 * Standard memory resources
158 static struct resource mem_res
[] = {
163 .flags
= IORESOURCE_MEM
166 .name
= "Kernel code",
169 .flags
= IORESOURCE_MEM
172 .name
= "Kernel data",
175 .flags
= IORESOURCE_MEM
179 #define video_ram mem_res[0]
180 #define kernel_code mem_res[1]
181 #define kernel_data mem_res[2]
183 static struct resource io_res
[] = {
188 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
194 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
200 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
204 #define lp0 io_res[0]
205 #define lp1 io_res[1]
206 #define lp2 io_res[2]
208 static const char *proc_arch
[] = {
228 #ifdef CONFIG_CPU_V7M
229 static int __get_cpu_architecture(void)
231 return CPU_ARCH_ARMv7M
;
234 static int __get_cpu_architecture(void)
238 if ((read_cpuid_id() & 0x0008f000) == 0) {
239 cpu_arch
= CPU_ARCH_UNKNOWN
;
240 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
241 cpu_arch
= (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T
: CPU_ARCH_ARMv3
;
242 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
243 cpu_arch
= (read_cpuid_id() >> 16) & 7;
245 cpu_arch
+= CPU_ARCH_ARMv3
;
246 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
249 /* Revised CPUID format. Read the Memory Model Feature
250 * Register 0 and check for VMSAv7 or PMSAv7 */
251 asm("mrc p15, 0, %0, c0, c1, 4"
253 if ((mmfr0
& 0x0000000f) >= 0x00000003 ||
254 (mmfr0
& 0x000000f0) >= 0x00000030)
255 cpu_arch
= CPU_ARCH_ARMv7
;
256 else if ((mmfr0
& 0x0000000f) == 0x00000002 ||
257 (mmfr0
& 0x000000f0) == 0x00000020)
258 cpu_arch
= CPU_ARCH_ARMv6
;
260 cpu_arch
= CPU_ARCH_UNKNOWN
;
262 cpu_arch
= CPU_ARCH_UNKNOWN
;
268 int __pure
cpu_architecture(void)
270 BUG_ON(__cpu_architecture
== CPU_ARCH_UNKNOWN
);
272 return __cpu_architecture
;
275 static int cpu_has_aliasing_icache(unsigned int arch
)
278 unsigned int id_reg
, num_sets
, line_size
;
280 /* PIPT caches never alias. */
281 if (icache_is_pipt())
284 /* arch specifies the register format */
287 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
288 : /* No output operands */
291 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
293 line_size
= 4 << ((id_reg
& 0x7) + 2);
294 num_sets
= ((id_reg
>> 13) & 0x7fff) + 1;
295 aliasing_icache
= (line_size
* num_sets
) > PAGE_SIZE
;
298 aliasing_icache
= read_cpuid_cachetype() & (1 << 11);
301 /* I-cache aliases will be handled by D-cache aliasing code */
305 return aliasing_icache
;
308 static void __init
cacheid_init(void)
310 unsigned int arch
= cpu_architecture();
312 if (arch
== CPU_ARCH_ARMv7M
) {
314 } else if (arch
>= CPU_ARCH_ARMv6
) {
315 unsigned int cachetype
= read_cpuid_cachetype();
316 if ((cachetype
& (7 << 29)) == 4 << 29) {
317 /* ARMv7 register format */
318 arch
= CPU_ARCH_ARMv7
;
319 cacheid
= CACHEID_VIPT_NONALIASING
;
320 switch (cachetype
& (3 << 14)) {
322 cacheid
|= CACHEID_ASID_TAGGED
;
325 cacheid
|= CACHEID_PIPT
;
329 arch
= CPU_ARCH_ARMv6
;
330 if (cachetype
& (1 << 23))
331 cacheid
= CACHEID_VIPT_ALIASING
;
333 cacheid
= CACHEID_VIPT_NONALIASING
;
335 if (cpu_has_aliasing_icache(arch
))
336 cacheid
|= CACHEID_VIPT_I_ALIASING
;
338 cacheid
= CACHEID_VIVT
;
341 pr_info("CPU: %s data cache, %s instruction cache\n",
342 cache_is_vivt() ? "VIVT" :
343 cache_is_vipt_aliasing() ? "VIPT aliasing" :
344 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
345 cache_is_vivt() ? "VIVT" :
346 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
347 icache_is_vipt_aliasing() ? "VIPT aliasing" :
348 icache_is_pipt() ? "PIPT" :
349 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
353 * These functions re-use the assembly code in head.S, which
354 * already provide the required functionality.
356 extern struct proc_info_list
*lookup_processor_type(unsigned int);
358 void __init
early_print(const char *str
, ...)
360 extern void printascii(const char *);
365 vsnprintf(buf
, sizeof(buf
), str
, ap
);
368 #ifdef CONFIG_DEBUG_LL
374 static void __init
cpuid_init_hwcaps(void)
376 unsigned int divide_instrs
, vmsa
;
378 if (cpu_architecture() < CPU_ARCH_ARMv7
)
381 divide_instrs
= (read_cpuid_ext(CPUID_EXT_ISAR0
) & 0x0f000000) >> 24;
383 switch (divide_instrs
) {
385 elf_hwcap
|= HWCAP_IDIVA
;
387 elf_hwcap
|= HWCAP_IDIVT
;
390 /* LPAE implies atomic ldrd/strd instructions */
391 vmsa
= (read_cpuid_ext(CPUID_EXT_MMFR0
) & 0xf) >> 0;
393 elf_hwcap
|= HWCAP_LPAE
;
396 static void __init
feat_v6_fixup(void)
398 int id
= read_cpuid_id();
400 if ((id
& 0xff0f0000) != 0x41070000)
404 * HWCAP_TLS is available only on 1136 r1p0 and later,
405 * see also kuser_get_tls_init.
407 if ((((id
>> 4) & 0xfff) == 0xb36) && (((id
>> 20) & 3) == 0))
408 elf_hwcap
&= ~HWCAP_TLS
;
412 * cpu_init - initialise one CPU.
414 * cpu_init sets up the per-CPU stacks.
416 void notrace
cpu_init(void)
418 #ifndef CONFIG_CPU_V7M
419 unsigned int cpu
= smp_processor_id();
420 struct stack
*stk
= &stacks
[cpu
];
422 if (cpu
>= NR_CPUS
) {
423 pr_crit("CPU%u: bad primary CPU number\n", cpu
);
428 * This only works on resume and secondary cores. For booting on the
429 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
431 set_my_cpu_offset(per_cpu_offset(cpu
));
436 * Define the placement constraint for the inline asm directive below.
437 * In Thumb-2, msr with an immediate value is not allowed.
439 #ifdef CONFIG_THUMB2_KERNEL
446 * setup stacks for re-entrant exception handlers
450 "add r14, %0, %2\n\t"
453 "add r14, %0, %4\n\t"
456 "add r14, %0, %6\n\t"
461 PLC (PSR_F_BIT
| PSR_I_BIT
| IRQ_MODE
),
462 "I" (offsetof(struct stack
, irq
[0])),
463 PLC (PSR_F_BIT
| PSR_I_BIT
| ABT_MODE
),
464 "I" (offsetof(struct stack
, abt
[0])),
465 PLC (PSR_F_BIT
| PSR_I_BIT
| UND_MODE
),
466 "I" (offsetof(struct stack
, und
[0])),
467 PLC (PSR_F_BIT
| PSR_I_BIT
| SVC_MODE
)
472 u32 __cpu_logical_map
[NR_CPUS
] = { [0 ... NR_CPUS
-1] = MPIDR_INVALID
};
474 void __init
smp_setup_processor_id(void)
477 u32 mpidr
= is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK
: 0;
478 u32 cpu
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
480 cpu_logical_map(0) = cpu
;
481 for (i
= 1; i
< nr_cpu_ids
; ++i
)
482 cpu_logical_map(i
) = i
== cpu
? 0 : i
;
485 * clear __my_cpu_offset on boot CPU to avoid hang caused by
486 * using percpu variable early, for example, lockdep will
487 * access percpu variable inside lock_release
489 set_my_cpu_offset(0);
491 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr
);
494 struct mpidr_hash mpidr_hash
;
497 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
498 * level in order to build a linear index from an
499 * MPIDR value. Resulting algorithm is a collision
500 * free hash carried out through shifting and ORing
502 static void __init
smp_build_mpidr_hash(void)
505 u32 fs
[3], bits
[3], ls
, mask
= 0;
507 * Pre-scan the list of MPIDRS and filter out bits that do
508 * not contribute to affinity levels, ie they never toggle.
510 for_each_possible_cpu(i
)
511 mask
|= (cpu_logical_map(i
) ^ cpu_logical_map(0));
512 pr_debug("mask of set bits 0x%x\n", mask
);
514 * Find and stash the last and first bit set at all affinity levels to
515 * check how many bits are required to represent them.
517 for (i
= 0; i
< 3; i
++) {
518 affinity
= MPIDR_AFFINITY_LEVEL(mask
, i
);
520 * Find the MSB bit and LSB bits position
521 * to determine how many bits are required
522 * to express the affinity level.
525 fs
[i
] = affinity
? ffs(affinity
) - 1 : 0;
526 bits
[i
] = ls
- fs
[i
];
529 * An index can be created from the MPIDR by isolating the
530 * significant bits at each affinity level and by shifting
531 * them in order to compress the 24 bits values space to a
532 * compressed set of values. This is equivalent to hashing
533 * the MPIDR through shifting and ORing. It is a collision free
534 * hash though not minimal since some levels might contain a number
535 * of CPUs that is not an exact power of 2 and their bit
536 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
538 mpidr_hash
.shift_aff
[0] = fs
[0];
539 mpidr_hash
.shift_aff
[1] = MPIDR_LEVEL_BITS
+ fs
[1] - bits
[0];
540 mpidr_hash
.shift_aff
[2] = 2*MPIDR_LEVEL_BITS
+ fs
[2] -
542 mpidr_hash
.mask
= mask
;
543 mpidr_hash
.bits
= bits
[2] + bits
[1] + bits
[0];
544 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
545 mpidr_hash
.shift_aff
[0],
546 mpidr_hash
.shift_aff
[1],
547 mpidr_hash
.shift_aff
[2],
551 * 4x is an arbitrary value used to warn on a hash table much bigger
552 * than expected on most systems.
554 if (mpidr_hash_size() > 4 * num_possible_cpus())
555 pr_warn("Large number of MPIDR hash buckets detected\n");
556 sync_cache_w(&mpidr_hash
);
560 static void __init
setup_processor(void)
562 struct proc_info_list
*list
;
565 * locate processor in the list of supported processor
566 * types. The linker builds this table for us from the
567 * entries in arch/arm/mm/proc-*.S
569 list
= lookup_processor_type(read_cpuid_id());
571 pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
576 cpu_name
= list
->cpu_name
;
577 __cpu_architecture
= __get_cpu_architecture();
580 processor
= *list
->proc
;
583 cpu_tlb
= *list
->tlb
;
586 cpu_user
= *list
->user
;
589 cpu_cache
= *list
->cache
;
592 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
593 cpu_name
, read_cpuid_id(), read_cpuid_id() & 15,
594 proc_arch
[cpu_architecture()], get_cr());
596 snprintf(init_utsname()->machine
, __NEW_UTS_LEN
+ 1, "%s%c",
597 list
->arch_name
, ENDIANNESS
);
598 snprintf(elf_platform
, ELF_PLATFORM_SIZE
, "%s%c",
599 list
->elf_name
, ENDIANNESS
);
600 elf_hwcap
= list
->elf_hwcap
;
604 #ifndef CONFIG_ARM_THUMB
605 elf_hwcap
&= ~(HWCAP_THUMB
| HWCAP_IDIVT
);
608 init_default_cache_policy(list
->__cpu_mm_mmu_flags
);
610 erratum_a15_798181_init();
618 void __init
dump_machine_table(void)
620 const struct machine_desc
*p
;
622 early_print("Available machine support:\n\nID (hex)\tNAME\n");
623 for_each_machine_desc(p
)
624 early_print("%08x\t%s\n", p
->nr
, p
->name
);
626 early_print("\nPlease check your kernel config and/or bootloader.\n");
629 /* can't use cpu_relax() here as it may require MMU setup */;
632 int __init
arm_add_memory(u64 start
, u64 size
)
637 * Ensure that start/size are aligned to a page boundary.
638 * Size is appropriately rounded down, start is rounded up.
640 size
-= start
& ~PAGE_MASK
;
641 aligned_start
= PAGE_ALIGN(start
);
643 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
644 if (aligned_start
> ULONG_MAX
) {
645 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
650 if (aligned_start
+ size
> ULONG_MAX
) {
651 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
654 * To ensure bank->start + bank->size is representable in
655 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
656 * This means we lose a page after masking.
658 size
= ULONG_MAX
- aligned_start
;
662 if (aligned_start
< PHYS_OFFSET
) {
663 if (aligned_start
+ size
<= PHYS_OFFSET
) {
664 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
665 aligned_start
, aligned_start
+ size
);
669 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
670 aligned_start
, (u64
)PHYS_OFFSET
);
672 size
-= PHYS_OFFSET
- aligned_start
;
673 aligned_start
= PHYS_OFFSET
;
676 start
= aligned_start
;
677 size
= size
& ~(phys_addr_t
)(PAGE_SIZE
- 1);
680 * Check whether this memory region has non-zero size or
681 * invalid node number.
686 memblock_add(start
, size
);
691 * Pick out the memory size. We look for mem=size@start,
692 * where start and size are "size[KkMm]"
695 static int __init
early_mem(char *p
)
697 static int usermem __initdata
= 0;
703 * If the user specifies memory size, we
704 * blow away any automatically generated
709 memblock_remove(memblock_start_of_DRAM(),
710 memblock_end_of_DRAM() - memblock_start_of_DRAM());
714 size
= memparse(p
, &endp
);
716 start
= memparse(endp
+ 1, NULL
);
718 arm_add_memory(start
, size
);
722 early_param("mem", early_mem
);
724 static void __init
request_standard_resources(const struct machine_desc
*mdesc
)
726 struct memblock_region
*region
;
727 struct resource
*res
;
729 kernel_code
.start
= virt_to_phys(_text
);
730 kernel_code
.end
= virt_to_phys(_etext
- 1);
731 kernel_data
.start
= virt_to_phys(_sdata
);
732 kernel_data
.end
= virt_to_phys(_end
- 1);
734 for_each_memblock(memory
, region
) {
735 res
= memblock_virt_alloc(sizeof(*res
), 0);
736 res
->name
= "System RAM";
737 res
->start
= __pfn_to_phys(memblock_region_memory_base_pfn(region
));
738 res
->end
= __pfn_to_phys(memblock_region_memory_end_pfn(region
)) - 1;
739 res
->flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
741 request_resource(&iomem_resource
, res
);
743 if (kernel_code
.start
>= res
->start
&&
744 kernel_code
.end
<= res
->end
)
745 request_resource(res
, &kernel_code
);
746 if (kernel_data
.start
>= res
->start
&&
747 kernel_data
.end
<= res
->end
)
748 request_resource(res
, &kernel_data
);
751 if (mdesc
->video_start
) {
752 video_ram
.start
= mdesc
->video_start
;
753 video_ram
.end
= mdesc
->video_end
;
754 request_resource(&iomem_resource
, &video_ram
);
758 * Some machines don't have the possibility of ever
759 * possessing lp0, lp1 or lp2
761 if (mdesc
->reserve_lp0
)
762 request_resource(&ioport_resource
, &lp0
);
763 if (mdesc
->reserve_lp1
)
764 request_resource(&ioport_resource
, &lp1
);
765 if (mdesc
->reserve_lp2
)
766 request_resource(&ioport_resource
, &lp2
);
769 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
770 struct screen_info screen_info
= {
771 .orig_video_lines
= 30,
772 .orig_video_cols
= 80,
773 .orig_video_mode
= 0,
774 .orig_video_ega_bx
= 0,
775 .orig_video_isVGA
= 1,
776 .orig_video_points
= 8
780 static int __init
customize_machine(void)
783 * customizes platform devices, or adds new ones
784 * On DT based machines, we fall back to populating the
785 * machine from the device tree, if no callback is provided,
786 * otherwise we would always need an init_machine callback.
788 if (machine_desc
->init_machine
)
789 machine_desc
->init_machine();
792 of_platform_populate(NULL
, of_default_bus_match_table
,
797 arch_initcall(customize_machine
);
799 static int __init
init_machine_late(void)
801 if (machine_desc
->init_late
)
802 machine_desc
->init_late();
805 late_initcall(init_machine_late
);
808 static inline unsigned long long get_total_mem(void)
812 total
= max_low_pfn
- min_low_pfn
;
813 return total
<< PAGE_SHIFT
;
817 * reserve_crashkernel() - reserves memory are for crash kernel
819 * This function reserves memory area given in "crashkernel=" kernel command
820 * line parameter. The memory reserved is used by a dump capture kernel when
821 * primary kernel is crashing.
823 static void __init
reserve_crashkernel(void)
825 unsigned long long crash_size
, crash_base
;
826 unsigned long long total_mem
;
829 total_mem
= get_total_mem();
830 ret
= parse_crashkernel(boot_command_line
, total_mem
,
831 &crash_size
, &crash_base
);
835 ret
= memblock_reserve(crash_base
, crash_size
);
837 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
838 (unsigned long)crash_base
);
842 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
843 (unsigned long)(crash_size
>> 20),
844 (unsigned long)(crash_base
>> 20),
845 (unsigned long)(total_mem
>> 20));
847 crashk_res
.start
= crash_base
;
848 crashk_res
.end
= crash_base
+ crash_size
- 1;
849 insert_resource(&iomem_resource
, &crashk_res
);
852 static inline void reserve_crashkernel(void) {}
853 #endif /* CONFIG_KEXEC */
855 void __init
hyp_mode_check(void)
857 #ifdef CONFIG_ARM_VIRT_EXT
860 if (is_hyp_mode_available()) {
861 pr_info("CPU: All CPU(s) started in HYP mode.\n");
862 pr_info("CPU: Virtualization extensions available.\n");
863 } else if (is_hyp_mode_mismatched()) {
864 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
865 __boot_cpu_mode
& MODE_MASK
);
866 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
868 pr_info("CPU: All CPU(s) started in SVC mode.\n");
872 void __init
setup_arch(char **cmdline_p
)
874 const struct machine_desc
*mdesc
;
877 mdesc
= setup_machine_fdt(__atags_pointer
);
879 mdesc
= setup_machine_tags(__atags_pointer
, __machine_arch_type
);
880 machine_desc
= mdesc
;
881 machine_name
= mdesc
->name
;
883 if (mdesc
->reboot_mode
!= REBOOT_HARD
)
884 reboot_mode
= mdesc
->reboot_mode
;
886 init_mm
.start_code
= (unsigned long) _text
;
887 init_mm
.end_code
= (unsigned long) _etext
;
888 init_mm
.end_data
= (unsigned long) _edata
;
889 init_mm
.brk
= (unsigned long) _end
;
891 /* populate cmd_line too for later use, preserving boot_command_line */
892 strlcpy(cmd_line
, boot_command_line
, COMMAND_LINE_SIZE
);
893 *cmdline_p
= cmd_line
;
897 early_paging_init(mdesc
, lookup_processor_type(read_cpuid_id()));
898 setup_dma_zone(mdesc
);
899 sanity_check_meminfo();
900 arm_memblock_init(mdesc
);
903 request_standard_resources(mdesc
);
906 arm_pm_restart
= mdesc
->restart
;
908 unflatten_device_tree();
910 arm_dt_init_cpu_maps();
914 if (!mdesc
->smp_init
|| !mdesc
->smp_init()) {
915 if (psci_smp_available())
916 smp_set_ops(&psci_smp_ops
);
918 smp_set_ops(mdesc
->smp
);
921 smp_build_mpidr_hash();
928 reserve_crashkernel();
930 #ifdef CONFIG_MULTI_IRQ_HANDLER
931 handle_arch_irq
= mdesc
->handle_irq
;
935 #if defined(CONFIG_VGA_CONSOLE)
936 conswitchp
= &vga_con
;
937 #elif defined(CONFIG_DUMMY_CONSOLE)
938 conswitchp
= &dummy_con
;
942 if (mdesc
->init_early
)
947 static int __init
topology_init(void)
951 for_each_possible_cpu(cpu
) {
952 struct cpuinfo_arm
*cpuinfo
= &per_cpu(cpu_data
, cpu
);
953 cpuinfo
->cpu
.hotpluggable
= 1;
954 register_cpu(&cpuinfo
->cpu
, cpu
);
959 subsys_initcall(topology_init
);
961 #ifdef CONFIG_HAVE_PROC_CPU
962 static int __init
proc_cpu_init(void)
964 struct proc_dir_entry
*res
;
966 res
= proc_mkdir("cpu", NULL
);
971 fs_initcall(proc_cpu_init
);
974 static const char *hwcap_str
[] = {
1000 static const char *hwcap2_str
[] = {
1009 static int c_show(struct seq_file
*m
, void *v
)
1014 for_each_online_cpu(i
) {
1016 * glibc reads /proc/cpuinfo to determine the number of
1017 * online processors, looking for lines beginning with
1018 * "processor". Give glibc what it expects.
1020 seq_printf(m
, "processor\t: %d\n", i
);
1021 cpuid
= is_smp() ? per_cpu(cpu_data
, i
).cpuid
: read_cpuid_id();
1022 seq_printf(m
, "model name\t: %s rev %d (%s)\n",
1023 cpu_name
, cpuid
& 15, elf_platform
);
1025 /* dump out the processor features */
1026 seq_puts(m
, "Features\t: ");
1028 for (j
= 0; hwcap_str
[j
]; j
++)
1029 if (elf_hwcap
& (1 << j
))
1030 seq_printf(m
, "%s ", hwcap_str
[j
]);
1032 for (j
= 0; hwcap2_str
[j
]; j
++)
1033 if (elf_hwcap2
& (1 << j
))
1034 seq_printf(m
, "%s ", hwcap2_str
[j
]);
1036 seq_printf(m
, "\nCPU implementer\t: 0x%02x\n", cpuid
>> 24);
1037 seq_printf(m
, "CPU architecture: %s\n",
1038 proc_arch
[cpu_architecture()]);
1040 if ((cpuid
& 0x0008f000) == 0x00000000) {
1042 seq_printf(m
, "CPU part\t: %07x\n", cpuid
>> 4);
1044 if ((cpuid
& 0x0008f000) == 0x00007000) {
1046 seq_printf(m
, "CPU variant\t: 0x%02x\n",
1047 (cpuid
>> 16) & 127);
1050 seq_printf(m
, "CPU variant\t: 0x%x\n",
1051 (cpuid
>> 20) & 15);
1053 seq_printf(m
, "CPU part\t: 0x%03x\n",
1054 (cpuid
>> 4) & 0xfff);
1056 seq_printf(m
, "CPU revision\t: %d\n\n", cpuid
& 15);
1059 seq_printf(m
, "Hardware\t: %s\n", machine_name
);
1060 seq_printf(m
, "Revision\t: %04x\n", system_rev
);
1061 seq_printf(m
, "Serial\t\t: %08x%08x\n",
1062 system_serial_high
, system_serial_low
);
1067 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1069 return *pos
< 1 ? (void *)1 : NULL
;
1072 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1078 static void c_stop(struct seq_file
*m
, void *v
)
1082 const struct seq_operations cpuinfo_op
= {