Merge tag 'locks-v3.16-2' of git://git.samba.org/jlayton/linux
[linux/fpc-iii.git] / arch / arm / mach-omap2 / vc.c
bloba4628a9e760c9a604e00da1b189a76816c57111a
1 /*
2 * OMAP Voltage Controller (VC) interface
4 * Copyright (C) 2011 Texas Instruments, Inc.
6 * This file is licensed under the terms of the GNU General Public
7 * License version 2. This program is licensed "as is" without any
8 * warranty of any kind, whether express or implied.
9 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/bug.h>
14 #include <linux/io.h>
16 #include <asm/div64.h>
18 #include "iomap.h"
19 #include "soc.h"
20 #include "voltage.h"
21 #include "vc.h"
22 #include "prm-regbits-34xx.h"
23 #include "prm-regbits-44xx.h"
24 #include "prm44xx.h"
25 #include "pm.h"
26 #include "scrm44xx.h"
27 #include "control.h"
29 /**
30 * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
31 * @sa: bit for slave address
32 * @rav: bit for voltage configuration register
33 * @rac: bit for command configuration register
34 * @racen: enable bit for RAC
35 * @cmd: bit for command value set selection
37 * Channel configuration bits, common for OMAP3+
38 * OMAP3 register: PRM_VC_CH_CONF
39 * OMAP4 register: PRM_VC_CFG_CHANNEL
40 * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
42 struct omap_vc_channel_cfg {
43 u8 sa;
44 u8 rav;
45 u8 rac;
46 u8 racen;
47 u8 cmd;
50 static struct omap_vc_channel_cfg vc_default_channel_cfg = {
51 .sa = BIT(0),
52 .rav = BIT(1),
53 .rac = BIT(2),
54 .racen = BIT(3),
55 .cmd = BIT(4),
59 * On OMAP3+, all VC channels have the above default bitfield
60 * configuration, except the OMAP4 MPU channel. This appears
61 * to be a freak accident as every other VC channel has the
62 * default configuration, thus creating a mutant channel config.
64 static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
65 .sa = BIT(0),
66 .rav = BIT(2),
67 .rac = BIT(3),
68 .racen = BIT(4),
69 .cmd = BIT(1),
72 static struct omap_vc_channel_cfg *vc_cfg_bits;
74 /* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
75 static u32 sr_i2c_pcb_length = 63;
76 #define CFG_CHANNEL_MASK 0x1f
78 /**
79 * omap_vc_config_channel - configure VC channel to PMIC mappings
80 * @voltdm: pointer to voltagdomain defining the desired VC channel
82 * Configures the VC channel to PMIC mappings for the following
83 * PMIC settings
84 * - i2c slave address (SA)
85 * - voltage configuration address (RAV)
86 * - command configuration address (RAC) and enable bit (RACEN)
87 * - command values for ON, ONLP, RET and OFF (CMD)
89 * This function currently only allows flexible configuration of the
90 * non-default channel. Starting with OMAP4, there are more than 2
91 * channels, with one defined as the default (on OMAP4, it's MPU.)
92 * Only the non-default channel can be configured.
94 static int omap_vc_config_channel(struct voltagedomain *voltdm)
96 struct omap_vc_channel *vc = voltdm->vc;
99 * For default channel, the only configurable bit is RACEN.
100 * All others must stay at zero (see function comment above.)
102 if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
103 vc->cfg_channel &= vc_cfg_bits->racen;
105 voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
106 vc->cfg_channel << vc->cfg_channel_sa_shift,
107 vc->cfg_channel_reg);
109 return 0;
112 /* Voltage scale and accessory APIs */
113 int omap_vc_pre_scale(struct voltagedomain *voltdm,
114 unsigned long target_volt,
115 u8 *target_vsel, u8 *current_vsel)
117 struct omap_vc_channel *vc = voltdm->vc;
118 u32 vc_cmdval;
120 /* Check if sufficient pmic info is available for this vdd */
121 if (!voltdm->pmic) {
122 pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
123 __func__, voltdm->name);
124 return -EINVAL;
127 if (!voltdm->pmic->uv_to_vsel) {
128 pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
129 __func__, voltdm->name);
130 return -ENODATA;
133 if (!voltdm->read || !voltdm->write) {
134 pr_err("%s: No read/write API for accessing vdd_%s regs\n",
135 __func__, voltdm->name);
136 return -EINVAL;
139 *target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
140 *current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
142 /* Setting the ON voltage to the new target voltage */
143 vc_cmdval = voltdm->read(vc->cmdval_reg);
144 vc_cmdval &= ~vc->common->cmd_on_mask;
145 vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
146 voltdm->write(vc_cmdval, vc->cmdval_reg);
148 voltdm->vc_param->on = target_volt;
150 omap_vp_update_errorgain(voltdm, target_volt);
152 return 0;
155 void omap_vc_post_scale(struct voltagedomain *voltdm,
156 unsigned long target_volt,
157 u8 target_vsel, u8 current_vsel)
159 u32 smps_steps = 0, smps_delay = 0;
161 smps_steps = abs(target_vsel - current_vsel);
162 /* SMPS slew rate / step size. 2us added as buffer. */
163 smps_delay = ((smps_steps * voltdm->pmic->step_size) /
164 voltdm->pmic->slew_rate) + 2;
165 udelay(smps_delay);
168 /* vc_bypass_scale - VC bypass method of voltage scaling */
169 int omap_vc_bypass_scale(struct voltagedomain *voltdm,
170 unsigned long target_volt)
172 struct omap_vc_channel *vc = voltdm->vc;
173 u32 loop_cnt = 0, retries_cnt = 0;
174 u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
175 u8 target_vsel, current_vsel;
176 int ret;
178 ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
179 if (ret)
180 return ret;
182 vc_valid = vc->common->valid;
183 vc_bypass_val_reg = vc->common->bypass_val_reg;
184 vc_bypass_value = (target_vsel << vc->common->data_shift) |
185 (vc->volt_reg_addr << vc->common->regaddr_shift) |
186 (vc->i2c_slave_addr << vc->common->slaveaddr_shift);
188 voltdm->write(vc_bypass_value, vc_bypass_val_reg);
189 voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
191 vc_bypass_value = voltdm->read(vc_bypass_val_reg);
193 * Loop till the bypass command is acknowledged from the SMPS.
194 * NOTE: This is legacy code. The loop count and retry count needs
195 * to be revisited.
197 while (!(vc_bypass_value & vc_valid)) {
198 loop_cnt++;
200 if (retries_cnt > 10) {
201 pr_warning("%s: Retry count exceeded\n", __func__);
202 return -ETIMEDOUT;
205 if (loop_cnt > 50) {
206 retries_cnt++;
207 loop_cnt = 0;
208 udelay(10);
210 vc_bypass_value = voltdm->read(vc_bypass_val_reg);
213 omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
214 return 0;
217 /* Convert microsecond value to number of 32kHz clock cycles */
218 static inline u32 omap_usec_to_32k(u32 usec)
220 return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
223 struct omap3_vc_timings {
224 u32 voltsetup1;
225 u32 voltsetup2;
228 struct omap3_vc {
229 struct voltagedomain *vd;
230 u32 voltctrl;
231 u32 voltsetup1;
232 u32 voltsetup2;
233 struct omap3_vc_timings timings[2];
235 static struct omap3_vc vc;
237 void omap3_vc_set_pmic_signaling(int core_next_state)
239 struct voltagedomain *vd = vc.vd;
240 struct omap3_vc_timings *c = vc.timings;
241 u32 voltctrl, voltsetup1, voltsetup2;
243 voltctrl = vc.voltctrl;
244 voltsetup1 = vc.voltsetup1;
245 voltsetup2 = vc.voltsetup2;
247 switch (core_next_state) {
248 case PWRDM_POWER_OFF:
249 voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_RET |
250 OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
251 voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_OFF;
252 if (voltctrl & OMAP3430_PRM_VOLTCTRL_SEL_OFF)
253 voltsetup2 = c->voltsetup2;
254 else
255 voltsetup1 = c->voltsetup1;
256 break;
257 case PWRDM_POWER_RET:
258 default:
259 c++;
260 voltctrl &= ~(OMAP3430_PRM_VOLTCTRL_AUTO_OFF |
261 OMAP3430_PRM_VOLTCTRL_AUTO_SLEEP);
262 voltctrl |= OMAP3430_PRM_VOLTCTRL_AUTO_RET;
263 voltsetup1 = c->voltsetup1;
264 break;
267 if (voltctrl != vc.voltctrl) {
268 vd->write(voltctrl, OMAP3_PRM_VOLTCTRL_OFFSET);
269 vc.voltctrl = voltctrl;
271 if (voltsetup1 != vc.voltsetup1) {
272 vd->write(c->voltsetup1,
273 OMAP3_PRM_VOLTSETUP1_OFFSET);
274 vc.voltsetup1 = voltsetup1;
276 if (voltsetup2 != vc.voltsetup2) {
277 vd->write(c->voltsetup2,
278 OMAP3_PRM_VOLTSETUP2_OFFSET);
279 vc.voltsetup2 = voltsetup2;
283 #define PRM_POLCTRL_TWL_MASK (OMAP3430_PRM_POLCTRL_CLKREQ_POL | \
284 OMAP3430_PRM_POLCTRL_CLKREQ_POL)
285 #define PRM_POLCTRL_TWL_VAL OMAP3430_PRM_POLCTRL_CLKREQ_POL
288 * Configure signal polarity for sys_clkreq and sys_off_mode pins
289 * as the default values are wrong and can cause the system to hang
290 * if any twl4030 scripts are loaded.
292 static void __init omap3_vc_init_pmic_signaling(struct voltagedomain *voltdm)
294 u32 val;
296 if (vc.vd)
297 return;
299 vc.vd = voltdm;
301 val = voltdm->read(OMAP3_PRM_POLCTRL_OFFSET);
302 if (!(val & OMAP3430_PRM_POLCTRL_CLKREQ_POL) ||
303 (val & OMAP3430_PRM_POLCTRL_CLKREQ_POL)) {
304 val |= OMAP3430_PRM_POLCTRL_CLKREQ_POL;
305 val &= ~OMAP3430_PRM_POLCTRL_OFFMODE_POL;
306 pr_debug("PM: fixing sys_clkreq and sys_off_mode polarity to 0x%x\n",
307 val);
308 voltdm->write(val, OMAP3_PRM_POLCTRL_OFFSET);
312 * By default let's use I2C4 signaling for retention idle
313 * and sys_off_mode pin signaling for off idle. This way we
314 * have sys_clk_req pin go down for retention and both
315 * sys_clk_req and sys_off_mode pins will go down for off
316 * idle. And we can also scale voltages to zero for off-idle.
317 * Note that no actual voltage scaling during off-idle will
318 * happen unless the board specific twl4030 PMIC scripts are
319 * loaded.
321 val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
322 if (!(val & OMAP3430_PRM_VOLTCTRL_SEL_OFF)) {
323 val |= OMAP3430_PRM_VOLTCTRL_SEL_OFF;
324 pr_debug("PM: setting voltctrl sys_off_mode signaling to 0x%x\n",
325 val);
326 voltdm->write(val, OMAP3_PRM_VOLTCTRL_OFFSET);
328 vc.voltctrl = val;
330 omap3_vc_set_pmic_signaling(PWRDM_POWER_ON);
333 static void omap3_init_voltsetup1(struct voltagedomain *voltdm,
334 struct omap3_vc_timings *c, u32 idle)
336 unsigned long val;
338 val = (voltdm->vc_param->on - idle) / voltdm->pmic->slew_rate;
339 val *= voltdm->sys_clk.rate / 8 / 1000000 + 1;
340 val <<= __ffs(voltdm->vfsm->voltsetup_mask);
341 c->voltsetup1 &= ~voltdm->vfsm->voltsetup_mask;
342 c->voltsetup1 |= val;
346 * omap3_set_i2c_timings - sets i2c sleep timings for a channel
347 * @voltdm: channel to configure
348 * @off_mode: select whether retention or off mode values used
350 * Calculates and sets up voltage controller to use I2C based
351 * voltage scaling for sleep modes. This can be used for either off mode
352 * or retention. Off mode has additionally an option to use sys_off_mode
353 * pad, which uses a global signal to program the whole power IC to
354 * off-mode.
356 * Note that pmic is not controlling the voltage scaling during
357 * retention signaled over I2C4, so we can keep voltsetup2 as 0.
358 * And the oscillator is not shut off over I2C4, so no need to
359 * set clksetup.
361 static void omap3_set_i2c_timings(struct voltagedomain *voltdm)
363 struct omap3_vc_timings *c = vc.timings;
365 /* Configure PRWDM_POWER_OFF over I2C4 */
366 omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->off);
367 c++;
368 /* Configure PRWDM_POWER_RET over I2C4 */
369 omap3_init_voltsetup1(voltdm, c, voltdm->vc_param->ret);
373 * omap3_set_off_timings - sets off-mode timings for a channel
374 * @voltdm: channel to configure
376 * Calculates and sets up off-mode timings for a channel. Off-mode
377 * can use either I2C based voltage scaling, or alternatively
378 * sys_off_mode pad can be used to send a global command to power IC.n,
379 * sys_off_mode has the additional benefit that voltages can be
380 * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
381 * scale to 600mV.
383 * Note that omap is not controlling the voltage scaling during
384 * off idle signaled by sys_off_mode, so we can keep voltsetup1
385 * as 0.
387 static void omap3_set_off_timings(struct voltagedomain *voltdm)
389 struct omap3_vc_timings *c = vc.timings;
390 u32 tstart, tshut, clksetup, voltoffset;
392 if (c->voltsetup2)
393 return;
395 omap_pm_get_oscillator(&tstart, &tshut);
396 if (tstart == ULONG_MAX) {
397 pr_debug("PM: oscillator start-up time not initialized, using 10ms\n");
398 clksetup = omap_usec_to_32k(10000);
399 } else {
400 clksetup = omap_usec_to_32k(tstart);
404 * For twl4030 errata 27, we need to allow minimum ~488.32 us wait to
405 * switch from HFCLKIN to internal oscillator. That means timings
406 * have voltoffset fixed to 0xa in rounded up 32 KiHz cycles. And
407 * that means we can calculate the value based on the oscillator
408 * start-up time since voltoffset2 = clksetup - voltoffset.
410 voltoffset = omap_usec_to_32k(488);
411 c->voltsetup2 = clksetup - voltoffset;
412 voltdm->write(clksetup, OMAP3_PRM_CLKSETUP_OFFSET);
413 voltdm->write(voltoffset, OMAP3_PRM_VOLTOFFSET_OFFSET);
416 static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
418 omap3_vc_init_pmic_signaling(voltdm);
419 omap3_set_off_timings(voltdm);
420 omap3_set_i2c_timings(voltdm);
424 * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
425 * @voltdm: channel to calculate values for
426 * @voltage_diff: voltage difference in microvolts
428 * Calculates voltage ramp prescaler + counter values for a voltage
429 * difference on omap4. Returns a field value suitable for writing to
430 * VOLTSETUP register for a channel in following format:
431 * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
433 static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
435 u32 prescaler;
436 u32 cycles;
437 u32 time;
439 time = voltage_diff / voltdm->pmic->slew_rate;
441 cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
443 cycles /= 64;
444 prescaler = 0;
446 /* shift to next prescaler until no overflow */
448 /* scale for div 256 = 64 * 4 */
449 if (cycles > 63) {
450 cycles /= 4;
451 prescaler++;
454 /* scale for div 512 = 256 * 2 */
455 if (cycles > 63) {
456 cycles /= 2;
457 prescaler++;
460 /* scale for div 2048 = 512 * 4 */
461 if (cycles > 63) {
462 cycles /= 4;
463 prescaler++;
466 /* check for overflow => invalid ramp time */
467 if (cycles > 63) {
468 pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
469 voltdm->name);
470 return 0;
473 cycles++;
475 return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
476 (cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
480 * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
481 * @usec: microseconds
482 * @shift: number of bits to shift left
483 * @mask: bitfield mask
485 * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
486 * shifted to requested position, and checked agains the mask value.
487 * If larger, forced to the max value of the field (i.e. the mask itself.)
488 * Returns the SCRM bitfield value.
490 static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
492 u32 val;
494 val = omap_usec_to_32k(usec) << shift;
496 /* Check for overflow, if yes, force to max value */
497 if (val > mask)
498 val = mask;
500 return val;
504 * omap4_set_timings - set voltage ramp timings for a channel
505 * @voltdm: channel to configure
506 * @off_mode: whether off-mode values are used
508 * Calculates and sets the voltage ramp up / down values for a channel.
510 static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
512 u32 val;
513 u32 ramp;
514 int offset;
515 u32 tstart, tshut;
517 if (off_mode) {
518 ramp = omap4_calc_volt_ramp(voltdm,
519 voltdm->vc_param->on - voltdm->vc_param->off);
520 offset = voltdm->vfsm->voltsetup_off_reg;
521 } else {
522 ramp = omap4_calc_volt_ramp(voltdm,
523 voltdm->vc_param->on - voltdm->vc_param->ret);
524 offset = voltdm->vfsm->voltsetup_reg;
527 if (!ramp)
528 return;
530 val = voltdm->read(offset);
532 val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
534 val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
536 voltdm->write(val, offset);
538 omap_pm_get_oscillator(&tstart, &tshut);
540 val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
541 OMAP4_SETUPTIME_MASK);
542 val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
543 OMAP4_DOWNTIME_MASK);
545 writel_relaxed(val, OMAP4_SCRM_CLKSETUPTIME);
548 /* OMAP4 specific voltage init functions */
549 static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
551 omap4_set_timings(voltdm, true);
552 omap4_set_timings(voltdm, false);
555 struct i2c_init_data {
556 u8 loadbits;
557 u8 load;
558 u8 hsscll_38_4;
559 u8 hsscll_26;
560 u8 hsscll_19_2;
561 u8 hsscll_16_8;
562 u8 hsscll_12;
565 static const __initdata struct i2c_init_data omap4_i2c_timing_data[] = {
567 .load = 50,
568 .loadbits = 0x3,
569 .hsscll_38_4 = 13,
570 .hsscll_26 = 11,
571 .hsscll_19_2 = 9,
572 .hsscll_16_8 = 9,
573 .hsscll_12 = 8,
576 .load = 25,
577 .loadbits = 0x2,
578 .hsscll_38_4 = 13,
579 .hsscll_26 = 11,
580 .hsscll_19_2 = 9,
581 .hsscll_16_8 = 9,
582 .hsscll_12 = 8,
585 .load = 12,
586 .loadbits = 0x1,
587 .hsscll_38_4 = 11,
588 .hsscll_26 = 10,
589 .hsscll_19_2 = 9,
590 .hsscll_16_8 = 9,
591 .hsscll_12 = 8,
594 .load = 0,
595 .loadbits = 0x0,
596 .hsscll_38_4 = 12,
597 .hsscll_26 = 10,
598 .hsscll_19_2 = 9,
599 .hsscll_16_8 = 8,
600 .hsscll_12 = 8,
605 * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
606 * @voltdm: voltagedomain pointer to get data from
608 * Use PMIC + board supplied settings for calculating the total I2C
609 * channel capacitance and set the timing parameters based on this.
610 * Pre-calculated values are provided in data tables, as it is not
611 * too straightforward to calculate these runtime.
613 static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
615 u32 capacitance;
616 u32 val;
617 u16 hsscll;
618 const struct i2c_init_data *i2c_data;
620 if (!voltdm->pmic->i2c_high_speed) {
621 pr_warn("%s: only high speed supported!\n", __func__);
622 return;
625 /* PCB trace capacitance, 0.125pF / mm => mm / 8 */
626 capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
628 /* OMAP pad capacitance */
629 capacitance += 4;
631 /* PMIC pad capacitance */
632 capacitance += voltdm->pmic->i2c_pad_load;
634 /* Search for capacitance match in the table */
635 i2c_data = omap4_i2c_timing_data;
637 while (i2c_data->load > capacitance)
638 i2c_data++;
640 /* Select proper values based on sysclk frequency */
641 switch (voltdm->sys_clk.rate) {
642 case 38400000:
643 hsscll = i2c_data->hsscll_38_4;
644 break;
645 case 26000000:
646 hsscll = i2c_data->hsscll_26;
647 break;
648 case 19200000:
649 hsscll = i2c_data->hsscll_19_2;
650 break;
651 case 16800000:
652 hsscll = i2c_data->hsscll_16_8;
653 break;
654 case 12000000:
655 hsscll = i2c_data->hsscll_12;
656 break;
657 default:
658 pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
659 voltdm->sys_clk.rate);
660 return;
663 /* Loadbits define pull setup for the I2C channels */
664 val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
666 /* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
667 writel_relaxed(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
668 OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
670 /* HSSCLH can always be zero */
671 val = hsscll << OMAP4430_HSSCLL_SHIFT;
672 val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
674 /* Write setup times to I2C config register */
675 voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
681 * omap_vc_i2c_init - initialize I2C interface to PMIC
682 * @voltdm: voltage domain containing VC data
684 * Use PMIC supplied settings for I2C high-speed mode and
685 * master code (if set) and program the VC I2C configuration
686 * register.
688 * The VC I2C configuration is common to all VC channels,
689 * so this function only configures I2C for the first VC
690 * channel registers. All other VC channels will use the
691 * same configuration.
693 static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
695 struct omap_vc_channel *vc = voltdm->vc;
696 static bool initialized;
697 static bool i2c_high_speed;
698 u8 mcode;
700 if (initialized) {
701 if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
702 pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
703 __func__, voltdm->name, i2c_high_speed);
704 return;
707 i2c_high_speed = voltdm->pmic->i2c_high_speed;
708 if (i2c_high_speed)
709 voltdm->rmw(vc->common->i2c_cfg_hsen_mask,
710 vc->common->i2c_cfg_hsen_mask,
711 vc->common->i2c_cfg_reg);
713 mcode = voltdm->pmic->i2c_mcode;
714 if (mcode)
715 voltdm->rmw(vc->common->i2c_mcode_mask,
716 mcode << __ffs(vc->common->i2c_mcode_mask),
717 vc->common->i2c_cfg_reg);
719 if (cpu_is_omap44xx())
720 omap4_vc_i2c_timing_init(voltdm);
722 initialized = true;
726 * omap_vc_calc_vsel - calculate vsel value for a channel
727 * @voltdm: channel to calculate value for
728 * @uvolt: microvolt value to convert to vsel
730 * Converts a microvolt value to vsel value for the used PMIC.
731 * This checks whether the microvolt value is out of bounds, and
732 * adjusts the value accordingly. If unsupported value detected,
733 * warning is thrown.
735 static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
737 if (voltdm->pmic->vddmin > uvolt)
738 uvolt = voltdm->pmic->vddmin;
739 if (voltdm->pmic->vddmax < uvolt) {
740 WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
741 __func__, uvolt, voltdm->pmic->vddmax);
742 /* Lets try maximum value anyway */
743 uvolt = voltdm->pmic->vddmax;
746 return voltdm->pmic->uv_to_vsel(uvolt);
749 #ifdef CONFIG_PM
751 * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
752 * @mm: length of the PCB trace in millimetres
754 * Sets the PCB trace length for the I2C channel. By default uses 63mm.
755 * This is needed for properly calculating the capacitance value for
756 * the PCB trace, and for setting the SR I2C channel timing parameters.
758 void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
760 sr_i2c_pcb_length = mm;
762 #endif
764 void __init omap_vc_init_channel(struct voltagedomain *voltdm)
766 struct omap_vc_channel *vc = voltdm->vc;
767 u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
768 u32 val;
770 if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
771 pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
772 return;
775 if (!voltdm->read || !voltdm->write) {
776 pr_err("%s: No read/write API for accessing vdd_%s regs\n",
777 __func__, voltdm->name);
778 return;
781 vc->cfg_channel = 0;
782 if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
783 vc_cfg_bits = &vc_mutant_channel_cfg;
784 else
785 vc_cfg_bits = &vc_default_channel_cfg;
787 /* get PMIC/board specific settings */
788 vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
789 vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
790 vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
792 /* Configure the i2c slave address for this VC */
793 voltdm->rmw(vc->smps_sa_mask,
794 vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
795 vc->smps_sa_reg);
796 vc->cfg_channel |= vc_cfg_bits->sa;
799 * Configure the PMIC register addresses.
801 voltdm->rmw(vc->smps_volra_mask,
802 vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
803 vc->smps_volra_reg);
804 vc->cfg_channel |= vc_cfg_bits->rav;
806 if (vc->cmd_reg_addr) {
807 voltdm->rmw(vc->smps_cmdra_mask,
808 vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
809 vc->smps_cmdra_reg);
810 vc->cfg_channel |= vc_cfg_bits->rac;
813 if (vc->cmd_reg_addr == vc->volt_reg_addr)
814 vc->cfg_channel |= vc_cfg_bits->racen;
816 /* Set up the on, inactive, retention and off voltage */
817 on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
818 onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
819 ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
820 off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
822 val = ((on_vsel << vc->common->cmd_on_shift) |
823 (onlp_vsel << vc->common->cmd_onlp_shift) |
824 (ret_vsel << vc->common->cmd_ret_shift) |
825 (off_vsel << vc->common->cmd_off_shift));
826 voltdm->write(val, vc->cmdval_reg);
827 vc->cfg_channel |= vc_cfg_bits->cmd;
829 /* Channel configuration */
830 omap_vc_config_channel(voltdm);
832 omap_vc_i2c_init(voltdm);
834 if (cpu_is_omap34xx())
835 omap3_vc_init_channel(voltdm);
836 else if (cpu_is_omap44xx())
837 omap4_vc_init_channel(voltdm);