2 * Copyright 2004-2010 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <uapi/linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/clocks.h>
29 #include <asm/div64.h>
31 #include <asm/fixed_code.h>
32 #include <asm/early_printk.h>
33 #include <asm/irq_handler.h>
38 #ifdef CONFIG_SCB_PRIORITY
43 EXPORT_SYMBOL(_bfin_swrst
);
45 unsigned long memory_start
, memory_end
, physical_mem_end
;
46 unsigned long _rambase
, _ramstart
, _ramend
;
47 unsigned long reserved_mem_dcache_on
;
48 unsigned long reserved_mem_icache_on
;
49 EXPORT_SYMBOL(memory_start
);
50 EXPORT_SYMBOL(memory_end
);
51 EXPORT_SYMBOL(physical_mem_end
);
52 EXPORT_SYMBOL(_ramend
);
53 EXPORT_SYMBOL(reserved_mem_dcache_on
);
55 #ifdef CONFIG_MTD_UCLINUX
56 extern struct map_info uclinux_ram_map
;
57 unsigned long memory_mtd_end
, memory_mtd_start
, mtd_size
;
58 EXPORT_SYMBOL(memory_mtd_end
);
59 EXPORT_SYMBOL(memory_mtd_start
);
60 EXPORT_SYMBOL(mtd_size
);
63 char __initdata command_line
[COMMAND_LINE_SIZE
];
64 struct blackfin_initial_pda __initdata initial_pda
;
66 /* boot memmap, for parsing "memmap=" */
67 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
68 #define BFIN_MEMMAP_RAM 1
69 #define BFIN_MEMMAP_RESERVED 2
70 static struct bfin_memmap
{
72 struct bfin_memmap_entry
{
73 unsigned long long addr
; /* start of memory segment */
74 unsigned long long size
;
76 } map
[BFIN_MEMMAP_MAX
];
77 } bfin_memmap __initdata
;
79 /* for memmap sanitization */
80 struct change_member
{
81 struct bfin_memmap_entry
*pentry
; /* pointer to original entry */
82 unsigned long long addr
; /* address for this change point */
84 static struct change_member change_point_list
[2*BFIN_MEMMAP_MAX
] __initdata
;
85 static struct change_member
*change_point
[2*BFIN_MEMMAP_MAX
] __initdata
;
86 static struct bfin_memmap_entry
*overlap_list
[BFIN_MEMMAP_MAX
] __initdata
;
87 static struct bfin_memmap_entry new_map
[BFIN_MEMMAP_MAX
] __initdata
;
89 DEFINE_PER_CPU(struct blackfin_cpudata
, cpu_data
);
91 static int early_init_clkin_hz(char *buf
);
93 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
94 void __init
generate_cplb_tables(void)
98 generate_cplb_tables_all();
99 /* Generate per-CPU I&D CPLB tables */
100 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
)
101 generate_cplb_tables_cpu(cpu
);
105 void bfin_setup_caches(unsigned int cpu
)
107 #ifdef CONFIG_BFIN_ICACHE
108 bfin_icache_init(icplb_tbl
[cpu
]);
111 #ifdef CONFIG_BFIN_DCACHE
112 bfin_dcache_init(dcplb_tbl
[cpu
]);
115 bfin_setup_cpudata(cpu
);
118 * In cache coherence emulation mode, we need to have the
119 * D-cache enabled before running any atomic operation which
120 * might involve cache invalidation (i.e. spinlock, rwlock).
121 * So printk's are deferred until then.
123 #ifdef CONFIG_BFIN_ICACHE
124 printk(KERN_INFO
"Instruction Cache Enabled for CPU%u\n", cpu
);
125 printk(KERN_INFO
" External memory:"
126 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
131 " in instruction cache\n");
133 printk(KERN_INFO
" L2 SRAM :"
134 # ifdef CONFIG_BFIN_L2_ICACHEABLE
139 " in instruction cache\n");
142 printk(KERN_INFO
"Instruction Cache Disabled for CPU%u\n", cpu
);
145 #ifdef CONFIG_BFIN_DCACHE
146 printk(KERN_INFO
"Data Cache Enabled for CPU%u\n", cpu
);
147 printk(KERN_INFO
" External memory:"
148 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
149 " cacheable (write-back)"
150 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
151 " cacheable (write-through)"
157 printk(KERN_INFO
" L2 SRAM :"
158 # if defined CONFIG_BFIN_L2_WRITEBACK
159 " cacheable (write-back)"
160 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
161 " cacheable (write-through)"
167 printk(KERN_INFO
"Data Cache Disabled for CPU%u\n", cpu
);
171 void bfin_setup_cpudata(unsigned int cpu
)
173 struct blackfin_cpudata
*cpudata
= &per_cpu(cpu_data
, cpu
);
175 cpudata
->imemctl
= bfin_read_IMEM_CONTROL();
176 cpudata
->dmemctl
= bfin_read_DMEM_CONTROL();
179 void __init
bfin_cache_init(void)
181 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
182 generate_cplb_tables();
184 bfin_setup_caches(0);
187 void __init
bfin_relocate_l1_mem(void)
189 unsigned long text_l1_len
= (unsigned long)_text_l1_len
;
190 unsigned long data_l1_len
= (unsigned long)_data_l1_len
;
191 unsigned long data_b_l1_len
= (unsigned long)_data_b_l1_len
;
192 unsigned long l2_len
= (unsigned long)_l2_len
;
194 early_shadow_stamp();
197 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
198 * we know that everything about l1 text/data is nice and aligned,
199 * so copy by 4 byte chunks, and don't worry about overlapping
202 * We can't use the dma_memcpy functions, since they can call
203 * scheduler functions which might be in L1 :( and core writes
204 * into L1 instruction cause bad access errors, so we are stuck,
205 * we are required to use DMA, but can't use the common dma
206 * functions. We can't use memcpy either - since that might be
207 * going to be in the relocated L1
210 blackfin_dma_early_init();
212 /* if necessary, copy L1 text to L1 instruction SRAM */
213 if (L1_CODE_LENGTH
&& text_l1_len
)
214 early_dma_memcpy(_stext_l1
, _text_l1_lma
, text_l1_len
);
216 /* if necessary, copy L1 data to L1 data bank A SRAM */
217 if (L1_DATA_A_LENGTH
&& data_l1_len
)
218 early_dma_memcpy(_sdata_l1
, _data_l1_lma
, data_l1_len
);
220 /* if necessary, copy L1 data B to L1 data bank B SRAM */
221 if (L1_DATA_B_LENGTH
&& data_b_l1_len
)
222 early_dma_memcpy(_sdata_b_l1
, _data_b_l1_lma
, data_b_l1_len
);
224 early_dma_memcpy_done();
226 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
227 blackfin_iflush_l1_entry
[0] = (unsigned long)blackfin_icache_flush_range_l1
;
230 /* if necessary, copy L2 text/data to L2 SRAM */
231 if (L2_LENGTH
&& l2_len
)
232 memcpy(_stext_l2
, _l2_lma
, l2_len
);
236 void __init
bfin_relocate_coreb_l1_mem(void)
238 unsigned long text_l1_len
= (unsigned long)_text_l1_len
;
239 unsigned long data_l1_len
= (unsigned long)_data_l1_len
;
240 unsigned long data_b_l1_len
= (unsigned long)_data_b_l1_len
;
242 blackfin_dma_early_init();
244 /* if necessary, copy L1 text to L1 instruction SRAM */
245 if (L1_CODE_LENGTH
&& text_l1_len
)
246 early_dma_memcpy((void *)COREB_L1_CODE_START
, _text_l1_lma
,
249 /* if necessary, copy L1 data to L1 data bank A SRAM */
250 if (L1_DATA_A_LENGTH
&& data_l1_len
)
251 early_dma_memcpy((void *)COREB_L1_DATA_A_START
, _data_l1_lma
,
254 /* if necessary, copy L1 data B to L1 data bank B SRAM */
255 if (L1_DATA_B_LENGTH
&& data_b_l1_len
)
256 early_dma_memcpy((void *)COREB_L1_DATA_B_START
, _data_b_l1_lma
,
259 early_dma_memcpy_done();
261 #ifdef CONFIG_ICACHE_FLUSH_L1
262 blackfin_iflush_l1_entry
[1] = (unsigned long)blackfin_icache_flush_range_l1
-
263 (unsigned long)_stext_l1
+ COREB_L1_CODE_START
;
268 #ifdef CONFIG_ROMKERNEL
269 void __init
bfin_relocate_xip_data(void)
271 early_shadow_stamp();
273 memcpy(_sdata
, _data_lma
, (unsigned long)_data_len
- THREAD_SIZE
+ sizeof(struct thread_info
));
274 memcpy(_sinitdata
, _init_data_lma
, (unsigned long)_init_data_len
);
278 /* add_memory_region to memmap */
279 static void __init
add_memory_region(unsigned long long start
,
280 unsigned long long size
, int type
)
284 i
= bfin_memmap
.nr_map
;
286 if (i
== BFIN_MEMMAP_MAX
) {
287 printk(KERN_ERR
"Ooops! Too many entries in the memory map!\n");
291 bfin_memmap
.map
[i
].addr
= start
;
292 bfin_memmap
.map
[i
].size
= size
;
293 bfin_memmap
.map
[i
].type
= type
;
294 bfin_memmap
.nr_map
++;
298 * Sanitize the boot memmap, removing overlaps.
300 static int __init
sanitize_memmap(struct bfin_memmap_entry
*map
, int *pnr_map
)
302 struct change_member
*change_tmp
;
303 unsigned long current_type
, last_type
;
304 unsigned long long last_addr
;
305 int chgidx
, still_changing
;
308 int old_nr
, new_nr
, chg_nr
;
312 Visually we're performing the following (1,2,3,4 = memory types)
314 Sample memory map (w/overlaps):
315 ____22__________________
316 ______________________4_
317 ____1111________________
318 _44_____________________
319 11111111________________
320 ____________________33__
321 ___________44___________
322 __________33333_________
323 ______________22________
324 ___________________2222_
325 _________111111111______
326 _____________________11_
327 _________________4______
329 Sanitized equivalent (no overlap):
330 1_______________________
331 _44_____________________
332 ___1____________________
333 ____22__________________
334 ______11________________
335 _________1______________
336 __________3_____________
337 ___________44___________
338 _____________33_________
339 _______________2________
340 ________________1_______
341 _________________4______
342 ___________________2____
343 ____________________33__
344 ______________________4_
346 /* if there's only one memory region, don't bother */
352 /* bail out if we find any unreasonable addresses in memmap */
353 for (i
= 0; i
< old_nr
; i
++)
354 if (map
[i
].addr
+ map
[i
].size
< map
[i
].addr
)
357 /* create pointers for initial change-point information (for sorting) */
358 for (i
= 0; i
< 2*old_nr
; i
++)
359 change_point
[i
] = &change_point_list
[i
];
361 /* record all known change-points (starting and ending addresses),
362 omitting those that are for empty memory regions */
364 for (i
= 0; i
< old_nr
; i
++) {
365 if (map
[i
].size
!= 0) {
366 change_point
[chgidx
]->addr
= map
[i
].addr
;
367 change_point
[chgidx
++]->pentry
= &map
[i
];
368 change_point
[chgidx
]->addr
= map
[i
].addr
+ map
[i
].size
;
369 change_point
[chgidx
++]->pentry
= &map
[i
];
372 chg_nr
= chgidx
; /* true number of change-points */
374 /* sort change-point list by memory addresses (low -> high) */
376 while (still_changing
) {
378 for (i
= 1; i
< chg_nr
; i
++) {
379 /* if <current_addr> > <last_addr>, swap */
380 /* or, if current=<start_addr> & last=<end_addr>, swap */
381 if ((change_point
[i
]->addr
< change_point
[i
-1]->addr
) ||
382 ((change_point
[i
]->addr
== change_point
[i
-1]->addr
) &&
383 (change_point
[i
]->addr
== change_point
[i
]->pentry
->addr
) &&
384 (change_point
[i
-1]->addr
!= change_point
[i
-1]->pentry
->addr
))
386 change_tmp
= change_point
[i
];
387 change_point
[i
] = change_point
[i
-1];
388 change_point
[i
-1] = change_tmp
;
394 /* create a new memmap, removing overlaps */
395 overlap_entries
= 0; /* number of entries in the overlap table */
396 new_entry
= 0; /* index for creating new memmap entries */
397 last_type
= 0; /* start with undefined memory type */
398 last_addr
= 0; /* start with 0 as last starting address */
399 /* loop through change-points, determining affect on the new memmap */
400 for (chgidx
= 0; chgidx
< chg_nr
; chgidx
++) {
401 /* keep track of all overlapping memmap entries */
402 if (change_point
[chgidx
]->addr
== change_point
[chgidx
]->pentry
->addr
) {
403 /* add map entry to overlap list (> 1 entry implies an overlap) */
404 overlap_list
[overlap_entries
++] = change_point
[chgidx
]->pentry
;
406 /* remove entry from list (order independent, so swap with last) */
407 for (i
= 0; i
< overlap_entries
; i
++) {
408 if (overlap_list
[i
] == change_point
[chgidx
]->pentry
)
409 overlap_list
[i
] = overlap_list
[overlap_entries
-1];
413 /* if there are overlapping entries, decide which "type" to use */
414 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
416 for (i
= 0; i
< overlap_entries
; i
++)
417 if (overlap_list
[i
]->type
> current_type
)
418 current_type
= overlap_list
[i
]->type
;
419 /* continue building up new memmap based on this information */
420 if (current_type
!= last_type
) {
421 if (last_type
!= 0) {
422 new_map
[new_entry
].size
=
423 change_point
[chgidx
]->addr
- last_addr
;
424 /* move forward only if the new size was non-zero */
425 if (new_map
[new_entry
].size
!= 0)
426 if (++new_entry
>= BFIN_MEMMAP_MAX
)
427 break; /* no more space left for new entries */
429 if (current_type
!= 0) {
430 new_map
[new_entry
].addr
= change_point
[chgidx
]->addr
;
431 new_map
[new_entry
].type
= current_type
;
432 last_addr
= change_point
[chgidx
]->addr
;
434 last_type
= current_type
;
437 new_nr
= new_entry
; /* retain count for new entries */
439 /* copy new mapping into original location */
440 memcpy(map
, new_map
, new_nr
*sizeof(struct bfin_memmap_entry
));
446 static void __init
print_memory_map(char *who
)
450 for (i
= 0; i
< bfin_memmap
.nr_map
; i
++) {
451 printk(KERN_DEBUG
" %s: %016Lx - %016Lx ", who
,
452 bfin_memmap
.map
[i
].addr
,
453 bfin_memmap
.map
[i
].addr
+ bfin_memmap
.map
[i
].size
);
454 switch (bfin_memmap
.map
[i
].type
) {
455 case BFIN_MEMMAP_RAM
:
456 printk(KERN_CONT
"(usable)\n");
458 case BFIN_MEMMAP_RESERVED
:
459 printk(KERN_CONT
"(reserved)\n");
462 printk(KERN_CONT
"type %lu\n", bfin_memmap
.map
[i
].type
);
468 static __init
int parse_memmap(char *arg
)
470 unsigned long long start_at
, mem_size
;
475 mem_size
= memparse(arg
, &arg
);
477 start_at
= memparse(arg
+1, &arg
);
478 add_memory_region(start_at
, mem_size
, BFIN_MEMMAP_RAM
);
479 } else if (*arg
== '$') {
480 start_at
= memparse(arg
+1, &arg
);
481 add_memory_region(start_at
, mem_size
, BFIN_MEMMAP_RESERVED
);
488 * Initial parsing of the command line. Currently, we support:
489 * - Controlling the linux memory size: mem=xxx[KMG]
490 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
491 * $ -> reserved memory is dcacheable
492 * # -> reserved memory is icacheable
493 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
494 * @ from <start> to <start>+<mem>, type RAM
495 * $ from <start> to <start>+<mem>, type RESERVED
497 static __init
void parse_cmdline_early(char *cmdline_p
)
499 char c
= ' ', *to
= cmdline_p
;
500 unsigned int memsize
;
503 if (!memcmp(to
, "mem=", 4)) {
505 memsize
= memparse(to
, &to
);
509 } else if (!memcmp(to
, "max_mem=", 8)) {
511 memsize
= memparse(to
, &to
);
513 physical_mem_end
= memsize
;
517 reserved_mem_dcache_on
= 1;
520 reserved_mem_icache_on
= 1;
523 } else if (!memcmp(to
, "clkin_hz=", 9)) {
525 early_init_clkin_hz(to
);
526 #ifdef CONFIG_EARLY_PRINTK
527 } else if (!memcmp(to
, "earlyprintk=", 12)) {
529 setup_early_printk(to
);
531 } else if (!memcmp(to
, "memmap=", 7)) {
543 * Setup memory defaults from user config.
544 * The physical memory layout looks like:
546 * [_rambase, _ramstart]: kernel image
547 * [memory_start, memory_end]: dynamic memory managed by kernel
548 * [memory_end, _ramend]: reserved memory
549 * [memory_mtd_start(memory_end),
550 * memory_mtd_start + mtd_size]: rootfs (if any)
551 * [_ramend - DMA_UNCACHED_REGION,
552 * _ramend]: uncached DMA region
553 * [_ramend, physical_mem_end]: memory not managed by kernel
555 static __init
void memory_setup(void)
557 #ifdef CONFIG_MTD_UCLINUX
558 unsigned long mtd_phys
= 0;
560 unsigned long max_mem
;
562 _rambase
= CONFIG_BOOT_LOAD
;
563 _ramstart
= (unsigned long)_end
;
565 if (DMA_UNCACHED_REGION
> (_ramend
- _ramstart
)) {
567 panic("DMA region exceeds memory limit: %lu.",
568 _ramend
- _ramstart
);
570 max_mem
= memory_end
= _ramend
- DMA_UNCACHED_REGION
;
572 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
573 /* Due to a Hardware Anomaly we need to limit the size of usable
574 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
575 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
577 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
578 if (max_mem
>= 56 * 1024 * 1024)
579 max_mem
= 56 * 1024 * 1024;
581 if (max_mem
>= 60 * 1024 * 1024)
582 max_mem
= 60 * 1024 * 1024;
583 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
584 #endif /* ANOMALY_05000263 */
588 /* Round up to multiple of 4MB */
589 memory_start
= (_ramstart
+ 0x3fffff) & ~0x3fffff;
591 memory_start
= PAGE_ALIGN(_ramstart
);
594 #if defined(CONFIG_MTD_UCLINUX)
595 /* generic memory mapped MTD driver */
596 memory_mtd_end
= memory_end
;
598 mtd_phys
= _ramstart
;
599 mtd_size
= PAGE_ALIGN(*((unsigned long *)(mtd_phys
+ 8)));
601 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
602 if (*((unsigned short *)(mtd_phys
+ 0x438)) == EXT2_SUPER_MAGIC
)
604 PAGE_ALIGN(*((unsigned long *)(mtd_phys
+ 0x404)) << 10);
607 # if defined(CONFIG_CRAMFS)
608 if (*((unsigned long *)(mtd_phys
)) == CRAMFS_MAGIC
)
609 mtd_size
= PAGE_ALIGN(*((unsigned long *)(mtd_phys
+ 0x4)));
612 # if defined(CONFIG_ROMFS_FS)
613 if (((unsigned long *)mtd_phys
)[0] == ROMSB_WORD0
614 && ((unsigned long *)mtd_phys
)[1] == ROMSB_WORD1
) {
616 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys
)[2]));
618 /* ROM_FS is XIP, so if we found it, we need to limit memory */
619 if (memory_end
> max_mem
) {
620 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
621 (max_mem
- CONFIG_PHY_RAM_BASE_ADDRESS
) >> 20);
622 memory_end
= max_mem
;
625 # endif /* CONFIG_ROMFS_FS */
627 /* Since the default MTD_UCLINUX has no magic number, we just blindly
628 * read 8 past the end of the kernel's image, and look at it.
629 * When no image is attached, mtd_size is set to a random number
630 * Do some basic sanity checks before operating on things
632 if (mtd_size
== 0 || memory_end
<= mtd_size
) {
633 pr_emerg("Could not find valid ram mtd attached.\n");
635 memory_end
-= mtd_size
;
637 /* Relocate MTD image to the top of memory after the uncached memory area */
638 uclinux_ram_map
.phys
= memory_mtd_start
= memory_end
;
639 uclinux_ram_map
.size
= mtd_size
;
640 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
641 _end
, mtd_size
, (void *)memory_mtd_start
);
642 dma_memcpy((void *)uclinux_ram_map
.phys
, _end
, uclinux_ram_map
.size
);
644 #endif /* CONFIG_MTD_UCLINUX */
646 /* We need lo limit memory, since everything could have a text section
647 * of userspace in it, and expose anomaly 05000263. If the anomaly
648 * doesn't exist, or we don't need to - then dont.
650 if (memory_end
> max_mem
) {
651 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
652 (max_mem
- CONFIG_PHY_RAM_BASE_ADDRESS
) >> 20);
653 memory_end
= max_mem
;
657 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
658 page_mask_nelts
= (((_ramend
+ ASYNC_BANK3_BASE
+ ASYNC_BANK3_SIZE
-
659 ASYNC_BANK0_BASE
) >> PAGE_SHIFT
) + 31) / 32;
661 page_mask_nelts
= ((_ramend
>> PAGE_SHIFT
) + 31) / 32;
663 page_mask_order
= get_order(3 * page_mask_nelts
* sizeof(long));
666 init_mm
.start_code
= (unsigned long)_stext
;
667 init_mm
.end_code
= (unsigned long)_etext
;
668 init_mm
.end_data
= (unsigned long)_edata
;
669 init_mm
.brk
= (unsigned long)0;
671 printk(KERN_INFO
"Board Memory: %ldMB\n", (physical_mem_end
- CONFIG_PHY_RAM_BASE_ADDRESS
) >> 20);
672 printk(KERN_INFO
"Kernel Managed Memory: %ldMB\n", (_ramend
- CONFIG_PHY_RAM_BASE_ADDRESS
) >> 20);
674 printk(KERN_INFO
"Memory map:\n"
675 " fixedcode = 0x%p-0x%p\n"
676 " text = 0x%p-0x%p\n"
677 " rodata = 0x%p-0x%p\n"
679 " data = 0x%p-0x%p\n"
680 " stack = 0x%p-0x%p\n"
681 " init = 0x%p-0x%p\n"
682 " available = 0x%p-0x%p\n"
683 #ifdef CONFIG_MTD_UCLINUX
684 " rootfs = 0x%p-0x%p\n"
686 #if DMA_UNCACHED_REGION > 0
687 " DMA Zone = 0x%p-0x%p\n"
689 , (void *)FIXED_CODE_START
, (void *)FIXED_CODE_END
,
691 __start_rodata
, __end_rodata
,
692 __bss_start
, __bss_stop
,
694 (void *)&init_thread_union
,
695 (void *)((int)(&init_thread_union
) + THREAD_SIZE
),
696 __init_begin
, __init_end
,
697 (void *)_ramstart
, (void *)memory_end
698 #ifdef CONFIG_MTD_UCLINUX
699 , (void *)memory_mtd_start
, (void *)(memory_mtd_start
+ mtd_size
)
701 #if DMA_UNCACHED_REGION > 0
702 , (void *)(_ramend
- DMA_UNCACHED_REGION
), (void *)(_ramend
)
708 * Find the lowest, highest page frame number we have available
710 void __init
find_min_max_pfn(void)
715 min_low_pfn
= PFN_DOWN(memory_end
);
717 for (i
= 0; i
< bfin_memmap
.nr_map
; i
++) {
718 unsigned long start
, end
;
720 if (bfin_memmap
.map
[i
].type
!= BFIN_MEMMAP_RAM
)
722 start
= PFN_UP(bfin_memmap
.map
[i
].addr
);
723 end
= PFN_DOWN(bfin_memmap
.map
[i
].addr
+
724 bfin_memmap
.map
[i
].size
);
729 if (start
< min_low_pfn
)
734 static __init
void setup_bootmem_allocator(void)
738 unsigned long start_pfn
, end_pfn
;
739 unsigned long curr_pfn
, last_pfn
, size
;
741 /* mark memory between memory_start and memory_end usable */
742 add_memory_region(memory_start
,
743 memory_end
- memory_start
, BFIN_MEMMAP_RAM
);
744 /* sanity check for overlap */
745 sanitize_memmap(bfin_memmap
.map
, &bfin_memmap
.nr_map
);
746 print_memory_map("boot memmap");
748 /* initialize globals in linux/bootmem.h */
750 /* pfn of the last usable page frame */
751 if (max_pfn
> memory_end
>> PAGE_SHIFT
)
752 max_pfn
= memory_end
>> PAGE_SHIFT
;
753 /* pfn of last page frame directly mapped by kernel */
754 max_low_pfn
= max_pfn
;
755 /* pfn of the first usable page frame after kernel image*/
756 if (min_low_pfn
< memory_start
>> PAGE_SHIFT
)
757 min_low_pfn
= memory_start
>> PAGE_SHIFT
;
758 start_pfn
= CONFIG_PHY_RAM_BASE_ADDRESS
>> PAGE_SHIFT
;
759 end_pfn
= memory_end
>> PAGE_SHIFT
;
762 * give all the memory to the bootmap allocator, tell it to put the
763 * boot mem_map at the start of memory.
765 bootmap_size
= init_bootmem_node(NODE_DATA(0),
766 memory_start
>> PAGE_SHIFT
, /* map goes here */
769 /* register the memmap regions with the bootmem allocator */
770 for (i
= 0; i
< bfin_memmap
.nr_map
; i
++) {
772 * Reserve usable memory
774 if (bfin_memmap
.map
[i
].type
!= BFIN_MEMMAP_RAM
)
777 * We are rounding up the start address of usable memory:
779 curr_pfn
= PFN_UP(bfin_memmap
.map
[i
].addr
);
780 if (curr_pfn
>= end_pfn
)
783 * ... and at the end of the usable range downwards:
785 last_pfn
= PFN_DOWN(bfin_memmap
.map
[i
].addr
+
786 bfin_memmap
.map
[i
].size
);
788 if (last_pfn
> end_pfn
)
792 * .. finally, did all the rounding and playing
793 * around just make the area go away?
795 if (last_pfn
<= curr_pfn
)
798 size
= last_pfn
- curr_pfn
;
799 free_bootmem(PFN_PHYS(curr_pfn
), PFN_PHYS(size
));
802 /* reserve memory before memory_start, including bootmap */
803 reserve_bootmem(CONFIG_PHY_RAM_BASE_ADDRESS
,
804 memory_start
+ bootmap_size
+ PAGE_SIZE
- 1 - CONFIG_PHY_RAM_BASE_ADDRESS
,
808 #define EBSZ_TO_MEG(ebsz) \
811 switch (ebsz & 0xf) { \
812 case 0x1: meg = 16; break; \
813 case 0x3: meg = 32; break; \
814 case 0x5: meg = 64; break; \
815 case 0x7: meg = 128; break; \
816 case 0x9: meg = 256; break; \
817 case 0xb: meg = 512; break; \
821 static inline int __init
get_mem_size(void)
823 #if defined(EBIU_SDBCTL)
824 # if defined(BF561_FAMILY)
826 u32 sdbctl
= bfin_read_EBIU_SDBCTL();
827 ret
+= EBSZ_TO_MEG(sdbctl
>> 0);
828 ret
+= EBSZ_TO_MEG(sdbctl
>> 8);
829 ret
+= EBSZ_TO_MEG(sdbctl
>> 16);
830 ret
+= EBSZ_TO_MEG(sdbctl
>> 24);
833 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
835 #elif defined(EBIU_DDRCTL1)
836 u32 ddrctl
= bfin_read_EBIU_DDRCTL1();
838 switch (ddrctl
& 0xc0000) {
852 switch (ddrctl
& 0x30000) {
860 if ((ddrctl
& 0xc000) == 0x4000)
863 #elif defined(CONFIG_BF60x)
864 u32 ddrctl
= bfin_read_DMC0_CFG();
866 switch (ddrctl
& 0xf00) {
891 __attribute__((weak
))
892 void __init
native_machine_early_platform_add_devices(void)
897 static inline u_long
bfin_get_clk(char *name
)
902 clk
= clk_get(NULL
, name
);
906 clk_rate
= clk_get_rate(clk
);
912 void __init
setup_arch(char **cmdline_p
)
915 unsigned long sclk
, cclk
;
917 native_machine_early_platform_add_devices();
919 enable_shadow_console();
921 /* Check to make sure we are running on the right processor */
923 if (unlikely(CPUID
!= bfin_cpuid()))
924 printk(KERN_ERR
"ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
925 CPU
, bfin_cpuid(), bfin_revid());
927 #ifdef CONFIG_DUMMY_CONSOLE
928 conswitchp
= &dummy_con
;
931 #if defined(CONFIG_CMDLINE_BOOL)
932 strncpy(&command_line
[0], CONFIG_CMDLINE
, sizeof(command_line
));
933 command_line
[sizeof(command_line
) - 1] = 0;
936 /* Keep a copy of command line */
937 *cmdline_p
= &command_line
[0];
938 memcpy(boot_command_line
, command_line
, COMMAND_LINE_SIZE
);
939 boot_command_line
[COMMAND_LINE_SIZE
- 1] = '\0';
941 memset(&bfin_memmap
, 0, sizeof(bfin_memmap
));
944 /* Should init clock device before parse command early */
947 /* If the user does not specify things on the command line, use
948 * what the bootloader set things up as
950 physical_mem_end
= 0;
951 parse_cmdline_early(&command_line
[0]);
954 _ramend
= get_mem_size() * 1024 * 1024;
956 if (physical_mem_end
== 0)
957 physical_mem_end
= _ramend
;
962 /* Initialize Async memory banks */
963 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL
);
964 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL
);
965 bfin_write_EBIU_AMGCTL(AMGCTLVAL
);
966 #ifdef CONFIG_EBIU_MBSCTLVAL
967 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL
);
968 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL
);
969 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL
);
972 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
973 bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15
);
974 bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15
);
975 bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15
);
976 bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
977 ~HYST_NONEGPIO_MASK
) | HYST_NONEGPIO
);
983 if ((ANOMALY_05000273
|| ANOMALY_05000274
) && (cclk
>> 1) < sclk
)
984 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
987 if (ANOMALY_05000266
) {
988 bfin_read_IMDMA_D0_IRQ_STATUS();
989 bfin_read_IMDMA_D1_IRQ_STATUS();
993 mmr
= bfin_read_TBUFCTL();
994 printk(KERN_INFO
"Hardware Trace %s and %sabled\n",
995 (mmr
& 0x1) ? "active" : "off",
996 (mmr
& 0x2) ? "en" : "dis");
998 mmr
= bfin_read_SYSCR();
999 printk(KERN_INFO
"Boot Mode: %i\n", mmr
& 0xF);
1001 /* Newer parts mirror SWRST bits in SYSCR */
1002 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
1003 defined(CONFIG_BF538) || defined(CONFIG_BF539)
1004 _bfin_swrst
= bfin_read_SWRST();
1006 /* Clear boot mode field */
1007 _bfin_swrst
= mmr
& ~0xf;
1010 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
1011 bfin_write_SWRST(_bfin_swrst
& ~DOUBLE_FAULT
);
1013 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
1014 bfin_write_SWRST(_bfin_swrst
| DOUBLE_FAULT
);
1018 if (_bfin_swrst
& SWRST_DBL_FAULT_A
) {
1020 if (_bfin_swrst
& RESET_DOUBLE
) {
1022 printk(KERN_EMERG
"Recovering from DOUBLE FAULT event\n");
1023 #ifdef CONFIG_DEBUG_DOUBLEFAULT
1024 /* We assume the crashing kernel, and the current symbol table match */
1025 printk(KERN_EMERG
" While handling exception (EXCAUSE = %#x) at %pF\n",
1026 initial_pda
.seqstat_doublefault
& SEQSTAT_EXCAUSE
,
1027 initial_pda
.retx_doublefault
);
1028 printk(KERN_NOTICE
" DCPLB_FAULT_ADDR: %pF\n",
1029 initial_pda
.dcplb_doublefault_addr
);
1030 printk(KERN_NOTICE
" ICPLB_FAULT_ADDR: %pF\n",
1031 initial_pda
.icplb_doublefault_addr
);
1033 printk(KERN_NOTICE
" The instruction at %pF caused a double exception\n",
1035 } else if (_bfin_swrst
& RESET_WDOG
)
1036 printk(KERN_INFO
"Recovering from Watchdog event\n");
1037 else if (_bfin_swrst
& RESET_SOFTWARE
)
1038 printk(KERN_NOTICE
"Reset caused by Software reset\n");
1040 printk(KERN_INFO
"Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
1041 if (bfin_compiled_revid() == 0xffff)
1042 printk(KERN_INFO
"Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU
, bfin_revid());
1043 else if (bfin_compiled_revid() == -1)
1044 printk(KERN_INFO
"Compiled for ADSP-%s Rev none\n", CPU
);
1046 printk(KERN_INFO
"Compiled for ADSP-%s Rev 0.%d\n", CPU
, bfin_compiled_revid());
1048 if (likely(CPUID
== bfin_cpuid())) {
1049 if (bfin_revid() != bfin_compiled_revid()) {
1050 if (bfin_compiled_revid() == -1)
1051 printk(KERN_ERR
"Warning: Compiled for Rev none, but running on Rev %d\n",
1053 else if (bfin_compiled_revid() != 0xffff) {
1054 printk(KERN_ERR
"Warning: Compiled for Rev %d, but running on Rev %d\n",
1055 bfin_compiled_revid(), bfin_revid());
1056 if (bfin_compiled_revid() > bfin_revid())
1057 panic("Error: you are missing anomaly workarounds for this rev");
1060 if (bfin_revid() < CONFIG_BF_REV_MIN
|| bfin_revid() > CONFIG_BF_REV_MAX
)
1061 printk(KERN_ERR
"Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
1065 printk(KERN_INFO
"Blackfin Linux support by http://blackfin.uclinux.org/\n");
1068 printk(KERN_INFO
"Processor Speed: %lu MHz core clock, %lu MHz SCLk, %lu MHz SCLK0, %lu MHz SCLK1 and %lu MHz DCLK\n",
1069 cclk
/ 1000000, bfin_get_clk("SYSCLK") / 1000000, get_sclk0() / 1000000, get_sclk1() / 1000000, get_dclk() / 1000000);
1071 printk(KERN_INFO
"Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1072 cclk
/ 1000000, sclk
/ 1000000);
1075 setup_bootmem_allocator();
1079 /* Copy atomic sequences to their fixed location, and sanity check that
1080 these locations are the ones that we advertise to userspace. */
1081 memcpy((void *)FIXED_CODE_START
, &fixed_code_start
,
1082 FIXED_CODE_END
- FIXED_CODE_START
);
1083 BUG_ON((char *)&sigreturn_stub
- (char *)&fixed_code_start
1084 != SIGRETURN_STUB
- FIXED_CODE_START
);
1085 BUG_ON((char *)&atomic_xchg32
- (char *)&fixed_code_start
1086 != ATOMIC_XCHG32
- FIXED_CODE_START
);
1087 BUG_ON((char *)&atomic_cas32
- (char *)&fixed_code_start
1088 != ATOMIC_CAS32
- FIXED_CODE_START
);
1089 BUG_ON((char *)&atomic_add32
- (char *)&fixed_code_start
1090 != ATOMIC_ADD32
- FIXED_CODE_START
);
1091 BUG_ON((char *)&atomic_sub32
- (char *)&fixed_code_start
1092 != ATOMIC_SUB32
- FIXED_CODE_START
);
1093 BUG_ON((char *)&atomic_ior32
- (char *)&fixed_code_start
1094 != ATOMIC_IOR32
- FIXED_CODE_START
);
1095 BUG_ON((char *)&atomic_and32
- (char *)&fixed_code_start
1096 != ATOMIC_AND32
- FIXED_CODE_START
);
1097 BUG_ON((char *)&atomic_xor32
- (char *)&fixed_code_start
1098 != ATOMIC_XOR32
- FIXED_CODE_START
);
1099 BUG_ON((char *)&safe_user_instruction
- (char *)&fixed_code_start
1100 != SAFE_USER_INSTRUCTION
- FIXED_CODE_START
);
1103 platform_init_cpus();
1105 init_exception_vectors();
1106 bfin_cache_init(); /* Initialize caches for the boot CPU */
1107 #ifdef CONFIG_SCB_PRIORITY
1112 static int __init
topology_init(void)
1116 for_each_possible_cpu(cpu
) {
1117 register_cpu(&per_cpu(cpu_data
, cpu
).cpu
, cpu
);
1123 subsys_initcall(topology_init
);
1125 /* Get the input clock frequency */
1126 static u_long cached_clkin_hz
= CONFIG_CLKIN_HZ
;
1127 #ifndef CONFIG_BF60x
1128 static u_long
get_clkin_hz(void)
1130 return cached_clkin_hz
;
1133 static int __init
early_init_clkin_hz(char *buf
)
1135 cached_clkin_hz
= simple_strtoul(buf
, NULL
, 0);
1136 #ifdef BFIN_KERNEL_CLOCK
1137 if (cached_clkin_hz
!= CONFIG_CLKIN_HZ
)
1138 panic("cannot change clkin_hz when reprogramming clocks");
1142 early_param("clkin_hz=", early_init_clkin_hz
);
1144 #ifndef CONFIG_BF60x
1145 /* Get the voltage input multiplier */
1146 static u_long
get_vco(void)
1148 static u_long cached_vco
;
1149 u_long msel
, pll_ctl
;
1151 /* The assumption here is that VCO never changes at runtime.
1152 * If, someday, we support that, then we'll have to change this.
1157 pll_ctl
= bfin_read_PLL_CTL();
1158 msel
= (pll_ctl
>> 9) & 0x3F;
1162 cached_vco
= get_clkin_hz();
1163 cached_vco
>>= (1 & pll_ctl
); /* DF bit */
1169 /* Get the Core clock */
1170 u_long
get_cclk(void)
1173 return bfin_get_clk("CCLK");
1175 static u_long cached_cclk_pll_div
, cached_cclk
;
1178 if (bfin_read_PLL_STAT() & 0x1)
1179 return get_clkin_hz();
1181 ssel
= bfin_read_PLL_DIV();
1182 if (ssel
== cached_cclk_pll_div
)
1185 cached_cclk_pll_div
= ssel
;
1187 csel
= ((ssel
>> 4) & 0x03);
1189 if (ssel
&& ssel
< (1 << csel
)) /* SCLK > CCLK */
1190 cached_cclk
= get_vco() / ssel
;
1192 cached_cclk
= get_vco() >> csel
;
1196 EXPORT_SYMBOL(get_cclk
);
1199 /* Get the bf60x clock of SCLK0 domain */
1200 u_long
get_sclk0(void)
1202 return bfin_get_clk("SCLK0");
1204 EXPORT_SYMBOL(get_sclk0
);
1206 /* Get the bf60x clock of SCLK1 domain */
1207 u_long
get_sclk1(void)
1209 return bfin_get_clk("SCLK1");
1211 EXPORT_SYMBOL(get_sclk1
);
1213 /* Get the bf60x DRAM clock */
1214 u_long
get_dclk(void)
1216 return bfin_get_clk("DCLK");
1218 EXPORT_SYMBOL(get_dclk
);
1221 /* Get the default system clock */
1222 u_long
get_sclk(void)
1227 static u_long cached_sclk
;
1230 /* The assumption here is that SCLK never changes at runtime.
1231 * If, someday, we support that, then we'll have to change this.
1236 if (bfin_read_PLL_STAT() & 0x1)
1237 return get_clkin_hz();
1239 ssel
= bfin_read_PLL_DIV() & 0xf;
1241 printk(KERN_WARNING
"Invalid System Clock\n");
1245 cached_sclk
= get_vco() / ssel
;
1249 EXPORT_SYMBOL(get_sclk
);
1251 unsigned long sclk_to_usecs(unsigned long sclk
)
1253 u64 tmp
= USEC_PER_SEC
* (u64
)sclk
;
1254 do_div(tmp
, get_sclk());
1257 EXPORT_SYMBOL(sclk_to_usecs
);
1259 unsigned long usecs_to_sclk(unsigned long usecs
)
1261 u64 tmp
= get_sclk() * (u64
)usecs
;
1262 do_div(tmp
, USEC_PER_SEC
);
1265 EXPORT_SYMBOL(usecs_to_sclk
);
1268 * Get CPU information for use by the procfs.
1270 static int show_cpuinfo(struct seq_file
*m
, void *v
)
1272 char *cpu
, *mmu
, *fpu
, *vendor
, *cache
;
1274 int cpu_num
= *(unsigned int *)v
;
1276 u_int icache_size
= BFIN_ICACHESIZE
/ 1024, dcache_size
= 0, dsup_banks
= 0;
1277 struct blackfin_cpudata
*cpudata
= &per_cpu(cpu_data
, cpu_num
);
1282 revid
= bfin_revid();
1287 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE
) {
1289 vendor
= "Analog Devices";
1296 seq_printf(m
, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num
, vendor
);
1298 if (CPUID
== bfin_cpuid())
1299 seq_printf(m
, "cpu family\t: 0x%04x\n", CPUID
);
1301 seq_printf(m
, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1302 CPUID
, bfin_cpuid());
1304 seq_printf(m
, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1306 cpu
, cclk
/1000000, sclk
/1000000,
1314 if (bfin_revid() != bfin_compiled_revid()) {
1315 if (bfin_compiled_revid() == -1)
1316 seq_printf(m
, "(Compiled for Rev none)");
1317 else if (bfin_compiled_revid() == 0xffff)
1318 seq_printf(m
, "(Compiled for Rev any)");
1320 seq_printf(m
, "(Compiled for Rev %d)", bfin_compiled_revid());
1323 seq_printf(m
, "\ncpu MHz\t\t: %lu.%06lu/%lu.%06lu\n",
1324 cclk
/1000000, cclk
%1000000,
1325 sclk
/1000000, sclk
%1000000);
1326 seq_printf(m
, "bogomips\t: %lu.%02lu\n"
1327 "Calibration\t: %lu loops\n",
1328 (loops_per_jiffy
* HZ
) / 500000,
1329 ((loops_per_jiffy
* HZ
) / 5000) % 100,
1330 (loops_per_jiffy
* HZ
));
1332 /* Check Cache configutation */
1333 switch (cpudata
->dmemctl
& (1 << DMC0_P
| 1 << DMC1_P
)) {
1335 cache
= "dbank-A/B\t: cache/sram";
1340 cache
= "dbank-A/B\t: cache/cache";
1345 cache
= "dbank-A/B\t: sram/sram";
1356 /* Is it turned on? */
1357 if ((cpudata
->dmemctl
& (ENDCPLB
| DMC_ENABLE
)) != (ENDCPLB
| DMC_ENABLE
))
1360 if ((cpudata
->imemctl
& (IMC
| ENICPLB
)) != (IMC
| ENICPLB
))
1363 seq_printf(m
, "cache size\t: %d KB(L1 icache) "
1364 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1365 icache_size
, dcache_size
, 0);
1366 seq_printf(m
, "%s\n", cache
);
1367 seq_printf(m
, "external memory\t: "
1368 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1373 " in instruction cache\n");
1374 seq_printf(m
, "external memory\t: "
1375 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1376 "cacheable (write-back)"
1377 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1378 "cacheable (write-through)"
1382 " in data cache\n");
1385 seq_printf(m
, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1386 BFIN_ISUBBANKS
, BFIN_IWAYS
, BFIN_ILINES
);
1388 seq_printf(m
, "icache setup\t: off\n");
1391 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1392 dsup_banks
, BFIN_DSUBBANKS
, BFIN_DWAYS
,
1394 #ifdef __ARCH_SYNC_CORE_DCACHE
1395 seq_printf(m
, "dcache flushes\t: %lu\n", dcache_invld_count
[cpu_num
]);
1397 #ifdef __ARCH_SYNC_CORE_ICACHE
1398 seq_printf(m
, "icache flushes\t: %lu\n", icache_invld_count
[cpu_num
]);
1401 seq_printf(m
, "\n");
1403 if (cpu_num
!= num_possible_cpus() - 1)
1407 seq_printf(m
, "L2 SRAM\t\t: %dKB\n", L2_LENGTH
/0x400);
1408 seq_printf(m
, "L2 SRAM\t\t: "
1409 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1414 " in instruction cache\n");
1415 seq_printf(m
, "L2 SRAM\t\t: "
1416 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1417 "cacheable (write-back)"
1418 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1419 "cacheable (write-through)"
1423 " in data cache\n");
1425 seq_printf(m
, "board name\t: %s\n", bfin_board_name
);
1426 seq_printf(m
, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
1427 physical_mem_end
>> 10, 0ul, physical_mem_end
);
1428 seq_printf(m
, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
1429 ((int)memory_end
- (int)_rambase
) >> 10,
1430 _rambase
, memory_end
);
1435 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1438 *pos
= cpumask_first(cpu_online_mask
);
1439 if (*pos
>= num_online_cpus())
1445 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1447 *pos
= cpumask_next(*pos
, cpu_online_mask
);
1449 return c_start(m
, pos
);
1452 static void c_stop(struct seq_file
*m
, void *v
)
1456 const struct seq_operations cpuinfo_op
= {
1460 .show
= show_cpuinfo
,
1463 void __init
cmdline_init(const char *r0
)
1465 early_shadow_stamp();
1467 strncpy(command_line
, r0
, COMMAND_LINE_SIZE
);