2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 #include <linux/cpu.h>
47 #include <asm/errno.h>
48 #include <asm/intrinsics.h>
50 #include <asm/perfmon.h>
51 #include <asm/processor.h>
52 #include <asm/signal.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
58 * perfmon context state
60 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
61 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
62 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
65 #define PFM_INVALID_ACTIVATION (~0UL)
67 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
71 * depth of message queue
73 #define PFM_MAX_MSGS 32
74 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77 * type of a PMU register (bitmask).
79 * bit0 : register implemented
82 * bit4 : pmc has pmc.pm
83 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * bit6-7 : register type
87 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
88 #define PFM_REG_IMPL 0x1 /* register implemented */
89 #define PFM_REG_END 0x2 /* end marker */
90 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
96 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
99 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
111 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
116 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
119 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h) (h)->ctx_task
123 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
131 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR 0 /* requesting code range restriction */
135 #define PFM_DATA_RR 1 /* requestion data range restriction */
137 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
141 #define RDEP(x) (1UL<<(x))
144 * context protection macros
146 * - we need to protect against CPU concurrency (spin_lock)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
151 * spin_lock_irqsave()/spin_unlock_irqrestore():
152 * in SMP: local_irq_disable + spin_lock
153 * in UP : local_irq_disable
155 * spin_lock()/spin_lock():
156 * in UP : removed automatically
157 * in SMP: protect against context accesses from other CPU. interrupts
158 * are not masked. This is useful for the PMU interrupt handler
159 * because we know we will not get PMU concurrency in that code.
161 #define PROTECT_CTX(c, f) \
163 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 spin_lock_irqsave(&(c)->ctx_lock, f); \
165 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
168 #define UNPROTECT_CTX(c, f) \
170 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
174 #define PROTECT_CTX_NOPRINT(c, f) \
176 spin_lock_irqsave(&(c)->ctx_lock, f); \
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
182 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
186 #define PROTECT_CTX_NOIRQ(c) \
188 spin_lock(&(c)->ctx_lock); \
191 #define UNPROTECT_CTX_NOIRQ(c) \
193 spin_unlock(&(c)->ctx_lock); \
199 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) do {} while(0)
205 #define GET_ACTIVATION(t) do {} while(0)
206 #define INC_ACTIVATION(t) do {} while(0)
207 #endif /* CONFIG_SMP */
209 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
213 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
216 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219 * cmp0 must be the value of pmc0
221 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
223 #define PFMFS_MAGIC 0xa0b4d889
228 #define PFM_DEBUGGING 1
232 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
235 #define DPRINT_ovfl(a) \
237 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
242 * 64-bit software counter structure
244 * the next_reset_type is applied to the next call to pfm_reset_regs()
247 unsigned long val
; /* virtual 64bit counter value */
248 unsigned long lval
; /* last reset value */
249 unsigned long long_reset
; /* reset value on sampling overflow */
250 unsigned long short_reset
; /* reset value on overflow */
251 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
252 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
253 unsigned long seed
; /* seed for random-number generator */
254 unsigned long mask
; /* mask for random-number generator */
255 unsigned int flags
; /* notify/do not notify */
256 unsigned long eventid
; /* overflow event identifier */
263 unsigned int block
:1; /* when 1, task will blocked on user notifications */
264 unsigned int system
:1; /* do system wide monitoring */
265 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
266 unsigned int is_sampling
:1; /* true if using a custom format */
267 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
268 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
269 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
270 unsigned int no_msg
:1; /* no message sent on overflow */
271 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
272 unsigned int reserved
:22;
273 } pfm_context_flags_t
;
275 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
276 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
281 * perfmon context: encapsulates all the state of a monitoring session
284 typedef struct pfm_context
{
285 spinlock_t ctx_lock
; /* context protection */
287 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
288 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
290 struct task_struct
*ctx_task
; /* task to which context is attached */
292 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
294 struct completion ctx_restart_done
; /* use for blocking notification mode */
296 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
297 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
298 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
300 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
301 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
302 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
304 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
306 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
307 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
308 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
309 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
311 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
313 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
314 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
316 unsigned long ctx_saved_psr_up
; /* only contains psr.up value */
318 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
319 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
320 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
322 int ctx_fd
; /* file descriptor used my this context */
323 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
325 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
326 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
327 unsigned long ctx_smpl_size
; /* size of sampling buffer */
328 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
330 wait_queue_head_t ctx_msgq_wait
;
331 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
334 struct fasync_struct
*ctx_async_queue
;
336 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
340 * magic number used to verify that structure is really
343 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
345 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
348 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
351 #define SET_LAST_CPU(ctx, v) do {} while(0)
352 #define GET_LAST_CPU(ctx) do {} while(0)
356 #define ctx_fl_block ctx_flags.block
357 #define ctx_fl_system ctx_flags.system
358 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling ctx_flags.is_sampling
360 #define ctx_fl_excl_idle ctx_flags.excl_idle
361 #define ctx_fl_going_zombie ctx_flags.going_zombie
362 #define ctx_fl_trap_reason ctx_flags.trap_reason
363 #define ctx_fl_no_msg ctx_flags.no_msg
364 #define ctx_fl_can_restart ctx_flags.can_restart
366 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
370 * global information about all sessions
371 * mostly used to synchronize between system wide and per-process
374 spinlock_t pfs_lock
; /* lock the structure */
376 unsigned int pfs_task_sessions
; /* number of per task sessions */
377 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
378 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
379 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
380 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
384 * information about a PMC or PMD.
385 * dep_pmd[]: a bitmask of dependent PMD registers
386 * dep_pmc[]: a bitmask of dependent PMC registers
388 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
392 unsigned long default_value
; /* power-on default value */
393 unsigned long reserved_mask
; /* bitmask of reserved bits */
394 pfm_reg_check_t read_check
;
395 pfm_reg_check_t write_check
;
396 unsigned long dep_pmd
[4];
397 unsigned long dep_pmc
[4];
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404 * This structure is initialized at boot time and contains
405 * a description of the PMU main characteristics.
407 * If the probe function is defined, detection is based
408 * on its return value:
409 * - 0 means recognized PMU
410 * - anything else means not supported
411 * When the probe function is not defined, then the pmu_family field
412 * is used and it must match the host CPU family such that:
413 * - cpu->family & config->pmu_family != 0
416 unsigned long ovfl_val
; /* overflow value for counters */
418 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
419 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
421 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
422 unsigned int num_pmds
; /* number of PMDS: computed at init time */
423 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
424 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
426 char *pmu_name
; /* PMU family name */
427 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
428 unsigned int flags
; /* pmu specific flags */
429 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
430 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
431 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
432 int (*probe
)(void); /* customized probe routine */
433 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
438 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
441 * debug register related type definitions
444 unsigned long ibr_mask
:56;
445 unsigned long ibr_plm
:4;
446 unsigned long ibr_ig
:3;
447 unsigned long ibr_x
:1;
451 unsigned long dbr_mask
:56;
452 unsigned long dbr_plm
:4;
453 unsigned long dbr_ig
:2;
454 unsigned long dbr_w
:1;
455 unsigned long dbr_r
:1;
466 * perfmon command descriptions
469 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
472 unsigned int cmd_narg
;
474 int (*cmd_getsize
)(void *arg
, size_t *sz
);
477 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
479 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
480 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
483 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
489 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
492 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
493 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
494 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
498 unsigned long pfm_smpl_handler_calls
;
499 unsigned long pfm_smpl_handler_cycles
;
500 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
504 * perfmon internal variables
506 static pfm_stats_t pfm_stats
[NR_CPUS
];
507 static pfm_session_t pfm_sessions
; /* global sessions information */
509 static DEFINE_SPINLOCK(pfm_alt_install_check
);
510 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
512 static struct proc_dir_entry
*perfmon_dir
;
513 static pfm_uuid_t pfm_null_uuid
= {0,};
515 static spinlock_t pfm_buffer_fmt_lock
;
516 static LIST_HEAD(pfm_buffer_fmt_list
);
518 static pmu_config_t
*pmu_conf
;
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl
;
522 EXPORT_SYMBOL(pfm_sysctl
);
524 static struct ctl_table pfm_ctl_table
[] = {
527 .data
= &pfm_sysctl
.debug
,
528 .maxlen
= sizeof(int),
530 .proc_handler
= proc_dointvec
,
533 .procname
= "debug_ovfl",
534 .data
= &pfm_sysctl
.debug_ovfl
,
535 .maxlen
= sizeof(int),
537 .proc_handler
= proc_dointvec
,
540 .procname
= "fastctxsw",
541 .data
= &pfm_sysctl
.fastctxsw
,
542 .maxlen
= sizeof(int),
544 .proc_handler
= proc_dointvec
,
547 .procname
= "expert_mode",
548 .data
= &pfm_sysctl
.expert_mode
,
549 .maxlen
= sizeof(int),
551 .proc_handler
= proc_dointvec
,
555 static struct ctl_table pfm_sysctl_dir
[] = {
557 .procname
= "perfmon",
559 .child
= pfm_ctl_table
,
563 static struct ctl_table pfm_sysctl_root
[] = {
565 .procname
= "kernel",
567 .child
= pfm_sysctl_dir
,
571 static struct ctl_table_header
*pfm_sysctl_header
;
573 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
575 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
579 pfm_put_task(struct task_struct
*task
)
581 if (task
!= current
) put_task_struct(task
);
585 pfm_reserve_page(unsigned long a
)
587 SetPageReserved(vmalloc_to_page((void *)a
));
590 pfm_unreserve_page(unsigned long a
)
592 ClearPageReserved(vmalloc_to_page((void*)a
));
595 static inline unsigned long
596 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
598 spin_lock(&(x
)->ctx_lock
);
603 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
605 spin_unlock(&(x
)->ctx_lock
);
608 /* forward declaration */
609 static const struct dentry_operations pfmfs_dentry_operations
;
611 static struct dentry
*
612 pfmfs_mount(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
)
614 return mount_pseudo(fs_type
, "pfm:", NULL
, &pfmfs_dentry_operations
,
618 static struct file_system_type pfm_fs_type
= {
620 .mount
= pfmfs_mount
,
621 .kill_sb
= kill_anon_super
,
623 MODULE_ALIAS_FS("pfmfs");
625 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
626 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
627 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
628 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
629 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
632 /* forward declaration */
633 static const struct file_operations pfm_file_ops
;
636 * forward declarations
639 static void pfm_lazy_save_regs (struct task_struct
*ta
);
642 void dump_pmu_state(const char *);
643 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
645 #include "perfmon_itanium.h"
646 #include "perfmon_mckinley.h"
647 #include "perfmon_montecito.h"
648 #include "perfmon_generic.h"
650 static pmu_config_t
*pmu_confs
[]={
654 &pmu_conf_gen
, /* must be last */
659 static int pfm_end_notify_user(pfm_context_t
*ctx
);
662 pfm_clear_psr_pp(void)
664 ia64_rsm(IA64_PSR_PP
);
671 ia64_ssm(IA64_PSR_PP
);
676 pfm_clear_psr_up(void)
678 ia64_rsm(IA64_PSR_UP
);
685 ia64_ssm(IA64_PSR_UP
);
689 static inline unsigned long
693 tmp
= ia64_getreg(_IA64_REG_PSR
);
699 pfm_set_psr_l(unsigned long val
)
701 ia64_setreg(_IA64_REG_PSR_L
, val
);
713 pfm_unfreeze_pmu(void)
720 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
724 for (i
=0; i
< nibrs
; i
++) {
725 ia64_set_ibr(i
, ibrs
[i
]);
726 ia64_dv_serialize_instruction();
732 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
736 for (i
=0; i
< ndbrs
; i
++) {
737 ia64_set_dbr(i
, dbrs
[i
]);
738 ia64_dv_serialize_data();
744 * PMD[i] must be a counter. no check is made
746 static inline unsigned long
747 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
749 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
753 * PMD[i] must be a counter. no check is made
756 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
758 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
760 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
762 * writing to unimplemented part is ignore, so we do not need to
765 ia64_set_pmd(i
, val
& ovfl_val
);
769 pfm_get_new_msg(pfm_context_t
*ctx
)
773 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
775 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
776 if (next
== ctx
->ctx_msgq_head
) return NULL
;
778 idx
= ctx
->ctx_msgq_tail
;
779 ctx
->ctx_msgq_tail
= next
;
781 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
783 return ctx
->ctx_msgq
+idx
;
787 pfm_get_next_msg(pfm_context_t
*ctx
)
791 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
793 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
798 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
803 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
805 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
811 pfm_reset_msgq(pfm_context_t
*ctx
)
813 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
814 DPRINT(("ctx=%p msgq reset\n", ctx
));
818 pfm_rvmalloc(unsigned long size
)
823 size
= PAGE_ALIGN(size
);
826 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 addr
= (unsigned long)mem
;
829 pfm_reserve_page(addr
);
838 pfm_rvfree(void *mem
, unsigned long size
)
843 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
844 addr
= (unsigned long) mem
;
845 while ((long) size
> 0) {
846 pfm_unreserve_page(addr
);
855 static pfm_context_t
*
856 pfm_context_alloc(int ctx_flags
)
861 * allocate context descriptor
862 * must be able to free with interrupts disabled
864 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
866 DPRINT(("alloc ctx @%p\n", ctx
));
869 * init context protection lock
871 spin_lock_init(&ctx
->ctx_lock
);
874 * context is unloaded
876 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
879 * initialization of context's flags
881 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
882 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
883 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
885 * will move to set properties
886 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
890 * init restart semaphore to locked
892 init_completion(&ctx
->ctx_restart_done
);
895 * activation is used in SMP only
897 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
898 SET_LAST_CPU(ctx
, -1);
901 * initialize notification message queue
903 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
904 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
905 init_waitqueue_head(&ctx
->ctx_zombieq
);
912 pfm_context_free(pfm_context_t
*ctx
)
915 DPRINT(("free ctx @%p\n", ctx
));
921 pfm_mask_monitoring(struct task_struct
*task
)
923 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
924 unsigned long mask
, val
, ovfl_mask
;
927 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task
)));
929 ovfl_mask
= pmu_conf
->ovfl_val
;
931 * monitoring can only be masked as a result of a valid
932 * counter overflow. In UP, it means that the PMU still
933 * has an owner. Note that the owner can be different
934 * from the current task. However the PMU state belongs
936 * In SMP, a valid overflow only happens when task is
937 * current. Therefore if we come here, we know that
938 * the PMU state belongs to the current task, therefore
939 * we can access the live registers.
941 * So in both cases, the live register contains the owner's
942 * state. We can ONLY touch the PMU registers and NOT the PSR.
944 * As a consequence to this call, the ctx->th_pmds[] array
945 * contains stale information which must be ignored
946 * when context is reloaded AND monitoring is active (see
949 mask
= ctx
->ctx_used_pmds
[0];
950 for (i
= 0; mask
; i
++, mask
>>=1) {
951 /* skip non used pmds */
952 if ((mask
& 0x1) == 0) continue;
953 val
= ia64_get_pmd(i
);
955 if (PMD_IS_COUNTING(i
)) {
957 * we rebuild the full 64 bit value of the counter
959 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
961 ctx
->ctx_pmds
[i
].val
= val
;
963 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
965 ctx
->ctx_pmds
[i
].val
,
969 * mask monitoring by setting the privilege level to 0
970 * we cannot use psr.pp/psr.up for this, it is controlled by
973 * if task is current, modify actual registers, otherwise modify
974 * thread save state, i.e., what will be restored in pfm_load_regs()
976 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
977 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
978 if ((mask
& 0x1) == 0UL) continue;
979 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
980 ctx
->th_pmcs
[i
] &= ~0xfUL
;
981 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
984 * make all of this visible
990 * must always be done with task == current
992 * context must be in MASKED state when calling
995 pfm_restore_monitoring(struct task_struct
*task
)
997 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
998 unsigned long mask
, ovfl_mask
;
999 unsigned long psr
, val
;
1002 is_system
= ctx
->ctx_fl_system
;
1003 ovfl_mask
= pmu_conf
->ovfl_val
;
1005 if (task
!= current
) {
1006 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task_pid_nr(task
), task_pid_nr(current
));
1009 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
1010 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
1011 task_pid_nr(task
), task_pid_nr(current
), ctx
->ctx_state
);
1014 psr
= pfm_get_psr();
1016 * monitoring is masked via the PMC.
1017 * As we restore their value, we do not want each counter to
1018 * restart right away. We stop monitoring using the PSR,
1019 * restore the PMC (and PMD) and then re-establish the psr
1020 * as it was. Note that there can be no pending overflow at
1021 * this point, because monitoring was MASKED.
1023 * system-wide session are pinned and self-monitoring
1025 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1026 /* disable dcr pp */
1027 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
1033 * first, we restore the PMD
1035 mask
= ctx
->ctx_used_pmds
[0];
1036 for (i
= 0; mask
; i
++, mask
>>=1) {
1037 /* skip non used pmds */
1038 if ((mask
& 0x1) == 0) continue;
1040 if (PMD_IS_COUNTING(i
)) {
1042 * we split the 64bit value according to
1045 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1046 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1048 val
= ctx
->ctx_pmds
[i
].val
;
1050 ia64_set_pmd(i
, val
);
1052 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1054 ctx
->ctx_pmds
[i
].val
,
1060 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1061 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1062 if ((mask
& 0x1) == 0UL) continue;
1063 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1064 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1065 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 task_pid_nr(task
), i
, ctx
->th_pmcs
[i
]));
1071 * must restore DBR/IBR because could be modified while masked
1072 * XXX: need to optimize
1074 if (ctx
->ctx_fl_using_dbreg
) {
1075 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1076 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1082 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1084 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1091 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1097 for (i
=0; mask
; i
++, mask
>>=1) {
1098 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1103 * reload from thread state (used for ctxw only)
1106 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1109 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1111 for (i
=0; mask
; i
++, mask
>>=1) {
1112 if ((mask
& 0x1) == 0) continue;
1113 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1114 ia64_set_pmd(i
, val
);
1120 * propagate PMD from context to thread-state
1123 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1125 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1126 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1130 DPRINT(("mask=0x%lx\n", mask
));
1132 for (i
=0; mask
; i
++, mask
>>=1) {
1134 val
= ctx
->ctx_pmds
[i
].val
;
1137 * We break up the 64 bit value into 2 pieces
1138 * the lower bits go to the machine state in the
1139 * thread (will be reloaded on ctxsw in).
1140 * The upper part stays in the soft-counter.
1142 if (PMD_IS_COUNTING(i
)) {
1143 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1146 ctx
->th_pmds
[i
] = val
;
1148 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151 ctx
->ctx_pmds
[i
].val
));
1156 * propagate PMC from context to thread-state
1159 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1161 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1164 DPRINT(("mask=0x%lx\n", mask
));
1166 for (i
=0; mask
; i
++, mask
>>=1) {
1167 /* masking 0 with ovfl_val yields 0 */
1168 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1169 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1176 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1180 for (i
=0; mask
; i
++, mask
>>=1) {
1181 if ((mask
& 0x1) == 0) continue;
1182 ia64_set_pmc(i
, pmcs
[i
]);
1188 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1190 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1194 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1197 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1202 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1205 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1211 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1215 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1220 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1224 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1229 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1232 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1237 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1240 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1244 static pfm_buffer_fmt_t
*
1245 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1247 struct list_head
* pos
;
1248 pfm_buffer_fmt_t
* entry
;
1250 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1251 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1252 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1259 * find a buffer format based on its uuid
1261 static pfm_buffer_fmt_t
*
1262 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1264 pfm_buffer_fmt_t
* fmt
;
1265 spin_lock(&pfm_buffer_fmt_lock
);
1266 fmt
= __pfm_find_buffer_fmt(uuid
);
1267 spin_unlock(&pfm_buffer_fmt_lock
);
1272 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1276 /* some sanity checks */
1277 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1279 /* we need at least a handler */
1280 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1283 * XXX: need check validity of fmt_arg_size
1286 spin_lock(&pfm_buffer_fmt_lock
);
1288 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1289 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1293 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1294 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1297 spin_unlock(&pfm_buffer_fmt_lock
);
1300 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1303 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1305 pfm_buffer_fmt_t
*fmt
;
1308 spin_lock(&pfm_buffer_fmt_lock
);
1310 fmt
= __pfm_find_buffer_fmt(uuid
);
1312 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1316 list_del_init(&fmt
->fmt_list
);
1317 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1320 spin_unlock(&pfm_buffer_fmt_lock
);
1324 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1327 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1329 unsigned long flags
;
1331 * validity checks on cpu_mask have been done upstream
1335 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 pfm_sessions
.pfs_sys_sessions
,
1337 pfm_sessions
.pfs_task_sessions
,
1338 pfm_sessions
.pfs_sys_use_dbregs
,
1344 * cannot mix system wide and per-task sessions
1346 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1347 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 pfm_sessions
.pfs_task_sessions
));
1352 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1354 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1356 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1358 pfm_sessions
.pfs_sys_sessions
++ ;
1361 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1362 pfm_sessions
.pfs_task_sessions
++;
1365 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 pfm_sessions
.pfs_sys_sessions
,
1367 pfm_sessions
.pfs_task_sessions
,
1368 pfm_sessions
.pfs_sys_use_dbregs
,
1373 * Force idle() into poll mode
1375 cpu_idle_poll_ctrl(true);
1382 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383 task_pid_nr(pfm_sessions
.pfs_sys_session
[cpu
]),
1393 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1395 unsigned long flags
;
1397 * validity checks on cpu_mask have been done upstream
1401 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions
.pfs_sys_sessions
,
1403 pfm_sessions
.pfs_task_sessions
,
1404 pfm_sessions
.pfs_sys_use_dbregs
,
1410 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1412 * would not work with perfmon+more than one bit in cpu_mask
1414 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1415 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1416 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1418 pfm_sessions
.pfs_sys_use_dbregs
--;
1421 pfm_sessions
.pfs_sys_sessions
--;
1423 pfm_sessions
.pfs_task_sessions
--;
1425 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 pfm_sessions
.pfs_sys_sessions
,
1427 pfm_sessions
.pfs_task_sessions
,
1428 pfm_sessions
.pfs_sys_use_dbregs
,
1432 /* Undo forced polling. Last session reenables pal_halt */
1433 cpu_idle_poll_ctrl(false);
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1446 pfm_remove_smpl_mapping(void *vaddr
, unsigned long size
)
1448 struct task_struct
*task
= current
;
1452 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1453 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task
), task
->mm
);
1457 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1460 * does the actual unmapping
1462 r
= vm_munmap((unsigned long)vaddr
, size
);
1465 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task
), vaddr
, size
);
1468 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1474 * free actual physical storage used by sampling buffer
1478 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1480 pfm_buffer_fmt_t
*fmt
;
1482 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1485 * we won't use the buffer format anymore
1487 fmt
= ctx
->ctx_buf_fmt
;
1489 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492 ctx
->ctx_smpl_vaddr
));
1494 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1499 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1501 ctx
->ctx_smpl_hdr
= NULL
;
1502 ctx
->ctx_smpl_size
= 0UL;
1507 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current
));
1513 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1515 if (fmt
== NULL
) return;
1517 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1527 static struct vfsmount
*pfmfs_mnt __read_mostly
;
1532 int err
= register_filesystem(&pfm_fs_type
);
1534 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1535 err
= PTR_ERR(pfmfs_mnt
);
1536 if (IS_ERR(pfmfs_mnt
))
1537 unregister_filesystem(&pfm_fs_type
);
1545 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1550 unsigned long flags
;
1551 DECLARE_WAITQUEUE(wait
, current
);
1552 if (PFM_IS_FILE(filp
) == 0) {
1553 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1557 ctx
= filp
->private_data
;
1559 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current
));
1564 * check even when there is no message
1566 if (size
< sizeof(pfm_msg_t
)) {
1567 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1571 PROTECT_CTX(ctx
, flags
);
1574 * put ourselves on the wait queue
1576 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1584 set_current_state(TASK_INTERRUPTIBLE
);
1586 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1589 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1591 UNPROTECT_CTX(ctx
, flags
);
1594 * check non-blocking read
1597 if(filp
->f_flags
& O_NONBLOCK
) break;
1600 * check pending signals
1602 if(signal_pending(current
)) {
1607 * no message, so wait
1611 PROTECT_CTX(ctx
, flags
);
1613 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current
), ret
));
1614 set_current_state(TASK_RUNNING
);
1615 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1617 if (ret
< 0) goto abort
;
1620 msg
= pfm_get_next_msg(ctx
);
1622 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, task_pid_nr(current
));
1626 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1629 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1632 UNPROTECT_CTX(ctx
, flags
);
1638 pfm_write(struct file
*file
, const char __user
*ubuf
,
1639 size_t size
, loff_t
*ppos
)
1641 DPRINT(("pfm_write called\n"));
1646 pfm_poll(struct file
*filp
, poll_table
* wait
)
1649 unsigned long flags
;
1650 unsigned int mask
= 0;
1652 if (PFM_IS_FILE(filp
) == 0) {
1653 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1657 ctx
= filp
->private_data
;
1659 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current
));
1664 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1666 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1668 PROTECT_CTX(ctx
, flags
);
1670 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1671 mask
= POLLIN
| POLLRDNORM
;
1673 UNPROTECT_CTX(ctx
, flags
);
1675 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1681 pfm_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1683 DPRINT(("pfm_ioctl called\n"));
1688 * interrupt cannot be masked when coming here
1691 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1695 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1697 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 task_pid_nr(current
),
1701 ctx
->ctx_async_queue
, ret
));
1707 pfm_fasync(int fd
, struct file
*filp
, int on
)
1712 if (PFM_IS_FILE(filp
) == 0) {
1713 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current
));
1717 ctx
= filp
->private_data
;
1719 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current
));
1723 * we cannot mask interrupts during this call because this may
1724 * may go to sleep if memory is not readily avalaible.
1726 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 * done in caller. Serialization of this function is ensured by caller.
1729 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1732 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735 ctx
->ctx_async_queue
, ret
));
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1747 pfm_syswide_force_stop(void *info
)
1749 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1750 struct pt_regs
*regs
= task_pt_regs(current
);
1751 struct task_struct
*owner
;
1752 unsigned long flags
;
1755 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1756 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1758 smp_processor_id());
1761 owner
= GET_PMU_OWNER();
1762 if (owner
!= ctx
->ctx_task
) {
1763 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1765 task_pid_nr(owner
), task_pid_nr(ctx
->ctx_task
));
1768 if (GET_PMU_CTX() != ctx
) {
1769 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1771 GET_PMU_CTX(), ctx
);
1775 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx
->ctx_task
)));
1777 * the context is already protected in pfm_close(), we simply
1778 * need to mask interrupts to avoid a PMU interrupt race on
1781 local_irq_save(flags
);
1783 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1785 DPRINT(("context_unload returned %d\n", ret
));
1789 * unmask interrupts, PMU interrupts are now spurious here
1791 local_irq_restore(flags
);
1795 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1799 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1800 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 1);
1801 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1803 #endif /* CONFIG_SMP */
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1810 pfm_flush(struct file
*filp
, fl_owner_t id
)
1813 struct task_struct
*task
;
1814 struct pt_regs
*regs
;
1815 unsigned long flags
;
1816 unsigned long smpl_buf_size
= 0UL;
1817 void *smpl_buf_vaddr
= NULL
;
1818 int state
, is_system
;
1820 if (PFM_IS_FILE(filp
) == 0) {
1821 DPRINT(("bad magic for\n"));
1825 ctx
= filp
->private_data
;
1827 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current
));
1832 * remove our file from the async queue, if we use this mode.
1833 * This can be done without the context being protected. We come
1834 * here when the context has become unreachable by other tasks.
1836 * We may still have active monitoring at this point and we may
1837 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 * operates with interrupts disabled and it cleans up the
1839 * queue. If the PMU handler is called prior to entering
1840 * fasync_helper() then it will send a signal. If it is
1841 * invoked after, it will find an empty queue and no
1842 * signal will be sent. In both case, we are safe
1844 PROTECT_CTX(ctx
, flags
);
1846 state
= ctx
->ctx_state
;
1847 is_system
= ctx
->ctx_fl_system
;
1849 task
= PFM_CTX_TASK(ctx
);
1850 regs
= task_pt_regs(task
);
1852 DPRINT(("ctx_state=%d is_current=%d\n",
1854 task
== current
? 1 : 0));
1857 * if state == UNLOADED, then task is NULL
1861 * we must stop and unload because we are losing access to the context.
1863 if (task
== current
) {
1866 * the task IS the owner but it migrated to another CPU: that's bad
1867 * but we must handle this cleanly. Unfortunately, the kernel does
1868 * not provide a mechanism to block migration (while the context is loaded).
1870 * We need to release the resource on the ORIGINAL cpu.
1872 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1874 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1876 * keep context protected but unmask interrupt for IPI
1878 local_irq_restore(flags
);
1880 pfm_syswide_cleanup_other_cpu(ctx
);
1883 * restore interrupt masking
1885 local_irq_save(flags
);
1888 * context is unloaded at this point
1891 #endif /* CONFIG_SMP */
1894 DPRINT(("forcing unload\n"));
1896 * stop and unload, returning with state UNLOADED
1897 * and session unreserved.
1899 pfm_context_unload(ctx
, NULL
, 0, regs
);
1901 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1906 * remove virtual mapping, if any, for the calling task.
1907 * cannot reset ctx field until last user is calling close().
1909 * ctx_smpl_vaddr must never be cleared because it is needed
1910 * by every task with access to the context
1912 * When called from do_exit(), the mm context is gone already, therefore
1913 * mm is NULL, i.e., the VMA is already gone and we do not have to
1916 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1917 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1918 smpl_buf_size
= ctx
->ctx_smpl_size
;
1921 UNPROTECT_CTX(ctx
, flags
);
1924 * if there was a mapping, then we systematically remove it
1925 * at this point. Cannot be done inside critical section
1926 * because some VM function reenables interrupts.
1929 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(smpl_buf_vaddr
, smpl_buf_size
);
1934 * called either on explicit close() or from exit_files().
1935 * Only the LAST user of the file gets to this point, i.e., it is
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939 * (fput()),i.e, last task to access the file. Nobody else can access the
1940 * file at this point.
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context.
1949 pfm_close(struct inode
*inode
, struct file
*filp
)
1952 struct task_struct
*task
;
1953 struct pt_regs
*regs
;
1954 DECLARE_WAITQUEUE(wait
, current
);
1955 unsigned long flags
;
1956 unsigned long smpl_buf_size
= 0UL;
1957 void *smpl_buf_addr
= NULL
;
1958 int free_possible
= 1;
1959 int state
, is_system
;
1961 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1963 if (PFM_IS_FILE(filp
) == 0) {
1964 DPRINT(("bad magic\n"));
1968 ctx
= filp
->private_data
;
1970 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current
));
1974 PROTECT_CTX(ctx
, flags
);
1976 state
= ctx
->ctx_state
;
1977 is_system
= ctx
->ctx_fl_system
;
1979 task
= PFM_CTX_TASK(ctx
);
1980 regs
= task_pt_regs(task
);
1982 DPRINT(("ctx_state=%d is_current=%d\n",
1984 task
== current
? 1 : 0));
1987 * if task == current, then pfm_flush() unloaded the context
1989 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1992 * context is loaded/masked and task != current, we need to
1993 * either force an unload or go zombie
1997 * The task is currently blocked or will block after an overflow.
1998 * we must force it to wakeup to get out of the
1999 * MASKED state and transition to the unloaded state by itself.
2001 * This situation is only possible for per-task mode
2003 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
2006 * set a "partial" zombie state to be checked
2007 * upon return from down() in pfm_handle_work().
2009 * We cannot use the ZOMBIE state, because it is checked
2010 * by pfm_load_regs() which is called upon wakeup from down().
2011 * In such case, it would free the context and then we would
2012 * return to pfm_handle_work() which would access the
2013 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 * but visible to pfm_handle_work().
2016 * For some window of time, we have a zombie context with
2017 * ctx_state = MASKED and not ZOMBIE
2019 ctx
->ctx_fl_going_zombie
= 1;
2022 * force task to wake up from MASKED state
2024 complete(&ctx
->ctx_restart_done
);
2026 DPRINT(("waking up ctx_state=%d\n", state
));
2029 * put ourself to sleep waiting for the other
2030 * task to report completion
2032 * the context is protected by mutex, therefore there
2033 * is no risk of being notified of completion before
2034 * begin actually on the waitq.
2036 set_current_state(TASK_INTERRUPTIBLE
);
2037 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2039 UNPROTECT_CTX(ctx
, flags
);
2042 * XXX: check for signals :
2043 * - ok for explicit close
2044 * - not ok when coming from exit_files()
2049 PROTECT_CTX(ctx
, flags
);
2052 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2053 set_current_state(TASK_RUNNING
);
2056 * context is unloaded at this point
2058 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2060 else if (task
!= current
) {
2063 * switch context to zombie state
2065 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2067 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task
)));
2069 * cannot free the context on the spot. deferred until
2070 * the task notices the ZOMBIE state
2074 pfm_context_unload(ctx
, NULL
, 0, regs
);
2079 /* reload state, may have changed during opening of critical section */
2080 state
= ctx
->ctx_state
;
2083 * the context is still attached to a task (possibly current)
2084 * we cannot destroy it right now
2088 * we must free the sampling buffer right here because
2089 * we cannot rely on it being cleaned up later by the
2090 * monitored task. It is not possible to free vmalloc'ed
2091 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 * now. should there be subsequent PMU overflow originally
2093 * meant for sampling, the will be converted to spurious
2094 * and that's fine because the monitoring tools is gone anyway.
2096 if (ctx
->ctx_smpl_hdr
) {
2097 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2098 smpl_buf_size
= ctx
->ctx_smpl_size
;
2099 /* no more sampling */
2100 ctx
->ctx_smpl_hdr
= NULL
;
2101 ctx
->ctx_fl_is_sampling
= 0;
2104 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2110 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2113 * UNLOADED that the session has already been unreserved.
2115 if (state
== PFM_CTX_ZOMBIE
) {
2116 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2120 * disconnect file descriptor from context must be done
2123 filp
->private_data
= NULL
;
2126 * if we free on the spot, the context is now completely unreachable
2127 * from the callers side. The monitored task side is also cut, so we
2130 * If we have a deferred free, only the caller side is disconnected.
2132 UNPROTECT_CTX(ctx
, flags
);
2135 * All memory free operations (especially for vmalloc'ed memory)
2136 * MUST be done with interrupts ENABLED.
2138 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2141 * return the memory used by the context
2143 if (free_possible
) pfm_context_free(ctx
);
2149 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2151 DPRINT(("pfm_no_open called\n"));
2157 static const struct file_operations pfm_file_ops
= {
2158 .llseek
= no_llseek
,
2162 .unlocked_ioctl
= pfm_ioctl
,
2163 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2164 .fasync
= pfm_fasync
,
2165 .release
= pfm_close
,
2169 static char *pfmfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2171 return dynamic_dname(dentry
, buffer
, buflen
, "pfm:[%lu]",
2172 dentry
->d_inode
->i_ino
);
2175 static const struct dentry_operations pfmfs_dentry_operations
= {
2176 .d_delete
= always_delete_dentry
,
2177 .d_dname
= pfmfs_dname
,
2181 static struct file
*
2182 pfm_alloc_file(pfm_context_t
*ctx
)
2185 struct inode
*inode
;
2187 struct qstr
this = { .name
= "" };
2190 * allocate a new inode
2192 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2194 return ERR_PTR(-ENOMEM
);
2196 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2198 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2199 inode
->i_uid
= current_fsuid();
2200 inode
->i_gid
= current_fsgid();
2203 * allocate a new dcache entry
2205 path
.dentry
= d_alloc(pfmfs_mnt
->mnt_root
, &this);
2208 return ERR_PTR(-ENOMEM
);
2210 path
.mnt
= mntget(pfmfs_mnt
);
2212 d_add(path
.dentry
, inode
);
2214 file
= alloc_file(&path
, FMODE_READ
, &pfm_file_ops
);
2220 file
->f_flags
= O_RDONLY
;
2221 file
->private_data
= ctx
;
2227 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2229 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2232 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2235 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2246 * allocate a sampling buffer and remaps it into the user address space of the task
2249 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2251 struct mm_struct
*mm
= task
->mm
;
2252 struct vm_area_struct
*vma
= NULL
;
2258 * the fixed header + requested size and align to page boundary
2260 size
= PAGE_ALIGN(rsize
);
2262 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2265 * check requested size to avoid Denial-of-service attacks
2266 * XXX: may have to refine this test
2267 * Check against address space limit.
2269 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2272 if (size
> task_rlimit(task
, RLIMIT_MEMLOCK
))
2276 * We do the easy to undo allocations first.
2278 * pfm_rvmalloc(), clears the buffer, so there is no leak
2280 smpl_buf
= pfm_rvmalloc(size
);
2281 if (smpl_buf
== NULL
) {
2282 DPRINT(("Can't allocate sampling buffer\n"));
2286 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2289 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2291 DPRINT(("Cannot allocate vma\n"));
2294 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2297 * partially initialize the vma for the sampling buffer
2300 vma
->vm_file
= get_file(filp
);
2301 vma
->vm_flags
= VM_READ
|VM_MAYREAD
|VM_DONTEXPAND
|VM_DONTDUMP
;
2302 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2305 * Now we have everything we need and we can initialize
2306 * and connect all the data structures
2309 ctx
->ctx_smpl_hdr
= smpl_buf
;
2310 ctx
->ctx_smpl_size
= size
; /* aligned size */
2313 * Let's do the difficult operations next.
2315 * now we atomically find some area in the address space and
2316 * remap the buffer in it.
2318 down_write(&task
->mm
->mmap_sem
);
2320 /* find some free area in address space, must have mmap sem held */
2321 vma
->vm_start
= get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
);
2322 if (IS_ERR_VALUE(vma
->vm_start
)) {
2323 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2324 up_write(&task
->mm
->mmap_sem
);
2327 vma
->vm_end
= vma
->vm_start
+ size
;
2328 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2330 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2332 /* can only be applied to current task, need to have the mm semaphore held when called */
2333 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2334 DPRINT(("Can't remap buffer\n"));
2335 up_write(&task
->mm
->mmap_sem
);
2340 * now insert the vma in the vm list for the process, must be
2341 * done with mmap lock held
2343 insert_vm_struct(mm
, vma
);
2345 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
,
2347 up_write(&task
->mm
->mmap_sem
);
2350 * keep track of user level virtual address
2352 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2353 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2358 kmem_cache_free(vm_area_cachep
, vma
);
2360 pfm_rvfree(smpl_buf
, size
);
2366 * XXX: do something better here
2369 pfm_bad_permissions(struct task_struct
*task
)
2371 const struct cred
*tcred
;
2372 kuid_t uid
= current_uid();
2373 kgid_t gid
= current_gid();
2377 tcred
= __task_cred(task
);
2379 /* inspired by ptrace_attach() */
2380 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2381 from_kuid(&init_user_ns
, uid
),
2382 from_kgid(&init_user_ns
, gid
),
2383 from_kuid(&init_user_ns
, tcred
->euid
),
2384 from_kuid(&init_user_ns
, tcred
->suid
),
2385 from_kuid(&init_user_ns
, tcred
->uid
),
2386 from_kgid(&init_user_ns
, tcred
->egid
),
2387 from_kgid(&init_user_ns
, tcred
->sgid
)));
2389 ret
= ((!uid_eq(uid
, tcred
->euid
))
2390 || (!uid_eq(uid
, tcred
->suid
))
2391 || (!uid_eq(uid
, tcred
->uid
))
2392 || (!gid_eq(gid
, tcred
->egid
))
2393 || (!gid_eq(gid
, tcred
->sgid
))
2394 || (!gid_eq(gid
, tcred
->gid
))) && !capable(CAP_SYS_PTRACE
);
2401 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2407 ctx_flags
= pfx
->ctx_flags
;
2409 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2412 * cannot block in this mode
2414 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2415 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2420 /* probably more to add here */
2426 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2427 unsigned int cpu
, pfarg_context_t
*arg
)
2429 pfm_buffer_fmt_t
*fmt
= NULL
;
2430 unsigned long size
= 0UL;
2432 void *fmt_arg
= NULL
;
2434 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2436 /* invoke and lock buffer format, if found */
2437 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2439 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task
)));
2444 * buffer argument MUST be contiguous to pfarg_context_t
2446 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2448 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2450 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task
), ctx_flags
, cpu
, fmt_arg
, ret
));
2452 if (ret
) goto error
;
2454 /* link buffer format and context */
2455 ctx
->ctx_buf_fmt
= fmt
;
2456 ctx
->ctx_fl_is_sampling
= 1; /* assume record() is defined */
2459 * check if buffer format wants to use perfmon buffer allocation/mapping service
2461 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2462 if (ret
) goto error
;
2466 * buffer is always remapped into the caller's address space
2468 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2469 if (ret
) goto error
;
2471 /* keep track of user address of buffer */
2472 arg
->ctx_smpl_vaddr
= uaddr
;
2474 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2481 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2486 * install reset values for PMC.
2488 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2489 if (PMC_IS_IMPL(i
) == 0) continue;
2490 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2491 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2494 * PMD registers are set to 0UL when the context in memset()
2498 * On context switched restore, we must restore ALL pmc and ALL pmd even
2499 * when they are not actively used by the task. In UP, the incoming process
2500 * may otherwise pick up left over PMC, PMD state from the previous process.
2501 * As opposed to PMD, stale PMC can cause harm to the incoming
2502 * process because they may change what is being measured.
2503 * Therefore, we must systematically reinstall the entire
2504 * PMC state. In SMP, the same thing is possible on the
2505 * same CPU but also on between 2 CPUs.
2507 * The problem with PMD is information leaking especially
2508 * to user level when psr.sp=0
2510 * There is unfortunately no easy way to avoid this problem
2511 * on either UP or SMP. This definitively slows down the
2512 * pfm_load_regs() function.
2516 * bitmask of all PMCs accessible to this context
2518 * PMC0 is treated differently.
2520 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2523 * bitmask of all PMDs that are accessible to this context
2525 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2527 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2530 * useful in case of re-enable after disable
2532 ctx
->ctx_used_ibrs
[0] = 0UL;
2533 ctx
->ctx_used_dbrs
[0] = 0UL;
2537 pfm_ctx_getsize(void *arg
, size_t *sz
)
2539 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2540 pfm_buffer_fmt_t
*fmt
;
2544 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2546 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2548 DPRINT(("cannot find buffer format\n"));
2551 /* get just enough to copy in user parameters */
2552 *sz
= fmt
->fmt_arg_size
;
2553 DPRINT(("arg_size=%lu\n", *sz
));
2561 * cannot attach if :
2563 * - task not owned by caller
2564 * - task incompatible with context mode
2567 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2570 * no kernel task or task not owner by caller
2572 if (task
->mm
== NULL
) {
2573 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task
)));
2576 if (pfm_bad_permissions(task
)) {
2577 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task
)));
2581 * cannot block in self-monitoring mode
2583 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2584 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task
)));
2588 if (task
->exit_state
== EXIT_ZOMBIE
) {
2589 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task
)));
2594 * always ok for self
2596 if (task
== current
) return 0;
2598 if (!task_is_stopped_or_traced(task
)) {
2599 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task
), task
->state
));
2603 * make sure the task is off any CPU
2605 wait_task_inactive(task
, 0);
2607 /* more to come... */
2613 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2615 struct task_struct
*p
= current
;
2618 /* XXX: need to add more checks here */
2619 if (pid
< 2) return -EPERM
;
2621 if (pid
!= task_pid_vnr(current
)) {
2623 read_lock(&tasklist_lock
);
2625 p
= find_task_by_vpid(pid
);
2627 /* make sure task cannot go away while we operate on it */
2628 if (p
) get_task_struct(p
);
2630 read_unlock(&tasklist_lock
);
2632 if (p
== NULL
) return -ESRCH
;
2635 ret
= pfm_task_incompatible(ctx
, p
);
2638 } else if (p
!= current
) {
2647 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2649 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2656 /* let's check the arguments first */
2657 ret
= pfarg_is_sane(current
, req
);
2661 ctx_flags
= req
->ctx_flags
;
2665 fd
= get_unused_fd();
2669 ctx
= pfm_context_alloc(ctx_flags
);
2673 filp
= pfm_alloc_file(ctx
);
2675 ret
= PTR_ERR(filp
);
2679 req
->ctx_fd
= ctx
->ctx_fd
= fd
;
2682 * does the user want to sample?
2684 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2685 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2690 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2695 ctx
->ctx_fl_excl_idle
,
2700 * initialize soft PMU state
2702 pfm_reset_pmu_state(ctx
);
2704 fd_install(fd
, filp
);
2709 path
= filp
->f_path
;
2713 if (ctx
->ctx_buf_fmt
) {
2714 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2717 pfm_context_free(ctx
);
2724 static inline unsigned long
2725 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2727 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2728 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2729 extern unsigned long carta_random32 (unsigned long seed
);
2731 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2732 new_seed
= carta_random32(old_seed
);
2733 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2734 if ((mask
>> 32) != 0)
2735 /* construct a full 64-bit random value: */
2736 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2737 reg
->seed
= new_seed
;
2744 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2746 unsigned long mask
= ovfl_regs
[0];
2747 unsigned long reset_others
= 0UL;
2752 * now restore reset value on sampling overflowed counters
2754 mask
>>= PMU_FIRST_COUNTER
;
2755 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2757 if ((mask
& 0x1UL
) == 0UL) continue;
2759 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2760 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2762 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2766 * Now take care of resetting the other registers
2768 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2770 if ((reset_others
& 0x1) == 0) continue;
2772 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2774 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2775 is_long_reset
? "long" : "short", i
, val
));
2780 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2782 unsigned long mask
= ovfl_regs
[0];
2783 unsigned long reset_others
= 0UL;
2787 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2789 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2790 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2795 * now restore reset value on sampling overflowed counters
2797 mask
>>= PMU_FIRST_COUNTER
;
2798 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2800 if ((mask
& 0x1UL
) == 0UL) continue;
2802 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2803 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2805 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2807 pfm_write_soft_counter(ctx
, i
, val
);
2811 * Now take care of resetting the other registers
2813 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2815 if ((reset_others
& 0x1) == 0) continue;
2817 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2819 if (PMD_IS_COUNTING(i
)) {
2820 pfm_write_soft_counter(ctx
, i
, val
);
2822 ia64_set_pmd(i
, val
);
2824 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2825 is_long_reset
? "long" : "short", i
, val
));
2831 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2833 struct task_struct
*task
;
2834 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2835 unsigned long value
, pmc_pm
;
2836 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2837 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2838 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2839 int is_monitor
, is_counting
, state
;
2841 pfm_reg_check_t wr_func
;
2842 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2844 state
= ctx
->ctx_state
;
2845 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2846 is_system
= ctx
->ctx_fl_system
;
2847 task
= ctx
->ctx_task
;
2848 impl_pmds
= pmu_conf
->impl_pmds
[0];
2850 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2854 * In system wide and when the context is loaded, access can only happen
2855 * when the caller is running on the CPU being monitored by the session.
2856 * It does not have to be the owner (ctx_task) of the context per se.
2858 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2859 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2862 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2864 expert_mode
= pfm_sysctl
.expert_mode
;
2866 for (i
= 0; i
< count
; i
++, req
++) {
2868 cnum
= req
->reg_num
;
2869 reg_flags
= req
->reg_flags
;
2870 value
= req
->reg_value
;
2871 smpl_pmds
= req
->reg_smpl_pmds
[0];
2872 reset_pmds
= req
->reg_reset_pmds
[0];
2876 if (cnum
>= PMU_MAX_PMCS
) {
2877 DPRINT(("pmc%u is invalid\n", cnum
));
2881 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2882 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2883 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2884 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2887 * we reject all non implemented PMC as well
2888 * as attempts to modify PMC[0-3] which are used
2889 * as status registers by the PMU
2891 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2892 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2895 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2897 * If the PMC is a monitor, then if the value is not the default:
2898 * - system-wide session: PMCx.pm=1 (privileged monitor)
2899 * - per-task : PMCx.pm=0 (user monitor)
2901 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2902 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2911 * enforce generation of overflow interrupt. Necessary on all
2914 value
|= 1 << PMU_PMC_OI
;
2916 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2917 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2920 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2922 /* verify validity of smpl_pmds */
2923 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2924 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2928 /* verify validity of reset_pmds */
2929 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2930 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2934 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2935 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2938 /* eventid on non-counting monitors are ignored */
2942 * execute write checker, if any
2944 if (likely(expert_mode
== 0 && wr_func
)) {
2945 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2946 if (ret
) goto error
;
2951 * no error on this register
2953 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2956 * Now we commit the changes to the software state
2960 * update overflow information
2964 * full flag update each time a register is programmed
2966 ctx
->ctx_pmds
[cnum
].flags
= flags
;
2968 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
2969 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
2970 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
2973 * Mark all PMDS to be accessed as used.
2975 * We do not keep track of PMC because we have to
2976 * systematically restore ALL of them.
2978 * We do not update the used_monitors mask, because
2979 * if we have not programmed them, then will be in
2980 * a quiescent state, therefore we will not need to
2981 * mask/restore then when context is MASKED.
2983 CTX_USED_PMD(ctx
, reset_pmds
);
2984 CTX_USED_PMD(ctx
, smpl_pmds
);
2986 * make sure we do not try to reset on
2987 * restart because we have established new values
2989 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
2992 * Needed in case the user does not initialize the equivalent
2993 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2994 * possible leak here.
2996 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
2999 * keep track of the monitor PMC that we are using.
3000 * we save the value of the pmc in ctx_pmcs[] and if
3001 * the monitoring is not stopped for the context we also
3002 * place it in the saved state area so that it will be
3003 * picked up later by the context switch code.
3005 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3007 * The value in th_pmcs[] may be modified on overflow, i.e., when
3008 * monitoring needs to be stopped.
3010 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3013 * update context state
3015 ctx
->ctx_pmcs
[cnum
] = value
;
3019 * write thread state
3021 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
3024 * write hardware register if we can
3026 if (can_access_pmu
) {
3027 ia64_set_pmc(cnum
, value
);
3032 * per-task SMP only here
3034 * we are guaranteed that the task is not running on the other CPU,
3035 * we indicate that this PMD will need to be reloaded if the task
3036 * is rescheduled on the CPU it ran last on.
3038 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3043 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3049 ctx
->ctx_all_pmcs
[0],
3050 ctx
->ctx_used_pmds
[0],
3051 ctx
->ctx_pmds
[cnum
].eventid
,
3054 ctx
->ctx_reload_pmcs
[0],
3055 ctx
->ctx_used_monitors
[0],
3056 ctx
->ctx_ovfl_regs
[0]));
3060 * make sure the changes are visible
3062 if (can_access_pmu
) ia64_srlz_d();
3066 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3071 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3073 struct task_struct
*task
;
3074 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3075 unsigned long value
, hw_value
, ovfl_mask
;
3077 int i
, can_access_pmu
= 0, state
;
3078 int is_counting
, is_loaded
, is_system
, expert_mode
;
3080 pfm_reg_check_t wr_func
;
3083 state
= ctx
->ctx_state
;
3084 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3085 is_system
= ctx
->ctx_fl_system
;
3086 ovfl_mask
= pmu_conf
->ovfl_val
;
3087 task
= ctx
->ctx_task
;
3089 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3092 * on both UP and SMP, we can only write to the PMC when the task is
3093 * the owner of the local PMU.
3095 if (likely(is_loaded
)) {
3097 * In system wide and when the context is loaded, access can only happen
3098 * when the caller is running on the CPU being monitored by the session.
3099 * It does not have to be the owner (ctx_task) of the context per se.
3101 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3102 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3105 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3107 expert_mode
= pfm_sysctl
.expert_mode
;
3109 for (i
= 0; i
< count
; i
++, req
++) {
3111 cnum
= req
->reg_num
;
3112 value
= req
->reg_value
;
3114 if (!PMD_IS_IMPL(cnum
)) {
3115 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3118 is_counting
= PMD_IS_COUNTING(cnum
);
3119 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3122 * execute write checker, if any
3124 if (unlikely(expert_mode
== 0 && wr_func
)) {
3125 unsigned long v
= value
;
3127 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3128 if (ret
) goto abort_mission
;
3135 * no error on this register
3137 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3140 * now commit changes to software state
3145 * update virtualized (64bits) counter
3149 * write context state
3151 ctx
->ctx_pmds
[cnum
].lval
= value
;
3154 * when context is load we use the split value
3157 hw_value
= value
& ovfl_mask
;
3158 value
= value
& ~ovfl_mask
;
3162 * update reset values (not just for counters)
3164 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3165 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3168 * update randomization parameters (not just for counters)
3170 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3171 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3174 * update context value
3176 ctx
->ctx_pmds
[cnum
].val
= value
;
3179 * Keep track of what we use
3181 * We do not keep track of PMC because we have to
3182 * systematically restore ALL of them.
3184 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3187 * mark this PMD register used as well
3189 CTX_USED_PMD(ctx
, RDEP(cnum
));
3192 * make sure we do not try to reset on
3193 * restart because we have established new values
3195 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3196 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3201 * write thread state
3203 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3206 * write hardware register if we can
3208 if (can_access_pmu
) {
3209 ia64_set_pmd(cnum
, hw_value
);
3213 * we are guaranteed that the task is not running on the other CPU,
3214 * we indicate that this PMD will need to be reloaded if the task
3215 * is rescheduled on the CPU it ran last on.
3217 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3222 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3223 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3229 ctx
->ctx_pmds
[cnum
].val
,
3230 ctx
->ctx_pmds
[cnum
].short_reset
,
3231 ctx
->ctx_pmds
[cnum
].long_reset
,
3232 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3233 ctx
->ctx_pmds
[cnum
].seed
,
3234 ctx
->ctx_pmds
[cnum
].mask
,
3235 ctx
->ctx_used_pmds
[0],
3236 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3237 ctx
->ctx_reload_pmds
[0],
3238 ctx
->ctx_all_pmds
[0],
3239 ctx
->ctx_ovfl_regs
[0]));
3243 * make changes visible
3245 if (can_access_pmu
) ia64_srlz_d();
3251 * for now, we have only one possibility for error
3253 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3258 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3259 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3260 * interrupt is delivered during the call, it will be kept pending until we leave, making
3261 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3262 * guaranteed to return consistent data to the user, it may simply be old. It is not
3263 * trivial to treat the overflow while inside the call because you may end up in
3264 * some module sampling buffer code causing deadlocks.
3267 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3269 struct task_struct
*task
;
3270 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3271 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3272 unsigned int cnum
, reg_flags
= 0;
3273 int i
, can_access_pmu
= 0, state
;
3274 int is_loaded
, is_system
, is_counting
, expert_mode
;
3276 pfm_reg_check_t rd_func
;
3279 * access is possible when loaded only for
3280 * self-monitoring tasks or in UP mode
3283 state
= ctx
->ctx_state
;
3284 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3285 is_system
= ctx
->ctx_fl_system
;
3286 ovfl_mask
= pmu_conf
->ovfl_val
;
3287 task
= ctx
->ctx_task
;
3289 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3291 if (likely(is_loaded
)) {
3293 * In system wide and when the context is loaded, access can only happen
3294 * when the caller is running on the CPU being monitored by the session.
3295 * It does not have to be the owner (ctx_task) of the context per se.
3297 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3298 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3302 * this can be true when not self-monitoring only in UP
3304 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3306 if (can_access_pmu
) ia64_srlz_d();
3308 expert_mode
= pfm_sysctl
.expert_mode
;
3310 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3316 * on both UP and SMP, we can only read the PMD from the hardware register when
3317 * the task is the owner of the local PMU.
3320 for (i
= 0; i
< count
; i
++, req
++) {
3322 cnum
= req
->reg_num
;
3323 reg_flags
= req
->reg_flags
;
3325 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3327 * we can only read the register that we use. That includes
3328 * the one we explicitly initialize AND the one we want included
3329 * in the sampling buffer (smpl_regs).
3331 * Having this restriction allows optimization in the ctxsw routine
3332 * without compromising security (leaks)
3334 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3336 sval
= ctx
->ctx_pmds
[cnum
].val
;
3337 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3338 is_counting
= PMD_IS_COUNTING(cnum
);
3341 * If the task is not the current one, then we check if the
3342 * PMU state is still in the local live register due to lazy ctxsw.
3343 * If true, then we read directly from the registers.
3345 if (can_access_pmu
){
3346 val
= ia64_get_pmd(cnum
);
3349 * context has been saved
3350 * if context is zombie, then task does not exist anymore.
3351 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3353 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3355 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3359 * XXX: need to check for overflow when loaded
3366 * execute read checker, if any
3368 if (unlikely(expert_mode
== 0 && rd_func
)) {
3369 unsigned long v
= val
;
3370 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3371 if (ret
) goto error
;
3376 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3378 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3381 * update register return value, abort all if problem during copy.
3382 * we only modify the reg_flags field. no check mode is fine because
3383 * access has been verified upfront in sys_perfmonctl().
3385 req
->reg_value
= val
;
3386 req
->reg_flags
= reg_flags
;
3387 req
->reg_last_reset_val
= lval
;
3393 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3398 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3402 if (req
== NULL
) return -EINVAL
;
3404 ctx
= GET_PMU_CTX();
3406 if (ctx
== NULL
) return -EINVAL
;
3409 * for now limit to current task, which is enough when calling
3410 * from overflow handler
3412 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3414 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3416 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3419 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3423 if (req
== NULL
) return -EINVAL
;
3425 ctx
= GET_PMU_CTX();
3427 if (ctx
== NULL
) return -EINVAL
;
3430 * for now limit to current task, which is enough when calling
3431 * from overflow handler
3433 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3435 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3437 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3440 * Only call this function when a process it trying to
3441 * write the debug registers (reading is always allowed)
3444 pfm_use_debug_registers(struct task_struct
*task
)
3446 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3447 unsigned long flags
;
3450 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3452 DPRINT(("called for [%d]\n", task_pid_nr(task
)));
3457 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3460 * Even on SMP, we do not need to use an atomic here because
3461 * the only way in is via ptrace() and this is possible only when the
3462 * process is stopped. Even in the case where the ctxsw out is not totally
3463 * completed by the time we come here, there is no way the 'stopped' process
3464 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3465 * So this is always safe.
3467 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3472 * We cannot allow setting breakpoints when system wide monitoring
3473 * sessions are using the debug registers.
3475 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3478 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3480 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3481 pfm_sessions
.pfs_ptrace_use_dbregs
,
3482 pfm_sessions
.pfs_sys_use_dbregs
,
3483 task_pid_nr(task
), ret
));
3491 * This function is called for every task that exits with the
3492 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3493 * able to use the debug registers for debugging purposes via
3494 * ptrace(). Therefore we know it was not using them for
3495 * performance monitoring, so we only decrement the number
3496 * of "ptraced" debug register users to keep the count up to date
3499 pfm_release_debug_registers(struct task_struct
*task
)
3501 unsigned long flags
;
3504 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3507 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3508 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task
));
3511 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3520 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3522 struct task_struct
*task
;
3523 pfm_buffer_fmt_t
*fmt
;
3524 pfm_ovfl_ctrl_t rst_ctrl
;
3525 int state
, is_system
;
3528 state
= ctx
->ctx_state
;
3529 fmt
= ctx
->ctx_buf_fmt
;
3530 is_system
= ctx
->ctx_fl_system
;
3531 task
= PFM_CTX_TASK(ctx
);
3534 case PFM_CTX_MASKED
:
3536 case PFM_CTX_LOADED
:
3537 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3539 case PFM_CTX_UNLOADED
:
3540 case PFM_CTX_ZOMBIE
:
3541 DPRINT(("invalid state=%d\n", state
));
3544 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3549 * In system wide and when the context is loaded, access can only happen
3550 * when the caller is running on the CPU being monitored by the session.
3551 * It does not have to be the owner (ctx_task) of the context per se.
3553 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3554 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3559 if (unlikely(task
== NULL
)) {
3560 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", task_pid_nr(current
));
3564 if (task
== current
|| is_system
) {
3566 fmt
= ctx
->ctx_buf_fmt
;
3568 DPRINT(("restarting self %d ovfl=0x%lx\n",
3570 ctx
->ctx_ovfl_regs
[0]));
3572 if (CTX_HAS_SMPL(ctx
)) {
3574 prefetch(ctx
->ctx_smpl_hdr
);
3576 rst_ctrl
.bits
.mask_monitoring
= 0;
3577 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3579 if (state
== PFM_CTX_LOADED
)
3580 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3582 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3584 rst_ctrl
.bits
.mask_monitoring
= 0;
3585 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3589 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3590 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3592 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3593 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task
)));
3595 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3597 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task
)));
3599 // cannot use pfm_stop_monitoring(task, regs);
3603 * clear overflowed PMD mask to remove any stale information
3605 ctx
->ctx_ovfl_regs
[0] = 0UL;
3608 * back to LOADED state
3610 ctx
->ctx_state
= PFM_CTX_LOADED
;
3613 * XXX: not really useful for self monitoring
3615 ctx
->ctx_fl_can_restart
= 0;
3621 * restart another task
3625 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3626 * one is seen by the task.
3628 if (state
== PFM_CTX_MASKED
) {
3629 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3631 * will prevent subsequent restart before this one is
3632 * seen by other task
3634 ctx
->ctx_fl_can_restart
= 0;
3638 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3639 * the task is blocked or on its way to block. That's the normal
3640 * restart path. If the monitoring is not masked, then the task
3641 * can be actively monitoring and we cannot directly intervene.
3642 * Therefore we use the trap mechanism to catch the task and
3643 * force it to reset the buffer/reset PMDs.
3645 * if non-blocking, then we ensure that the task will go into
3646 * pfm_handle_work() before returning to user mode.
3648 * We cannot explicitly reset another task, it MUST always
3649 * be done by the task itself. This works for system wide because
3650 * the tool that is controlling the session is logically doing
3651 * "self-monitoring".
3653 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3654 DPRINT(("unblocking [%d]\n", task_pid_nr(task
)));
3655 complete(&ctx
->ctx_restart_done
);
3657 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task
)));
3659 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3661 PFM_SET_WORK_PENDING(task
, 1);
3663 set_notify_resume(task
);
3666 * XXX: send reschedule if task runs on another CPU
3673 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3675 unsigned int m
= *(unsigned int *)arg
;
3677 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3679 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3682 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3683 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3689 * arg can be NULL and count can be zero for this function
3692 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3694 struct thread_struct
*thread
= NULL
;
3695 struct task_struct
*task
;
3696 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3697 unsigned long flags
;
3702 int i
, can_access_pmu
= 0;
3703 int is_system
, is_loaded
;
3705 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3707 state
= ctx
->ctx_state
;
3708 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3709 is_system
= ctx
->ctx_fl_system
;
3710 task
= ctx
->ctx_task
;
3712 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3715 * on both UP and SMP, we can only write to the PMC when the task is
3716 * the owner of the local PMU.
3719 thread
= &task
->thread
;
3721 * In system wide and when the context is loaded, access can only happen
3722 * when the caller is running on the CPU being monitored by the session.
3723 * It does not have to be the owner (ctx_task) of the context per se.
3725 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3726 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3729 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3733 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3734 * ensuring that no real breakpoint can be installed via this call.
3736 * IMPORTANT: regs can be NULL in this function
3739 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3742 * don't bother if we are loaded and task is being debugged
3744 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3745 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task
)));
3750 * check for debug registers in system wide mode
3752 * If though a check is done in pfm_context_load(),
3753 * we must repeat it here, in case the registers are
3754 * written after the context is loaded
3759 if (first_time
&& is_system
) {
3760 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3763 pfm_sessions
.pfs_sys_use_dbregs
++;
3768 if (ret
!= 0) return ret
;
3771 * mark ourself as user of the debug registers for
3774 ctx
->ctx_fl_using_dbreg
= 1;
3777 * clear hardware registers to make sure we don't
3778 * pick up stale state.
3780 * for a system wide session, we do not use
3781 * thread.dbr, thread.ibr because this process
3782 * never leaves the current CPU and the state
3783 * is shared by all processes running on it
3785 if (first_time
&& can_access_pmu
) {
3786 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task
)));
3787 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3788 ia64_set_ibr(i
, 0UL);
3789 ia64_dv_serialize_instruction();
3792 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3793 ia64_set_dbr(i
, 0UL);
3794 ia64_dv_serialize_data();
3800 * Now install the values into the registers
3802 for (i
= 0; i
< count
; i
++, req
++) {
3804 rnum
= req
->dbreg_num
;
3805 dbreg
.val
= req
->dbreg_value
;
3809 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3810 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3811 rnum
, dbreg
.val
, mode
, i
, count
));
3817 * make sure we do not install enabled breakpoint
3820 if (mode
== PFM_CODE_RR
)
3821 dbreg
.ibr
.ibr_x
= 0;
3823 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3826 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3829 * Debug registers, just like PMC, can only be modified
3830 * by a kernel call. Moreover, perfmon() access to those
3831 * registers are centralized in this routine. The hardware
3832 * does not modify the value of these registers, therefore,
3833 * if we save them as they are written, we can avoid having
3834 * to save them on context switch out. This is made possible
3835 * by the fact that when perfmon uses debug registers, ptrace()
3836 * won't be able to modify them concurrently.
3838 if (mode
== PFM_CODE_RR
) {
3839 CTX_USED_IBR(ctx
, rnum
);
3841 if (can_access_pmu
) {
3842 ia64_set_ibr(rnum
, dbreg
.val
);
3843 ia64_dv_serialize_instruction();
3846 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3848 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3849 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3851 CTX_USED_DBR(ctx
, rnum
);
3853 if (can_access_pmu
) {
3854 ia64_set_dbr(rnum
, dbreg
.val
);
3855 ia64_dv_serialize_data();
3857 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3859 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3860 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3868 * in case it was our first attempt, we undo the global modifications
3872 if (ctx
->ctx_fl_system
) {
3873 pfm_sessions
.pfs_sys_use_dbregs
--;
3876 ctx
->ctx_fl_using_dbreg
= 0;
3879 * install error return flag
3881 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3887 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3889 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3893 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3895 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3899 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3903 if (req
== NULL
) return -EINVAL
;
3905 ctx
= GET_PMU_CTX();
3907 if (ctx
== NULL
) return -EINVAL
;
3910 * for now limit to current task, which is enough when calling
3911 * from overflow handler
3913 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3915 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3917 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3920 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3924 if (req
== NULL
) return -EINVAL
;
3926 ctx
= GET_PMU_CTX();
3928 if (ctx
== NULL
) return -EINVAL
;
3931 * for now limit to current task, which is enough when calling
3932 * from overflow handler
3934 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3936 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3938 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3942 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3944 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3946 req
->ft_version
= PFM_VERSION
;
3951 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3953 struct pt_regs
*tregs
;
3954 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3955 int state
, is_system
;
3957 state
= ctx
->ctx_state
;
3958 is_system
= ctx
->ctx_fl_system
;
3961 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3963 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
3966 * In system wide and when the context is loaded, access can only happen
3967 * when the caller is running on the CPU being monitored by the session.
3968 * It does not have to be the owner (ctx_task) of the context per se.
3970 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3971 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3974 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3975 task_pid_nr(PFM_CTX_TASK(ctx
)),
3979 * in system mode, we need to update the PMU directly
3980 * and the user level state of the caller, which may not
3981 * necessarily be the creator of the context.
3985 * Update local PMU first
3989 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
3993 * update local cpuinfo
3995 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
3998 * stop monitoring, does srlz.i
4003 * stop monitoring in the caller
4005 ia64_psr(regs
)->pp
= 0;
4013 if (task
== current
) {
4014 /* stop monitoring at kernel level */
4018 * stop monitoring at the user level
4020 ia64_psr(regs
)->up
= 0;
4022 tregs
= task_pt_regs(task
);
4025 * stop monitoring at the user level
4027 ia64_psr(tregs
)->up
= 0;
4030 * monitoring disabled in kernel at next reschedule
4032 ctx
->ctx_saved_psr_up
= 0;
4033 DPRINT(("task=[%d]\n", task_pid_nr(task
)));
4040 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4042 struct pt_regs
*tregs
;
4043 int state
, is_system
;
4045 state
= ctx
->ctx_state
;
4046 is_system
= ctx
->ctx_fl_system
;
4048 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4051 * In system wide and when the context is loaded, access can only happen
4052 * when the caller is running on the CPU being monitored by the session.
4053 * It does not have to be the owner (ctx_task) of the context per se.
4055 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4056 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4061 * in system mode, we need to update the PMU directly
4062 * and the user level state of the caller, which may not
4063 * necessarily be the creator of the context.
4068 * set user level psr.pp for the caller
4070 ia64_psr(regs
)->pp
= 1;
4073 * now update the local PMU and cpuinfo
4075 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4078 * start monitoring at kernel level
4083 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4093 if (ctx
->ctx_task
== current
) {
4095 /* start monitoring at kernel level */
4099 * activate monitoring at user level
4101 ia64_psr(regs
)->up
= 1;
4104 tregs
= task_pt_regs(ctx
->ctx_task
);
4107 * start monitoring at the kernel level the next
4108 * time the task is scheduled
4110 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4113 * activate monitoring at user level
4115 ia64_psr(tregs
)->up
= 1;
4121 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4123 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4128 for (i
= 0; i
< count
; i
++, req
++) {
4130 cnum
= req
->reg_num
;
4132 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4134 req
->reg_value
= PMC_DFL_VAL(cnum
);
4136 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4138 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4143 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4148 pfm_check_task_exist(pfm_context_t
*ctx
)
4150 struct task_struct
*g
, *t
;
4153 read_lock(&tasklist_lock
);
4155 do_each_thread (g
, t
) {
4156 if (t
->thread
.pfm_context
== ctx
) {
4160 } while_each_thread (g
, t
);
4162 read_unlock(&tasklist_lock
);
4164 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4170 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4172 struct task_struct
*task
;
4173 struct thread_struct
*thread
;
4174 struct pfm_context_t
*old
;
4175 unsigned long flags
;
4177 struct task_struct
*owner_task
= NULL
;
4179 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4180 unsigned long *pmcs_source
, *pmds_source
;
4183 int state
, is_system
, set_dbregs
= 0;
4185 state
= ctx
->ctx_state
;
4186 is_system
= ctx
->ctx_fl_system
;
4188 * can only load from unloaded or terminated state
4190 if (state
!= PFM_CTX_UNLOADED
) {
4191 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4197 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4199 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4200 DPRINT(("cannot use blocking mode on self\n"));
4204 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4206 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4213 * system wide is self monitoring only
4215 if (is_system
&& task
!= current
) {
4216 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4221 thread
= &task
->thread
;
4225 * cannot load a context which is using range restrictions,
4226 * into a task that is being debugged.
4228 if (ctx
->ctx_fl_using_dbreg
) {
4229 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4231 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4237 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4238 DPRINT(("cannot load [%d] dbregs in use\n",
4239 task_pid_nr(task
)));
4242 pfm_sessions
.pfs_sys_use_dbregs
++;
4243 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task
), pfm_sessions
.pfs_sys_use_dbregs
));
4250 if (ret
) goto error
;
4254 * SMP system-wide monitoring implies self-monitoring.
4256 * The programming model expects the task to
4257 * be pinned on a CPU throughout the session.
4258 * Here we take note of the current CPU at the
4259 * time the context is loaded. No call from
4260 * another CPU will be allowed.
4262 * The pinning via shed_setaffinity()
4263 * must be done by the calling task prior
4266 * systemwide: keep track of CPU this session is supposed to run on
4268 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4272 * now reserve the session
4274 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4275 if (ret
) goto error
;
4278 * task is necessarily stopped at this point.
4280 * If the previous context was zombie, then it got removed in
4281 * pfm_save_regs(). Therefore we should not see it here.
4282 * If we see a context, then this is an active context
4284 * XXX: needs to be atomic
4286 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4287 thread
->pfm_context
, ctx
));
4290 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4292 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4296 pfm_reset_msgq(ctx
);
4298 ctx
->ctx_state
= PFM_CTX_LOADED
;
4301 * link context to task
4303 ctx
->ctx_task
= task
;
4307 * we load as stopped
4309 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4310 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4312 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4314 thread
->flags
|= IA64_THREAD_PM_VALID
;
4318 * propagate into thread-state
4320 pfm_copy_pmds(task
, ctx
);
4321 pfm_copy_pmcs(task
, ctx
);
4323 pmcs_source
= ctx
->th_pmcs
;
4324 pmds_source
= ctx
->th_pmds
;
4327 * always the case for system-wide
4329 if (task
== current
) {
4331 if (is_system
== 0) {
4333 /* allow user level control */
4334 ia64_psr(regs
)->sp
= 0;
4335 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task
)));
4337 SET_LAST_CPU(ctx
, smp_processor_id());
4339 SET_ACTIVATION(ctx
);
4342 * push the other task out, if any
4344 owner_task
= GET_PMU_OWNER();
4345 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4349 * load all PMD from ctx to PMU (as opposed to thread state)
4350 * restore all PMC from ctx to PMU
4352 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4353 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4355 ctx
->ctx_reload_pmcs
[0] = 0UL;
4356 ctx
->ctx_reload_pmds
[0] = 0UL;
4359 * guaranteed safe by earlier check against DBG_VALID
4361 if (ctx
->ctx_fl_using_dbreg
) {
4362 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4363 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4368 SET_PMU_OWNER(task
, ctx
);
4370 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task
)));
4373 * when not current, task MUST be stopped, so this is safe
4375 regs
= task_pt_regs(task
);
4377 /* force a full reload */
4378 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4379 SET_LAST_CPU(ctx
, -1);
4381 /* initial saved psr (stopped) */
4382 ctx
->ctx_saved_psr_up
= 0UL;
4383 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4389 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4392 * we must undo the dbregs setting (for system-wide)
4394 if (ret
&& set_dbregs
) {
4396 pfm_sessions
.pfs_sys_use_dbregs
--;
4400 * release task, there is now a link with the context
4402 if (is_system
== 0 && task
!= current
) {
4406 ret
= pfm_check_task_exist(ctx
);
4408 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4409 ctx
->ctx_task
= NULL
;
4417 * in this function, we do not need to increase the use count
4418 * for the task via get_task_struct(), because we hold the
4419 * context lock. If the task were to disappear while having
4420 * a context attached, it would go through pfm_exit_thread()
4421 * which also grabs the context lock and would therefore be blocked
4422 * until we are here.
4424 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4427 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4429 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4430 struct pt_regs
*tregs
;
4431 int prev_state
, is_system
;
4434 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task_pid_nr(task
) : -1));
4436 prev_state
= ctx
->ctx_state
;
4437 is_system
= ctx
->ctx_fl_system
;
4440 * unload only when necessary
4442 if (prev_state
== PFM_CTX_UNLOADED
) {
4443 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4448 * clear psr and dcr bits
4450 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4451 if (ret
) return ret
;
4453 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4456 * in system mode, we need to update the PMU directly
4457 * and the user level state of the caller, which may not
4458 * necessarily be the creator of the context.
4465 * local PMU is taken care of in pfm_stop()
4467 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4468 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4471 * save PMDs in context
4474 pfm_flush_pmds(current
, ctx
);
4477 * at this point we are done with the PMU
4478 * so we can unreserve the resource.
4480 if (prev_state
!= PFM_CTX_ZOMBIE
)
4481 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4484 * disconnect context from task
4486 task
->thread
.pfm_context
= NULL
;
4488 * disconnect task from context
4490 ctx
->ctx_task
= NULL
;
4493 * There is nothing more to cleanup here.
4501 tregs
= task
== current
? regs
: task_pt_regs(task
);
4503 if (task
== current
) {
4505 * cancel user level control
4507 ia64_psr(regs
)->sp
= 1;
4509 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task
)));
4512 * save PMDs to context
4515 pfm_flush_pmds(task
, ctx
);
4518 * at this point we are done with the PMU
4519 * so we can unreserve the resource.
4521 * when state was ZOMBIE, we have already unreserved.
4523 if (prev_state
!= PFM_CTX_ZOMBIE
)
4524 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4527 * reset activation counter and psr
4529 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4530 SET_LAST_CPU(ctx
, -1);
4533 * PMU state will not be restored
4535 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4538 * break links between context and task
4540 task
->thread
.pfm_context
= NULL
;
4541 ctx
->ctx_task
= NULL
;
4543 PFM_SET_WORK_PENDING(task
, 0);
4545 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4546 ctx
->ctx_fl_can_restart
= 0;
4547 ctx
->ctx_fl_going_zombie
= 0;
4549 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task
)));
4556 * called only from exit_thread(): task == current
4557 * we come here only if current has a context attached (loaded or masked)
4560 pfm_exit_thread(struct task_struct
*task
)
4563 unsigned long flags
;
4564 struct pt_regs
*regs
= task_pt_regs(task
);
4568 ctx
= PFM_GET_CTX(task
);
4570 PROTECT_CTX(ctx
, flags
);
4572 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task_pid_nr(task
)));
4574 state
= ctx
->ctx_state
;
4576 case PFM_CTX_UNLOADED
:
4578 * only comes to this function if pfm_context is not NULL, i.e., cannot
4579 * be in unloaded state
4581 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task
));
4583 case PFM_CTX_LOADED
:
4584 case PFM_CTX_MASKED
:
4585 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4587 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4589 DPRINT(("ctx unloaded for current state was %d\n", state
));
4591 pfm_end_notify_user(ctx
);
4593 case PFM_CTX_ZOMBIE
:
4594 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4596 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4601 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task
), state
);
4604 UNPROTECT_CTX(ctx
, flags
);
4606 { u64 psr
= pfm_get_psr();
4607 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4608 BUG_ON(GET_PMU_OWNER());
4609 BUG_ON(ia64_psr(regs
)->up
);
4610 BUG_ON(ia64_psr(regs
)->pp
);
4614 * All memory free operations (especially for vmalloc'ed memory)
4615 * MUST be done with interrupts ENABLED.
4617 if (free_ok
) pfm_context_free(ctx
);
4621 * functions MUST be listed in the increasing order of their index (see permfon.h)
4623 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4624 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4625 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4626 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4627 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4629 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4630 /* 0 */PFM_CMD_NONE
,
4631 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4632 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4633 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4634 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4635 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4636 /* 6 */PFM_CMD_NONE
,
4637 /* 7 */PFM_CMD_NONE
,
4638 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4639 /* 9 */PFM_CMD_NONE
,
4640 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4641 /* 11 */PFM_CMD_NONE
,
4642 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4643 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4644 /* 14 */PFM_CMD_NONE
,
4645 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4646 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4647 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4648 /* 18 */PFM_CMD_NONE
,
4649 /* 19 */PFM_CMD_NONE
,
4650 /* 20 */PFM_CMD_NONE
,
4651 /* 21 */PFM_CMD_NONE
,
4652 /* 22 */PFM_CMD_NONE
,
4653 /* 23 */PFM_CMD_NONE
,
4654 /* 24 */PFM_CMD_NONE
,
4655 /* 25 */PFM_CMD_NONE
,
4656 /* 26 */PFM_CMD_NONE
,
4657 /* 27 */PFM_CMD_NONE
,
4658 /* 28 */PFM_CMD_NONE
,
4659 /* 29 */PFM_CMD_NONE
,
4660 /* 30 */PFM_CMD_NONE
,
4661 /* 31 */PFM_CMD_NONE
,
4662 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4663 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4665 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4668 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4670 struct task_struct
*task
;
4671 int state
, old_state
;
4674 state
= ctx
->ctx_state
;
4675 task
= ctx
->ctx_task
;
4678 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4682 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4686 task
->state
, PFM_CMD_STOPPED(cmd
)));
4689 * self-monitoring always ok.
4691 * for system-wide the caller can either be the creator of the
4692 * context (to one to which the context is attached to) OR
4693 * a task running on the same CPU as the session.
4695 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4698 * we are monitoring another thread
4701 case PFM_CTX_UNLOADED
:
4703 * if context is UNLOADED we are safe to go
4706 case PFM_CTX_ZOMBIE
:
4708 * no command can operate on a zombie context
4710 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4712 case PFM_CTX_MASKED
:
4714 * PMU state has been saved to software even though
4715 * the thread may still be running.
4717 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4721 * context is LOADED or MASKED. Some commands may need to have
4724 * We could lift this restriction for UP but it would mean that
4725 * the user has no guarantee the task would not run between
4726 * two successive calls to perfmonctl(). That's probably OK.
4727 * If this user wants to ensure the task does not run, then
4728 * the task must be stopped.
4730 if (PFM_CMD_STOPPED(cmd
)) {
4731 if (!task_is_stopped_or_traced(task
)) {
4732 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task
)));
4736 * task is now stopped, wait for ctxsw out
4738 * This is an interesting point in the code.
4739 * We need to unprotect the context because
4740 * the pfm_save_regs() routines needs to grab
4741 * the same lock. There are danger in doing
4742 * this because it leaves a window open for
4743 * another task to get access to the context
4744 * and possibly change its state. The one thing
4745 * that is not possible is for the context to disappear
4746 * because we are protected by the VFS layer, i.e.,
4747 * get_fd()/put_fd().
4751 UNPROTECT_CTX(ctx
, flags
);
4753 wait_task_inactive(task
, 0);
4755 PROTECT_CTX(ctx
, flags
);
4758 * we must recheck to verify if state has changed
4760 if (ctx
->ctx_state
!= old_state
) {
4761 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4769 * system-call entry point (must return long)
4772 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4774 struct fd f
= {NULL
, 0};
4775 pfm_context_t
*ctx
= NULL
;
4776 unsigned long flags
= 0UL;
4777 void *args_k
= NULL
;
4778 long ret
; /* will expand int return types */
4779 size_t base_sz
, sz
, xtra_sz
= 0;
4780 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4781 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4782 int (*getsize
)(void *arg
, size_t *sz
);
4783 #define PFM_MAX_ARGSIZE 4096
4786 * reject any call if perfmon was disabled at initialization
4788 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4790 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4791 DPRINT(("invalid cmd=%d\n", cmd
));
4795 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4796 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4797 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4798 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4799 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4801 if (unlikely(func
== NULL
)) {
4802 DPRINT(("invalid cmd=%d\n", cmd
));
4806 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4814 * check if number of arguments matches what the command expects
4816 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4820 sz
= xtra_sz
+ base_sz
*count
;
4822 * limit abuse to min page size
4824 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4825 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", task_pid_nr(current
), sz
);
4830 * allocate default-sized argument buffer
4832 if (likely(count
&& args_k
== NULL
)) {
4833 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4834 if (args_k
== NULL
) return -ENOMEM
;
4842 * assume sz = 0 for command without parameters
4844 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4845 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4850 * check if command supports extra parameters
4852 if (completed_args
== 0 && getsize
) {
4854 * get extra parameters size (based on main argument)
4856 ret
= (*getsize
)(args_k
, &xtra_sz
);
4857 if (ret
) goto error_args
;
4861 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4863 /* retry if necessary */
4864 if (likely(xtra_sz
)) goto restart_args
;
4867 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4872 if (unlikely(f
.file
== NULL
)) {
4873 DPRINT(("invalid fd %d\n", fd
));
4876 if (unlikely(PFM_IS_FILE(f
.file
) == 0)) {
4877 DPRINT(("fd %d not related to perfmon\n", fd
));
4881 ctx
= f
.file
->private_data
;
4882 if (unlikely(ctx
== NULL
)) {
4883 DPRINT(("no context for fd %d\n", fd
));
4886 prefetch(&ctx
->ctx_state
);
4888 PROTECT_CTX(ctx
, flags
);
4891 * check task is stopped
4893 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4894 if (unlikely(ret
)) goto abort_locked
;
4897 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4903 DPRINT(("context unlocked\n"));
4904 UNPROTECT_CTX(ctx
, flags
);
4907 /* copy argument back to user, if needed */
4908 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4916 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4922 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4924 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4925 pfm_ovfl_ctrl_t rst_ctrl
;
4929 state
= ctx
->ctx_state
;
4931 * Unlock sampling buffer and reset index atomically
4932 * XXX: not really needed when blocking
4934 if (CTX_HAS_SMPL(ctx
)) {
4936 rst_ctrl
.bits
.mask_monitoring
= 0;
4937 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4939 if (state
== PFM_CTX_LOADED
)
4940 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4942 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4944 rst_ctrl
.bits
.mask_monitoring
= 0;
4945 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4949 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4950 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4952 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4953 DPRINT(("resuming monitoring\n"));
4954 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4956 DPRINT(("stopping monitoring\n"));
4957 //pfm_stop_monitoring(current, regs);
4959 ctx
->ctx_state
= PFM_CTX_LOADED
;
4964 * context MUST BE LOCKED when calling
4965 * can only be called for current
4968 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
4972 DPRINT(("entering for [%d]\n", task_pid_nr(current
)));
4974 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4976 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current
), ret
);
4980 * and wakeup controlling task, indicating we are now disconnected
4982 wake_up_interruptible(&ctx
->ctx_zombieq
);
4985 * given that context is still locked, the controlling
4986 * task will only get access when we return from
4987 * pfm_handle_work().
4991 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
4994 * pfm_handle_work() can be called with interrupts enabled
4995 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4996 * call may sleep, therefore we must re-enable interrupts
4997 * to avoid deadlocks. It is safe to do so because this function
4998 * is called ONLY when returning to user level (pUStk=1), in which case
4999 * there is no risk of kernel stack overflow due to deep
5000 * interrupt nesting.
5003 pfm_handle_work(void)
5006 struct pt_regs
*regs
;
5007 unsigned long flags
, dummy_flags
;
5008 unsigned long ovfl_regs
;
5009 unsigned int reason
;
5012 ctx
= PFM_GET_CTX(current
);
5014 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n",
5015 task_pid_nr(current
));
5019 PROTECT_CTX(ctx
, flags
);
5021 PFM_SET_WORK_PENDING(current
, 0);
5023 regs
= task_pt_regs(current
);
5026 * extract reason for being here and clear
5028 reason
= ctx
->ctx_fl_trap_reason
;
5029 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5030 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5032 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5035 * must be done before we check for simple-reset mode
5037 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
)
5040 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5041 if (reason
== PFM_TRAP_REASON_RESET
)
5045 * restore interrupt mask to what it was on entry.
5046 * Could be enabled/diasbled.
5048 UNPROTECT_CTX(ctx
, flags
);
5051 * force interrupt enable because of down_interruptible()
5055 DPRINT(("before block sleeping\n"));
5058 * may go through without blocking on SMP systems
5059 * if restart has been received already by the time we call down()
5061 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5063 DPRINT(("after block sleeping ret=%d\n", ret
));
5066 * lock context and mask interrupts again
5067 * We save flags into a dummy because we may have
5068 * altered interrupts mask compared to entry in this
5071 PROTECT_CTX(ctx
, dummy_flags
);
5074 * we need to read the ovfl_regs only after wake-up
5075 * because we may have had pfm_write_pmds() in between
5076 * and that can changed PMD values and therefore
5077 * ovfl_regs is reset for these new PMD values.
5079 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5081 if (ctx
->ctx_fl_going_zombie
) {
5083 DPRINT(("context is zombie, bailing out\n"));
5084 pfm_context_force_terminate(ctx
, regs
);
5088 * in case of interruption of down() we don't restart anything
5094 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5095 ctx
->ctx_ovfl_regs
[0] = 0UL;
5099 * restore flags as they were upon entry
5101 UNPROTECT_CTX(ctx
, flags
);
5105 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5107 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5108 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5112 DPRINT(("waking up somebody\n"));
5114 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5117 * safe, we are not in intr handler, nor in ctxsw when
5120 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5126 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5128 pfm_msg_t
*msg
= NULL
;
5130 if (ctx
->ctx_fl_no_msg
== 0) {
5131 msg
= pfm_get_new_msg(ctx
);
5133 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5137 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5138 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5139 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5140 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5141 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5142 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5143 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5144 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5147 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5153 return pfm_notify_user(ctx
, msg
);
5157 pfm_end_notify_user(pfm_context_t
*ctx
)
5161 msg
= pfm_get_new_msg(ctx
);
5163 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5167 memset(msg
, 0, sizeof(*msg
));
5169 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5170 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5171 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5173 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5178 return pfm_notify_user(ctx
, msg
);
5182 * main overflow processing routine.
5183 * it can be called from the interrupt path or explicitly during the context switch code
5185 static void pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
,
5186 unsigned long pmc0
, struct pt_regs
*regs
)
5188 pfm_ovfl_arg_t
*ovfl_arg
;
5190 unsigned long old_val
, ovfl_val
, new_val
;
5191 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5192 unsigned long tstamp
;
5193 pfm_ovfl_ctrl_t ovfl_ctrl
;
5194 unsigned int i
, has_smpl
;
5195 int must_notify
= 0;
5197 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5200 * sanity test. Should never happen
5202 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5204 tstamp
= ia64_get_itc();
5205 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5206 ovfl_val
= pmu_conf
->ovfl_val
;
5207 has_smpl
= CTX_HAS_SMPL(ctx
);
5209 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5210 "used_pmds=0x%lx\n",
5212 task
? task_pid_nr(task
): -1,
5213 (regs
? regs
->cr_iip
: 0),
5214 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5215 ctx
->ctx_used_pmds
[0]));
5219 * first we update the virtual counters
5220 * assume there was a prior ia64_srlz_d() issued
5222 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5224 /* skip pmd which did not overflow */
5225 if ((mask
& 0x1) == 0) continue;
5228 * Note that the pmd is not necessarily 0 at this point as qualified events
5229 * may have happened before the PMU was frozen. The residual count is not
5230 * taken into consideration here but will be with any read of the pmd via
5233 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5234 new_val
+= 1 + ovfl_val
;
5235 ctx
->ctx_pmds
[i
].val
= new_val
;
5238 * check for overflow condition
5240 if (likely(old_val
> new_val
)) {
5241 ovfl_pmds
|= 1UL << i
;
5242 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5245 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5249 ia64_get_pmd(i
) & ovfl_val
,
5255 * there was no 64-bit overflow, nothing else to do
5257 if (ovfl_pmds
== 0UL) return;
5260 * reset all control bits
5266 * if a sampling format module exists, then we "cache" the overflow by
5267 * calling the module's handler() routine.
5270 unsigned long start_cycles
, end_cycles
;
5271 unsigned long pmd_mask
;
5273 int this_cpu
= smp_processor_id();
5275 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5276 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5278 prefetch(ctx
->ctx_smpl_hdr
);
5280 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5284 if ((pmd_mask
& 0x1) == 0) continue;
5286 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5287 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5288 ovfl_arg
->active_set
= 0;
5289 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5290 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5292 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5293 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5294 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5297 * copy values of pmds of interest. Sampling format may copy them
5298 * into sampling buffer.
5301 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5302 if ((smpl_pmds
& 0x1) == 0) continue;
5303 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5304 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5308 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5310 start_cycles
= ia64_get_itc();
5313 * call custom buffer format record (handler) routine
5315 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5317 end_cycles
= ia64_get_itc();
5320 * For those controls, we take the union because they have
5321 * an all or nothing behavior.
5323 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5324 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5325 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5327 * build the bitmask of pmds to reset now
5329 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5331 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5334 * when the module cannot handle the rest of the overflows, we abort right here
5336 if (ret
&& pmd_mask
) {
5337 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5338 pmd_mask
<<PMU_FIRST_COUNTER
));
5341 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5343 ovfl_pmds
&= ~reset_pmds
;
5346 * when no sampling module is used, then the default
5347 * is to notify on overflow if requested by user
5349 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5350 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5351 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5352 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5354 * if needed, we reset all overflowed pmds
5356 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5359 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5362 * reset the requested PMD registers using the short reset values
5365 unsigned long bm
= reset_pmds
;
5366 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5369 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5371 * keep track of what to reset when unblocking
5373 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5376 * check for blocking context
5378 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5380 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5383 * set the perfmon specific checking pending work for the task
5385 PFM_SET_WORK_PENDING(task
, 1);
5388 * when coming from ctxsw, current still points to the
5389 * previous task, therefore we must work with task and not current.
5391 set_notify_resume(task
);
5394 * defer until state is changed (shorten spin window). the context is locked
5395 * anyway, so the signal receiver would come spin for nothing.
5400 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5401 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5402 PFM_GET_WORK_PENDING(task
),
5403 ctx
->ctx_fl_trap_reason
,
5406 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5408 * in case monitoring must be stopped, we toggle the psr bits
5410 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5411 pfm_mask_monitoring(task
);
5412 ctx
->ctx_state
= PFM_CTX_MASKED
;
5413 ctx
->ctx_fl_can_restart
= 1;
5417 * send notification now
5419 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5424 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5426 task
? task_pid_nr(task
) : -1,
5432 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5433 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5434 * come here as zombie only if the task is the current task. In which case, we
5435 * can access the PMU hardware directly.
5437 * Note that zombies do have PM_VALID set. So here we do the minimal.
5439 * In case the context was zombified it could not be reclaimed at the time
5440 * the monitoring program exited. At this point, the PMU reservation has been
5441 * returned, the sampiing buffer has been freed. We must convert this call
5442 * into a spurious interrupt. However, we must also avoid infinite overflows
5443 * by stopping monitoring for this task. We can only come here for a per-task
5444 * context. All we need to do is to stop monitoring using the psr bits which
5445 * are always task private. By re-enabling secure montioring, we ensure that
5446 * the monitored task will not be able to re-activate monitoring.
5447 * The task will eventually be context switched out, at which point the context
5448 * will be reclaimed (that includes releasing ownership of the PMU).
5450 * So there might be a window of time where the number of per-task session is zero
5451 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5452 * context. This is safe because if a per-task session comes in, it will push this one
5453 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5454 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5455 * also push our zombie context out.
5457 * Overall pretty hairy stuff....
5459 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task_pid_nr(task
): -1));
5461 ia64_psr(regs
)->up
= 0;
5462 ia64_psr(regs
)->sp
= 1;
5467 pfm_do_interrupt_handler(void *arg
, struct pt_regs
*regs
)
5469 struct task_struct
*task
;
5471 unsigned long flags
;
5473 int this_cpu
= smp_processor_id();
5476 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5479 * srlz.d done before arriving here
5481 pmc0
= ia64_get_pmc(0);
5483 task
= GET_PMU_OWNER();
5484 ctx
= GET_PMU_CTX();
5487 * if we have some pending bits set
5488 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5490 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5492 * we assume that pmc0.fr is always set here
5496 if (!ctx
) goto report_spurious1
;
5498 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5499 goto report_spurious2
;
5501 PROTECT_CTX_NOPRINT(ctx
, flags
);
5503 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5505 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5508 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5512 * keep it unfrozen at all times
5519 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5520 this_cpu
, task_pid_nr(task
));
5524 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5532 pfm_interrupt_handler(int irq
, void *arg
)
5534 unsigned long start_cycles
, total_cycles
;
5535 unsigned long min
, max
;
5538 struct pt_regs
*regs
= get_irq_regs();
5540 this_cpu
= get_cpu();
5541 if (likely(!pfm_alt_intr_handler
)) {
5542 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5543 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5545 start_cycles
= ia64_get_itc();
5547 ret
= pfm_do_interrupt_handler(arg
, regs
);
5549 total_cycles
= ia64_get_itc();
5552 * don't measure spurious interrupts
5554 if (likely(ret
== 0)) {
5555 total_cycles
-= start_cycles
;
5557 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5558 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5560 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5564 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5572 * /proc/perfmon interface, for debug only
5575 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5578 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5581 return PFM_PROC_SHOW_HEADER
;
5584 while (*pos
<= nr_cpu_ids
) {
5585 if (cpu_online(*pos
- 1)) {
5586 return (void *)*pos
;
5594 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5597 return pfm_proc_start(m
, pos
);
5601 pfm_proc_stop(struct seq_file
*m
, void *v
)
5606 pfm_proc_show_header(struct seq_file
*m
)
5608 struct list_head
* pos
;
5609 pfm_buffer_fmt_t
* entry
;
5610 unsigned long flags
;
5613 "perfmon version : %u.%u\n"
5616 "expert mode : %s\n"
5617 "ovfl_mask : 0x%lx\n"
5618 "PMU flags : 0x%x\n",
5619 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5621 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5622 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5629 "proc_sessions : %u\n"
5630 "sys_sessions : %u\n"
5631 "sys_use_dbregs : %u\n"
5632 "ptrace_use_dbregs : %u\n",
5633 pfm_sessions
.pfs_task_sessions
,
5634 pfm_sessions
.pfs_sys_sessions
,
5635 pfm_sessions
.pfs_sys_use_dbregs
,
5636 pfm_sessions
.pfs_ptrace_use_dbregs
);
5640 spin_lock(&pfm_buffer_fmt_lock
);
5642 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5643 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5644 seq_printf(m
, "format : %16phD %s\n",
5645 entry
->fmt_uuid
, entry
->fmt_name
);
5647 spin_unlock(&pfm_buffer_fmt_lock
);
5652 pfm_proc_show(struct seq_file
*m
, void *v
)
5658 if (v
== PFM_PROC_SHOW_HEADER
) {
5659 pfm_proc_show_header(m
);
5663 /* show info for CPU (v - 1) */
5667 "CPU%-2d overflow intrs : %lu\n"
5668 "CPU%-2d overflow cycles : %lu\n"
5669 "CPU%-2d overflow min : %lu\n"
5670 "CPU%-2d overflow max : %lu\n"
5671 "CPU%-2d smpl handler calls : %lu\n"
5672 "CPU%-2d smpl handler cycles : %lu\n"
5673 "CPU%-2d spurious intrs : %lu\n"
5674 "CPU%-2d replay intrs : %lu\n"
5675 "CPU%-2d syst_wide : %d\n"
5676 "CPU%-2d dcr_pp : %d\n"
5677 "CPU%-2d exclude idle : %d\n"
5678 "CPU%-2d owner : %d\n"
5679 "CPU%-2d context : %p\n"
5680 "CPU%-2d activations : %lu\n",
5681 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5682 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5683 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5684 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5685 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5686 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5687 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5688 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5689 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5690 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5691 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5692 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5693 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5694 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5696 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5698 psr
= pfm_get_psr();
5703 "CPU%-2d psr : 0x%lx\n"
5704 "CPU%-2d pmc0 : 0x%lx\n",
5706 cpu
, ia64_get_pmc(0));
5708 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5709 if (PMC_IS_COUNTING(i
) == 0) continue;
5711 "CPU%-2d pmc%u : 0x%lx\n"
5712 "CPU%-2d pmd%u : 0x%lx\n",
5713 cpu
, i
, ia64_get_pmc(i
),
5714 cpu
, i
, ia64_get_pmd(i
));
5720 const struct seq_operations pfm_seq_ops
= {
5721 .start
= pfm_proc_start
,
5722 .next
= pfm_proc_next
,
5723 .stop
= pfm_proc_stop
,
5724 .show
= pfm_proc_show
5728 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5730 return seq_open(file
, &pfm_seq_ops
);
5735 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5736 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5737 * is active or inactive based on mode. We must rely on the value in
5738 * local_cpu_data->pfm_syst_info
5741 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5743 struct pt_regs
*regs
;
5745 unsigned long dcr_pp
;
5747 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5750 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5751 * on every CPU, so we can rely on the pid to identify the idle task.
5753 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5754 regs
= task_pt_regs(task
);
5755 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5759 * if monitoring has started
5762 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5764 * context switching in?
5767 /* mask monitoring for the idle task */
5768 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5774 * context switching out
5775 * restore monitoring for next task
5777 * Due to inlining this odd if-then-else construction generates
5780 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5789 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5791 struct task_struct
*task
= ctx
->ctx_task
;
5793 ia64_psr(regs
)->up
= 0;
5794 ia64_psr(regs
)->sp
= 1;
5796 if (GET_PMU_OWNER() == task
) {
5797 DPRINT(("cleared ownership for [%d]\n",
5798 task_pid_nr(ctx
->ctx_task
)));
5799 SET_PMU_OWNER(NULL
, NULL
);
5803 * disconnect the task from the context and vice-versa
5805 PFM_SET_WORK_PENDING(task
, 0);
5807 task
->thread
.pfm_context
= NULL
;
5808 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5810 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task
)));
5815 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5818 pfm_save_regs(struct task_struct
*task
)
5821 unsigned long flags
;
5825 ctx
= PFM_GET_CTX(task
);
5826 if (ctx
== NULL
) return;
5829 * we always come here with interrupts ALREADY disabled by
5830 * the scheduler. So we simply need to protect against concurrent
5831 * access, not CPU concurrency.
5833 flags
= pfm_protect_ctx_ctxsw(ctx
);
5835 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5836 struct pt_regs
*regs
= task_pt_regs(task
);
5840 pfm_force_cleanup(ctx
, regs
);
5842 BUG_ON(ctx
->ctx_smpl_hdr
);
5844 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5846 pfm_context_free(ctx
);
5851 * save current PSR: needed because we modify it
5854 psr
= pfm_get_psr();
5856 BUG_ON(psr
& (IA64_PSR_I
));
5860 * This is the last instruction which may generate an overflow
5862 * We do not need to set psr.sp because, it is irrelevant in kernel.
5863 * It will be restored from ipsr when going back to user level
5868 * keep a copy of psr.up (for reload)
5870 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5873 * release ownership of this PMU.
5874 * PM interrupts are masked, so nothing
5877 SET_PMU_OWNER(NULL
, NULL
);
5880 * we systematically save the PMD as we have no
5881 * guarantee we will be schedule at that same
5884 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5887 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5888 * we will need it on the restore path to check
5889 * for pending overflow.
5891 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5894 * unfreeze PMU if had pending overflows
5896 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5899 * finally, allow context access.
5900 * interrupts will still be masked after this call.
5902 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5905 #else /* !CONFIG_SMP */
5907 pfm_save_regs(struct task_struct
*task
)
5912 ctx
= PFM_GET_CTX(task
);
5913 if (ctx
== NULL
) return;
5916 * save current PSR: needed because we modify it
5918 psr
= pfm_get_psr();
5920 BUG_ON(psr
& (IA64_PSR_I
));
5924 * This is the last instruction which may generate an overflow
5926 * We do not need to set psr.sp because, it is irrelevant in kernel.
5927 * It will be restored from ipsr when going back to user level
5932 * keep a copy of psr.up (for reload)
5934 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5938 pfm_lazy_save_regs (struct task_struct
*task
)
5941 unsigned long flags
;
5943 { u64 psr
= pfm_get_psr();
5944 BUG_ON(psr
& IA64_PSR_UP
);
5947 ctx
= PFM_GET_CTX(task
);
5950 * we need to mask PMU overflow here to
5951 * make sure that we maintain pmc0 until
5952 * we save it. overflow interrupts are
5953 * treated as spurious if there is no
5956 * XXX: I don't think this is necessary
5958 PROTECT_CTX(ctx
,flags
);
5961 * release ownership of this PMU.
5962 * must be done before we save the registers.
5964 * after this call any PMU interrupt is treated
5967 SET_PMU_OWNER(NULL
, NULL
);
5970 * save all the pmds we use
5972 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5975 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5976 * it is needed to check for pended overflow
5977 * on the restore path
5979 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5982 * unfreeze PMU if had pending overflows
5984 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5987 * now get can unmask PMU interrupts, they will
5988 * be treated as purely spurious and we will not
5989 * lose any information
5991 UNPROTECT_CTX(ctx
,flags
);
5993 #endif /* CONFIG_SMP */
5997 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6000 pfm_load_regs (struct task_struct
*task
)
6003 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6004 unsigned long flags
;
6006 int need_irq_resend
;
6008 ctx
= PFM_GET_CTX(task
);
6009 if (unlikely(ctx
== NULL
)) return;
6011 BUG_ON(GET_PMU_OWNER());
6014 * possible on unload
6016 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6019 * we always come here with interrupts ALREADY disabled by
6020 * the scheduler. So we simply need to protect against concurrent
6021 * access, not CPU concurrency.
6023 flags
= pfm_protect_ctx_ctxsw(ctx
);
6024 psr
= pfm_get_psr();
6026 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6028 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6029 BUG_ON(psr
& IA64_PSR_I
);
6031 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6032 struct pt_regs
*regs
= task_pt_regs(task
);
6034 BUG_ON(ctx
->ctx_smpl_hdr
);
6036 pfm_force_cleanup(ctx
, regs
);
6038 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6041 * this one (kmalloc'ed) is fine with interrupts disabled
6043 pfm_context_free(ctx
);
6049 * we restore ALL the debug registers to avoid picking up
6052 if (ctx
->ctx_fl_using_dbreg
) {
6053 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6054 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6057 * retrieve saved psr.up
6059 psr_up
= ctx
->ctx_saved_psr_up
;
6062 * if we were the last user of the PMU on that CPU,
6063 * then nothing to do except restore psr
6065 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6068 * retrieve partial reload masks (due to user modifications)
6070 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6071 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6075 * To avoid leaking information to the user level when psr.sp=0,
6076 * we must reload ALL implemented pmds (even the ones we don't use).
6077 * In the kernel we only allow PFM_READ_PMDS on registers which
6078 * we initialized or requested (sampling) so there is no risk there.
6080 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6083 * ALL accessible PMCs are systematically reloaded, unused registers
6084 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6085 * up stale configuration.
6087 * PMC0 is never in the mask. It is always restored separately.
6089 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6092 * when context is MASKED, we will restore PMC with plm=0
6093 * and PMD with stale information, but that's ok, nothing
6096 * XXX: optimize here
6098 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6099 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6102 * check for pending overflow at the time the state
6105 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6107 * reload pmc0 with the overflow information
6108 * On McKinley PMU, this will trigger a PMU interrupt
6110 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6112 ctx
->th_pmcs
[0] = 0UL;
6115 * will replay the PMU interrupt
6117 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6119 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6123 * we just did a reload, so we reset the partial reload fields
6125 ctx
->ctx_reload_pmcs
[0] = 0UL;
6126 ctx
->ctx_reload_pmds
[0] = 0UL;
6128 SET_LAST_CPU(ctx
, smp_processor_id());
6131 * dump activation value for this PMU
6135 * record current activation for this context
6137 SET_ACTIVATION(ctx
);
6140 * establish new ownership.
6142 SET_PMU_OWNER(task
, ctx
);
6145 * restore the psr.up bit. measurement
6147 * no PMU interrupt can happen at this point
6148 * because we still have interrupts disabled.
6150 if (likely(psr_up
)) pfm_set_psr_up();
6153 * allow concurrent access to context
6155 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6157 #else /* !CONFIG_SMP */
6159 * reload PMU state for UP kernels
6160 * in 2.5 we come here with interrupts disabled
6163 pfm_load_regs (struct task_struct
*task
)
6166 struct task_struct
*owner
;
6167 unsigned long pmd_mask
, pmc_mask
;
6169 int need_irq_resend
;
6171 owner
= GET_PMU_OWNER();
6172 ctx
= PFM_GET_CTX(task
);
6173 psr
= pfm_get_psr();
6175 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6176 BUG_ON(psr
& IA64_PSR_I
);
6179 * we restore ALL the debug registers to avoid picking up
6182 * This must be done even when the task is still the owner
6183 * as the registers may have been modified via ptrace()
6184 * (not perfmon) by the previous task.
6186 if (ctx
->ctx_fl_using_dbreg
) {
6187 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6188 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6192 * retrieved saved psr.up
6194 psr_up
= ctx
->ctx_saved_psr_up
;
6195 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6198 * short path, our state is still there, just
6199 * need to restore psr and we go
6201 * we do not touch either PMC nor PMD. the psr is not touched
6202 * by the overflow_handler. So we are safe w.r.t. to interrupt
6203 * concurrency even without interrupt masking.
6205 if (likely(owner
== task
)) {
6206 if (likely(psr_up
)) pfm_set_psr_up();
6211 * someone else is still using the PMU, first push it out and
6212 * then we'll be able to install our stuff !
6214 * Upon return, there will be no owner for the current PMU
6216 if (owner
) pfm_lazy_save_regs(owner
);
6219 * To avoid leaking information to the user level when psr.sp=0,
6220 * we must reload ALL implemented pmds (even the ones we don't use).
6221 * In the kernel we only allow PFM_READ_PMDS on registers which
6222 * we initialized or requested (sampling) so there is no risk there.
6224 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6227 * ALL accessible PMCs are systematically reloaded, unused registers
6228 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6229 * up stale configuration.
6231 * PMC0 is never in the mask. It is always restored separately
6233 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6235 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6236 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6239 * check for pending overflow at the time the state
6242 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6244 * reload pmc0 with the overflow information
6245 * On McKinley PMU, this will trigger a PMU interrupt
6247 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6250 ctx
->th_pmcs
[0] = 0UL;
6253 * will replay the PMU interrupt
6255 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6257 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6261 * establish new ownership.
6263 SET_PMU_OWNER(task
, ctx
);
6266 * restore the psr.up bit. measurement
6268 * no PMU interrupt can happen at this point
6269 * because we still have interrupts disabled.
6271 if (likely(psr_up
)) pfm_set_psr_up();
6273 #endif /* CONFIG_SMP */
6276 * this function assumes monitoring is stopped
6279 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6282 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6283 int i
, can_access_pmu
= 0;
6287 * is the caller the task being monitored (or which initiated the
6288 * session for system wide measurements)
6290 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6293 * can access PMU is task is the owner of the PMU state on the current CPU
6294 * or if we are running on the CPU bound to the context in system-wide mode
6295 * (that is not necessarily the task the context is attached to in this mode).
6296 * In system-wide we always have can_access_pmu true because a task running on an
6297 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6299 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6300 if (can_access_pmu
) {
6302 * Mark the PMU as not owned
6303 * This will cause the interrupt handler to do nothing in case an overflow
6304 * interrupt was in-flight
6305 * This also guarantees that pmc0 will contain the final state
6306 * It virtually gives us full control on overflow processing from that point
6309 SET_PMU_OWNER(NULL
, NULL
);
6310 DPRINT(("releasing ownership\n"));
6313 * read current overflow status:
6315 * we are guaranteed to read the final stable state
6318 pmc0
= ia64_get_pmc(0); /* slow */
6321 * reset freeze bit, overflow status information destroyed
6325 pmc0
= ctx
->th_pmcs
[0];
6327 * clear whatever overflow status bits there were
6329 ctx
->th_pmcs
[0] = 0;
6331 ovfl_val
= pmu_conf
->ovfl_val
;
6333 * we save all the used pmds
6334 * we take care of overflows for counting PMDs
6336 * XXX: sampling situation is not taken into account here
6338 mask2
= ctx
->ctx_used_pmds
[0];
6340 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6342 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6344 /* skip non used pmds */
6345 if ((mask2
& 0x1) == 0) continue;
6348 * can access PMU always true in system wide mode
6350 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6352 if (PMD_IS_COUNTING(i
)) {
6353 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6356 ctx
->ctx_pmds
[i
].val
,
6360 * we rebuild the full 64 bit value of the counter
6362 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6365 * now everything is in ctx_pmds[] and we need
6366 * to clear the saved context from save_regs() such that
6367 * pfm_read_pmds() gets the correct value
6372 * take care of overflow inline
6374 if (pmc0
& (1UL << i
)) {
6375 val
+= 1 + ovfl_val
;
6376 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task
), i
));
6380 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task
), i
, val
, pmd_val
));
6382 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6384 ctx
->ctx_pmds
[i
].val
= val
;
6388 static struct irqaction perfmon_irqaction
= {
6389 .handler
= pfm_interrupt_handler
,
6394 pfm_alt_save_pmu_state(void *data
)
6396 struct pt_regs
*regs
;
6398 regs
= task_pt_regs(current
);
6400 DPRINT(("called\n"));
6403 * should not be necessary but
6404 * let's take not risk
6408 ia64_psr(regs
)->pp
= 0;
6411 * This call is required
6412 * May cause a spurious interrupt on some processors
6420 pfm_alt_restore_pmu_state(void *data
)
6422 struct pt_regs
*regs
;
6424 regs
= task_pt_regs(current
);
6426 DPRINT(("called\n"));
6429 * put PMU back in state expected
6434 ia64_psr(regs
)->pp
= 0;
6437 * perfmon runs with PMU unfrozen at all times
6445 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6450 /* some sanity checks */
6451 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6453 /* do the easy test first */
6454 if (pfm_alt_intr_handler
) return -EBUSY
;
6456 /* one at a time in the install or remove, just fail the others */
6457 if (!spin_trylock(&pfm_alt_install_check
)) {
6461 /* reserve our session */
6462 for_each_online_cpu(reserve_cpu
) {
6463 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6464 if (ret
) goto cleanup_reserve
;
6467 /* save the current system wide pmu states */
6468 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 1);
6470 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6471 goto cleanup_reserve
;
6474 /* officially change to the alternate interrupt handler */
6475 pfm_alt_intr_handler
= hdl
;
6477 spin_unlock(&pfm_alt_install_check
);
6482 for_each_online_cpu(i
) {
6483 /* don't unreserve more than we reserved */
6484 if (i
>= reserve_cpu
) break;
6486 pfm_unreserve_session(NULL
, 1, i
);
6489 spin_unlock(&pfm_alt_install_check
);
6493 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6496 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6501 if (hdl
== NULL
) return -EINVAL
;
6503 /* cannot remove someone else's handler! */
6504 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6506 /* one at a time in the install or remove, just fail the others */
6507 if (!spin_trylock(&pfm_alt_install_check
)) {
6511 pfm_alt_intr_handler
= NULL
;
6513 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 1);
6515 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6518 for_each_online_cpu(i
) {
6519 pfm_unreserve_session(NULL
, 1, i
);
6522 spin_unlock(&pfm_alt_install_check
);
6526 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6529 * perfmon initialization routine, called from the initcall() table
6531 static int init_pfm_fs(void);
6539 family
= local_cpu_data
->family
;
6544 if ((*p
)->probe() == 0) goto found
;
6545 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6556 static const struct file_operations pfm_proc_fops
= {
6557 .open
= pfm_proc_open
,
6559 .llseek
= seq_lseek
,
6560 .release
= seq_release
,
6566 unsigned int n
, n_counters
, i
;
6568 printk("perfmon: version %u.%u IRQ %u\n",
6571 IA64_PERFMON_VECTOR
);
6573 if (pfm_probe_pmu()) {
6574 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6575 local_cpu_data
->family
);
6580 * compute the number of implemented PMD/PMC from the
6581 * description tables
6584 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6585 if (PMC_IS_IMPL(i
) == 0) continue;
6586 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6589 pmu_conf
->num_pmcs
= n
;
6591 n
= 0; n_counters
= 0;
6592 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6593 if (PMD_IS_IMPL(i
) == 0) continue;
6594 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6596 if (PMD_IS_COUNTING(i
)) n_counters
++;
6598 pmu_conf
->num_pmds
= n
;
6599 pmu_conf
->num_counters
= n_counters
;
6602 * sanity checks on the number of debug registers
6604 if (pmu_conf
->use_rr_dbregs
) {
6605 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6606 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6610 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6611 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6617 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6621 pmu_conf
->num_counters
,
6622 ffz(pmu_conf
->ovfl_val
));
6625 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6626 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6632 * create /proc/perfmon (mostly for debugging purposes)
6634 perfmon_dir
= proc_create("perfmon", S_IRUGO
, NULL
, &pfm_proc_fops
);
6635 if (perfmon_dir
== NULL
) {
6636 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6642 * create /proc/sys/kernel/perfmon (for debugging purposes)
6644 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6647 * initialize all our spinlocks
6649 spin_lock_init(&pfm_sessions
.pfs_lock
);
6650 spin_lock_init(&pfm_buffer_fmt_lock
);
6654 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6659 __initcall(pfm_init
);
6662 * this function is called before pfm_init()
6665 pfm_init_percpu (void)
6667 static int first_time
=1;
6669 * make sure no measurement is active
6670 * (may inherit programmed PMCs from EFI).
6676 * we run with the PMU not frozen at all times
6681 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6685 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6690 * used for debug purposes only
6693 dump_pmu_state(const char *from
)
6695 struct task_struct
*task
;
6696 struct pt_regs
*regs
;
6698 unsigned long psr
, dcr
, info
, flags
;
6701 local_irq_save(flags
);
6703 this_cpu
= smp_processor_id();
6704 regs
= task_pt_regs(current
);
6705 info
= PFM_CPUINFO_GET();
6706 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6708 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6709 local_irq_restore(flags
);
6713 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6716 task_pid_nr(current
),
6720 task
= GET_PMU_OWNER();
6721 ctx
= GET_PMU_CTX();
6723 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task_pid_nr(task
) : -1, ctx
);
6725 psr
= pfm_get_psr();
6727 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6730 psr
& IA64_PSR_PP
? 1 : 0,
6731 psr
& IA64_PSR_UP
? 1 : 0,
6732 dcr
& IA64_DCR_PP
? 1 : 0,
6735 ia64_psr(regs
)->pp
);
6737 ia64_psr(regs
)->up
= 0;
6738 ia64_psr(regs
)->pp
= 0;
6740 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6741 if (PMC_IS_IMPL(i
) == 0) continue;
6742 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6745 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6746 if (PMD_IS_IMPL(i
) == 0) continue;
6747 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6751 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6754 ctx
->ctx_smpl_vaddr
,
6758 ctx
->ctx_saved_psr_up
);
6760 local_irq_restore(flags
);
6764 * called from process.c:copy_thread(). task is new child.
6767 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6769 struct thread_struct
*thread
;
6771 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task
)));
6773 thread
= &task
->thread
;
6776 * cut links inherited from parent (current)
6778 thread
->pfm_context
= NULL
;
6780 PFM_SET_WORK_PENDING(task
, 0);
6783 * the psr bits are already set properly in copy_threads()
6786 #else /* !CONFIG_PERFMON */
6788 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6792 #endif /* CONFIG_PERFMON */