2 * linux/arch/m32r/mm/fault.c
4 * Copyright (c) 2001, 2002 Hitoshi Yamamoto, and H. Kondo
5 * Copyright (c) 2004 Naoto Sugai, NIIBE Yutaka
7 * Some code taken from i386 version.
8 * Copyright (C) 1995 Linus Torvalds
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 #include <linux/ptrace.h>
18 #include <linux/mman.h>
20 #include <linux/smp.h>
21 #include <linux/interrupt.h>
22 #include <linux/init.h>
23 #include <linux/tty.h>
24 #include <linux/vt_kern.h> /* For unblank_screen() */
25 #include <linux/highmem.h>
26 #include <linux/module.h>
29 #include <asm/uaccess.h>
30 #include <asm/hardirq.h>
31 #include <asm/mmu_context.h>
32 #include <asm/tlbflush.h>
34 extern void die(const char *, struct pt_regs
*, long);
37 asmlinkage
unsigned int tlb_entry_i_dat
;
38 asmlinkage
unsigned int tlb_entry_d_dat
;
39 #define tlb_entry_i tlb_entry_i_dat
40 #define tlb_entry_d tlb_entry_d_dat
42 unsigned int tlb_entry_i_dat
[NR_CPUS
];
43 unsigned int tlb_entry_d_dat
[NR_CPUS
];
44 #define tlb_entry_i tlb_entry_i_dat[smp_processor_id()]
45 #define tlb_entry_d tlb_entry_d_dat[smp_processor_id()]
48 extern void init_tlb(void);
50 /*======================================================================*
52 *======================================================================*
53 * This routine handles page faults. It determines the address,
54 * and the problem, and then passes it off to one of the appropriate
59 * error_code : See below
60 * address : M32R MMU MDEVA reg. (Operand ACE)
61 * : M32R BPC reg. (Instruction ACE)
64 * bit 0 == 0 means no page found, 1 means protection fault
65 * bit 1 == 0 means read, 1 means write
66 * bit 2 == 0 means kernel, 1 means user-mode
67 * bit 3 == 0 means data, 1 means instruction
68 *======================================================================*/
69 #define ACE_PROTECTION 1
71 #define ACE_USERMODE 4
72 #define ACE_INSTRUCTION 8
74 asmlinkage
void do_page_fault(struct pt_regs
*regs
, unsigned long error_code
,
75 unsigned long address
)
77 struct task_struct
*tsk
;
79 struct vm_area_struct
* vma
;
80 unsigned long page
, addr
;
81 unsigned long flags
= 0;
86 * If BPSW IE bit enable --> set PSW IE bit
88 if (regs
->psw
& M32R_PSW_BIE
)
93 info
.si_code
= SEGV_MAPERR
;
96 * We fault-in kernel-space virtual memory on-demand. The
97 * 'reference' page table is init_mm.pgd.
99 * NOTE! We MUST NOT take any locks for this case. We may
100 * be in an interrupt or a critical region, and should
101 * only copy the information from the master page table,
104 * This verifies that the fault happens in kernel space
105 * (error_code & ACE_USERMODE) == 0, and that the fault was not a
106 * protection error (error_code & ACE_PROTECTION) == 0.
108 if (address
>= TASK_SIZE
&& !(error_code
& ACE_USERMODE
))
114 * If we're in an interrupt or have no user context or are running in an
115 * atomic region then we must not take the fault..
117 if (in_atomic() || !mm
)
118 goto bad_area_nosemaphore
;
120 if (error_code
& ACE_USERMODE
)
121 flags
|= FAULT_FLAG_USER
;
123 /* When running in the kernel we expect faults to occur only to
124 * addresses in user space. All other faults represent errors in the
125 * kernel and should generate an OOPS. Unfortunately, in the case of an
126 * erroneous fault occurring in a code path which already holds mmap_sem
127 * we will deadlock attempting to validate the fault against the
128 * address space. Luckily the kernel only validly references user
129 * space from well defined areas of code, which are listed in the
132 * As the vast majority of faults will be valid we will only perform
133 * the source reference check when there is a possibility of a deadlock.
134 * Attempt to lock the address space, if we cannot we then validate the
135 * source. If this is invalid we can skip the address space check,
136 * thus avoiding the deadlock.
138 if (!down_read_trylock(&mm
->mmap_sem
)) {
139 if ((error_code
& ACE_USERMODE
) == 0 &&
140 !search_exception_tables(regs
->psw
))
141 goto bad_area_nosemaphore
;
142 down_read(&mm
->mmap_sem
);
145 vma
= find_vma(mm
, address
);
148 if (vma
->vm_start
<= address
)
150 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
153 if (error_code
& ACE_USERMODE
) {
155 * accessing the stack below "spu" is always a bug.
156 * The "+ 4" is there due to the push instruction
157 * doing pre-decrement on the stack and that
158 * doesn't show up until later..
160 if (address
+ 4 < regs
->spu
)
164 if (expand_stack(vma
, address
))
167 * Ok, we have a good vm_area for this memory access, so
171 info
.si_code
= SEGV_ACCERR
;
172 switch (error_code
& (ACE_WRITE
|ACE_PROTECTION
)) {
173 default: /* 3: write, present */
175 case ACE_WRITE
: /* write, not present */
176 if (!(vma
->vm_flags
& VM_WRITE
))
178 flags
|= FAULT_FLAG_WRITE
;
180 case ACE_PROTECTION
: /* read, present */
181 case 0: /* read, not present */
182 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
)))
187 * For instruction access exception, check if the area is executable
189 if ((error_code
& ACE_INSTRUCTION
) && !(vma
->vm_flags
& VM_EXEC
))
193 * If for any reason at all we couldn't handle the fault,
194 * make sure we exit gracefully rather than endlessly redo
197 addr
= (address
& PAGE_MASK
);
198 set_thread_fault_code(error_code
);
199 fault
= handle_mm_fault(mm
, vma
, addr
, flags
);
200 if (unlikely(fault
& VM_FAULT_ERROR
)) {
201 if (fault
& VM_FAULT_OOM
)
203 else if (fault
& VM_FAULT_SIGBUS
)
207 if (fault
& VM_FAULT_MAJOR
)
211 set_thread_fault_code(0);
212 up_read(&mm
->mmap_sem
);
216 * Something tried to access memory that isn't in our memory map..
217 * Fix it, but check if it's kernel or user first..
220 up_read(&mm
->mmap_sem
);
222 bad_area_nosemaphore
:
223 /* User mode accesses just cause a SIGSEGV */
224 if (error_code
& ACE_USERMODE
) {
225 tsk
->thread
.address
= address
;
226 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
227 tsk
->thread
.trap_no
= 14;
228 info
.si_signo
= SIGSEGV
;
230 /* info.si_code has been set above */
231 info
.si_addr
= (void __user
*)address
;
232 force_sig_info(SIGSEGV
, &info
, tsk
);
237 /* Are we prepared to handle this kernel fault? */
238 if (fixup_exception(regs
))
242 * Oops. The kernel tried to access some bad page. We'll have to
243 * terminate things with extreme prejudice.
248 if (address
< PAGE_SIZE
)
249 printk(KERN_ALERT
"Unable to handle kernel NULL pointer dereference");
251 printk(KERN_ALERT
"Unable to handle kernel paging request");
252 printk(" at virtual address %08lx\n",address
);
253 printk(KERN_ALERT
" printing bpc:\n");
254 printk("%08lx\n", regs
->bpc
);
255 page
= *(unsigned long *)MPTB
;
256 page
= ((unsigned long *) page
)[address
>> PGDIR_SHIFT
];
257 printk(KERN_ALERT
"*pde = %08lx\n", page
);
258 if (page
& _PAGE_PRESENT
) {
260 address
&= 0x003ff000;
261 page
= ((unsigned long *) __va(page
))[address
>> PAGE_SHIFT
];
262 printk(KERN_ALERT
"*pte = %08lx\n", page
);
264 die("Oops", regs
, error_code
);
269 * We ran out of memory, or some other thing happened to us that made
270 * us unable to handle the page fault gracefully.
273 up_read(&mm
->mmap_sem
);
274 if (!(error_code
& ACE_USERMODE
))
276 pagefault_out_of_memory();
280 up_read(&mm
->mmap_sem
);
282 /* Kernel mode? Handle exception or die */
283 if (!(error_code
& ACE_USERMODE
))
286 tsk
->thread
.address
= address
;
287 tsk
->thread
.error_code
= error_code
;
288 tsk
->thread
.trap_no
= 14;
289 info
.si_signo
= SIGBUS
;
291 info
.si_code
= BUS_ADRERR
;
292 info
.si_addr
= (void __user
*)address
;
293 force_sig_info(SIGBUS
, &info
, tsk
);
299 * Synchronize this task's top level page-table
300 * with the 'reference' page table.
302 * Do _not_ use "tsk" here. We might be inside
303 * an interrupt in the middle of a task switch..
305 int offset
= pgd_index(address
);
310 pgd
= (pgd_t
*)*(unsigned long *)MPTB
;
311 pgd
= offset
+ (pgd_t
*)pgd
;
312 pgd_k
= init_mm
.pgd
+ offset
;
314 if (!pgd_present(*pgd_k
))
318 * set_pgd(pgd, *pgd_k); here would be useless on PAE
319 * and redundant with the set_pmd() on non-PAE.
322 pmd
= pmd_offset(pgd
, address
);
323 pmd_k
= pmd_offset(pgd_k
, address
);
324 if (!pmd_present(*pmd_k
))
326 set_pmd(pmd
, *pmd_k
);
328 pte_k
= pte_offset_kernel(pmd_k
, address
);
329 if (!pte_present(*pte_k
))
332 addr
= (address
& PAGE_MASK
);
333 set_thread_fault_code(error_code
);
334 update_mmu_cache(NULL
, addr
, pte_k
);
335 set_thread_fault_code(0);
340 /*======================================================================*
342 *======================================================================*/
343 #define TLB_MASK (NR_TLB_ENTRIES - 1)
344 #define ITLB_END (unsigned long *)(ITLB_BASE + (NR_TLB_ENTRIES * 8))
345 #define DTLB_END (unsigned long *)(DTLB_BASE + (NR_TLB_ENTRIES * 8))
346 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long vaddr
,
349 volatile unsigned long *entry1
, *entry2
;
350 unsigned long pte_data
, flags
;
351 unsigned int *entry_dat
;
352 int inst
= get_thread_fault_code() & ACE_INSTRUCTION
;
355 /* Ptrace may call this routine. */
356 if (vma
&& current
->active_mm
!= vma
->vm_mm
)
359 local_irq_save(flags
);
361 vaddr
= (vaddr
& PAGE_MASK
) | get_asid();
363 pte_data
= pte_val(*ptep
);
365 #ifdef CONFIG_CHIP_OPSP
366 entry1
= (unsigned long *)ITLB_BASE
;
367 for (i
= 0; i
< NR_TLB_ENTRIES
; i
++) {
368 if (*entry1
++ == vaddr
) {
369 set_tlb_data(entry1
, pte_data
);
374 entry2
= (unsigned long *)DTLB_BASE
;
375 for (i
= 0; i
< NR_TLB_ENTRIES
; i
++) {
376 if (*entry2
++ == vaddr
) {
377 set_tlb_data(entry2
, pte_data
);
385 * entry1: ITLB entry address
386 * entry2: DTLB entry address
388 __asm__
__volatile__ (
389 "seth %0, #high(%4) \n\t"
390 "st %2, @(%5, %0) \n\t"
392 "st %1, @(%6, %0) \n\t"
393 "add3 r4, %0, %7 \n\t"
396 "ld %1, @(%6, %0) \n\t"
402 : "=&r" (entry1
), "=&r" (entry2
)
403 : "r" (vaddr
), "r" (pte_data
), "i" (MMU_REG_BASE
),
404 "i" (MSVA_offset
), "i" (MTOP_offset
), "i" (MIDXI_offset
)
409 if ((!inst
&& entry2
>= DTLB_END
) || (inst
&& entry1
>= ITLB_END
))
413 local_irq_restore(flags
);
417 /* Valid entry not found */
420 * Update ITLB or DTLB entry
421 * entry1: TLB entry address
422 * entry2: TLB base address
425 entry2
= (unsigned long *)DTLB_BASE
;
426 entry_dat
= &tlb_entry_d
;
428 entry2
= (unsigned long *)ITLB_BASE
;
429 entry_dat
= &tlb_entry_i
;
431 entry1
= entry2
+ (((*entry_dat
- 1) & TLB_MASK
) << 1);
433 for (i
= 0 ; i
< NR_TLB_ENTRIES
; i
++) {
434 if (!(entry1
[1] & 2)) /* Valid bit check */
437 if (entry1
!= entry2
)
440 entry1
+= TLB_MASK
<< 1;
443 if (i
>= NR_TLB_ENTRIES
) { /* Empty entry not found */
444 entry1
= entry2
+ (*entry_dat
<< 1);
445 *entry_dat
= (*entry_dat
+ 1) & TLB_MASK
;
447 *entry1
++ = vaddr
; /* Set TLB tag */
448 set_tlb_data(entry1
, pte_data
);
453 /*======================================================================*
454 * flush_tlb_page() : flushes one page
455 *======================================================================*/
456 void local_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
458 if (vma
->vm_mm
&& mm_context(vma
->vm_mm
) != NO_CONTEXT
) {
461 local_irq_save(flags
);
463 page
|= (mm_context(vma
->vm_mm
) & MMU_CONTEXT_ASID_MASK
);
464 __flush_tlb_page(page
);
465 local_irq_restore(flags
);
469 /*======================================================================*
470 * flush_tlb_range() : flushes a range of pages
471 *======================================================================*/
472 void local_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
475 struct mm_struct
*mm
;
478 if (mm_context(mm
) != NO_CONTEXT
) {
482 local_irq_save(flags
);
483 size
= (end
- start
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
484 if (size
> (NR_TLB_ENTRIES
/ 4)) { /* Too many TLB to flush */
485 mm_context(mm
) = NO_CONTEXT
;
486 if (mm
== current
->mm
)
487 activate_context(mm
);
491 asid
= mm_context(mm
) & MMU_CONTEXT_ASID_MASK
;
493 end
+= (PAGE_SIZE
- 1);
498 while (start
< end
) {
499 __flush_tlb_page(start
);
503 local_irq_restore(flags
);
507 /*======================================================================*
508 * flush_tlb_mm() : flushes the specified mm context TLB's
509 *======================================================================*/
510 void local_flush_tlb_mm(struct mm_struct
*mm
)
512 /* Invalidate all TLB of this process. */
513 /* Instead of invalidating each TLB, we get new MMU context. */
514 if (mm_context(mm
) != NO_CONTEXT
) {
517 local_irq_save(flags
);
518 mm_context(mm
) = NO_CONTEXT
;
519 if (mm
== current
->mm
)
520 activate_context(mm
);
521 local_irq_restore(flags
);
525 /*======================================================================*
526 * flush_tlb_all() : flushes all processes TLBs
527 *======================================================================*/
528 void local_flush_tlb_all(void)
532 local_irq_save(flags
);
534 local_irq_restore(flags
);
537 /*======================================================================*
539 *======================================================================*/
540 void __init
init_mmu(void)
544 mmu_context_cache
= MMU_CONTEXT_FIRST_VERSION
;
545 set_asid(mmu_context_cache
& MMU_CONTEXT_ASID_MASK
);
546 *(volatile unsigned long *)MPTB
= (unsigned long)swapper_pg_dir
;