3 ** head.S -- This file contains the initial boot code for the
6 ** Copyright 1993 by Hamish Macdonald
8 ** 68040 fixes by Michael Rausch
9 ** 68060 fixes by Roman Hodek
10 ** MMU cleanup by Randy Thelen
11 ** Final MMU cleanup by Roman Zippel
13 ** Atari support by Andreas Schwab, using ideas of Robert de Vries
15 ** VME Support by Richard Hirst
17 ** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18 ** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19 ** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20 ** 95/11/18 Richard Hirst: Added MVME166 support
21 ** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22 ** Magnum- and FX-alternate ram
23 ** 98/04/25 Phil Blundell: added HP300 support
24 ** 1998/08/30 David Kilzer: Added support for font_desc structures
26 ** 1999/02/11 Richard Zidlicky: added Q40 support (initial version 99/01/01)
27 ** 2004/05/13 Kars de Jong: Finalised HP300 support
29 ** This file is subject to the terms and conditions of the GNU General Public
30 ** License. See the file README.legal in the main directory of this archive
38 * At this point, the boot loader has:
41 * Put us in supervisor state.
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
49 * . Enable cache memories
50 * . Jump to kernel startup
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
79 * Also, there will be a description of engaging the MMU and
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
89 * ######################################################################
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
100 * mmu_map (logical, physical, length, cache_type)
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
127 * ######################################################################
130 * ######################################################################
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
142 * ######################################################################
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
150 * ######################################################################
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef / #endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
181 * ######################################################################
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
190 * ######################################################################
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in autoconf.h.
201 * CONSOLE_DEBUG: Only supports a Mac frame buffer but could easily be
202 * extended to support other platforms.
204 * TEST_MMU: This is a test harness for running on any given machine but
205 * getting an MMU dump for another class of machine. The classes of machines
206 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
207 * and any of the models (030, 040, 060, etc.).
209 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
210 * When head.S boots on Atari, Amiga, Macintosh, and VME
211 * machines. At that point the underlying logic will be
212 * believed to be solid enough to be trusted, and TEST_MMU
213 * can be dropped. Do note that that will clean up the
214 * head.S code significantly as large blocks of #if/#else
215 * clauses can be removed.
217 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
218 * determing why devices don't appear to work. A test case was to remove
219 * the cacheability of the kernel bits.
221 * MMU_PRINT: There is a routine built into head.S that can display the
222 * MMU data structures. It outputs its result through the serial_putc
223 * interface. So where ever that winds up driving data, that's where the
224 * mmu struct will appear.
226 * SERIAL_DEBUG: There are a series of putc() macro statements
227 * scattered through out the code to give progress of status to the
228 * person sitting at the console. This constant determines whether those
231 * DEBUG: This is the standard DEBUG flag that can be set for building
232 * the kernel. It has the effect adding additional tests into
238 * In theory these could be determined at run time or handed
239 * over by the booter. But, let's be real, it's a fine hard
240 * coded value. (But, you will notice the code is run-time
241 * flexible!) A pointer to the font's struct font_desc
242 * is kept locally in Lconsole_font. It is used to determine
243 * font size information dynamically.
246 * USE_PRINTER: Use the printer port for serial debug.
247 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
248 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
249 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
251 * Macintosh constants:
252 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
253 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
256 #include <linux/linkage.h>
257 #include <linux/init.h>
258 #include <asm/bootinfo.h>
259 #include <asm/bootinfo-amiga.h>
260 #include <asm/bootinfo-atari.h>
261 #include <asm/bootinfo-hp300.h>
262 #include <asm/bootinfo-mac.h>
263 #include <asm/bootinfo-q40.h>
264 #include <asm/bootinfo-vme.h>
265 #include <asm/setup.h>
266 #include <asm/entry.h>
267 #include <asm/pgtable.h>
268 #include <asm/page.h>
269 #include <asm/asm-offsets.h>
271 # include <asm/machw.h>
274 #ifdef CONFIG_EARLY_PRINTK
275 # define SERIAL_DEBUG
276 # if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
277 # define CONSOLE_DEBUG
282 #undef MMU_NOCACHE_KERNEL
286 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
287 * The 8x8 font is harder to read but fits more on the screen.
289 #define FONT_8x8 /* default */
290 /* #define FONT_8x16 */ /* 2nd choice */
291 /* #define FONT_6x11 */ /* 3rd choice */
295 .globl m68k_init_mapped_size
296 .globl m68k_pgtable_cachemode
297 .globl m68k_supervisor_cachemode
298 #ifdef CONFIG_MVME16x
305 CPUTYPE_040 = 1 /* indicates an 040 */
306 CPUTYPE_060 = 2 /* indicates an 060 */
307 CPUTYPE_0460 = 3 /* if either above are set, this is set */
308 CPUTYPE_020 = 4 /* indicates an 020 */
310 /* Translation control register */
315 /* Transparent translation registers */
316 TTR_ENABLE = 0x8000 /* enable transparent translation */
317 TTR_ANYMODE = 0x4000 /* user and kernel mode access */
318 TTR_KERNELMODE = 0x2000 /* only kernel mode access */
319 TTR_USERMODE = 0x0000 /* only user mode access */
320 TTR_CI = 0x0400 /* inhibit cache */
321 TTR_RW = 0x0200 /* read/write mode */
322 TTR_RWM = 0x0100 /* read/write mask */
323 TTR_FCB2 = 0x0040 /* function code base bit 2 */
324 TTR_FCB1 = 0x0020 /* function code base bit 1 */
325 TTR_FCB0 = 0x0010 /* function code base bit 0 */
326 TTR_FCM2 = 0x0004 /* function code mask bit 2 */
327 TTR_FCM1 = 0x0002 /* function code mask bit 1 */
328 TTR_FCM0 = 0x0001 /* function code mask bit 0 */
330 /* Cache Control registers */
331 CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
332 CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
333 CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
334 CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
335 CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
336 CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
337 CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
338 CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
339 CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
340 CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
341 CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
342 CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
343 CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
344 CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
345 CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
346 CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
347 CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
348 CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
349 CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
350 CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
351 CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
352 CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
354 /* Miscellaneous definitions */
358 ROOT_TABLE_SIZE = 128
361 ROOT_INDEX_SHIFT = 25
363 PAGE_INDEX_SHIFT = 12
366 /* When debugging use readable names for labels */
368 #define L(name) .head.S.##name
370 #define L(name) .head.S./**/name
374 #define L(name) .L##name
376 #define L(name) .L/**/name
380 /* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
382 #define __INITDATA .data
383 #define __FINIT .previous
386 /* Several macros to make the writing of subroutines easier:
387 * - func_start marks the beginning of the routine which setups the frame
388 * register and saves the registers, it also defines another macro
389 * to automatically restore the registers again.
390 * - func_return marks the end of the routine and simply calls the prepared
391 * macro to restore registers and jump back to the caller.
392 * - func_define generates another macro to automatically put arguments
393 * onto the stack call the subroutine and cleanup the stack again.
396 /* Within subroutines these macros can be used to access the arguments
397 * on the stack. With STACK some allocated memory on the stack can be
398 * accessed and ARG0 points to the return address (used by mmu_engage).
400 #define STACK %a6@(stackstart)
403 #define ARG2 %a6@(12)
404 #define ARG3 %a6@(16)
405 #define ARG4 %a6@(20)
407 .macro func_start name,saveregs,stack=0
410 moveml \saveregs,%sp@-
411 .set stackstart,-\stack
413 .macro func_return_\name
414 moveml %sp@+,\saveregs
420 .macro func_return name
424 .macro func_call name
428 .macro move_stack nr,arg1,arg2,arg3,arg4
430 move_stack "(\nr-1)",\arg2,\arg3,\arg4
435 .macro func_define name,nr=0
436 .macro \name arg1,arg2,arg3,arg4
437 move_stack \nr,\arg1,\arg2,\arg3,\arg4
445 func_define mmu_map,4
446 func_define mmu_map_tt,4
447 func_define mmu_fixup_page_mmu_cache,1
448 func_define mmu_temp_map,2
449 func_define mmu_engage
450 func_define mmu_get_root_table_entry,1
451 func_define mmu_get_ptr_table_entry,2
452 func_define mmu_get_page_table_entry,2
453 func_define mmu_print
454 func_define get_new_page
455 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
459 .macro mmu_map_eq arg1,arg2,arg3
460 mmu_map \arg1,\arg1,\arg2,\arg3
463 .macro get_bi_record record
465 func_call get_bi_record
469 func_define serial_putc,1
470 func_define console_putc,1
472 func_define console_init
473 func_define console_put_penguin
474 func_define console_plot_pixel,3
475 func_define console_scroll
478 #if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
482 func_call console_putc
485 func_call serial_putc
487 #if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
507 #if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
524 #define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
525 #define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
526 #define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
527 #define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
528 #define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
529 #define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
530 #define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
531 #define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
532 #define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
533 #define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
534 #define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
535 #define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
536 #define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
538 #define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
540 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
544 #define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
545 #define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
546 #define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
547 #define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
548 #define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
549 #define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
550 #define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
552 /* On the HP300 we use the on-board LEDs for debug output before
553 the console is running. Writing a 1 bit turns the corresponding LED
554 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
556 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
568 * Version numbers of the bootinfo interface
569 * The area from _stext to _start will later be used as kernel pointer table
571 bras 1f /* Jump over bootinfo version numbers */
573 .long BOOTINFOV_MAGIC
574 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
575 .long MACH_ATARI, ATARI_BOOTI_VERSION
576 .long MACH_MVME147, MVME147_BOOTI_VERSION
577 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
578 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
579 .long MACH_MAC, MAC_BOOTI_VERSION
580 .long MACH_Q40, Q40_BOOTI_VERSION
581 .long MACH_HP300, HP300_BOOTI_VERSION
585 .equ kernel_pg_dir,_stext
587 .equ .,_stext+PAGESIZE
594 * Setup initial stack pointer
599 * Record the CPU and machine type.
601 get_bi_record BI_MACHTYPE
602 lea %pc@(m68k_machtype),%a1
605 get_bi_record BI_FPUTYPE
606 lea %pc@(m68k_fputype),%a1
609 get_bi_record BI_MMUTYPE
610 lea %pc@(m68k_mmutype),%a1
613 get_bi_record BI_CPUTYPE
614 lea %pc@(m68k_cputype),%a1
621 * For Macintosh, we need to determine the display parameters early (at least
622 * while debugging it).
625 is_not_mac(L(test_notmac))
627 get_bi_record BI_MAC_VADDR
628 lea %pc@(L(mac_videobase)),%a1
631 get_bi_record BI_MAC_VDEPTH
632 lea %pc@(L(mac_videodepth)),%a1
635 get_bi_record BI_MAC_VDIM
636 lea %pc@(L(mac_dimensions)),%a1
639 get_bi_record BI_MAC_VROW
640 lea %pc@(L(mac_rowbytes)),%a1
643 get_bi_record BI_MAC_SCCBASE
644 lea %pc@(L(mac_sccbase)),%a1
648 #endif /* CONFIG_MAC */
652 * There are ultimately two pieces of information we want for all kinds of
653 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
654 * and is converted here from a booter type definition to a separate bit
655 * number which allows for the standard is_0x0 macro tests.
657 movel %pc@(m68k_cputype),%d0
664 * Test the BootInfo cputype for 060
668 bset #CPUTYPE_060,%d1
669 bset #CPUTYPE_0460,%d1
673 * Test the BootInfo cputype for 040
677 bset #CPUTYPE_040,%d1
678 bset #CPUTYPE_0460,%d1
682 * Test the BootInfo cputype for 020
686 bset #CPUTYPE_020,%d1
690 * Record the cpu type
692 lea %pc@(L(cputype)),%a0
698 * Now the macros are valid:
707 * Determine the cache mode for pages holding MMU tables
708 * and for supervisor mode, unused for '020 and '030
713 is_not_040_or_060(L(save_cachetype))
717 * d1 := cacheable write-through
718 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
719 * but we have been using write-through since at least 2.0.29 so I
722 #ifdef CONFIG_060_WRITETHROUGH
724 * If this is a 68060 board using drivers with cache coherency
725 * problems, then supervisor memory accesses need to be write-through
726 * also; otherwise, we want copyback.
730 movel #_PAGE_CACHE040W,%d0
731 jra L(save_cachetype)
732 #endif /* CONFIG_060_WRITETHROUGH */
734 movew #_PAGE_CACHE040,%d0
736 movel #_PAGE_CACHE040W,%d1
739 /* Save cache mode for supervisor mode and page tables
741 lea %pc@(m68k_supervisor_cachemode),%a0
743 lea %pc@(m68k_pgtable_cachemode),%a0
747 * raise interrupt level
752 If running on an Atari, determine the I/O base of the
753 serial port and test if we are running on a Medusa or Hades.
754 This test is necessary here, because on the Hades the serial
755 port is only accessible in the high I/O memory area.
757 The test whether it is a Medusa is done by writing to the byte at
758 phys. 0x0. This should result in a bus error on all other machines.
760 ...should, but doesn't. The Afterburner040 for the Falcon has the
761 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
762 another test to distinguish Medusa and AB040. This is a
763 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
764 (+AB040), but is in the range where the Medusa always asserts DTACK.
766 The test for the Hades is done by reading address 0xb0000000. This
767 should give a bus error on the Medusa.
771 is_not_atari(L(notypetest))
773 /* get special machine type (Medusa/Hades/AB40) */
774 moveq #0,%d3 /* default if tag doesn't exist */
775 get_bi_record BI_ATARI_MCH_TYPE
779 lea %pc@(atari_mch_type),%a0
782 /* On the Hades, the iobase must be set up before opening the
783 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
785 cmpl #ATARI_MACH_HADES,%d3
787 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
788 1: lea %pc@(L(iobase)),%a0
795 is_mvme147(L(getvmetype))
796 is_bvme6000(L(getvmetype))
797 is_not_mvme16x(L(gvtdone))
799 /* See if the loader has specified the BI_VME_TYPE tag. Recent
800 * versions of VMELILO and TFTPLILO do this. We have to do this
801 * early so we know how to handle console output. If the tag
802 * doesn't exist then we use the Bug for output on MVME16x.
805 get_bi_record BI_VME_TYPE
809 lea %pc@(vme_brdtype),%a0
812 #ifdef CONFIG_MVME16x
813 is_not_mvme16x(L(gvtdone))
815 /* Need to get the BRD_ID info to differentiate between 162, 167,
816 * etc. This is available as a BI_VME_BRDINFO tag with later
817 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
819 get_bi_record BI_VME_BRDINFO
823 /* Get pointer to board ID data from Bug */
826 .word 0x70 /* trap 0x70 - .BRD_ID */
829 lea %pc@(mvme_bdid),%a1
830 /* Structure is 32 bytes long */
846 is_not_hp300(L(nothp))
848 /* Get the address of the UART for serial debugging */
849 get_bi_record BI_HP300_UART_ADDR
853 lea %pc@(L(uartbase)),%a0
855 get_bi_record BI_HP300_UART_SCODE
859 lea %pc@(L(uart_scode)),%a0
866 * Initialize serial port
875 # ifdef CONSOLE_DEBUG
879 # endif /* CONFIG_LOGO */
880 # endif /* CONSOLE_DEBUG */
882 #endif /* CONFIG_MAC */
888 dputn %pc@(L(cputype))
889 dputn %pc@(m68k_supervisor_cachemode)
890 dputn %pc@(m68k_pgtable_cachemode)
894 * Save physical start address of kernel
896 lea %pc@(L(phys_kernel_start)),%a0
899 addl #PAGE_OFFSET,%a1
909 * This block of code does what's necessary to map in the various kinds
910 * of machines for execution of Linux.
911 * First map the first 4, 8, or 16 MB of kernel code & data
914 get_bi_record BI_MEMCHUNK
916 movel #16*1024*1024,%d1
924 movel %d1,m68k_init_mapped_size
925 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
926 %pc@(m68k_supervisor_cachemode)
934 is_not_amiga(L(mmu_init_not_amiga))
941 is_not_040_or_060(1f)
944 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
946 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
948 * Map the Zorro III I/O space with transparent translation
949 * for frame buffer memory etc.
951 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
953 jbra L(mmu_init_done)
957 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
959 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
960 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
962 jbra L(mmu_init_done)
964 L(mmu_init_not_amiga):
971 is_not_atari(L(mmu_init_not_atari))
975 /* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
976 the last 16 MB of virtual address space to the first 16 MB (i.e.
977 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
978 needed. I/O ranges are marked non-cachable.
980 For the Medusa it is better to map the I/O region transparently
981 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
982 accessible only in the high area.
984 On the Hades all I/O registers are only accessible in the high
988 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
990 movel %pc@(atari_mch_type),%d3
991 cmpl #ATARI_MACH_MEDUSA,%d3
993 cmpl #ATARI_MACH_HADES,%d3
995 2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
998 is_040_or_060(L(spata68040))
1000 /* Map everything non-cacheable, though not all parts really
1001 * need to disable caches (crucial only for 0xff8000..0xffffff
1002 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1003 * isn't really used, except for sometimes peeking into the
1004 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1006 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1008 jbra L(mmu_init_done)
1012 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1014 jbra L(mmu_init_done)
1016 L(mmu_init_not_atari):
1020 is_not_q40(L(notq40))
1022 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1023 * non-cached serialized etc..
1024 * this includes master chip, DAC, RTC and ISA ports
1025 * 0xfe000000-0xfeffffff is for screen and ROM
1030 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1031 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1033 jbra L(mmu_init_done)
1039 is_not_hp300(L(nothp300))
1041 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1042 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1043 * The ROM mapping is needed because the LEDs are mapped there too.
1049 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1051 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1053 jbra L(mmu_init_done)
1057 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1059 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1061 jbra L(mmu_init_done)
1064 #endif /* CONFIG_HP300 */
1066 #ifdef CONFIG_MVME147
1068 is_not_mvme147(L(not147))
1071 * On MVME147 we have already created kernel page tables for
1072 * 4MB of RAM at address 0, so now need to do a transparent
1073 * mapping of the top of memory space. Make it 0.5GByte for now,
1074 * so we can access on-board i/o areas.
1077 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1079 jbra L(mmu_init_done)
1082 #endif /* CONFIG_MVME147 */
1084 #ifdef CONFIG_MVME16x
1086 is_not_mvme16x(L(not16x))
1089 * On MVME16x we have already created kernel page tables for
1090 * 4MB of RAM at address 0, so now need to do a transparent
1091 * mapping of the top of memory space. Make it 0.5GByte for now.
1092 * Supervisor only access, so transparent mapping doesn't
1093 * clash with User code virtual address space.
1094 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1095 * mapping is needed to allow 167Bug to run.
1096 * IO is in the range 0xfff00000 to 0xfffeffff.
1097 * PROM is 0xff800000->0xffbfffff and SRAM is
1098 * 0xffe00000->0xffe1ffff.
1101 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1103 jbra L(mmu_init_done)
1106 #endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1108 #ifdef CONFIG_BVME6000
1110 is_not_bvme6000(L(not6000))
1113 * On BVME6000 we have already created kernel page tables for
1114 * 4MB of RAM at address 0, so now need to do a transparent
1115 * mapping of the top of memory space. Make it 0.5GByte for now,
1116 * so we can access on-board i/o areas.
1117 * Supervisor only access, so transparent mapping doesn't
1118 * clash with User code virtual address space.
1121 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1123 jbra L(mmu_init_done)
1126 #endif /* CONFIG_BVME6000 */
1131 * The Macintosh mappings are less clear.
1133 * Even as of this writing, it is unclear how the
1134 * Macintosh mappings will be done. However, as
1135 * the first author of this code I'm proposing the
1138 * Map the kernel (that's already done),
1139 * Map the I/O (on most machines that's the
1140 * 0x5000.0000 ... 0x5300.0000 range,
1141 * Map the video frame buffer using as few pages
1142 * as absolutely (this requirement mostly stems from
1143 * the fact that when the frame buffer is at
1144 * 0x0000.0000 then we know there is valid RAM just
1145 * above the screen that we don't want to waste!).
1147 * By the way, if the frame buffer is at 0x0000.0000
1148 * then the Macintosh is known as an RBV based Mac.
1150 * By the way 2, the code currently maps in a bunch of
1151 * regions. But I'd like to cut that out. (And move most
1152 * of the mappings up into the kernel proper ... or only
1153 * map what's necessary.)
1160 is_not_mac(L(mmu_init_not_mac))
1164 is_not_040_or_060(1f)
1166 moveq #_PAGE_NOCACHE_S,%d3
1169 moveq #_PAGE_NOCACHE030,%d3
1172 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1173 * we simply map the 4MB that contains the videomem
1176 movel #VIDEOMEMMASK,%d0
1177 andl %pc@(L(mac_videobase)),%d0
1179 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1180 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1181 mmu_map_eq #0x40000000,#0x02000000,%d3
1182 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1183 mmu_map_eq #0x50000000,#0x03000000,%d3
1184 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1185 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1187 jbra L(mmu_init_done)
1189 L(mmu_init_not_mac):
1193 is_not_sun3x(L(notsun3x))
1195 /* oh, the pain.. We're gonna want the prom code after
1196 * starting the MMU, so we copy the mappings, translating
1197 * from 8k -> 4k pages as we go.
1200 /* copy maps from 0xfee00000 to 0xff000000 */
1201 movel #0xfee00000, %d0
1202 moveq #ROOT_INDEX_SHIFT, %d1
1204 mmu_get_root_table_entry %d0
1206 movel #0xfee00000, %d0
1207 moveq #PTR_INDEX_SHIFT, %d1
1209 andl #PTR_TABLE_SIZE-1, %d0
1210 mmu_get_ptr_table_entry %a0,%d0
1212 movel #0xfee00000, %d0
1213 moveq #PAGE_INDEX_SHIFT, %d1
1215 andl #PAGE_TABLE_SIZE-1, %d0
1216 mmu_get_page_table_entry %a0,%d0
1218 /* this is where the prom page table lives */
1219 movel 0xfefe00d4, %a1
1222 movel #((0x200000 >> 13)-1), %d1
1232 /* setup tt1 for I/O */
1233 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1234 jbra L(mmu_init_done)
1239 #ifdef CONFIG_APOLLO
1240 is_not_apollo(L(notapollo))
1243 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1246 jbra L(mmu_init_done)
1257 * On the 040 class machines, all pages that are used for the
1258 * mmu have to be fixed up. According to Motorola, pages holding mmu
1259 * tables should be non-cacheable on a '040 and write-through on a
1260 * '060. But analysis of the reasons for this, and practical
1261 * experience, showed that write-through also works on a '040.
1263 * Allocated memory so far goes from kernel_end to memory_start that
1264 * is used for all kind of tables, for that the cache attributes
1269 is_not_040_or_060(L(mmu_fixup_done))
1271 #ifdef MMU_NOCACHE_KERNEL
1272 jbra L(mmu_fixup_done)
1275 /* first fix the page at the start of the kernel, that
1276 * contains also kernel_pg_dir.
1278 movel %pc@(L(phys_kernel_start)),%d0
1279 subl #PAGE_OFFSET,%d0
1280 lea %pc@(_stext),%a0
1282 mmu_fixup_page_mmu_cache %a0
1284 movel %pc@(L(kernel_end)),%a0
1286 movel %pc@(L(memory_start)),%a1
1290 mmu_fixup_page_mmu_cache %a0
1305 * This chunk of code performs the gruesome task of engaging the MMU.
1306 * The reason its gruesome is because when the MMU becomes engaged it
1307 * maps logical addresses to physical addresses. The Program Counter
1308 * register is then passed through the MMU before the next instruction
1309 * is fetched (the instruction following the engage MMU instruction).
1310 * This may mean one of two things:
1311 * 1. The Program Counter falls within the logical address space of
1312 * the kernel of which there are two sub-possibilities:
1313 * A. The PC maps to the correct instruction (logical PC == physical
1314 * code location), or
1315 * B. The PC does not map through and the processor will read some
1316 * data (or instruction) which is not the logically next instr.
1317 * As you can imagine, A is good and B is bad.
1319 * 2. The Program Counter does not map through the MMU. The processor
1320 * will take a Bus Error.
1321 * Clearly, 2 is bad.
1322 * It doesn't take a wiz kid to figure you want 1.A.
1323 * This code creates that possibility.
1324 * There are two possible 1.A. states (we now ignore the other above states):
1325 * A. The kernel is located at physical memory addressed the same as
1326 * the logical memory for the kernel, i.e., 0x01000.
1327 * B. The kernel is located some where else. e.g., 0x0400.0000
1329 * Under some conditions the Macintosh can look like A or B.
1330 * [A friend and I once noted that Apple hardware engineers should be
1331 * wacked twice each day: once when they show up at work (as in, Whack!,
1332 * "This is for the screwy hardware we know you're going to design today."),
1333 * and also at the end of the day (as in, Whack! "I don't know what
1334 * you designed today, but I'm sure it wasn't good."). -- rst]
1336 * This code works on the following premise:
1337 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1338 * then create a mapping for the kernel at logical 0x8000.0000 to
1339 * the physical location of the pc. And, create a transparent
1340 * translation register for the first 16 Meg. Then, after the MMU
1341 * is engaged, the PC can be moved up into the 0x8000.0000 range
1342 * and then the transparent translation can be turned off and then
1343 * the PC can jump to the correct logical location and it will be
1344 * home (finally). This is essentially the code that the Amiga used
1345 * to use. Now, it's generalized for all processors. Which means
1346 * that a fresh (but temporary) mapping has to be created. The mapping
1347 * is made in page 0 (an as of yet unused location -- except for the
1348 * stack!). This temporary mapping will only require 1 pointer table
1349 * and a single page table (it can map 256K).
1351 * OK, alternatively, imagine that the Program Counter is not within
1352 * the first 16 Meg. Then, just use Transparent Translation registers
1353 * to do the right thing.
1355 * Last, if _start is already at 0x01000, then there's nothing special
1356 * to do (in other words, in a degenerate case of the first case above,
1369 * After this point no new memory is allocated and
1370 * the start of available memory is stored in availmem.
1371 * (The bootmem allocator requires now the physicall address.)
1374 movel L(memory_start),availmem
1378 /* fixup the Amiga custom register location before printing */
1385 /* fixup the Atari iobase register location before printing */
1386 movel #0xff000000,L(iobase)
1392 movel #~VIDEOMEMMASK,%d0
1393 andl L(mac_videobase),%d0
1394 addl #VIDEOMEMBASE,%d0
1395 movel %d0,L(mac_videobase)
1396 #ifdef CONSOLE_DEBUG
1397 movel %pc@(L(phys_kernel_start)),%d0
1398 subl #PAGE_OFFSET,%d0
1399 subl %d0,L(console_font)
1400 subl %d0,L(console_font_data)
1402 orl #0x50000000,L(mac_sccbase)
1409 * Fix up the iobase register to point to the new location of the LEDs.
1411 movel #0xf0000000,L(iobase)
1414 * Energise the FPU and caches.
1417 movel #0x60,0xf05f400c
1421 * 040: slightly different, apparently.
1423 1: movew #0,0xf05f400e
1424 movew #0x64,0xf05f400e
1432 oriw #0x4000,0x61000000
1436 #ifdef CONFIG_APOLLO
1440 * Fix up the iobase before printing
1442 movel #0x80000000,L(iobase)
1453 is_not_040_or_060(L(cache_not_680460))
1461 is_060(L(cache68060))
1463 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1464 /* MMU stuff works in copyback mode now, so enable the cache */
1469 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1470 /* MMU stuff works in copyback mode now, so enable the cache */
1472 /* enable superscalar dispatch in PCR */
1478 L(cache_not_680460):
1481 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1491 * Setup initial stack pointer
1493 lea init_task,%curptr
1494 lea init_thread_union+THREAD_SIZE,%sp
1498 subl %a6,%a6 /* clear a6 for gdb */
1501 * The new 64bit printf support requires an early exception initialization.
1505 /* jump to the kernel start */
1513 * Find a tag record in the bootinfo structure
1514 * The bootinfo structure is located right after the kernel
1515 * Returns: d0: size (-1 if not found)
1516 * a0: data pointer (end-of-records if not found)
1518 func_start get_bi_record,%d1
1522 1: tstw %a0@(BIR_TAG)
1524 cmpw %a0@(BIR_TAG),%d0
1526 addw %a0@(BIR_SIZE),%a0
1529 movew %a0@(BIR_SIZE),%d0
1530 lea %a0@(BIR_DATA),%a0
1533 lea %a0@(BIR_SIZE),%a0
1535 func_return get_bi_record
1539 * MMU Initialization Begins Here
1541 * The structure of the MMU tables on the 68k machines
1544 * Logical addresses are translated through
1545 * a hierarchical translation mechanism where the high-order
1546 * seven bits of the logical address (LA) are used as an
1547 * index into the "root table." Each entry in the root
1548 * table has a bit which specifies if it's a valid pointer to a
1549 * pointer table. Each entry defines a 32KMeg range of memory.
1550 * If an entry is invalid then that logical range of 32M is
1551 * invalid and references to that range of memory (when the MMU
1552 * is enabled) will fault. If the entry is valid, then it does
1553 * one of two things. On 040/060 class machines, it points to
1554 * a pointer table which then describes more finely the memory
1555 * within that 32M range. On 020/030 class machines, a technique
1556 * called "early terminating descriptors" are used. This technique
1557 * allows an entire 32Meg to be described by a single entry in the
1558 * root table. Thus, this entry in the root table, contains the
1559 * physical address of the memory or I/O at the logical address
1560 * which the entry represents and it also contains the necessary
1561 * cache bits for this region.
1564 * Per the Root Table, there will be one or more
1565 * pointer tables. Each pointer table defines a 32M range.
1566 * Not all of the 32M range need be defined. Again, the next
1567 * seven bits of the logical address are used an index into
1568 * the pointer table to point to page tables (if the pointer
1569 * is valid). There will undoubtedly be more than one
1570 * pointer table for the kernel because each pointer table
1571 * defines a range of only 32M. Valid pointer table entries
1572 * point to page tables, or are early terminating entries
1576 * Per the Pointer Tables, each page table entry points
1577 * to the physical page in memory that supports the logical
1578 * address that translates to the particular index.
1580 * In short, the Logical Address gets translated as follows:
1581 * bits 31..26 - index into the Root Table
1582 * bits 25..18 - index into the Pointer Table
1583 * bits 17..12 - index into the Page Table
1584 * bits 11..0 - offset into a particular 4K page
1586 * The algorithms which follows do one thing: they abstract
1587 * the MMU hardware. For example, there are three kinds of
1588 * cache settings that are relevant. Either, memory is
1589 * being mapped in which case it is either Kernel Code (or
1590 * the RamDisk) or it is MMU data. On the 030, the MMU data
1591 * option also describes the kernel. Or, I/O is being mapped
1592 * in which case it has its own kind of cache bits. There
1593 * are constants which abstract these notions from the code that
1594 * actually makes the call to map some range of memory.
1604 * This algorithm will print out the current MMU mappings.
1607 * %a5 points to the root table. Everything else is calculated
1611 #define mmu_next_valid 0
1612 #define mmu_start_logical 4
1613 #define mmu_next_logical 8
1614 #define mmu_start_physical 12
1615 #define mmu_next_physical 16
1617 #define MMU_PRINT_INVALID -1
1618 #define MMU_PRINT_VALID 1
1619 #define MMU_PRINT_UNINITED 0
1621 #define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1623 func_start mmu_print,%a0-%a6/%d0-%d7
1625 movel %pc@(L(kernel_pgdir_ptr)),%a5
1626 lea %pc@(L(mmu_print_data)),%a0
1627 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1629 is_not_040_or_060(mmu_030_print)
1638 * The following #if/#endif block is a tight algorithm for dumping the 040
1639 * MMU Map in gory detail. It really isn't that practical unless the
1640 * MMU Map algorithm appears to go awry and you need to debug it at the
1641 * entry per entry level.
1643 movel #ROOT_TABLE_SIZE,%d5
1645 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1646 subql #1,%d5 | they (might) work
1656 andil #0xFFFFFE00,%d7
1658 movel #PTR_TABLE_SIZE,%d4
1668 andil #0xFFFFFF00,%d7
1670 movel #PAGE_TABLE_SIZE,%d3
1684 movel #8+1+8+1+1,%d2
1699 #endif /* MMU 040 Dumping code that's gory and detailed */
1701 lea %pc@(kernel_pg_dir),%a5
1702 movel %a5,%a0 /* a0 has the address of the root table ptr */
1703 movel #0x00000000,%a4 /* logical address */
1706 /* Increment the logical address and preserve in d5 */
1708 addil #PAGESIZE<<13,%d5
1712 jbsr mmu_print_tuple_invalidate
1716 andil #0xfffffe00,%d6
1720 addil #PAGESIZE<<6,%d5
1724 jbsr mmu_print_tuple_invalidate
1728 andil #0xffffff00,%d6
1736 jbsr mmu_print_tuple_invalidate
1739 moveml %d0-%d1,%sp@-
1742 andil #0xfffff4e0,%d1
1743 lea %pc@(mmu_040_print_flags),%a6
1744 jbsr mmu_print_tuple
1745 moveml %sp@+,%d0-%d1
1757 movel %d5,%a4 /* move to the next logical address */
1765 andiw #0x8000,%d1 /* is it valid ? */
1766 jbeq 1f /* No, bail out */
1769 andil #0xff000000,%d1 /* Get the address */
1775 jbsr mmu_040_print_flags_tt
1779 andiw #0x8000,%d1 /* is it valid ? */
1780 jbeq 1f /* No, bail out */
1783 andil #0xff000000,%d1 /* Get the address */
1789 jbsr mmu_040_print_flags_tt
1795 mmu_040_print_flags:
1797 putZc(' ','G') /* global bit */
1799 putZc(' ','S') /* supervisor bit */
1800 mmu_040_print_flags_tt:
1805 putZc('w','c') /* write through or copy-back */
1810 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
1814 mmu_030_print_flags:
1816 putZc('C','I') /* write through or copy-back */
1825 andil #0xfffffff0,%d0
1827 movel #0x00000000,%a4 /* logical address */
1831 addil #PAGESIZE<<13,%d5
1833 btst #1,%d6 /* is it a table ptr? */
1835 btst #0,%d6 /* is it early terminating? */
1837 jbsr mmu_030_print_helper
1840 jbsr mmu_print_tuple_invalidate
1844 andil #0xfffffff0,%d6
1848 addil #PAGESIZE<<6,%d5
1850 btst #1,%d6 /* is it a table ptr? */
1852 btst #0,%d6 /* is it a page descriptor? */
1854 jbsr mmu_030_print_helper
1857 jbsr mmu_print_tuple_invalidate
1861 andil #0xfffffff0,%d6
1869 jbsr mmu_print_tuple_invalidate
1872 jbsr mmu_030_print_helper
1884 movel %d5,%a4 /* move to the next logical address */
1892 func_return mmu_print
1895 mmu_030_print_helper:
1896 moveml %d0-%d1,%sp@-
1899 lea %pc@(mmu_030_print_flags),%a6
1900 jbsr mmu_print_tuple
1901 moveml %sp@+,%d0-%d1
1904 mmu_print_tuple_invalidate:
1905 moveml %a0/%d7,%sp@-
1907 lea %pc@(L(mmu_print_data)),%a0
1908 tstl %a0@(mmu_next_valid)
1909 jbmi mmu_print_tuple_invalidate_exit
1911 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1917 mmu_print_tuple_invalidate_exit:
1918 moveml %sp@+,%a0/%d7
1923 moveml %d0-%d7/%a0,%sp@-
1925 lea %pc@(L(mmu_print_data)),%a0
1927 tstl %a0@(mmu_next_valid)
1928 jble mmu_print_tuple_print
1930 cmpl %a0@(mmu_next_physical),%d1
1931 jbeq mmu_print_tuple_increment
1933 mmu_print_tuple_print:
1941 mmu_print_tuple_record:
1942 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1944 movel %d1,%a0@(mmu_next_physical)
1946 mmu_print_tuple_increment:
1949 addl %d7,%a0@(mmu_next_physical)
1951 mmu_print_tuple_exit:
1952 moveml %sp@+,%d0-%d7/%a0
1955 mmu_print_machine_cpu_types:
1977 is_not_040_or_060(2f)
1985 #endif /* MMU_PRINT */
1990 * This is a specific function which works on all 680x0 machines.
1991 * On 030, 040 & 060 it will attempt to use Transparent Translation
1993 * On 020 it will call the standard mmu_map which will use early
1994 * terminating descriptors.
1996 func_start mmu_map_tt,%d0/%d1/%a0,4
2007 /* Extract the highest bit set
2009 bfffo ARG3{#0,#32},%d1
2025 /* Generate the upper 16bit of the tt register
2031 is_040_or_060(L(mmu_map_tt_040))
2033 /* set 030 specific bits (read/write access for supervisor mode
2034 * (highest function code set, lower two bits masked))
2036 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2052 jra L(mmu_map_tt_done)
2054 /* set 040 specific bits
2057 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2071 jra L(mmu_map_tt_done)
2074 mmu_map_eq ARG2,ARG3,ARG4
2078 func_return mmu_map_tt
2083 * This routine will map a range of memory using a pointer
2084 * table and allocating the pages on the fly from the kernel.
2085 * The pointer table does not have to be already linked into
2086 * the root table, this routine will do that if necessary.
2089 * This routine will assert failure and use the serial_putc
2090 * routines in the case of a run-time error. For example,
2091 * if the address is already mapped.
2094 * This routine will use early terminating descriptors
2095 * where possible for the 68020+68851 and 68030 type
2098 func_start mmu_map,%d0-%d4/%a0-%a4
2107 /* Get logical address and round it down to 256KB
2110 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2113 /* Get the end address
2119 /* Get physical address and round it down to 256KB
2122 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2125 /* Add page attributes to the physical address
2128 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2135 is_not_040_or_060(L(mmu_map_030))
2137 addw #_PAGE_GLOBAL040,%a2
2139 * MMU 040 & 060 Support
2141 * The MMU usage for the 040 and 060 is different enough from
2142 * the 030 and 68851 that there is separate code. This comment
2143 * block describes the data structures and algorithms built by
2146 * The 040 does not support early terminating descriptors, as
2147 * the 030 does. Therefore, a third level of table is needed
2148 * for the 040, and that would be the page table. In Linux,
2149 * page tables are allocated directly from the memory above the
2155 /* Calculate the offset into the root table
2158 moveq #ROOT_INDEX_SHIFT,%d1
2160 mmu_get_root_table_entry %d0
2162 /* Calculate the offset into the pointer table
2165 moveq #PTR_INDEX_SHIFT,%d1
2167 andl #PTR_TABLE_SIZE-1,%d0
2168 mmu_get_ptr_table_entry %a0,%d0
2170 /* Calculate the offset into the page table
2173 moveq #PAGE_INDEX_SHIFT,%d1
2175 andl #PAGE_TABLE_SIZE-1,%d0
2176 mmu_get_page_table_entry %a0,%d0
2178 /* The page table entry must not no be busy
2181 jne L(mmu_map_error)
2183 /* Do the mapping and advance the pointers
2190 /* Ready with mapping?
2198 /* Calculate the offset into the root table
2201 moveq #ROOT_INDEX_SHIFT,%d1
2203 mmu_get_root_table_entry %d0
2205 /* Check if logical address 32MB aligned,
2206 * so we can try to map it once
2209 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2212 /* Is there enough to map for 32MB at once
2214 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2220 /* The root table entry must not no be busy
2223 jne L(mmu_map_error)
2225 /* Do the mapping and advance the pointers
2235 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2236 jra L(mmu_mapnext_030)
2238 /* Calculate the offset into the pointer table
2241 moveq #PTR_INDEX_SHIFT,%d1
2243 andl #PTR_TABLE_SIZE-1,%d0
2244 mmu_get_ptr_table_entry %a0,%d0
2246 /* The pointer table entry must not no be busy
2249 jne L(mmu_map_error)
2251 /* Do the mapping and advance the pointers
2259 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2260 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2263 /* Ready with mapping?
2272 dputs "mmu_map error:"
2284 * On the 040 class machines, all pages that are used for the
2285 * mmu have to be fixed up.
2288 func_start mmu_fixup_page_mmu_cache,%d0/%a0
2290 dputs "mmu_fixup_page_mmu_cache"
2293 /* Calculate the offset into the root table
2296 moveq #ROOT_INDEX_SHIFT,%d1
2298 mmu_get_root_table_entry %d0
2300 /* Calculate the offset into the pointer table
2303 moveq #PTR_INDEX_SHIFT,%d1
2305 andl #PTR_TABLE_SIZE-1,%d0
2306 mmu_get_ptr_table_entry %a0,%d0
2308 /* Calculate the offset into the page table
2311 moveq #PAGE_INDEX_SHIFT,%d1
2313 andl #PAGE_TABLE_SIZE-1,%d0
2314 mmu_get_page_table_entry %a0,%d0
2317 andil #_CACHEMASK040,%d0
2318 orl %pc@(m68k_pgtable_cachemode),%d0
2323 func_return mmu_fixup_page_mmu_cache
2328 * create a temporary mapping to enable the mmu,
2329 * this we don't need any transparation translation tricks.
2332 func_start mmu_temp_map,%d0/%d1/%a0/%a1
2334 dputs "mmu_temp_map"
2339 lea %pc@(L(temp_mmap_mem)),%a1
2341 /* Calculate the offset in the root table
2344 moveq #ROOT_INDEX_SHIFT,%d1
2346 mmu_get_root_table_entry %d0
2348 /* Check if the table is temporary allocated, so we have to reuse it
2351 cmpl %pc@(L(memory_start)),%d0
2354 /* Temporary allocate a ptr table and insert it into the root table
2357 addl #PTR_TABLE_SIZE*4,%a1@
2358 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2363 /* Mask the root table entry for the ptr table
2365 andw #-ROOT_TABLE_SIZE,%d0
2368 /* Calculate the offset into the pointer table
2371 moveq #PTR_INDEX_SHIFT,%d1
2373 andl #PTR_TABLE_SIZE-1,%d0
2377 /* Check if a temporary page table is already allocated
2382 /* Temporary allocate a page table and insert it into the ptr table
2385 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2386 alignment restriction for pointer tables on the '0[46]0. */
2388 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2393 /* Mask the ptr table entry for the page table
2395 andw #-PTR_TABLE_SIZE,%d0
2398 /* Calculate the offset into the page table
2401 moveq #PAGE_INDEX_SHIFT,%d1
2403 andl #PAGE_TABLE_SIZE-1,%d0
2407 /* Insert the address into the page table
2411 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2417 func_return mmu_temp_map
2419 func_start mmu_engage,%d0-%d2/%a0-%a3
2421 moveq #ROOT_TABLE_SIZE-1,%d0
2422 /* Temporarily use a different root table. */
2423 lea %pc@(L(kernel_pgdir_ptr)),%a0
2425 movel %pc@(L(memory_start)),%a1
2432 lea %pc@(L(temp_mmap_mem)),%a0
2435 movew #PAGESIZE-1,%d0
2442 /* Skip temp mappings if phys == virt */
2446 mmu_temp_map %a0,%a0
2447 mmu_temp_map %a0,%a1
2451 mmu_temp_map %a0,%a0
2452 mmu_temp_map %a0,%a1
2454 movel %pc@(L(memory_start)),%a3
2455 movel %pc@(L(phys_kernel_start)),%d2
2457 is_not_040_or_060(L(mmu_engage_030))
2467 movel #TC_ENABLE+TC_PAGE4K,%d0
2468 movec %d0,%tc /* enable the MMU */
2477 jra L(mmu_engage_cleanup)
2479 L(mmu_engage_030_temp):
2483 lea %pc@(L(mmu_engage_030_temp)),%a0
2484 movel #0x80000002,%a0@
2491 * enable,super root enable,4096 byte pages,7 bit root index,
2492 * 7 bit pointer index, 6 bit page table index.
2494 movel #0x82c07760,%a0@(8)
2495 pmove %a0@(8),%tc /* enable the MMU */
2497 1: movel %a2,%a0@(4)
2504 L(mmu_engage_cleanup):
2505 subl #PAGE_OFFSET,%d2
2507 movel %a2,L(kernel_pgdir_ptr)
2512 func_return mmu_engage
2514 func_start mmu_get_root_table_entry,%d0/%a1
2517 dputs "mmu_get_root_table_entry:"
2522 movel %pc@(L(kernel_pgdir_ptr)),%a0
2528 /* Find the start of free memory, get_bi_record does this for us,
2529 * as the bootinfo structure is located directly behind the kernel
2530 * and and we simply search for the last entry.
2532 get_bi_record BI_LAST
2533 addw #PAGESIZE-1,%a0
2539 lea %pc@(L(memory_start)),%a0
2541 lea %pc@(L(kernel_end)),%a0
2544 /* we have to return the first page at _stext since the init code
2545 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2546 * page is used for further ptr tables in get_ptr_table.
2548 lea %pc@(_stext),%a0
2549 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2551 addl #ROOT_TABLE_SIZE*4,%a1@
2553 lea %pc@(L(mmu_num_pointer_tables)),%a1
2559 movew #PAGESIZE/4-1,%d0
2564 lea %pc@(L(kernel_pgdir_ptr)),%a1
2578 func_return mmu_get_root_table_entry
2582 func_start mmu_get_ptr_table_entry,%d0/%a1
2585 dputs "mmu_get_ptr_table_entry:"
2595 /* Keep track of the number of pointer tables we use
2597 dputs "\nmmu_get_new_ptr_table:"
2598 lea %pc@(L(mmu_num_pointer_tables)),%a0
2602 /* See if there is a free pointer table in our cache of pointer tables
2604 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2608 /* Get a new pointer table page from above the kernel memory
2613 /* There is an unused pointer table in our cache... use it
2616 addl #PTR_TABLE_SIZE*4,%a1@
2621 /* Insert the new pointer table into the root table
2624 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2627 /* Extract the pointer table entry
2629 andw #-PTR_TABLE_SIZE,%d0
2639 func_return mmu_get_ptr_table_entry
2642 func_start mmu_get_page_table_entry,%d0/%a1
2645 dputs "mmu_get_page_table_entry:"
2655 /* If the page table entry doesn't exist, we allocate a complete new
2656 * page and use it as one continues big page table which can cover
2657 * 4MB of memory, nearly almost all mappings have that alignment.
2660 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2662 /* align pointer table entry for a page of page tables
2665 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2668 /* Insert the page tables into the pointer entries
2670 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
2673 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2676 /* Now we can get the initialized pointer table entry
2681 /* Extract the page table entry
2683 andw #-PAGE_TABLE_SIZE,%d0
2693 func_return mmu_get_page_table_entry
2698 * Return a new page from the memory start and clear it.
2700 func_start get_new_page,%d0/%a1
2702 dputs "\nget_new_page:"
2704 /* allocate the page and adjust memory_start
2706 lea %pc@(L(memory_start)),%a0
2710 /* clear the new page
2713 movew #PAGESIZE/4-1,%d0
2721 func_return get_new_page
2726 * Debug output support
2727 * Atarians have a choice between the parallel port, the serial port
2728 * from the MFP or a serial port of the SCC
2732 /* You may define either or both of these. */
2733 #define MAC_USE_SCC_A /* Modem port */
2734 #define MAC_USE_SCC_B /* Printer port */
2736 #if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2737 /* Initialisation table for SCC with 3.6864 MHz PCLK */
2738 L(scc_initable_mac):
2739 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2740 .byte 3,0xc0 /* receiver: 8 bpc */
2741 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2742 .byte 10,0 /* NRZ */
2743 .byte 11,0x50 /* use baud rate generator */
2744 .byte 12,1,13,0 /* 38400 baud */
2745 .byte 14,1 /* Baud rate generator enable */
2746 .byte 3,0xc1 /* enable receiver */
2747 .byte 5,0xea /* enable transmitter */
2751 #endif /* CONFIG_MAC */
2754 /* #define USE_PRINTER */
2755 /* #define USE_SCC_B */
2756 /* #define USE_SCC_A */
2759 #if defined(USE_SCC_A) || defined(USE_SCC_B)
2760 /* Initialisation table for SCC with 7.9872 MHz PCLK */
2761 /* PCLK == 8.0539 gives baud == 9680.1 */
2762 L(scc_initable_atari):
2763 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2764 .byte 3,0xc0 /* receiver: 8 bpc */
2765 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2766 .byte 10,0 /* NRZ */
2767 .byte 11,0x50 /* use baud rate generator */
2768 .byte 12,24,13,0 /* 9600 baud */
2769 .byte 14,2,14,3 /* use master clock for BRG, enable */
2770 .byte 3,0xc1 /* enable receiver */
2771 .byte 5,0xea /* enable transmitter */
2778 LPSG_SELECT = 0xff8800
2779 LPSG_READ = 0xff8800
2780 LPSG_WRITE = 0xff8802
2784 LSTMFP_GPIP = 0xfffa01
2785 LSTMFP_DDR = 0xfffa05
2786 LSTMFP_IERB = 0xfffa09
2788 #elif defined(USE_SCC_B)
2790 LSCC_CTRL = 0xff8c85
2791 LSCC_DATA = 0xff8c87
2793 #elif defined(USE_SCC_A)
2795 LSCC_CTRL = 0xff8c81
2796 LSCC_DATA = 0xff8c83
2798 #elif defined(USE_MFP)
2801 LMFP_TDCDR = 0xfffa1d
2802 LMFP_TDDR = 0xfffa25
2807 #endif /* CONFIG_ATARI */
2810 * Serial port output support.
2814 * Initialize serial port hardware
2816 func_start serial_init,%d0/%d1/%a0/%a1
2818 * Some of the register usage that follows
2820 * a0 = pointer to boot info record
2821 * d0 = boot info offset
2823 * a0 = address of SCC
2824 * a1 = Liobase address/address of scc_initable_atari
2825 * d0 = init data for serial port
2827 * a0 = address of SCC
2828 * a1 = address of scc_initable_mac
2829 * d0 = init data for serial port
2833 #define SERIAL_DTR 7
2834 #define SERIAL_CNTRL CIABBASE+C_PRA
2837 lea %pc@(L(custom)),%a0
2838 movel #-ZTWOBASE,%a0@
2839 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2840 get_bi_record BI_AMIGA_SERPER
2841 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2842 | movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
2848 movel %pc@(L(iobase)),%a1
2849 #if defined(USE_PRINTER)
2850 bclr #0,%a1@(LSTMFP_IERB)
2851 bclr #0,%a1@(LSTMFP_DDR)
2852 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2853 moveb #0xff,%a1@(LPSG_WRITE)
2854 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2855 clrb %a1@(LPSG_WRITE)
2856 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2857 moveb %a1@(LPSG_READ),%d0
2859 moveb %d0,%a1@(LPSG_WRITE)
2860 #elif defined(USE_SCC_A) || defined(USE_SCC_B)
2861 lea %a1@(LSCC_CTRL),%a0
2862 /* Reset SCC register pointer */
2864 /* Reset SCC device: write register pointer then register value */
2867 /* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2868 /* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2873 /* Initialize channel */
2874 lea %pc@(L(scc_initable_atari)),%a1
2881 #elif defined(USE_MFP)
2882 bclr #1,%a1@(LMFP_TSR)
2883 moveb #0x88,%a1@(LMFP_UCR)
2884 andb #0x70,%a1@(LMFP_TDCDR)
2885 moveb #2,%a1@(LMFP_TDDR)
2886 orb #1,%a1@(LMFP_TDCDR)
2887 bset #1,%a1@(LMFP_TSR)
2889 jra L(serial_init_done)
2894 is_not_mac(L(serial_init_not_mac))
2895 #if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2896 #define mac_scc_cha_b_ctrl_offset 0x0
2897 #define mac_scc_cha_a_ctrl_offset 0x2
2898 #define mac_scc_cha_b_data_offset 0x4
2899 #define mac_scc_cha_a_data_offset 0x6
2900 movel %pc@(L(mac_sccbase)),%a0
2901 /* Reset SCC register pointer */
2902 moveb %a0@(mac_scc_cha_a_ctrl_offset),%d0
2903 /* Reset SCC device: write register pointer then register value */
2904 moveb #9,%a0@(mac_scc_cha_a_ctrl_offset)
2905 moveb #0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2906 /* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2907 /* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2913 #ifdef MAC_USE_SCC_A
2914 /* Initialize channel A */
2915 lea %pc@(L(scc_initable_mac)),%a1
2918 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2919 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2922 #endif /* MAC_USE_SCC_A */
2923 #ifdef MAC_USE_SCC_B
2924 /* Initialize channel B */
2925 lea %pc@(L(scc_initable_mac)),%a1
2928 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2929 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2932 #endif /* MAC_USE_SCC_B */
2933 jra L(serial_init_done)
2934 L(serial_init_not_mac):
2935 #endif /* CONFIG_MAC */
2939 /* debug output goes into SRAM, so we don't do it unless requested
2940 - check for '%LX$' signature in SRAM */
2941 lea %pc@(q40_mem_cptr),%a1
2942 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2943 move.l #0xff020000,%a1
2956 lea %pc@(L(q40_do_debug)),%a1
2958 /*nodbg: q40_do_debug is 0 by default*/
2962 #ifdef CONFIG_MVME16x
2963 is_not_mvme16x(L(serial_init_not_mvme16x))
2964 moveb #0x10,M167_PCSCCMICR
2965 moveb #0x10,M167_PCSCCTICR
2966 moveb #0x10,M167_PCSCCRICR
2967 jra L(serial_init_done)
2968 L(serial_init_not_mvme16x):
2971 #ifdef CONFIG_APOLLO
2972 /* We count on the PROM initializing SIO1 */
2976 /* We count on the boot loader initialising the UART */
2979 L(serial_init_done):
2980 func_return serial_init
2983 * Output character on serial port.
2985 func_start serial_putc,%d0/%d1/%a0/%a1
2991 /* A little safe recursion is good for the soul */
2999 movel %pc@(L(custom)),%a0
3000 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
3001 1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3004 jra L(serial_putc_done)
3010 #if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3011 movel %pc@(L(mac_sccbase)),%a1
3013 #ifdef MAC_USE_SCC_A
3014 3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3016 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3017 #endif /* MAC_USE_SCC_A */
3018 #ifdef MAC_USE_SCC_B
3019 4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3021 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3022 #endif /* MAC_USE_SCC_B */
3023 jra L(serial_putc_done)
3025 #endif /* CONFIG_MAC */
3029 movel %pc@(L(iobase)),%a1
3030 #if defined(USE_PRINTER)
3031 3: btst #0,%a1@(LSTMFP_GPIP)
3033 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3034 moveb %d0,%a1@(LPSG_WRITE)
3035 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3036 moveb %a1@(LPSG_READ),%d0
3038 moveb %d0,%a1@(LPSG_WRITE)
3042 moveb %d0,%a1@(LPSG_WRITE)
3043 #elif defined(USE_SCC_A) || defined(USE_SCC_B)
3044 3: btst #2,%a1@(LSCC_CTRL)
3046 moveb %d0,%a1@(LSCC_DATA)
3047 #elif defined(USE_MFP)
3048 3: btst #7,%a1@(LMFP_TSR)
3050 moveb %d0,%a1@(LMFP_UDR)
3052 jra L(serial_putc_done)
3054 #endif /* CONFIG_ATARI */
3056 #ifdef CONFIG_MVME147
3058 1: btst #2,M147_SCC_CTRL_A
3060 moveb %d0,M147_SCC_DATA_A
3061 jbra L(serial_putc_done)
3065 #ifdef CONFIG_MVME16x
3068 * If the loader gave us a board type then we can use that to
3069 * select an appropriate output routine; otherwise we just use
3070 * the Bug code. If we have to use the Bug that means the Bug
3071 * workspace has to be valid, which means the Bug has to use
3072 * the SRAM, which is non-standard.
3074 moveml %d0-%d7/%a2-%a6,%sp@-
3075 movel vme_brdtype,%d1
3076 jeq 1f | No tag - use the Bug
3077 cmpi #VME_TYPE_MVME162,%d1
3079 cmpi #VME_TYPE_MVME172,%d1
3081 /* 162/172; it's an SCC */
3082 6: btst #2,M162_SCC_CTRL_A
3087 moveb #8,M162_SCC_CTRL_A
3091 moveb %d0,M162_SCC_CTRL_A
3094 /* 166/167/177; it's a CD2401 */
3096 moveb M167_CYIER,%d2
3097 moveb #0x02,M167_CYIER
3099 btst #5,M167_PCSCCTICR
3101 moveb M167_PCTPIACKR,%d1
3102 moveb M167_CYLICR,%d1
3104 moveb #0x08,M167_CYTEOIR
3107 moveb %d0,M167_CYTDR
3108 moveb #0,M167_CYTEOIR
3109 moveb %d2,M167_CYIER
3114 .word 0x0020 /* TRAP 0x020 */
3116 moveml %sp@+,%d0-%d7/%a2-%a6
3117 jbra L(serial_putc_done)
3119 #endif /* CONFIG_MVME16x */
3121 #ifdef CONFIG_BVME6000
3124 * The BVME6000 machine has a serial port ...
3126 1: btst #2,BVME_SCC_CTRL_A
3128 moveb %d0,BVME_SCC_DATA_A
3129 jbra L(serial_putc_done)
3136 movel 0xFEFE0018,%a1
3139 jbra L(serial_putc_done)
3145 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3147 lea %pc@(q40_mem_cptr),%a1
3152 jbra L(serial_putc_done)
3156 #ifdef CONFIG_APOLLO
3158 movl %pc@(L(iobase)),%a1
3159 moveb %d0,%a1@(LTHRB0)
3160 1: moveb %a1@(LSRB0),%d0
3163 jbra L(serial_putc_done)
3169 movl %pc@(L(iobase)),%a1
3170 addl %pc@(L(uartbase)),%a1
3171 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3172 jmi 3f /* Unset? Exit */
3173 cmpi #256,%d1 /* APCI scode? */
3175 1: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3178 moveb %d0,%a1@(DCADATA)
3179 jbra L(serial_putc_done)
3180 2: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3183 moveb %d0,%a1@(APCIDATA)
3184 jbra L(serial_putc_done)
3188 L(serial_putc_done):
3189 func_return serial_putc
3194 func_start puts,%d0/%a0
3199 #ifdef CONSOLE_DEBUG
3211 * Output number in hex notation.
3214 func_start putn,%d0-%d2
3226 addb #'A'-('9'+1),%d2
3228 #ifdef CONSOLE_DEBUG
3238 #ifdef CONFIG_EARLY_PRINTK
3240 * This routine takes its parameters on the stack. It then
3241 * turns around and calls the internal routines. This routine
3242 * is used by the boot console.
3244 * The calling parameters are:
3245 * void debug_cons_nputs(const char *str, unsigned length)
3247 * This routine does NOT understand variable arguments only
3250 ENTRY(debug_cons_nputs)
3251 moveml %d0/%d1/%a0,%sp@-
3254 movel %sp@(18),%a0 /* fetch parameter */
3255 movel %sp@(22),%d1 /* fetch parameter */
3258 #ifdef CONSOLE_DEBUG
3270 moveml %sp@+,%d0/%d1/%a0
3272 #endif /* CONFIG_EARLY_PRINTK */
3274 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3275 func_start set_leds,%d0/%a0
3279 movel %pc@(L(iobase)),%a0
3280 moveb %d0,%a0@(0x1ffff)
3284 #ifdef CONFIG_APOLLO
3285 movel %pc@(L(iobase)),%a0
3288 moveb %d0,%a0@(LCPUCTRL)
3291 func_return set_leds
3294 #ifdef CONSOLE_DEBUG
3296 * For continuity, see the data alignment
3297 * to which this structure is tied.
3299 #define Lconsole_struct_cur_column 0
3300 #define Lconsole_struct_cur_row 4
3301 #define Lconsole_struct_num_columns 8
3302 #define Lconsole_struct_num_rows 12
3303 #define Lconsole_struct_left_edge 16
3305 func_start console_init,%a0-%a4/%d0-%d7
3307 * Some of the register usage that follows
3308 * a0 = pointer to boot_info
3309 * a1 = pointer to screen
3310 * a2 = pointer to console_globals
3311 * d3 = pixel width of screen
3312 * d4 = pixel height of screen
3313 * (d3,d4) ~= (x,y) of a point just below
3314 * and to the right of the screen
3315 * NOT on the screen!
3316 * d5 = number of bytes per scan line
3317 * d6 = number of bytes on the entire screen
3320 lea %pc@(L(console_globals)),%a2
3321 movel %pc@(L(mac_videobase)),%a1
3322 movel %pc@(L(mac_rowbytes)),%d5
3323 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3325 swap %d4 /* -> high byte */
3326 andl #0xffff,%d3 /* d3 = screen width in pixels */
3327 andl #0xffff,%d4 /* d4 = screen height in pixels */
3331 mulul %d4,%d6 /* scan line bytes x num scan lines */
3332 divul #8,%d6 /* we'll clear 8 bytes at a time */
3333 moveq #-1,%d0 /* Mac_black */
3336 L(console_clear_loop):
3339 dbra %d6,L(console_clear_loop)
3341 /* Calculate font size */
3343 #if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3344 lea %pc@(font_vga_8x8),%a0
3345 #elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3346 lea %pc@(font_vga_8x16),%a0
3347 #elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3348 lea %pc@(font_vga_6x11),%a0
3349 #elif defined(CONFIG_FONT_8x8) /* default */
3350 lea %pc@(font_vga_8x8),%a0
3351 #else /* no compiled-in font */
3356 * At this point we make a shift in register usage
3357 * a1 = address of console_font pointer
3359 lea %pc@(L(console_font)),%a1
3360 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3363 lea %pc@(L(console_font_data)),%a4
3364 movel %a0@(FONT_DESC_DATA),%d0
3365 subl #L(console_font),%a1
3370 * Calculate global maxs
3371 * Note - we can use either an
3372 * 8 x 16 or 8 x 8 character font
3373 * 6 x 11 also supported
3375 /* ASSERT: a0 = contents of Lconsole_font */
3376 movel %d3,%d0 /* screen width in pixels */
3377 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3379 movel %d4,%d1 /* screen height in pixels */
3380 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3382 movel %d0,%a2@(Lconsole_struct_num_columns)
3383 movel %d1,%a2@(Lconsole_struct_num_rows)
3386 * Clear the current row and column
3388 clrl %a2@(Lconsole_struct_cur_column)
3389 clrl %a2@(Lconsole_struct_cur_row)
3390 clrl %a2@(Lconsole_struct_left_edge)
3393 * Initialization is complete
3396 func_return console_init
3399 func_start console_put_penguin,%a0-%a1/%d0-%d7
3401 * Get 'that_penguin' onto the screen in the upper right corner
3402 * penguin is 64 x 74 pixels, align against right edge of screen
3404 lea %pc@(L(mac_dimensions)),%a0
3407 subil #64,%d0 /* snug up against the right edge */
3408 clrl %d1 /* start at the top */
3410 lea %pc@(L(that_penguin)),%a1
3411 L(console_penguin_row):
3413 L(console_penguin_pixel_pair):
3416 console_plot_pixel %d0,%d1,%d2
3419 console_plot_pixel %d0,%d1,%d2
3421 dbra %d6,L(console_penguin_pixel_pair)
3425 dbra %d7,L(console_penguin_row)
3427 func_return console_put_penguin
3429 /* include penguin bitmap */
3431 #include "../mac/mac_penguin.S"
3435 * Calculate source and destination addresses
3440 func_start console_scroll,%a0-%a4/%d0-%d7
3441 lea %pc@(L(mac_videobase)),%a0
3444 lea %pc@(L(mac_rowbytes)),%a0
3446 movel %pc@(L(console_font)),%a0
3449 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3455 lea %pc@(L(mac_dimensions)),%a0
3459 andl #0xffff,%d3 /* d3 = screen width in pixels */
3460 andl #0xffff,%d4 /* d4 = screen height in pixels */
3463 * Calculate number of bytes to move
3465 lea %pc@(L(mac_rowbytes)),%a0
3467 movel %pc@(L(console_font)),%a0
3468 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3469 mulul %d4,%d6 /* scan line bytes x num scan lines */
3470 divul #32,%d6 /* we'll move 8 longs at a time */
3473 L(console_scroll_loop):
3482 dbra %d6,L(console_scroll_loop)
3484 lea %pc@(L(mac_rowbytes)),%a0
3486 movel %pc@(L(console_font)),%a0
3487 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3488 divul #32,%d6 /* we'll move 8 words at a time */
3492 L(console_scroll_clear_loop):
3501 dbra %d6,L(console_scroll_clear_loop)
3504 func_return console_scroll
3507 func_start console_putc,%a0/%a1/%d0-%d7
3509 is_not_mac(L(console_exit))
3510 tstl %pc@(L(console_font))
3513 /* Output character in d7 on console.
3519 /* A little safe recursion is good for the soul */
3522 lea %pc@(L(console_globals)),%a0
3525 jne L(console_not_lf)
3526 movel %a0@(Lconsole_struct_cur_row),%d0
3528 movel %d0,%a0@(Lconsole_struct_cur_row)
3529 movel %a0@(Lconsole_struct_num_rows),%d1
3533 movel %d0,%a0@(Lconsole_struct_cur_row)
3540 jne L(console_not_cr)
3541 clrl %a0@(Lconsole_struct_cur_column)
3546 jne L(console_not_home)
3547 clrl %a0@(Lconsole_struct_cur_row)
3548 clrl %a0@(Lconsole_struct_cur_column)
3552 * At this point we know that the %d7 character is going to be
3553 * rendered on the screen. Register usage is -
3554 * a0 = pointer to console globals
3556 * d0 = cursor column
3557 * d1 = cursor row to draw the character
3558 * d7 = character number
3560 L(console_not_home):
3561 movel %a0@(Lconsole_struct_cur_column),%d0
3562 addql #1,%a0@(Lconsole_struct_cur_column)
3563 movel %a0@(Lconsole_struct_num_columns),%d1
3566 console_putc #'\n' /* recursion is OK! */
3568 movel %a0@(Lconsole_struct_cur_row),%d1
3571 * At this point we make a shift in register usage
3572 * a0 = address of pointer to font data (fbcon_font_desc)
3574 movel %pc@(L(console_font)),%a0
3575 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3576 andl #0x000000ff,%d7
3577 /* ASSERT: a0 = contents of Lconsole_font */
3578 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3579 addl %d7,%a1 /* a1 = points to char image */
3582 * At this point we make a shift in register usage
3583 * d0 = pixel coordinate, x
3584 * d1 = pixel coordinate, y
3585 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3586 * d3 = font scan line data (8 pixels)
3587 * d6 = count down for the font's pixel width (8)
3588 * d7 = count down for the font's pixel count in height
3590 /* ASSERT: a0 = contents of Lconsole_font */
3591 mulul %a0@(FONT_DESC_WIDTH),%d0
3592 mulul %a0@(FONT_DESC_HEIGHT),%d1
3593 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3595 L(console_read_char_scanline):
3598 /* ASSERT: a0 = contents of Lconsole_font */
3599 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3602 L(console_do_font_scanline):
3604 scsb %d2 /* convert 1 bit into a byte */
3605 console_plot_pixel %d0,%d1,%d2
3607 dbra %d6,L(console_do_font_scanline)
3609 /* ASSERT: a0 = contents of Lconsole_font */
3610 subl %a0@(FONT_DESC_WIDTH),%d0
3612 dbra %d7,L(console_read_char_scanline)
3615 func_return console_putc
3621 * d2 = (bit 0) 1/0 for white/black (!)
3622 * All registers are preserved
3624 func_start console_plot_pixel,%a0-%a1/%d0-%d4
3626 movel %pc@(L(mac_videobase)),%a1
3627 movel %pc@(L(mac_videodepth)),%d3
3630 mulul %pc@(L(mac_rowbytes)),%d1
3635 * d0 = x coord becomes byte offset into frame buffer
3637 * d2 = black or white (0/1)
3639 * d4 = temp of x (d0) for many bit depths
3644 movel %d0,%d4 /* we need the low order 3 bits! */
3649 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3653 jbra L(console_plot_pixel_exit)
3656 jbra L(console_plot_pixel_exit)
3661 movel %d0,%d4 /* we need the low order 2 bits! */
3666 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3673 jbra L(console_plot_pixel_exit)
3678 jbra L(console_plot_pixel_exit)
3683 movel %d0,%d4 /* we need the low order bit! */
3699 jbra L(console_plot_pixel_exit)
3708 jbra L(console_plot_pixel_exit)
3718 jbra L(console_plot_pixel_exit)
3721 jbra L(console_plot_pixel_exit)
3725 jbne L(console_plot_pixel_exit)
3732 jbra L(console_plot_pixel_exit)
3735 jbra L(console_plot_pixel_exit)
3737 L(console_plot_pixel_exit):
3738 func_return console_plot_pixel
3739 #endif /* CONSOLE_DEBUG */
3745 m68k_init_mapped_size:
3748 #if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3749 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3755 #ifdef CONSOLE_DEBUG
3757 .long 0 /* cursor column */
3758 .long 0 /* cursor row */
3759 .long 0 /* max num columns */
3760 .long 0 /* max num rows */
3761 .long 0 /* left edge */
3763 .long 0 /* pointer to console font (struct font_desc) */
3764 L(console_font_data):
3765 .long 0 /* pointer to console font data */
3766 #endif /* CONSOLE_DEBUG */
3768 #if defined(MMU_PRINT)
3770 .long 0 /* valid flag */
3771 .long 0 /* start logical */
3772 .long 0 /* next logical */
3773 .long 0 /* start physical */
3774 .long 0 /* next physical */
3775 #endif /* MMU_PRINT */
3779 L(mmu_cached_pointer_tables):
3781 L(mmu_num_pointer_tables):
3783 L(phys_kernel_start):
3789 L(kernel_pgdir_ptr):
3794 #if defined (CONFIG_MVME147)
3795 M147_SCC_CTRL_A = 0xfffe3002
3796 M147_SCC_DATA_A = 0xfffe3003
3799 #if defined (CONFIG_MVME16x)
3800 M162_SCC_CTRL_A = 0xfff45005
3801 M167_CYCAR = 0xfff450ee
3802 M167_CYIER = 0xfff45011
3803 M167_CYLICR = 0xfff45026
3804 M167_CYTEOIR = 0xfff45085
3805 M167_CYTDR = 0xfff450f8
3806 M167_PCSCCMICR = 0xfff4201d
3807 M167_PCSCCTICR = 0xfff4201e
3808 M167_PCSCCRICR = 0xfff4201f
3809 M167_PCTPIACKR = 0xfff42025
3812 #if defined (CONFIG_BVME6000)
3813 BVME_SCC_CTRL_A = 0xffb0000b
3814 BVME_SCC_DATA_A = 0xffb0000f
3817 #if defined(CONFIG_MAC)
3828 #endif /* CONFIG_MAC */
3830 #if defined (CONFIG_APOLLO)
3836 #if defined(CONFIG_HP300)
3853 m68k_pgtable_cachemode:
3855 m68k_supervisor_cachemode:
3857 #if defined(CONFIG_MVME16x)
3859 .long 0,0,0,0,0,0,0,0
3861 #if defined(CONFIG_Q40)