Merge tag 'locks-v3.16-2' of git://git.samba.org/jlayton/linux
[linux/fpc-iii.git] / arch / powerpc / include / asm / pgtable-ppc64.h
blobeb9261024f5192386dec97bff1ee10e62da4b7c3
1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
8 #ifdef CONFIG_PPC_64K_PAGES
9 #include <asm/pgtable-ppc64-64k.h>
10 #else
11 #include <asm/pgtable-ppc64-4k.h>
12 #endif
13 #include <asm/barrier.h>
15 #define FIRST_USER_ADDRESS 0
18 * Size of EA range mapped by our pagetables.
20 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
21 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
22 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
24 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
25 #define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1)
26 #else
27 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
28 #endif
30 * Define the address range of the kernel non-linear virtual area
33 #ifdef CONFIG_PPC_BOOK3E
34 #define KERN_VIRT_START ASM_CONST(0x8000000000000000)
35 #else
36 #define KERN_VIRT_START ASM_CONST(0xD000000000000000)
37 #endif
38 #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000)
41 * The vmalloc space starts at the beginning of that region, and
42 * occupies half of it on hash CPUs and a quarter of it on Book3E
43 * (we keep a quarter for the virtual memmap)
45 #define VMALLOC_START KERN_VIRT_START
46 #ifdef CONFIG_PPC_BOOK3E
47 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2)
48 #else
49 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
50 #endif
51 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
54 * The second half of the kernel virtual space is used for IO mappings,
55 * it's itself carved into the PIO region (ISA and PHB IO space) and
56 * the ioremap space
58 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
59 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
60 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
62 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
63 #define FULL_IO_SIZE 0x80000000ul
64 #define ISA_IO_BASE (KERN_IO_START)
65 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
66 #define PHB_IO_BASE (ISA_IO_END)
67 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
68 #define IOREMAP_BASE (PHB_IO_END)
69 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
73 * Region IDs
75 #define REGION_SHIFT 60UL
76 #define REGION_MASK (0xfUL << REGION_SHIFT)
77 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
79 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
80 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
81 #define VMEMMAP_REGION_ID (0xfUL) /* Server only */
82 #define USER_REGION_ID (0UL)
85 * Defines the address of the vmemap area, in its own region on
86 * hash table CPUs and after the vmalloc space on Book3E
88 #ifdef CONFIG_PPC_BOOK3E
89 #define VMEMMAP_BASE VMALLOC_END
90 #define VMEMMAP_END KERN_IO_START
91 #else
92 #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
93 #endif
94 #define vmemmap ((struct page *)VMEMMAP_BASE)
98 * Include the PTE bits definitions
100 #ifdef CONFIG_PPC_BOOK3S
101 #include <asm/pte-hash64.h>
102 #else
103 #include <asm/pte-book3e.h>
104 #endif
105 #include <asm/pte-common.h>
107 #ifdef CONFIG_PPC_MM_SLICES
108 #define HAVE_ARCH_UNMAPPED_AREA
109 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
110 #endif /* CONFIG_PPC_MM_SLICES */
112 #ifndef __ASSEMBLY__
115 * This is the default implementation of various PTE accessors, it's
116 * used in all cases except Book3S with 64K pages where we have a
117 * concept of sub-pages
119 #ifndef __real_pte
121 #ifdef STRICT_MM_TYPECHECKS
122 #define __real_pte(e,p) ((real_pte_t){(e)})
123 #define __rpte_to_pte(r) ((r).pte)
124 #else
125 #define __real_pte(e,p) (e)
126 #define __rpte_to_pte(r) (__pte(r))
127 #endif
128 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
130 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
131 do { \
132 index = 0; \
133 shift = mmu_psize_defs[psize].shift; \
135 #define pte_iterate_hashed_end() } while(0)
137 #ifdef CONFIG_PPC_HAS_HASH_64K
138 #define pte_pagesize_index(mm, addr, pte) get_slice_psize(mm, addr)
139 #else
140 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
141 #endif
143 #endif /* __real_pte */
146 /* pte_clear moved to later in this file */
148 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
149 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
151 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
152 #define pmd_none(pmd) (!pmd_val(pmd))
153 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
154 || (pmd_val(pmd) & PMD_BAD_BITS))
155 #define pmd_present(pmd) (pmd_val(pmd) != 0)
156 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
157 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
158 extern struct page *pmd_page(pmd_t pmd);
160 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
161 #define pud_none(pud) (!pud_val(pud))
162 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
163 || (pud_val(pud) & PUD_BAD_BITS))
164 #define pud_present(pud) (pud_val(pud) != 0)
165 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
166 #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
167 #define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
169 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
172 * Find an entry in a page-table-directory. We combine the address region
173 * (the high order N bits) and the pgd portion of the address.
175 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
177 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
179 #define pmd_offset(pudp,addr) \
180 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
182 #define pte_offset_kernel(dir,addr) \
183 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
185 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
186 #define pte_unmap(pte) do { } while(0)
188 /* to find an entry in a kernel page-table-directory */
189 /* This now only contains the vmalloc pages */
190 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
191 extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
192 pte_t *ptep, unsigned long pte, int huge);
194 /* Atomic PTE updates */
195 static inline unsigned long pte_update(struct mm_struct *mm,
196 unsigned long addr,
197 pte_t *ptep, unsigned long clr,
198 unsigned long set,
199 int huge)
201 #ifdef PTE_ATOMIC_UPDATES
202 unsigned long old, tmp;
204 __asm__ __volatile__(
205 "1: ldarx %0,0,%3 # pte_update\n\
206 andi. %1,%0,%6\n\
207 bne- 1b \n\
208 andc %1,%0,%4 \n\
209 or %1,%1,%7\n\
210 stdcx. %1,0,%3 \n\
211 bne- 1b"
212 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
213 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
214 : "cc" );
215 #else
216 unsigned long old = pte_val(*ptep);
217 *ptep = __pte((old & ~clr) | set);
218 #endif
219 /* huge pages use the old page table lock */
220 if (!huge)
221 assert_pte_locked(mm, addr);
223 #ifdef CONFIG_PPC_STD_MMU_64
224 if (old & _PAGE_HASHPTE)
225 hpte_need_flush(mm, addr, ptep, old, huge);
226 #endif
228 return old;
231 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
232 unsigned long addr, pte_t *ptep)
234 unsigned long old;
236 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
237 return 0;
238 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
239 return (old & _PAGE_ACCESSED) != 0;
241 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
242 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
243 ({ \
244 int __r; \
245 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
246 __r; \
249 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
250 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
251 pte_t *ptep)
254 if ((pte_val(*ptep) & _PAGE_RW) == 0)
255 return;
257 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
260 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
261 unsigned long addr, pte_t *ptep)
263 if ((pte_val(*ptep) & _PAGE_RW) == 0)
264 return;
266 pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
270 * We currently remove entries from the hashtable regardless of whether
271 * the entry was young or dirty. The generic routines only flush if the
272 * entry was young or dirty which is not good enough.
274 * We should be more intelligent about this but for the moment we override
275 * these functions and force a tlb flush unconditionally
277 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
278 #define ptep_clear_flush_young(__vma, __address, __ptep) \
279 ({ \
280 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
281 __ptep); \
282 __young; \
285 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
286 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
287 unsigned long addr, pte_t *ptep)
289 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
290 return __pte(old);
293 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
294 pte_t * ptep)
296 pte_update(mm, addr, ptep, ~0UL, 0, 0);
300 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
301 * function doesn't need to flush the hash entry
303 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
305 unsigned long bits = pte_val(entry) &
306 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
308 #ifdef PTE_ATOMIC_UPDATES
309 unsigned long old, tmp;
311 __asm__ __volatile__(
312 "1: ldarx %0,0,%4\n\
313 andi. %1,%0,%6\n\
314 bne- 1b \n\
315 or %0,%3,%0\n\
316 stdcx. %0,0,%4\n\
317 bne- 1b"
318 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
319 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
320 :"cc");
321 #else
322 unsigned long old = pte_val(*ptep);
323 *ptep = __pte(old | bits);
324 #endif
327 #define __HAVE_ARCH_PTE_SAME
328 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
330 #define pte_ERROR(e) \
331 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
332 #define pmd_ERROR(e) \
333 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
334 #define pgd_ERROR(e) \
335 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
337 /* Encode and de-code a swap entry */
338 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
339 #define __swp_offset(entry) ((entry).val >> 8)
340 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
341 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
342 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
343 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
344 #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
345 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
347 void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
348 void pgtable_cache_init(void);
349 #endif /* __ASSEMBLY__ */
352 * THP pages can't be special. So use the _PAGE_SPECIAL
354 #define _PAGE_SPLITTING _PAGE_SPECIAL
357 * We need to differentiate between explicit huge page and THP huge
358 * page, since THP huge page also need to track real subpage details
360 #define _PAGE_THP_HUGE _PAGE_4K_PFN
363 * set of bits not changed in pmd_modify.
365 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
366 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
367 _PAGE_THP_HUGE)
369 #ifndef __ASSEMBLY__
371 * The linux hugepage PMD now include the pmd entries followed by the address
372 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
373 * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
374 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
375 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
377 * The last three bits are intentionally left to zero. This memory location
378 * are also used as normal page PTE pointers. So if we have any pointers
379 * left around while we collapse a hugepage, we need to make sure
380 * _PAGE_PRESENT and _PAGE_FILE bits of that are zero when we look at them
382 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
384 return (hpte_slot_array[index] >> 3) & 0x1;
387 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
388 int index)
390 return hpte_slot_array[index] >> 4;
393 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
394 unsigned int index, unsigned int hidx)
396 hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
399 struct page *realmode_pfn_to_page(unsigned long pfn);
401 static inline char *get_hpte_slot_array(pmd_t *pmdp)
404 * The hpte hindex is stored in the pgtable whose address is in the
405 * second half of the PMD
407 * Order this load with the test for pmd_trans_huge in the caller
409 smp_rmb();
410 return *(char **)(pmdp + PTRS_PER_PMD);
415 extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
416 pmd_t *pmdp);
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
419 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
420 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
421 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
422 pmd_t *pmdp, pmd_t pmd);
423 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
424 pmd_t *pmd);
426 static inline int pmd_trans_huge(pmd_t pmd)
429 * leaf pte for huge page, bottom two bits != 00
431 return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
434 static inline int pmd_large(pmd_t pmd)
437 * leaf pte for huge page, bottom two bits != 00
439 if (pmd_trans_huge(pmd))
440 return pmd_val(pmd) & _PAGE_PRESENT;
441 return 0;
444 static inline int pmd_trans_splitting(pmd_t pmd)
446 if (pmd_trans_huge(pmd))
447 return pmd_val(pmd) & _PAGE_SPLITTING;
448 return 0;
451 extern int has_transparent_hugepage(void);
452 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
454 static inline pte_t pmd_pte(pmd_t pmd)
456 return __pte(pmd_val(pmd));
459 static inline pmd_t pte_pmd(pte_t pte)
461 return __pmd(pte_val(pte));
464 static inline pte_t *pmdp_ptep(pmd_t *pmd)
466 return (pte_t *)pmd;
469 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
470 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
471 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
472 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
473 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
474 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
475 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
477 #define __HAVE_ARCH_PMD_WRITE
478 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
480 static inline pmd_t pmd_mkhuge(pmd_t pmd)
482 /* Do nothing, mk_pmd() does this part. */
483 return pmd;
486 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
488 pmd_val(pmd) &= ~_PAGE_PRESENT;
489 return pmd;
492 static inline pmd_t pmd_mksplitting(pmd_t pmd)
494 pmd_val(pmd) |= _PAGE_SPLITTING;
495 return pmd;
498 #define __HAVE_ARCH_PMD_SAME
499 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
501 return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
504 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
505 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
506 unsigned long address, pmd_t *pmdp,
507 pmd_t entry, int dirty);
509 extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
510 unsigned long addr,
511 pmd_t *pmdp,
512 unsigned long clr,
513 unsigned long set);
515 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
516 unsigned long addr, pmd_t *pmdp)
518 unsigned long old;
520 if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
521 return 0;
522 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
523 return ((old & _PAGE_ACCESSED) != 0);
526 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
527 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
528 unsigned long address, pmd_t *pmdp);
529 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
530 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
531 unsigned long address, pmd_t *pmdp);
533 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
534 extern pmd_t pmdp_get_and_clear(struct mm_struct *mm,
535 unsigned long addr, pmd_t *pmdp);
537 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
538 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
539 pmd_t *pmdp);
541 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
542 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
543 pmd_t *pmdp)
546 if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
547 return;
549 pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
552 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
553 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
554 unsigned long address, pmd_t *pmdp);
556 #define __HAVE_ARCH_PGTABLE_DEPOSIT
557 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
558 pgtable_t pgtable);
559 #define __HAVE_ARCH_PGTABLE_WITHDRAW
560 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
562 #define __HAVE_ARCH_PMDP_INVALIDATE
563 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
564 pmd_t *pmdp);
566 #define pmd_move_must_withdraw pmd_move_must_withdraw
567 struct spinlock;
568 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
569 struct spinlock *old_pmd_ptl)
572 * Archs like ppc64 use pgtable to store per pmd
573 * specific information. So when we switch the pmd,
574 * we should also withdraw and deposit the pgtable
576 return true;
579 #endif /* __ASSEMBLY__ */
580 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */