4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
85 #include <trace/events/sched.h>
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
91 * Protected counters by write_lock_irq(&tasklist_lock)
93 unsigned long total_forks
; /* Handle normal Linux uptimes. */
94 int nr_threads
; /* The idle threads do not count.. */
96 int max_threads
; /* tunable limit on nr_threads */
98 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
100 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
105 return lockdep_is_held(&tasklist_lock
);
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
110 int nr_processes(void)
115 for_each_possible_cpu(cpu
)
116 total
+= per_cpu(process_counts
, cpu
);
121 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache
*task_struct_cachep
;
128 static inline struct task_struct
*alloc_task_struct_node(int node
)
130 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
133 static inline void free_task_struct(struct task_struct
*tsk
)
135 kmem_cache_free(task_struct_cachep
, tsk
);
139 void __weak
arch_release_thread_info(struct thread_info
*ti
)
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147 * kmemcache based allocator.
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
153 struct page
*page
= alloc_kmem_pages_node(node
, THREADINFO_GFP
,
156 return page
? page_address(page
) : NULL
;
159 static inline void free_thread_info(struct thread_info
*ti
)
161 free_kmem_pages((unsigned long)ti
, THREAD_SIZE_ORDER
);
164 static struct kmem_cache
*thread_info_cache
;
166 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
169 return kmem_cache_alloc_node(thread_info_cache
, THREADINFO_GFP
, node
);
172 static void free_thread_info(struct thread_info
*ti
)
174 kmem_cache_free(thread_info_cache
, ti
);
177 void thread_info_cache_init(void)
179 thread_info_cache
= kmem_cache_create("thread_info", THREAD_SIZE
,
180 THREAD_SIZE
, 0, NULL
);
181 BUG_ON(thread_info_cache
== NULL
);
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache
*signal_cachep
;
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache
*sighand_cachep
;
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache
*files_cachep
;
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache
*fs_cachep
;
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache
*vm_area_cachep
;
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache
*mm_cachep
;
204 static void account_kernel_stack(struct thread_info
*ti
, int account
)
206 struct zone
*zone
= page_zone(virt_to_page(ti
));
208 mod_zone_page_state(zone
, NR_KERNEL_STACK
, account
);
211 void free_task(struct task_struct
*tsk
)
213 account_kernel_stack(tsk
->stack
, -1);
214 arch_release_thread_info(tsk
->stack
);
215 free_thread_info(tsk
->stack
);
216 rt_mutex_debug_task_free(tsk
);
217 ftrace_graph_exit_task(tsk
);
218 put_seccomp_filter(tsk
);
219 arch_release_task_struct(tsk
);
220 free_task_struct(tsk
);
222 EXPORT_SYMBOL(free_task
);
224 static inline void free_signal_struct(struct signal_struct
*sig
)
226 taskstats_tgid_free(sig
);
227 sched_autogroup_exit(sig
);
228 kmem_cache_free(signal_cachep
, sig
);
231 static inline void put_signal_struct(struct signal_struct
*sig
)
233 if (atomic_dec_and_test(&sig
->sigcnt
))
234 free_signal_struct(sig
);
237 void __put_task_struct(struct task_struct
*tsk
)
239 WARN_ON(!tsk
->exit_state
);
240 WARN_ON(atomic_read(&tsk
->usage
));
241 WARN_ON(tsk
== current
);
244 security_task_free(tsk
);
246 delayacct_tsk_free(tsk
);
247 put_signal_struct(tsk
->signal
);
249 if (!profile_handoff_task(tsk
))
252 EXPORT_SYMBOL_GPL(__put_task_struct
);
254 void __init __weak
arch_task_cache_init(void) { }
256 void __init
fork_init(unsigned long mempages
)
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
262 /* create a slab on which task_structs can be allocated */
264 kmem_cache_create("task_struct", sizeof(struct task_struct
),
265 ARCH_MIN_TASKALIGN
, SLAB_PANIC
| SLAB_NOTRACK
, NULL
);
268 /* do the arch specific task caches init */
269 arch_task_cache_init();
272 * The default maximum number of threads is set to a safe
273 * value: the thread structures can take up at most half
276 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
279 * we need to allow at least 20 threads to boot a system
281 if (max_threads
< 20)
284 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
285 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
286 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
287 init_task
.signal
->rlim
[RLIMIT_NPROC
];
290 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
291 struct task_struct
*src
)
297 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
299 struct task_struct
*tsk
;
300 struct thread_info
*ti
;
301 unsigned long *stackend
;
302 int node
= tsk_fork_get_node(orig
);
305 tsk
= alloc_task_struct_node(node
);
309 ti
= alloc_thread_info_node(tsk
, node
);
313 err
= arch_dup_task_struct(tsk
, orig
);
319 setup_thread_stack(tsk
, orig
);
320 clear_user_return_notifier(tsk
);
321 clear_tsk_need_resched(tsk
);
322 stackend
= end_of_stack(tsk
);
323 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
325 #ifdef CONFIG_CC_STACKPROTECTOR
326 tsk
->stack_canary
= get_random_int();
330 * One for us, one for whoever does the "release_task()" (usually
333 atomic_set(&tsk
->usage
, 2);
334 #ifdef CONFIG_BLK_DEV_IO_TRACE
337 tsk
->splice_pipe
= NULL
;
338 tsk
->task_frag
.page
= NULL
;
340 account_kernel_stack(ti
, 1);
345 free_thread_info(ti
);
347 free_task_struct(tsk
);
352 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
354 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
355 struct rb_node
**rb_link
, *rb_parent
;
357 unsigned long charge
;
359 uprobe_start_dup_mmap();
360 down_write(&oldmm
->mmap_sem
);
361 flush_cache_dup_mm(oldmm
);
362 uprobe_dup_mmap(oldmm
, mm
);
364 * Not linked in yet - no deadlock potential:
366 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
370 mm
->vmacache_seqnum
= 0;
372 cpumask_clear(mm_cpumask(mm
));
374 rb_link
= &mm
->mm_rb
.rb_node
;
377 retval
= ksm_fork(mm
, oldmm
);
380 retval
= khugepaged_fork(mm
, oldmm
);
385 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
388 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
389 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
394 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
395 unsigned long len
= vma_pages(mpnt
);
397 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
401 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
405 INIT_LIST_HEAD(&tmp
->anon_vma_chain
);
406 retval
= vma_dup_policy(mpnt
, tmp
);
408 goto fail_nomem_policy
;
410 if (anon_vma_fork(tmp
, mpnt
))
411 goto fail_nomem_anon_vma_fork
;
412 tmp
->vm_flags
&= ~VM_LOCKED
;
413 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
416 struct inode
*inode
= file_inode(file
);
417 struct address_space
*mapping
= file
->f_mapping
;
420 if (tmp
->vm_flags
& VM_DENYWRITE
)
421 atomic_dec(&inode
->i_writecount
);
422 mutex_lock(&mapping
->i_mmap_mutex
);
423 if (tmp
->vm_flags
& VM_SHARED
)
424 mapping
->i_mmap_writable
++;
425 flush_dcache_mmap_lock(mapping
);
426 /* insert tmp into the share list, just after mpnt */
427 if (unlikely(tmp
->vm_flags
& VM_NONLINEAR
))
428 vma_nonlinear_insert(tmp
,
429 &mapping
->i_mmap_nonlinear
);
431 vma_interval_tree_insert_after(tmp
, mpnt
,
433 flush_dcache_mmap_unlock(mapping
);
434 mutex_unlock(&mapping
->i_mmap_mutex
);
438 * Clear hugetlb-related page reserves for children. This only
439 * affects MAP_PRIVATE mappings. Faults generated by the child
440 * are not guaranteed to succeed, even if read-only
442 if (is_vm_hugetlb_page(tmp
))
443 reset_vma_resv_huge_pages(tmp
);
446 * Link in the new vma and copy the page table entries.
449 pprev
= &tmp
->vm_next
;
453 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
454 rb_link
= &tmp
->vm_rb
.rb_right
;
455 rb_parent
= &tmp
->vm_rb
;
458 retval
= copy_page_range(mm
, oldmm
, mpnt
);
460 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
461 tmp
->vm_ops
->open(tmp
);
466 /* a new mm has just been created */
467 arch_dup_mmap(oldmm
, mm
);
470 up_write(&mm
->mmap_sem
);
472 up_write(&oldmm
->mmap_sem
);
473 uprobe_end_dup_mmap();
475 fail_nomem_anon_vma_fork
:
476 mpol_put(vma_policy(tmp
));
478 kmem_cache_free(vm_area_cachep
, tmp
);
481 vm_unacct_memory(charge
);
485 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
487 mm
->pgd
= pgd_alloc(mm
);
488 if (unlikely(!mm
->pgd
))
493 static inline void mm_free_pgd(struct mm_struct
*mm
)
495 pgd_free(mm
, mm
->pgd
);
498 #define dup_mmap(mm, oldmm) (0)
499 #define mm_alloc_pgd(mm) (0)
500 #define mm_free_pgd(mm)
501 #endif /* CONFIG_MMU */
503 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
505 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
506 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
508 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
510 static int __init
coredump_filter_setup(char *s
)
512 default_dump_filter
=
513 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
514 MMF_DUMP_FILTER_MASK
;
518 __setup("coredump_filter=", coredump_filter_setup
);
520 #include <linux/init_task.h>
522 static void mm_init_aio(struct mm_struct
*mm
)
525 spin_lock_init(&mm
->ioctx_lock
);
526 mm
->ioctx_table
= NULL
;
530 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
)
532 atomic_set(&mm
->mm_users
, 1);
533 atomic_set(&mm
->mm_count
, 1);
534 init_rwsem(&mm
->mmap_sem
);
535 INIT_LIST_HEAD(&mm
->mmlist
);
536 mm
->core_state
= NULL
;
537 atomic_long_set(&mm
->nr_ptes
, 0);
538 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
539 spin_lock_init(&mm
->page_table_lock
);
541 mm_init_owner(mm
, p
);
542 clear_tlb_flush_pending(mm
);
545 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
546 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
548 mm
->flags
= default_dump_filter
;
552 if (likely(!mm_alloc_pgd(mm
))) {
553 mmu_notifier_mm_init(mm
);
561 static void check_mm(struct mm_struct
*mm
)
565 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
566 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
569 printk(KERN_ALERT
"BUG: Bad rss-counter state "
570 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
573 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
574 VM_BUG_ON(mm
->pmd_huge_pte
);
579 * Allocate and initialize an mm_struct.
581 struct mm_struct
*mm_alloc(void)
583 struct mm_struct
*mm
;
589 memset(mm
, 0, sizeof(*mm
));
591 return mm_init(mm
, current
);
595 * Called when the last reference to the mm
596 * is dropped: either by a lazy thread or by
597 * mmput. Free the page directory and the mm.
599 void __mmdrop(struct mm_struct
*mm
)
601 BUG_ON(mm
== &init_mm
);
604 mmu_notifier_mm_destroy(mm
);
608 EXPORT_SYMBOL_GPL(__mmdrop
);
611 * Decrement the use count and release all resources for an mm.
613 void mmput(struct mm_struct
*mm
)
617 if (atomic_dec_and_test(&mm
->mm_users
)) {
618 uprobe_clear_state(mm
);
621 khugepaged_exit(mm
); /* must run before exit_mmap */
623 set_mm_exe_file(mm
, NULL
);
624 if (!list_empty(&mm
->mmlist
)) {
625 spin_lock(&mmlist_lock
);
626 list_del(&mm
->mmlist
);
627 spin_unlock(&mmlist_lock
);
630 module_put(mm
->binfmt
->module
);
634 EXPORT_SYMBOL_GPL(mmput
);
636 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
639 get_file(new_exe_file
);
642 mm
->exe_file
= new_exe_file
;
645 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
647 struct file
*exe_file
;
649 /* We need mmap_sem to protect against races with removal of exe_file */
650 down_read(&mm
->mmap_sem
);
651 exe_file
= mm
->exe_file
;
654 up_read(&mm
->mmap_sem
);
658 static void dup_mm_exe_file(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
660 /* It's safe to write the exe_file pointer without exe_file_lock because
661 * this is called during fork when the task is not yet in /proc */
662 newmm
->exe_file
= get_mm_exe_file(oldmm
);
666 * get_task_mm - acquire a reference to the task's mm
668 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
669 * this kernel workthread has transiently adopted a user mm with use_mm,
670 * to do its AIO) is not set and if so returns a reference to it, after
671 * bumping up the use count. User must release the mm via mmput()
672 * after use. Typically used by /proc and ptrace.
674 struct mm_struct
*get_task_mm(struct task_struct
*task
)
676 struct mm_struct
*mm
;
681 if (task
->flags
& PF_KTHREAD
)
684 atomic_inc(&mm
->mm_users
);
689 EXPORT_SYMBOL_GPL(get_task_mm
);
691 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
693 struct mm_struct
*mm
;
696 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
700 mm
= get_task_mm(task
);
701 if (mm
&& mm
!= current
->mm
&&
702 !ptrace_may_access(task
, mode
)) {
704 mm
= ERR_PTR(-EACCES
);
706 mutex_unlock(&task
->signal
->cred_guard_mutex
);
711 static void complete_vfork_done(struct task_struct
*tsk
)
713 struct completion
*vfork
;
716 vfork
= tsk
->vfork_done
;
718 tsk
->vfork_done
= NULL
;
724 static int wait_for_vfork_done(struct task_struct
*child
,
725 struct completion
*vfork
)
729 freezer_do_not_count();
730 killed
= wait_for_completion_killable(vfork
);
735 child
->vfork_done
= NULL
;
739 put_task_struct(child
);
743 /* Please note the differences between mmput and mm_release.
744 * mmput is called whenever we stop holding onto a mm_struct,
745 * error success whatever.
747 * mm_release is called after a mm_struct has been removed
748 * from the current process.
750 * This difference is important for error handling, when we
751 * only half set up a mm_struct for a new process and need to restore
752 * the old one. Because we mmput the new mm_struct before
753 * restoring the old one. . .
754 * Eric Biederman 10 January 1998
756 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
758 /* Get rid of any futexes when releasing the mm */
760 if (unlikely(tsk
->robust_list
)) {
761 exit_robust_list(tsk
);
762 tsk
->robust_list
= NULL
;
765 if (unlikely(tsk
->compat_robust_list
)) {
766 compat_exit_robust_list(tsk
);
767 tsk
->compat_robust_list
= NULL
;
770 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
771 exit_pi_state_list(tsk
);
774 uprobe_free_utask(tsk
);
776 /* Get rid of any cached register state */
777 deactivate_mm(tsk
, mm
);
780 * If we're exiting normally, clear a user-space tid field if
781 * requested. We leave this alone when dying by signal, to leave
782 * the value intact in a core dump, and to save the unnecessary
783 * trouble, say, a killed vfork parent shouldn't touch this mm.
784 * Userland only wants this done for a sys_exit.
786 if (tsk
->clear_child_tid
) {
787 if (!(tsk
->flags
& PF_SIGNALED
) &&
788 atomic_read(&mm
->mm_users
) > 1) {
790 * We don't check the error code - if userspace has
791 * not set up a proper pointer then tough luck.
793 put_user(0, tsk
->clear_child_tid
);
794 sys_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
797 tsk
->clear_child_tid
= NULL
;
801 * All done, finally we can wake up parent and return this mm to him.
802 * Also kthread_stop() uses this completion for synchronization.
805 complete_vfork_done(tsk
);
809 * Allocate a new mm structure and copy contents from the
810 * mm structure of the passed in task structure.
812 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
814 struct mm_struct
*mm
, *oldmm
= current
->mm
;
821 memcpy(mm
, oldmm
, sizeof(*mm
));
824 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
825 mm
->pmd_huge_pte
= NULL
;
827 if (!mm_init(mm
, tsk
))
830 if (init_new_context(tsk
, mm
))
833 dup_mm_exe_file(oldmm
, mm
);
835 err
= dup_mmap(mm
, oldmm
);
839 mm
->hiwater_rss
= get_mm_rss(mm
);
840 mm
->hiwater_vm
= mm
->total_vm
;
842 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
848 /* don't put binfmt in mmput, we haven't got module yet */
857 * If init_new_context() failed, we cannot use mmput() to free the mm
858 * because it calls destroy_context()
865 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
867 struct mm_struct
*mm
, *oldmm
;
870 tsk
->min_flt
= tsk
->maj_flt
= 0;
871 tsk
->nvcsw
= tsk
->nivcsw
= 0;
872 #ifdef CONFIG_DETECT_HUNG_TASK
873 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
877 tsk
->active_mm
= NULL
;
880 * Are we cloning a kernel thread?
882 * We need to steal a active VM for that..
888 /* initialize the new vmacache entries */
891 if (clone_flags
& CLONE_VM
) {
892 atomic_inc(&oldmm
->mm_users
);
911 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
913 struct fs_struct
*fs
= current
->fs
;
914 if (clone_flags
& CLONE_FS
) {
915 /* tsk->fs is already what we want */
916 spin_lock(&fs
->lock
);
918 spin_unlock(&fs
->lock
);
922 spin_unlock(&fs
->lock
);
925 tsk
->fs
= copy_fs_struct(fs
);
931 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
933 struct files_struct
*oldf
, *newf
;
937 * A background process may not have any files ...
939 oldf
= current
->files
;
943 if (clone_flags
& CLONE_FILES
) {
944 atomic_inc(&oldf
->count
);
948 newf
= dup_fd(oldf
, &error
);
958 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
961 struct io_context
*ioc
= current
->io_context
;
962 struct io_context
*new_ioc
;
967 * Share io context with parent, if CLONE_IO is set
969 if (clone_flags
& CLONE_IO
) {
971 tsk
->io_context
= ioc
;
972 } else if (ioprio_valid(ioc
->ioprio
)) {
973 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
974 if (unlikely(!new_ioc
))
977 new_ioc
->ioprio
= ioc
->ioprio
;
978 put_io_context(new_ioc
);
984 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
986 struct sighand_struct
*sig
;
988 if (clone_flags
& CLONE_SIGHAND
) {
989 atomic_inc(¤t
->sighand
->count
);
992 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
993 rcu_assign_pointer(tsk
->sighand
, sig
);
996 atomic_set(&sig
->count
, 1);
997 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1001 void __cleanup_sighand(struct sighand_struct
*sighand
)
1003 if (atomic_dec_and_test(&sighand
->count
)) {
1004 signalfd_cleanup(sighand
);
1005 kmem_cache_free(sighand_cachep
, sighand
);
1011 * Initialize POSIX timer handling for a thread group.
1013 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1015 unsigned long cpu_limit
;
1017 /* Thread group counters. */
1018 thread_group_cputime_init(sig
);
1020 cpu_limit
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1021 if (cpu_limit
!= RLIM_INFINITY
) {
1022 sig
->cputime_expires
.prof_exp
= secs_to_cputime(cpu_limit
);
1023 sig
->cputimer
.running
= 1;
1026 /* The timer lists. */
1027 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1028 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1029 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1032 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1034 struct signal_struct
*sig
;
1036 if (clone_flags
& CLONE_THREAD
)
1039 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1044 sig
->nr_threads
= 1;
1045 atomic_set(&sig
->live
, 1);
1046 atomic_set(&sig
->sigcnt
, 1);
1048 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1049 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1050 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1052 init_waitqueue_head(&sig
->wait_chldexit
);
1053 sig
->curr_target
= tsk
;
1054 init_sigpending(&sig
->shared_pending
);
1055 INIT_LIST_HEAD(&sig
->posix_timers
);
1057 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1058 sig
->real_timer
.function
= it_real_fn
;
1060 task_lock(current
->group_leader
);
1061 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1062 task_unlock(current
->group_leader
);
1064 posix_cpu_timers_init_group(sig
);
1066 tty_audit_fork(sig
);
1067 sched_autogroup_fork(sig
);
1069 #ifdef CONFIG_CGROUPS
1070 init_rwsem(&sig
->group_rwsem
);
1073 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1074 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1076 sig
->has_child_subreaper
= current
->signal
->has_child_subreaper
||
1077 current
->signal
->is_child_subreaper
;
1079 mutex_init(&sig
->cred_guard_mutex
);
1084 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1086 current
->clear_child_tid
= tidptr
;
1088 return task_pid_vnr(current
);
1091 static void rt_mutex_init_task(struct task_struct
*p
)
1093 raw_spin_lock_init(&p
->pi_lock
);
1094 #ifdef CONFIG_RT_MUTEXES
1095 p
->pi_waiters
= RB_ROOT
;
1096 p
->pi_waiters_leftmost
= NULL
;
1097 p
->pi_blocked_on
= NULL
;
1098 p
->pi_top_task
= NULL
;
1103 void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
1107 #endif /* CONFIG_MEMCG */
1110 * Initialize POSIX timer handling for a single task.
1112 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1114 tsk
->cputime_expires
.prof_exp
= 0;
1115 tsk
->cputime_expires
.virt_exp
= 0;
1116 tsk
->cputime_expires
.sched_exp
= 0;
1117 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1118 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1119 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1123 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1125 task
->pids
[type
].pid
= pid
;
1129 * This creates a new process as a copy of the old one,
1130 * but does not actually start it yet.
1132 * It copies the registers, and all the appropriate
1133 * parts of the process environment (as per the clone
1134 * flags). The actual kick-off is left to the caller.
1136 static struct task_struct
*copy_process(unsigned long clone_flags
,
1137 unsigned long stack_start
,
1138 unsigned long stack_size
,
1139 int __user
*child_tidptr
,
1144 struct task_struct
*p
;
1146 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1147 return ERR_PTR(-EINVAL
);
1149 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1150 return ERR_PTR(-EINVAL
);
1153 * Thread groups must share signals as well, and detached threads
1154 * can only be started up within the thread group.
1156 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1157 return ERR_PTR(-EINVAL
);
1160 * Shared signal handlers imply shared VM. By way of the above,
1161 * thread groups also imply shared VM. Blocking this case allows
1162 * for various simplifications in other code.
1164 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1165 return ERR_PTR(-EINVAL
);
1168 * Siblings of global init remain as zombies on exit since they are
1169 * not reaped by their parent (swapper). To solve this and to avoid
1170 * multi-rooted process trees, prevent global and container-inits
1171 * from creating siblings.
1173 if ((clone_flags
& CLONE_PARENT
) &&
1174 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1175 return ERR_PTR(-EINVAL
);
1178 * If the new process will be in a different pid or user namespace
1179 * do not allow it to share a thread group or signal handlers or
1180 * parent with the forking task.
1182 if (clone_flags
& CLONE_SIGHAND
) {
1183 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1184 (task_active_pid_ns(current
) !=
1185 current
->nsproxy
->pid_ns_for_children
))
1186 return ERR_PTR(-EINVAL
);
1189 retval
= security_task_create(clone_flags
);
1194 p
= dup_task_struct(current
);
1198 ftrace_graph_init_task(p
);
1199 get_seccomp_filter(p
);
1201 rt_mutex_init_task(p
);
1203 #ifdef CONFIG_PROVE_LOCKING
1204 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1205 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1208 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1209 task_rlimit(p
, RLIMIT_NPROC
)) {
1210 if (p
->real_cred
->user
!= INIT_USER
&&
1211 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1214 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1216 retval
= copy_creds(p
, clone_flags
);
1221 * If multiple threads are within copy_process(), then this check
1222 * triggers too late. This doesn't hurt, the check is only there
1223 * to stop root fork bombs.
1226 if (nr_threads
>= max_threads
)
1227 goto bad_fork_cleanup_count
;
1229 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1230 goto bad_fork_cleanup_count
;
1232 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1233 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
);
1234 p
->flags
|= PF_FORKNOEXEC
;
1235 INIT_LIST_HEAD(&p
->children
);
1236 INIT_LIST_HEAD(&p
->sibling
);
1237 rcu_copy_process(p
);
1238 p
->vfork_done
= NULL
;
1239 spin_lock_init(&p
->alloc_lock
);
1241 init_sigpending(&p
->pending
);
1243 p
->utime
= p
->stime
= p
->gtime
= 0;
1244 p
->utimescaled
= p
->stimescaled
= 0;
1245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1246 p
->prev_cputime
.utime
= p
->prev_cputime
.stime
= 0;
1248 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1249 seqlock_init(&p
->vtime_seqlock
);
1251 p
->vtime_snap_whence
= VTIME_SLEEPING
;
1254 #if defined(SPLIT_RSS_COUNTING)
1255 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1258 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1260 task_io_accounting_init(&p
->ioac
);
1261 acct_clear_integrals(p
);
1263 posix_cpu_timers_init(p
);
1265 do_posix_clock_monotonic_gettime(&p
->start_time
);
1266 p
->real_start_time
= p
->start_time
;
1267 monotonic_to_bootbased(&p
->real_start_time
);
1268 p
->io_context
= NULL
;
1269 p
->audit_context
= NULL
;
1270 if (clone_flags
& CLONE_THREAD
)
1271 threadgroup_change_begin(current
);
1274 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1275 if (IS_ERR(p
->mempolicy
)) {
1276 retval
= PTR_ERR(p
->mempolicy
);
1277 p
->mempolicy
= NULL
;
1278 goto bad_fork_cleanup_threadgroup_lock
;
1281 #ifdef CONFIG_CPUSETS
1282 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1283 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1284 seqcount_init(&p
->mems_allowed_seq
);
1286 #ifdef CONFIG_TRACE_IRQFLAGS
1288 p
->hardirqs_enabled
= 0;
1289 p
->hardirq_enable_ip
= 0;
1290 p
->hardirq_enable_event
= 0;
1291 p
->hardirq_disable_ip
= _THIS_IP_
;
1292 p
->hardirq_disable_event
= 0;
1293 p
->softirqs_enabled
= 1;
1294 p
->softirq_enable_ip
= _THIS_IP_
;
1295 p
->softirq_enable_event
= 0;
1296 p
->softirq_disable_ip
= 0;
1297 p
->softirq_disable_event
= 0;
1298 p
->hardirq_context
= 0;
1299 p
->softirq_context
= 0;
1301 #ifdef CONFIG_LOCKDEP
1302 p
->lockdep_depth
= 0; /* no locks held yet */
1303 p
->curr_chain_key
= 0;
1304 p
->lockdep_recursion
= 0;
1307 #ifdef CONFIG_DEBUG_MUTEXES
1308 p
->blocked_on
= NULL
; /* not blocked yet */
1311 p
->memcg_batch
.do_batch
= 0;
1312 p
->memcg_batch
.memcg
= NULL
;
1314 #ifdef CONFIG_BCACHE
1315 p
->sequential_io
= 0;
1316 p
->sequential_io_avg
= 0;
1319 /* Perform scheduler related setup. Assign this task to a CPU. */
1320 retval
= sched_fork(clone_flags
, p
);
1322 goto bad_fork_cleanup_policy
;
1324 retval
= perf_event_init_task(p
);
1326 goto bad_fork_cleanup_policy
;
1327 retval
= audit_alloc(p
);
1329 goto bad_fork_cleanup_policy
;
1330 /* copy all the process information */
1331 retval
= copy_semundo(clone_flags
, p
);
1333 goto bad_fork_cleanup_audit
;
1334 retval
= copy_files(clone_flags
, p
);
1336 goto bad_fork_cleanup_semundo
;
1337 retval
= copy_fs(clone_flags
, p
);
1339 goto bad_fork_cleanup_files
;
1340 retval
= copy_sighand(clone_flags
, p
);
1342 goto bad_fork_cleanup_fs
;
1343 retval
= copy_signal(clone_flags
, p
);
1345 goto bad_fork_cleanup_sighand
;
1346 retval
= copy_mm(clone_flags
, p
);
1348 goto bad_fork_cleanup_signal
;
1349 retval
= copy_namespaces(clone_flags
, p
);
1351 goto bad_fork_cleanup_mm
;
1352 retval
= copy_io(clone_flags
, p
);
1354 goto bad_fork_cleanup_namespaces
;
1355 retval
= copy_thread(clone_flags
, stack_start
, stack_size
, p
);
1357 goto bad_fork_cleanup_io
;
1359 if (pid
!= &init_struct_pid
) {
1361 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1363 goto bad_fork_cleanup_io
;
1366 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1368 * Clear TID on mm_release()?
1370 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1375 p
->robust_list
= NULL
;
1376 #ifdef CONFIG_COMPAT
1377 p
->compat_robust_list
= NULL
;
1379 INIT_LIST_HEAD(&p
->pi_state_list
);
1380 p
->pi_state_cache
= NULL
;
1383 * sigaltstack should be cleared when sharing the same VM
1385 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1386 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1389 * Syscall tracing and stepping should be turned off in the
1390 * child regardless of CLONE_PTRACE.
1392 user_disable_single_step(p
);
1393 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1394 #ifdef TIF_SYSCALL_EMU
1395 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1397 clear_all_latency_tracing(p
);
1399 /* ok, now we should be set up.. */
1400 p
->pid
= pid_nr(pid
);
1401 if (clone_flags
& CLONE_THREAD
) {
1402 p
->exit_signal
= -1;
1403 p
->group_leader
= current
->group_leader
;
1404 p
->tgid
= current
->tgid
;
1406 if (clone_flags
& CLONE_PARENT
)
1407 p
->exit_signal
= current
->group_leader
->exit_signal
;
1409 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1410 p
->group_leader
= p
;
1415 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1416 p
->dirty_paused_when
= 0;
1418 p
->pdeath_signal
= 0;
1419 INIT_LIST_HEAD(&p
->thread_group
);
1420 p
->task_works
= NULL
;
1423 * Make it visible to the rest of the system, but dont wake it up yet.
1424 * Need tasklist lock for parent etc handling!
1426 write_lock_irq(&tasklist_lock
);
1428 /* CLONE_PARENT re-uses the old parent */
1429 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1430 p
->real_parent
= current
->real_parent
;
1431 p
->parent_exec_id
= current
->parent_exec_id
;
1433 p
->real_parent
= current
;
1434 p
->parent_exec_id
= current
->self_exec_id
;
1437 spin_lock(¤t
->sighand
->siglock
);
1440 * Process group and session signals need to be delivered to just the
1441 * parent before the fork or both the parent and the child after the
1442 * fork. Restart if a signal comes in before we add the new process to
1443 * it's process group.
1444 * A fatal signal pending means that current will exit, so the new
1445 * thread can't slip out of an OOM kill (or normal SIGKILL).
1447 recalc_sigpending();
1448 if (signal_pending(current
)) {
1449 spin_unlock(¤t
->sighand
->siglock
);
1450 write_unlock_irq(&tasklist_lock
);
1451 retval
= -ERESTARTNOINTR
;
1452 goto bad_fork_free_pid
;
1455 if (likely(p
->pid
)) {
1456 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1458 init_task_pid(p
, PIDTYPE_PID
, pid
);
1459 if (thread_group_leader(p
)) {
1460 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1461 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
1463 if (is_child_reaper(pid
)) {
1464 ns_of_pid(pid
)->child_reaper
= p
;
1465 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
1468 p
->signal
->leader_pid
= pid
;
1469 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1470 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1471 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1472 attach_pid(p
, PIDTYPE_PGID
);
1473 attach_pid(p
, PIDTYPE_SID
);
1474 __this_cpu_inc(process_counts
);
1476 current
->signal
->nr_threads
++;
1477 atomic_inc(¤t
->signal
->live
);
1478 atomic_inc(¤t
->signal
->sigcnt
);
1479 list_add_tail_rcu(&p
->thread_group
,
1480 &p
->group_leader
->thread_group
);
1481 list_add_tail_rcu(&p
->thread_node
,
1482 &p
->signal
->thread_head
);
1484 attach_pid(p
, PIDTYPE_PID
);
1489 spin_unlock(¤t
->sighand
->siglock
);
1490 write_unlock_irq(&tasklist_lock
);
1491 proc_fork_connector(p
);
1492 cgroup_post_fork(p
);
1493 if (clone_flags
& CLONE_THREAD
)
1494 threadgroup_change_end(current
);
1497 trace_task_newtask(p
, clone_flags
);
1498 uprobe_copy_process(p
, clone_flags
);
1503 if (pid
!= &init_struct_pid
)
1505 bad_fork_cleanup_io
:
1508 bad_fork_cleanup_namespaces
:
1509 exit_task_namespaces(p
);
1510 bad_fork_cleanup_mm
:
1513 bad_fork_cleanup_signal
:
1514 if (!(clone_flags
& CLONE_THREAD
))
1515 free_signal_struct(p
->signal
);
1516 bad_fork_cleanup_sighand
:
1517 __cleanup_sighand(p
->sighand
);
1518 bad_fork_cleanup_fs
:
1519 exit_fs(p
); /* blocking */
1520 bad_fork_cleanup_files
:
1521 exit_files(p
); /* blocking */
1522 bad_fork_cleanup_semundo
:
1524 bad_fork_cleanup_audit
:
1526 bad_fork_cleanup_policy
:
1527 perf_event_free_task(p
);
1529 mpol_put(p
->mempolicy
);
1530 bad_fork_cleanup_threadgroup_lock
:
1532 if (clone_flags
& CLONE_THREAD
)
1533 threadgroup_change_end(current
);
1534 delayacct_tsk_free(p
);
1535 module_put(task_thread_info(p
)->exec_domain
->module
);
1536 bad_fork_cleanup_count
:
1537 atomic_dec(&p
->cred
->user
->processes
);
1542 return ERR_PTR(retval
);
1545 static inline void init_idle_pids(struct pid_link
*links
)
1549 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1550 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
1551 links
[type
].pid
= &init_struct_pid
;
1555 struct task_struct
*fork_idle(int cpu
)
1557 struct task_struct
*task
;
1558 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0);
1559 if (!IS_ERR(task
)) {
1560 init_idle_pids(task
->pids
);
1561 init_idle(task
, cpu
);
1568 * Ok, this is the main fork-routine.
1570 * It copies the process, and if successful kick-starts
1571 * it and waits for it to finish using the VM if required.
1573 long do_fork(unsigned long clone_flags
,
1574 unsigned long stack_start
,
1575 unsigned long stack_size
,
1576 int __user
*parent_tidptr
,
1577 int __user
*child_tidptr
)
1579 struct task_struct
*p
;
1584 * Determine whether and which event to report to ptracer. When
1585 * called from kernel_thread or CLONE_UNTRACED is explicitly
1586 * requested, no event is reported; otherwise, report if the event
1587 * for the type of forking is enabled.
1589 if (!(clone_flags
& CLONE_UNTRACED
)) {
1590 if (clone_flags
& CLONE_VFORK
)
1591 trace
= PTRACE_EVENT_VFORK
;
1592 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
1593 trace
= PTRACE_EVENT_CLONE
;
1595 trace
= PTRACE_EVENT_FORK
;
1597 if (likely(!ptrace_event_enabled(current
, trace
)))
1601 p
= copy_process(clone_flags
, stack_start
, stack_size
,
1602 child_tidptr
, NULL
, trace
);
1604 * Do this prior waking up the new thread - the thread pointer
1605 * might get invalid after that point, if the thread exits quickly.
1608 struct completion vfork
;
1611 trace_sched_process_fork(current
, p
);
1613 pid
= get_task_pid(p
, PIDTYPE_PID
);
1616 if (clone_flags
& CLONE_PARENT_SETTID
)
1617 put_user(nr
, parent_tidptr
);
1619 if (clone_flags
& CLONE_VFORK
) {
1620 p
->vfork_done
= &vfork
;
1621 init_completion(&vfork
);
1625 wake_up_new_task(p
);
1627 /* forking complete and child started to run, tell ptracer */
1628 if (unlikely(trace
))
1629 ptrace_event_pid(trace
, pid
);
1631 if (clone_flags
& CLONE_VFORK
) {
1632 if (!wait_for_vfork_done(p
, &vfork
))
1633 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
1644 * Create a kernel thread.
1646 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
1648 return do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
1649 (unsigned long)arg
, NULL
, NULL
);
1652 #ifdef __ARCH_WANT_SYS_FORK
1653 SYSCALL_DEFINE0(fork
)
1656 return do_fork(SIGCHLD
, 0, 0, NULL
, NULL
);
1658 /* can not support in nommu mode */
1664 #ifdef __ARCH_WANT_SYS_VFORK
1665 SYSCALL_DEFINE0(vfork
)
1667 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
1672 #ifdef __ARCH_WANT_SYS_CLONE
1673 #ifdef CONFIG_CLONE_BACKWARDS
1674 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1675 int __user
*, parent_tidptr
,
1677 int __user
*, child_tidptr
)
1678 #elif defined(CONFIG_CLONE_BACKWARDS2)
1679 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
1680 int __user
*, parent_tidptr
,
1681 int __user
*, child_tidptr
,
1683 #elif defined(CONFIG_CLONE_BACKWARDS3)
1684 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1686 int __user
*, parent_tidptr
,
1687 int __user
*, child_tidptr
,
1690 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1691 int __user
*, parent_tidptr
,
1692 int __user
*, child_tidptr
,
1696 return do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
);
1700 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1701 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1704 static void sighand_ctor(void *data
)
1706 struct sighand_struct
*sighand
= data
;
1708 spin_lock_init(&sighand
->siglock
);
1709 init_waitqueue_head(&sighand
->signalfd_wqh
);
1712 void __init
proc_caches_init(void)
1714 sighand_cachep
= kmem_cache_create("sighand_cache",
1715 sizeof(struct sighand_struct
), 0,
1716 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
|
1717 SLAB_NOTRACK
, sighand_ctor
);
1718 signal_cachep
= kmem_cache_create("signal_cache",
1719 sizeof(struct signal_struct
), 0,
1720 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1721 files_cachep
= kmem_cache_create("files_cache",
1722 sizeof(struct files_struct
), 0,
1723 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1724 fs_cachep
= kmem_cache_create("fs_cache",
1725 sizeof(struct fs_struct
), 0,
1726 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1728 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1729 * whole struct cpumask for the OFFSTACK case. We could change
1730 * this to *only* allocate as much of it as required by the
1731 * maximum number of CPU's we can ever have. The cpumask_allocation
1732 * is at the end of the structure, exactly for that reason.
1734 mm_cachep
= kmem_cache_create("mm_struct",
1735 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1736 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1737 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
);
1739 nsproxy_cache_init();
1743 * Check constraints on flags passed to the unshare system call.
1745 static int check_unshare_flags(unsigned long unshare_flags
)
1747 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1748 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1749 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
1750 CLONE_NEWUSER
|CLONE_NEWPID
))
1753 * Not implemented, but pretend it works if there is nothing to
1754 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1755 * needs to unshare vm.
1757 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
1758 /* FIXME: get_task_mm() increments ->mm_users */
1759 if (atomic_read(¤t
->mm
->mm_users
) > 1)
1767 * Unshare the filesystem structure if it is being shared
1769 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1771 struct fs_struct
*fs
= current
->fs
;
1773 if (!(unshare_flags
& CLONE_FS
) || !fs
)
1776 /* don't need lock here; in the worst case we'll do useless copy */
1780 *new_fsp
= copy_fs_struct(fs
);
1788 * Unshare file descriptor table if it is being shared
1790 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1792 struct files_struct
*fd
= current
->files
;
1795 if ((unshare_flags
& CLONE_FILES
) &&
1796 (fd
&& atomic_read(&fd
->count
) > 1)) {
1797 *new_fdp
= dup_fd(fd
, &error
);
1806 * unshare allows a process to 'unshare' part of the process
1807 * context which was originally shared using clone. copy_*
1808 * functions used by do_fork() cannot be used here directly
1809 * because they modify an inactive task_struct that is being
1810 * constructed. Here we are modifying the current, active,
1813 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
1815 struct fs_struct
*fs
, *new_fs
= NULL
;
1816 struct files_struct
*fd
, *new_fd
= NULL
;
1817 struct cred
*new_cred
= NULL
;
1818 struct nsproxy
*new_nsproxy
= NULL
;
1823 * If unsharing a user namespace must also unshare the thread.
1825 if (unshare_flags
& CLONE_NEWUSER
)
1826 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
1828 * If unsharing a thread from a thread group, must also unshare vm.
1830 if (unshare_flags
& CLONE_THREAD
)
1831 unshare_flags
|= CLONE_VM
;
1833 * If unsharing vm, must also unshare signal handlers.
1835 if (unshare_flags
& CLONE_VM
)
1836 unshare_flags
|= CLONE_SIGHAND
;
1838 * If unsharing namespace, must also unshare filesystem information.
1840 if (unshare_flags
& CLONE_NEWNS
)
1841 unshare_flags
|= CLONE_FS
;
1843 err
= check_unshare_flags(unshare_flags
);
1845 goto bad_unshare_out
;
1847 * CLONE_NEWIPC must also detach from the undolist: after switching
1848 * to a new ipc namespace, the semaphore arrays from the old
1849 * namespace are unreachable.
1851 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
1853 err
= unshare_fs(unshare_flags
, &new_fs
);
1855 goto bad_unshare_out
;
1856 err
= unshare_fd(unshare_flags
, &new_fd
);
1858 goto bad_unshare_cleanup_fs
;
1859 err
= unshare_userns(unshare_flags
, &new_cred
);
1861 goto bad_unshare_cleanup_fd
;
1862 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
1865 goto bad_unshare_cleanup_cred
;
1867 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
1870 * CLONE_SYSVSEM is equivalent to sys_exit().
1876 switch_task_namespaces(current
, new_nsproxy
);
1882 spin_lock(&fs
->lock
);
1883 current
->fs
= new_fs
;
1888 spin_unlock(&fs
->lock
);
1892 fd
= current
->files
;
1893 current
->files
= new_fd
;
1897 task_unlock(current
);
1900 /* Install the new user namespace */
1901 commit_creds(new_cred
);
1906 bad_unshare_cleanup_cred
:
1909 bad_unshare_cleanup_fd
:
1911 put_files_struct(new_fd
);
1913 bad_unshare_cleanup_fs
:
1915 free_fs_struct(new_fs
);
1922 * Helper to unshare the files of the current task.
1923 * We don't want to expose copy_files internals to
1924 * the exec layer of the kernel.
1927 int unshare_files(struct files_struct
**displaced
)
1929 struct task_struct
*task
= current
;
1930 struct files_struct
*copy
= NULL
;
1933 error
= unshare_fd(CLONE_FILES
, ©
);
1934 if (error
|| !copy
) {
1938 *displaced
= task
->files
;