4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
78 #include <asm/switch_to.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
96 smp_mb__before_atomic();
98 EXPORT_SYMBOL(__smp_mb__before_atomic
);
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
104 smp_mb__after_atomic();
106 EXPORT_SYMBOL(__smp_mb__after_atomic
);
109 void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
)
112 ktime_t soft
, hard
, now
;
115 if (hrtimer_active(period_timer
))
118 now
= hrtimer_cb_get_time(period_timer
);
119 hrtimer_forward(period_timer
, now
, period
);
121 soft
= hrtimer_get_softexpires(period_timer
);
122 hard
= hrtimer_get_expires(period_timer
);
123 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
124 __hrtimer_start_range_ns(period_timer
, soft
, delta
,
125 HRTIMER_MODE_ABS_PINNED
, 0);
129 DEFINE_MUTEX(sched_domains_mutex
);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
132 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
134 void update_rq_clock(struct rq
*rq
)
138 if (rq
->skip_clock_update
> 0)
141 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
143 update_rq_clock_task(rq
, delta
);
147 * Debugging: various feature bits
150 #define SCHED_FEAT(name, enabled) \
151 (1UL << __SCHED_FEAT_##name) * enabled |
153 const_debug
unsigned int sysctl_sched_features
=
154 #include "features.h"
159 #ifdef CONFIG_SCHED_DEBUG
160 #define SCHED_FEAT(name, enabled) \
163 static const char * const sched_feat_names
[] = {
164 #include "features.h"
169 static int sched_feat_show(struct seq_file
*m
, void *v
)
173 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
174 if (!(sysctl_sched_features
& (1UL << i
)))
176 seq_printf(m
, "%s ", sched_feat_names
[i
]);
183 #ifdef HAVE_JUMP_LABEL
185 #define jump_label_key__true STATIC_KEY_INIT_TRUE
186 #define jump_label_key__false STATIC_KEY_INIT_FALSE
188 #define SCHED_FEAT(name, enabled) \
189 jump_label_key__##enabled ,
191 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
192 #include "features.h"
197 static void sched_feat_disable(int i
)
199 if (static_key_enabled(&sched_feat_keys
[i
]))
200 static_key_slow_dec(&sched_feat_keys
[i
]);
203 static void sched_feat_enable(int i
)
205 if (!static_key_enabled(&sched_feat_keys
[i
]))
206 static_key_slow_inc(&sched_feat_keys
[i
]);
209 static void sched_feat_disable(int i
) { };
210 static void sched_feat_enable(int i
) { };
211 #endif /* HAVE_JUMP_LABEL */
213 static int sched_feat_set(char *cmp
)
218 if (strncmp(cmp
, "NO_", 3) == 0) {
223 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
224 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
226 sysctl_sched_features
&= ~(1UL << i
);
227 sched_feat_disable(i
);
229 sysctl_sched_features
|= (1UL << i
);
230 sched_feat_enable(i
);
240 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
241 size_t cnt
, loff_t
*ppos
)
250 if (copy_from_user(&buf
, ubuf
, cnt
))
256 i
= sched_feat_set(cmp
);
257 if (i
== __SCHED_FEAT_NR
)
265 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
267 return single_open(filp
, sched_feat_show
, NULL
);
270 static const struct file_operations sched_feat_fops
= {
271 .open
= sched_feat_open
,
272 .write
= sched_feat_write
,
275 .release
= single_release
,
278 static __init
int sched_init_debug(void)
280 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
285 late_initcall(sched_init_debug
);
286 #endif /* CONFIG_SCHED_DEBUG */
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
292 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
295 * period over which we average the RT time consumption, measured
300 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
303 * period over which we measure -rt task cpu usage in us.
306 unsigned int sysctl_sched_rt_period
= 1000000;
308 __read_mostly
int scheduler_running
;
311 * part of the period that we allow rt tasks to run in us.
314 int sysctl_sched_rt_runtime
= 950000;
317 * __task_rq_lock - lock the rq @p resides on.
319 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
324 lockdep_assert_held(&p
->pi_lock
);
328 raw_spin_lock(&rq
->lock
);
329 if (likely(rq
== task_rq(p
)))
331 raw_spin_unlock(&rq
->lock
);
336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
338 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
339 __acquires(p
->pi_lock
)
345 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
347 raw_spin_lock(&rq
->lock
);
348 if (likely(rq
== task_rq(p
)))
350 raw_spin_unlock(&rq
->lock
);
351 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
355 static void __task_rq_unlock(struct rq
*rq
)
358 raw_spin_unlock(&rq
->lock
);
362 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
364 __releases(p
->pi_lock
)
366 raw_spin_unlock(&rq
->lock
);
367 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
371 * this_rq_lock - lock this runqueue and disable interrupts.
373 static struct rq
*this_rq_lock(void)
380 raw_spin_lock(&rq
->lock
);
385 #ifdef CONFIG_SCHED_HRTICK
387 * Use HR-timers to deliver accurate preemption points.
390 static void hrtick_clear(struct rq
*rq
)
392 if (hrtimer_active(&rq
->hrtick_timer
))
393 hrtimer_cancel(&rq
->hrtick_timer
);
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
400 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
402 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
404 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
406 raw_spin_lock(&rq
->lock
);
408 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
409 raw_spin_unlock(&rq
->lock
);
411 return HRTIMER_NORESTART
;
416 static int __hrtick_restart(struct rq
*rq
)
418 struct hrtimer
*timer
= &rq
->hrtick_timer
;
419 ktime_t time
= hrtimer_get_softexpires(timer
);
421 return __hrtimer_start_range_ns(timer
, time
, 0, HRTIMER_MODE_ABS_PINNED
, 0);
425 * called from hardirq (IPI) context
427 static void __hrtick_start(void *arg
)
431 raw_spin_lock(&rq
->lock
);
432 __hrtick_restart(rq
);
433 rq
->hrtick_csd_pending
= 0;
434 raw_spin_unlock(&rq
->lock
);
438 * Called to set the hrtick timer state.
440 * called with rq->lock held and irqs disabled
442 void hrtick_start(struct rq
*rq
, u64 delay
)
444 struct hrtimer
*timer
= &rq
->hrtick_timer
;
445 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
447 hrtimer_set_expires(timer
, time
);
449 if (rq
== this_rq()) {
450 __hrtick_restart(rq
);
451 } else if (!rq
->hrtick_csd_pending
) {
452 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
453 rq
->hrtick_csd_pending
= 1;
458 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
460 int cpu
= (int)(long)hcpu
;
463 case CPU_UP_CANCELED
:
464 case CPU_UP_CANCELED_FROZEN
:
465 case CPU_DOWN_PREPARE
:
466 case CPU_DOWN_PREPARE_FROZEN
:
468 case CPU_DEAD_FROZEN
:
469 hrtick_clear(cpu_rq(cpu
));
476 static __init
void init_hrtick(void)
478 hotcpu_notifier(hotplug_hrtick
, 0);
482 * Called to set the hrtick timer state.
484 * called with rq->lock held and irqs disabled
486 void hrtick_start(struct rq
*rq
, u64 delay
)
488 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
489 HRTIMER_MODE_REL_PINNED
, 0);
492 static inline void init_hrtick(void)
495 #endif /* CONFIG_SMP */
497 static void init_rq_hrtick(struct rq
*rq
)
500 rq
->hrtick_csd_pending
= 0;
502 rq
->hrtick_csd
.flags
= 0;
503 rq
->hrtick_csd
.func
= __hrtick_start
;
504 rq
->hrtick_csd
.info
= rq
;
507 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
508 rq
->hrtick_timer
.function
= hrtick
;
510 #else /* CONFIG_SCHED_HRTICK */
511 static inline void hrtick_clear(struct rq
*rq
)
515 static inline void init_rq_hrtick(struct rq
*rq
)
519 static inline void init_hrtick(void)
522 #endif /* CONFIG_SCHED_HRTICK */
525 * cmpxchg based fetch_or, macro so it works for different integer types
527 #define fetch_or(ptr, val) \
528 ({ typeof(*(ptr)) __old, __val = *(ptr); \
530 __old = cmpxchg((ptr), __val, __val | (val)); \
531 if (__old == __val) \
538 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541 * this avoids any races wrt polling state changes and thereby avoids
544 static bool set_nr_and_not_polling(struct task_struct
*p
)
546 struct thread_info
*ti
= task_thread_info(p
);
547 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
551 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
553 * If this returns true, then the idle task promises to call
554 * sched_ttwu_pending() and reschedule soon.
556 static bool set_nr_if_polling(struct task_struct
*p
)
558 struct thread_info
*ti
= task_thread_info(p
);
559 typeof(ti
->flags
) old
, val
= ACCESS_ONCE(ti
->flags
);
562 if (!(val
& _TIF_POLLING_NRFLAG
))
564 if (val
& _TIF_NEED_RESCHED
)
566 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
575 static bool set_nr_and_not_polling(struct task_struct
*p
)
577 set_tsk_need_resched(p
);
582 static bool set_nr_if_polling(struct task_struct
*p
)
590 * resched_task - mark a task 'to be rescheduled now'.
592 * On UP this means the setting of the need_resched flag, on SMP it
593 * might also involve a cross-CPU call to trigger the scheduler on
596 void resched_task(struct task_struct
*p
)
600 lockdep_assert_held(&task_rq(p
)->lock
);
602 if (test_tsk_need_resched(p
))
607 if (cpu
== smp_processor_id()) {
608 set_tsk_need_resched(p
);
609 set_preempt_need_resched();
613 if (set_nr_and_not_polling(p
))
614 smp_send_reschedule(cpu
);
616 trace_sched_wake_idle_without_ipi(cpu
);
619 void resched_cpu(int cpu
)
621 struct rq
*rq
= cpu_rq(cpu
);
624 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
626 resched_task(cpu_curr(cpu
));
627 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
631 #ifdef CONFIG_NO_HZ_COMMON
633 * In the semi idle case, use the nearest busy cpu for migrating timers
634 * from an idle cpu. This is good for power-savings.
636 * We don't do similar optimization for completely idle system, as
637 * selecting an idle cpu will add more delays to the timers than intended
638 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
640 int get_nohz_timer_target(int pinned
)
642 int cpu
= smp_processor_id();
644 struct sched_domain
*sd
;
646 if (pinned
|| !get_sysctl_timer_migration() || !idle_cpu(cpu
))
650 for_each_domain(cpu
, sd
) {
651 for_each_cpu(i
, sched_domain_span(sd
)) {
663 * When add_timer_on() enqueues a timer into the timer wheel of an
664 * idle CPU then this timer might expire before the next timer event
665 * which is scheduled to wake up that CPU. In case of a completely
666 * idle system the next event might even be infinite time into the
667 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
668 * leaves the inner idle loop so the newly added timer is taken into
669 * account when the CPU goes back to idle and evaluates the timer
670 * wheel for the next timer event.
672 static void wake_up_idle_cpu(int cpu
)
674 struct rq
*rq
= cpu_rq(cpu
);
676 if (cpu
== smp_processor_id())
679 if (set_nr_and_not_polling(rq
->idle
))
680 smp_send_reschedule(cpu
);
682 trace_sched_wake_idle_without_ipi(cpu
);
685 static bool wake_up_full_nohz_cpu(int cpu
)
687 if (tick_nohz_full_cpu(cpu
)) {
688 if (cpu
!= smp_processor_id() ||
689 tick_nohz_tick_stopped())
690 smp_send_reschedule(cpu
);
697 void wake_up_nohz_cpu(int cpu
)
699 if (!wake_up_full_nohz_cpu(cpu
))
700 wake_up_idle_cpu(cpu
);
703 static inline bool got_nohz_idle_kick(void)
705 int cpu
= smp_processor_id();
707 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
710 if (idle_cpu(cpu
) && !need_resched())
714 * We can't run Idle Load Balance on this CPU for this time so we
715 * cancel it and clear NOHZ_BALANCE_KICK
717 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
721 #else /* CONFIG_NO_HZ_COMMON */
723 static inline bool got_nohz_idle_kick(void)
728 #endif /* CONFIG_NO_HZ_COMMON */
730 #ifdef CONFIG_NO_HZ_FULL
731 bool sched_can_stop_tick(void)
737 /* Make sure rq->nr_running update is visible after the IPI */
740 /* More than one running task need preemption */
741 if (rq
->nr_running
> 1)
746 #endif /* CONFIG_NO_HZ_FULL */
748 void sched_avg_update(struct rq
*rq
)
750 s64 period
= sched_avg_period();
752 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
754 * Inline assembly required to prevent the compiler
755 * optimising this loop into a divmod call.
756 * See __iter_div_u64_rem() for another example of this.
758 asm("" : "+rm" (rq
->age_stamp
));
759 rq
->age_stamp
+= period
;
764 #endif /* CONFIG_SMP */
766 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
772 * Caller must hold rcu_lock or sufficient equivalent.
774 int walk_tg_tree_from(struct task_group
*from
,
775 tg_visitor down
, tg_visitor up
, void *data
)
777 struct task_group
*parent
, *child
;
783 ret
= (*down
)(parent
, data
);
786 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
793 ret
= (*up
)(parent
, data
);
794 if (ret
|| parent
== from
)
798 parent
= parent
->parent
;
805 int tg_nop(struct task_group
*tg
, void *data
)
811 static void set_load_weight(struct task_struct
*p
)
813 int prio
= p
->static_prio
- MAX_RT_PRIO
;
814 struct load_weight
*load
= &p
->se
.load
;
817 * SCHED_IDLE tasks get minimal weight:
819 if (p
->policy
== SCHED_IDLE
) {
820 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
821 load
->inv_weight
= WMULT_IDLEPRIO
;
825 load
->weight
= scale_load(prio_to_weight
[prio
]);
826 load
->inv_weight
= prio_to_wmult
[prio
];
829 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
832 sched_info_queued(rq
, p
);
833 p
->sched_class
->enqueue_task(rq
, p
, flags
);
836 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
839 sched_info_dequeued(rq
, p
);
840 p
->sched_class
->dequeue_task(rq
, p
, flags
);
843 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
845 if (task_contributes_to_load(p
))
846 rq
->nr_uninterruptible
--;
848 enqueue_task(rq
, p
, flags
);
851 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
853 if (task_contributes_to_load(p
))
854 rq
->nr_uninterruptible
++;
856 dequeue_task(rq
, p
, flags
);
859 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
865 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866 s64 steal
= 0, irq_delta
= 0;
868 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
869 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
872 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873 * this case when a previous update_rq_clock() happened inside a
876 * When this happens, we stop ->clock_task and only update the
877 * prev_irq_time stamp to account for the part that fit, so that a next
878 * update will consume the rest. This ensures ->clock_task is
881 * It does however cause some slight miss-attribution of {soft,}irq
882 * time, a more accurate solution would be to update the irq_time using
883 * the current rq->clock timestamp, except that would require using
886 if (irq_delta
> delta
)
889 rq
->prev_irq_time
+= irq_delta
;
892 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893 if (static_key_false((¶virt_steal_rq_enabled
))) {
894 steal
= paravirt_steal_clock(cpu_of(rq
));
895 steal
-= rq
->prev_steal_time_rq
;
897 if (unlikely(steal
> delta
))
900 rq
->prev_steal_time_rq
+= steal
;
905 rq
->clock_task
+= delta
;
907 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
909 sched_rt_avg_update(rq
, irq_delta
+ steal
);
913 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
915 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
916 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
920 * Make it appear like a SCHED_FIFO task, its something
921 * userspace knows about and won't get confused about.
923 * Also, it will make PI more or less work without too
924 * much confusion -- but then, stop work should not
925 * rely on PI working anyway.
927 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
929 stop
->sched_class
= &stop_sched_class
;
932 cpu_rq(cpu
)->stop
= stop
;
936 * Reset it back to a normal scheduling class so that
937 * it can die in pieces.
939 old_stop
->sched_class
= &rt_sched_class
;
944 * __normal_prio - return the priority that is based on the static prio
946 static inline int __normal_prio(struct task_struct
*p
)
948 return p
->static_prio
;
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
958 static inline int normal_prio(struct task_struct
*p
)
962 if (task_has_dl_policy(p
))
963 prio
= MAX_DL_PRIO
-1;
964 else if (task_has_rt_policy(p
))
965 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
967 prio
= __normal_prio(p
);
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
978 static int effective_prio(struct task_struct
*p
)
980 p
->normal_prio
= normal_prio(p
);
982 * If we are RT tasks or we were boosted to RT priority,
983 * keep the priority unchanged. Otherwise, update priority
984 * to the normal priority:
986 if (!rt_prio(p
->prio
))
987 return p
->normal_prio
;
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
995 * Return: 1 if the task is currently executing. 0 otherwise.
997 inline int task_curr(const struct task_struct
*p
)
999 return cpu_curr(task_cpu(p
)) == p
;
1002 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1003 const struct sched_class
*prev_class
,
1006 if (prev_class
!= p
->sched_class
) {
1007 if (prev_class
->switched_from
)
1008 prev_class
->switched_from(rq
, p
);
1009 p
->sched_class
->switched_to(rq
, p
);
1010 } else if (oldprio
!= p
->prio
|| dl_task(p
))
1011 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
1014 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
1016 const struct sched_class
*class;
1018 if (p
->sched_class
== rq
->curr
->sched_class
) {
1019 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
1021 for_each_class(class) {
1022 if (class == rq
->curr
->sched_class
)
1024 if (class == p
->sched_class
) {
1025 resched_task(rq
->curr
);
1032 * A queue event has occurred, and we're going to schedule. In
1033 * this case, we can save a useless back to back clock update.
1035 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
1036 rq
->skip_clock_update
= 1;
1040 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1042 #ifdef CONFIG_SCHED_DEBUG
1044 * We should never call set_task_cpu() on a blocked task,
1045 * ttwu() will sort out the placement.
1047 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1048 !(task_preempt_count(p
) & PREEMPT_ACTIVE
));
1050 #ifdef CONFIG_LOCKDEP
1052 * The caller should hold either p->pi_lock or rq->lock, when changing
1053 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1055 * sched_move_task() holds both and thus holding either pins the cgroup,
1058 * Furthermore, all task_rq users should acquire both locks, see
1061 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1062 lockdep_is_held(&task_rq(p
)->lock
)));
1066 trace_sched_migrate_task(p
, new_cpu
);
1068 if (task_cpu(p
) != new_cpu
) {
1069 if (p
->sched_class
->migrate_task_rq
)
1070 p
->sched_class
->migrate_task_rq(p
, new_cpu
);
1071 p
->se
.nr_migrations
++;
1072 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, NULL
, 0);
1075 __set_task_cpu(p
, new_cpu
);
1078 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1081 struct rq
*src_rq
, *dst_rq
;
1083 src_rq
= task_rq(p
);
1084 dst_rq
= cpu_rq(cpu
);
1086 deactivate_task(src_rq
, p
, 0);
1087 set_task_cpu(p
, cpu
);
1088 activate_task(dst_rq
, p
, 0);
1089 check_preempt_curr(dst_rq
, p
, 0);
1092 * Task isn't running anymore; make it appear like we migrated
1093 * it before it went to sleep. This means on wakeup we make the
1094 * previous cpu our targer instead of where it really is.
1100 struct migration_swap_arg
{
1101 struct task_struct
*src_task
, *dst_task
;
1102 int src_cpu
, dst_cpu
;
1105 static int migrate_swap_stop(void *data
)
1107 struct migration_swap_arg
*arg
= data
;
1108 struct rq
*src_rq
, *dst_rq
;
1111 src_rq
= cpu_rq(arg
->src_cpu
);
1112 dst_rq
= cpu_rq(arg
->dst_cpu
);
1114 double_raw_lock(&arg
->src_task
->pi_lock
,
1115 &arg
->dst_task
->pi_lock
);
1116 double_rq_lock(src_rq
, dst_rq
);
1117 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1120 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1123 if (!cpumask_test_cpu(arg
->dst_cpu
, tsk_cpus_allowed(arg
->src_task
)))
1126 if (!cpumask_test_cpu(arg
->src_cpu
, tsk_cpus_allowed(arg
->dst_task
)))
1129 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1130 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1135 double_rq_unlock(src_rq
, dst_rq
);
1136 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1137 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1143 * Cross migrate two tasks
1145 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1147 struct migration_swap_arg arg
;
1150 arg
= (struct migration_swap_arg
){
1152 .src_cpu
= task_cpu(cur
),
1154 .dst_cpu
= task_cpu(p
),
1157 if (arg
.src_cpu
== arg
.dst_cpu
)
1161 * These three tests are all lockless; this is OK since all of them
1162 * will be re-checked with proper locks held further down the line.
1164 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1167 if (!cpumask_test_cpu(arg
.dst_cpu
, tsk_cpus_allowed(arg
.src_task
)))
1170 if (!cpumask_test_cpu(arg
.src_cpu
, tsk_cpus_allowed(arg
.dst_task
)))
1173 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1174 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1180 struct migration_arg
{
1181 struct task_struct
*task
;
1185 static int migration_cpu_stop(void *data
);
1188 * wait_task_inactive - wait for a thread to unschedule.
1190 * If @match_state is nonzero, it's the @p->state value just checked and
1191 * not expected to change. If it changes, i.e. @p might have woken up,
1192 * then return zero. When we succeed in waiting for @p to be off its CPU,
1193 * we return a positive number (its total switch count). If a second call
1194 * a short while later returns the same number, the caller can be sure that
1195 * @p has remained unscheduled the whole time.
1197 * The caller must ensure that the task *will* unschedule sometime soon,
1198 * else this function might spin for a *long* time. This function can't
1199 * be called with interrupts off, or it may introduce deadlock with
1200 * smp_call_function() if an IPI is sent by the same process we are
1201 * waiting to become inactive.
1203 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1205 unsigned long flags
;
1212 * We do the initial early heuristics without holding
1213 * any task-queue locks at all. We'll only try to get
1214 * the runqueue lock when things look like they will
1220 * If the task is actively running on another CPU
1221 * still, just relax and busy-wait without holding
1224 * NOTE! Since we don't hold any locks, it's not
1225 * even sure that "rq" stays as the right runqueue!
1226 * But we don't care, since "task_running()" will
1227 * return false if the runqueue has changed and p
1228 * is actually now running somewhere else!
1230 while (task_running(rq
, p
)) {
1231 if (match_state
&& unlikely(p
->state
!= match_state
))
1237 * Ok, time to look more closely! We need the rq
1238 * lock now, to be *sure*. If we're wrong, we'll
1239 * just go back and repeat.
1241 rq
= task_rq_lock(p
, &flags
);
1242 trace_sched_wait_task(p
);
1243 running
= task_running(rq
, p
);
1246 if (!match_state
|| p
->state
== match_state
)
1247 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1248 task_rq_unlock(rq
, p
, &flags
);
1251 * If it changed from the expected state, bail out now.
1253 if (unlikely(!ncsw
))
1257 * Was it really running after all now that we
1258 * checked with the proper locks actually held?
1260 * Oops. Go back and try again..
1262 if (unlikely(running
)) {
1268 * It's not enough that it's not actively running,
1269 * it must be off the runqueue _entirely_, and not
1272 * So if it was still runnable (but just not actively
1273 * running right now), it's preempted, and we should
1274 * yield - it could be a while.
1276 if (unlikely(on_rq
)) {
1277 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
1279 set_current_state(TASK_UNINTERRUPTIBLE
);
1280 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1285 * Ahh, all good. It wasn't running, and it wasn't
1286 * runnable, which means that it will never become
1287 * running in the future either. We're all done!
1296 * kick_process - kick a running thread to enter/exit the kernel
1297 * @p: the to-be-kicked thread
1299 * Cause a process which is running on another CPU to enter
1300 * kernel-mode, without any delay. (to get signals handled.)
1302 * NOTE: this function doesn't have to take the runqueue lock,
1303 * because all it wants to ensure is that the remote task enters
1304 * the kernel. If the IPI races and the task has been migrated
1305 * to another CPU then no harm is done and the purpose has been
1308 void kick_process(struct task_struct
*p
)
1314 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1315 smp_send_reschedule(cpu
);
1318 EXPORT_SYMBOL_GPL(kick_process
);
1319 #endif /* CONFIG_SMP */
1323 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1325 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1327 int nid
= cpu_to_node(cpu
);
1328 const struct cpumask
*nodemask
= NULL
;
1329 enum { cpuset
, possible
, fail
} state
= cpuset
;
1333 * If the node that the cpu is on has been offlined, cpu_to_node()
1334 * will return -1. There is no cpu on the node, and we should
1335 * select the cpu on the other node.
1338 nodemask
= cpumask_of_node(nid
);
1340 /* Look for allowed, online CPU in same node. */
1341 for_each_cpu(dest_cpu
, nodemask
) {
1342 if (!cpu_online(dest_cpu
))
1344 if (!cpu_active(dest_cpu
))
1346 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
1352 /* Any allowed, online CPU? */
1353 for_each_cpu(dest_cpu
, tsk_cpus_allowed(p
)) {
1354 if (!cpu_online(dest_cpu
))
1356 if (!cpu_active(dest_cpu
))
1363 /* No more Mr. Nice Guy. */
1364 cpuset_cpus_allowed_fallback(p
);
1369 do_set_cpus_allowed(p
, cpu_possible_mask
);
1380 if (state
!= cpuset
) {
1382 * Don't tell them about moving exiting tasks or
1383 * kernel threads (both mm NULL), since they never
1386 if (p
->mm
&& printk_ratelimit()) {
1387 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1388 task_pid_nr(p
), p
->comm
, cpu
);
1396 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1399 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1401 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1404 * In order not to call set_task_cpu() on a blocking task we need
1405 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1408 * Since this is common to all placement strategies, this lives here.
1410 * [ this allows ->select_task() to simply return task_cpu(p) and
1411 * not worry about this generic constraint ]
1413 if (unlikely(!cpumask_test_cpu(cpu
, tsk_cpus_allowed(p
)) ||
1415 cpu
= select_fallback_rq(task_cpu(p
), p
);
1420 static void update_avg(u64
*avg
, u64 sample
)
1422 s64 diff
= sample
- *avg
;
1428 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1430 #ifdef CONFIG_SCHEDSTATS
1431 struct rq
*rq
= this_rq();
1434 int this_cpu
= smp_processor_id();
1436 if (cpu
== this_cpu
) {
1437 schedstat_inc(rq
, ttwu_local
);
1438 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
1440 struct sched_domain
*sd
;
1442 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
1444 for_each_domain(this_cpu
, sd
) {
1445 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1446 schedstat_inc(sd
, ttwu_wake_remote
);
1453 if (wake_flags
& WF_MIGRATED
)
1454 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
1456 #endif /* CONFIG_SMP */
1458 schedstat_inc(rq
, ttwu_count
);
1459 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
1461 if (wake_flags
& WF_SYNC
)
1462 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
1464 #endif /* CONFIG_SCHEDSTATS */
1467 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1469 activate_task(rq
, p
, en_flags
);
1472 /* if a worker is waking up, notify workqueue */
1473 if (p
->flags
& PF_WQ_WORKER
)
1474 wq_worker_waking_up(p
, cpu_of(rq
));
1478 * Mark the task runnable and perform wakeup-preemption.
1481 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1483 check_preempt_curr(rq
, p
, wake_flags
);
1484 trace_sched_wakeup(p
, true);
1486 p
->state
= TASK_RUNNING
;
1488 if (p
->sched_class
->task_woken
)
1489 p
->sched_class
->task_woken(rq
, p
);
1491 if (rq
->idle_stamp
) {
1492 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1493 u64 max
= 2*rq
->max_idle_balance_cost
;
1495 update_avg(&rq
->avg_idle
, delta
);
1497 if (rq
->avg_idle
> max
)
1506 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1509 if (p
->sched_contributes_to_load
)
1510 rq
->nr_uninterruptible
--;
1513 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
1514 ttwu_do_wakeup(rq
, p
, wake_flags
);
1518 * Called in case the task @p isn't fully descheduled from its runqueue,
1519 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1520 * since all we need to do is flip p->state to TASK_RUNNING, since
1521 * the task is still ->on_rq.
1523 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1528 rq
= __task_rq_lock(p
);
1530 /* check_preempt_curr() may use rq clock */
1531 update_rq_clock(rq
);
1532 ttwu_do_wakeup(rq
, p
, wake_flags
);
1535 __task_rq_unlock(rq
);
1541 void sched_ttwu_pending(void)
1543 struct rq
*rq
= this_rq();
1544 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1545 struct task_struct
*p
;
1546 unsigned long flags
;
1551 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1554 p
= llist_entry(llist
, struct task_struct
, wake_entry
);
1555 llist
= llist_next(llist
);
1556 ttwu_do_activate(rq
, p
, 0);
1559 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1562 void scheduler_ipi(void)
1565 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1566 * TIF_NEED_RESCHED remotely (for the first time) will also send
1569 preempt_fold_need_resched();
1571 if (llist_empty(&this_rq()->wake_list
)
1572 && !tick_nohz_full_cpu(smp_processor_id())
1573 && !got_nohz_idle_kick())
1577 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1578 * traditionally all their work was done from the interrupt return
1579 * path. Now that we actually do some work, we need to make sure
1582 * Some archs already do call them, luckily irq_enter/exit nest
1585 * Arguably we should visit all archs and update all handlers,
1586 * however a fair share of IPIs are still resched only so this would
1587 * somewhat pessimize the simple resched case.
1590 tick_nohz_full_check();
1591 sched_ttwu_pending();
1594 * Check if someone kicked us for doing the nohz idle load balance.
1596 if (unlikely(got_nohz_idle_kick())) {
1597 this_rq()->idle_balance
= 1;
1598 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1603 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
1605 struct rq
*rq
= cpu_rq(cpu
);
1607 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1608 if (!set_nr_if_polling(rq
->idle
))
1609 smp_send_reschedule(cpu
);
1611 trace_sched_wake_idle_without_ipi(cpu
);
1615 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1617 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1619 #endif /* CONFIG_SMP */
1621 static void ttwu_queue(struct task_struct
*p
, int cpu
)
1623 struct rq
*rq
= cpu_rq(cpu
);
1625 #if defined(CONFIG_SMP)
1626 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1627 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
1628 ttwu_queue_remote(p
, cpu
);
1633 raw_spin_lock(&rq
->lock
);
1634 ttwu_do_activate(rq
, p
, 0);
1635 raw_spin_unlock(&rq
->lock
);
1639 * try_to_wake_up - wake up a thread
1640 * @p: the thread to be awakened
1641 * @state: the mask of task states that can be woken
1642 * @wake_flags: wake modifier flags (WF_*)
1644 * Put it on the run-queue if it's not already there. The "current"
1645 * thread is always on the run-queue (except when the actual
1646 * re-schedule is in progress), and as such you're allowed to do
1647 * the simpler "current->state = TASK_RUNNING" to mark yourself
1648 * runnable without the overhead of this.
1650 * Return: %true if @p was woken up, %false if it was already running.
1651 * or @state didn't match @p's state.
1654 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1656 unsigned long flags
;
1657 int cpu
, success
= 0;
1660 * If we are going to wake up a thread waiting for CONDITION we
1661 * need to ensure that CONDITION=1 done by the caller can not be
1662 * reordered with p->state check below. This pairs with mb() in
1663 * set_current_state() the waiting thread does.
1665 smp_mb__before_spinlock();
1666 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1667 if (!(p
->state
& state
))
1670 success
= 1; /* we're going to change ->state */
1673 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
1678 * If the owning (remote) cpu is still in the middle of schedule() with
1679 * this task as prev, wait until its done referencing the task.
1684 * Pairs with the smp_wmb() in finish_lock_switch().
1688 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
1689 p
->state
= TASK_WAKING
;
1691 if (p
->sched_class
->task_waking
)
1692 p
->sched_class
->task_waking(p
);
1694 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
1695 if (task_cpu(p
) != cpu
) {
1696 wake_flags
|= WF_MIGRATED
;
1697 set_task_cpu(p
, cpu
);
1699 #endif /* CONFIG_SMP */
1703 ttwu_stat(p
, cpu
, wake_flags
);
1705 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1711 * try_to_wake_up_local - try to wake up a local task with rq lock held
1712 * @p: the thread to be awakened
1714 * Put @p on the run-queue if it's not already there. The caller must
1715 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1718 static void try_to_wake_up_local(struct task_struct
*p
)
1720 struct rq
*rq
= task_rq(p
);
1722 if (WARN_ON_ONCE(rq
!= this_rq()) ||
1723 WARN_ON_ONCE(p
== current
))
1726 lockdep_assert_held(&rq
->lock
);
1728 if (!raw_spin_trylock(&p
->pi_lock
)) {
1729 raw_spin_unlock(&rq
->lock
);
1730 raw_spin_lock(&p
->pi_lock
);
1731 raw_spin_lock(&rq
->lock
);
1734 if (!(p
->state
& TASK_NORMAL
))
1738 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
1740 ttwu_do_wakeup(rq
, p
, 0);
1741 ttwu_stat(p
, smp_processor_id(), 0);
1743 raw_spin_unlock(&p
->pi_lock
);
1747 * wake_up_process - Wake up a specific process
1748 * @p: The process to be woken up.
1750 * Attempt to wake up the nominated process and move it to the set of runnable
1753 * Return: 1 if the process was woken up, 0 if it was already running.
1755 * It may be assumed that this function implies a write memory barrier before
1756 * changing the task state if and only if any tasks are woken up.
1758 int wake_up_process(struct task_struct
*p
)
1760 WARN_ON(task_is_stopped_or_traced(p
));
1761 return try_to_wake_up(p
, TASK_NORMAL
, 0);
1763 EXPORT_SYMBOL(wake_up_process
);
1765 int wake_up_state(struct task_struct
*p
, unsigned int state
)
1767 return try_to_wake_up(p
, state
, 0);
1771 * Perform scheduler related setup for a newly forked process p.
1772 * p is forked by current.
1774 * __sched_fork() is basic setup used by init_idle() too:
1776 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1781 p
->se
.exec_start
= 0;
1782 p
->se
.sum_exec_runtime
= 0;
1783 p
->se
.prev_sum_exec_runtime
= 0;
1784 p
->se
.nr_migrations
= 0;
1786 INIT_LIST_HEAD(&p
->se
.group_node
);
1788 #ifdef CONFIG_SCHEDSTATS
1789 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
1792 RB_CLEAR_NODE(&p
->dl
.rb_node
);
1793 hrtimer_init(&p
->dl
.dl_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1794 p
->dl
.dl_runtime
= p
->dl
.runtime
= 0;
1795 p
->dl
.dl_deadline
= p
->dl
.deadline
= 0;
1796 p
->dl
.dl_period
= 0;
1799 INIT_LIST_HEAD(&p
->rt
.run_list
);
1801 #ifdef CONFIG_PREEMPT_NOTIFIERS
1802 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1805 #ifdef CONFIG_NUMA_BALANCING
1806 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
1807 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
1808 p
->mm
->numa_scan_seq
= 0;
1811 if (clone_flags
& CLONE_VM
)
1812 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
1814 p
->numa_preferred_nid
= -1;
1816 p
->node_stamp
= 0ULL;
1817 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
1818 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
1819 p
->numa_work
.next
= &p
->numa_work
;
1820 p
->numa_faults_memory
= NULL
;
1821 p
->numa_faults_buffer_memory
= NULL
;
1822 p
->last_task_numa_placement
= 0;
1823 p
->last_sum_exec_runtime
= 0;
1825 INIT_LIST_HEAD(&p
->numa_entry
);
1826 p
->numa_group
= NULL
;
1827 #endif /* CONFIG_NUMA_BALANCING */
1830 #ifdef CONFIG_NUMA_BALANCING
1831 #ifdef CONFIG_SCHED_DEBUG
1832 void set_numabalancing_state(bool enabled
)
1835 sched_feat_set("NUMA");
1837 sched_feat_set("NO_NUMA");
1840 __read_mostly
bool numabalancing_enabled
;
1842 void set_numabalancing_state(bool enabled
)
1844 numabalancing_enabled
= enabled
;
1846 #endif /* CONFIG_SCHED_DEBUG */
1848 #ifdef CONFIG_PROC_SYSCTL
1849 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
1850 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1854 int state
= numabalancing_enabled
;
1856 if (write
&& !capable(CAP_SYS_ADMIN
))
1861 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
1865 set_numabalancing_state(state
);
1872 * fork()/clone()-time setup:
1874 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
1876 unsigned long flags
;
1877 int cpu
= get_cpu();
1879 __sched_fork(clone_flags
, p
);
1881 * We mark the process as running here. This guarantees that
1882 * nobody will actually run it, and a signal or other external
1883 * event cannot wake it up and insert it on the runqueue either.
1885 p
->state
= TASK_RUNNING
;
1888 * Make sure we do not leak PI boosting priority to the child.
1890 p
->prio
= current
->normal_prio
;
1893 * Revert to default priority/policy on fork if requested.
1895 if (unlikely(p
->sched_reset_on_fork
)) {
1896 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
1897 p
->policy
= SCHED_NORMAL
;
1898 p
->static_prio
= NICE_TO_PRIO(0);
1900 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
1901 p
->static_prio
= NICE_TO_PRIO(0);
1903 p
->prio
= p
->normal_prio
= __normal_prio(p
);
1907 * We don't need the reset flag anymore after the fork. It has
1908 * fulfilled its duty:
1910 p
->sched_reset_on_fork
= 0;
1913 if (dl_prio(p
->prio
)) {
1916 } else if (rt_prio(p
->prio
)) {
1917 p
->sched_class
= &rt_sched_class
;
1919 p
->sched_class
= &fair_sched_class
;
1922 if (p
->sched_class
->task_fork
)
1923 p
->sched_class
->task_fork(p
);
1926 * The child is not yet in the pid-hash so no cgroup attach races,
1927 * and the cgroup is pinned to this child due to cgroup_fork()
1928 * is ran before sched_fork().
1930 * Silence PROVE_RCU.
1932 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1933 set_task_cpu(p
, cpu
);
1934 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
1936 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1937 if (likely(sched_info_on()))
1938 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1940 #if defined(CONFIG_SMP)
1943 init_task_preempt_count(p
);
1945 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
1946 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
1953 unsigned long to_ratio(u64 period
, u64 runtime
)
1955 if (runtime
== RUNTIME_INF
)
1959 * Doing this here saves a lot of checks in all
1960 * the calling paths, and returning zero seems
1961 * safe for them anyway.
1966 return div64_u64(runtime
<< 20, period
);
1970 inline struct dl_bw
*dl_bw_of(int i
)
1972 return &cpu_rq(i
)->rd
->dl_bw
;
1975 static inline int dl_bw_cpus(int i
)
1977 struct root_domain
*rd
= cpu_rq(i
)->rd
;
1980 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
1986 inline struct dl_bw
*dl_bw_of(int i
)
1988 return &cpu_rq(i
)->dl
.dl_bw
;
1991 static inline int dl_bw_cpus(int i
)
1998 void __dl_clear(struct dl_bw
*dl_b
, u64 tsk_bw
)
2000 dl_b
->total_bw
-= tsk_bw
;
2004 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
)
2006 dl_b
->total_bw
+= tsk_bw
;
2010 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
2012 return dl_b
->bw
!= -1 &&
2013 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
2017 * We must be sure that accepting a new task (or allowing changing the
2018 * parameters of an existing one) is consistent with the bandwidth
2019 * constraints. If yes, this function also accordingly updates the currently
2020 * allocated bandwidth to reflect the new situation.
2022 * This function is called while holding p's rq->lock.
2024 static int dl_overflow(struct task_struct
*p
, int policy
,
2025 const struct sched_attr
*attr
)
2028 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
2029 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2030 u64 runtime
= attr
->sched_runtime
;
2031 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2034 if (new_bw
== p
->dl
.dl_bw
)
2038 * Either if a task, enters, leave, or stays -deadline but changes
2039 * its parameters, we may need to update accordingly the total
2040 * allocated bandwidth of the container.
2042 raw_spin_lock(&dl_b
->lock
);
2043 cpus
= dl_bw_cpus(task_cpu(p
));
2044 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2045 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
2046 __dl_add(dl_b
, new_bw
);
2048 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2049 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
2050 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2051 __dl_add(dl_b
, new_bw
);
2053 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2054 __dl_clear(dl_b
, p
->dl
.dl_bw
);
2057 raw_spin_unlock(&dl_b
->lock
);
2062 extern void init_dl_bw(struct dl_bw
*dl_b
);
2065 * wake_up_new_task - wake up a newly created task for the first time.
2067 * This function will do some initial scheduler statistics housekeeping
2068 * that must be done for every newly created context, then puts the task
2069 * on the runqueue and wakes it.
2071 void wake_up_new_task(struct task_struct
*p
)
2073 unsigned long flags
;
2076 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2079 * Fork balancing, do it here and not earlier because:
2080 * - cpus_allowed can change in the fork path
2081 * - any previously selected cpu might disappear through hotplug
2083 set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2086 /* Initialize new task's runnable average */
2087 init_task_runnable_average(p
);
2088 rq
= __task_rq_lock(p
);
2089 activate_task(rq
, p
, 0);
2091 trace_sched_wakeup_new(p
, true);
2092 check_preempt_curr(rq
, p
, WF_FORK
);
2094 if (p
->sched_class
->task_woken
)
2095 p
->sched_class
->task_woken(rq
, p
);
2097 task_rq_unlock(rq
, p
, &flags
);
2100 #ifdef CONFIG_PREEMPT_NOTIFIERS
2103 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2104 * @notifier: notifier struct to register
2106 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2108 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2110 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2113 * preempt_notifier_unregister - no longer interested in preemption notifications
2114 * @notifier: notifier struct to unregister
2116 * This is safe to call from within a preemption notifier.
2118 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2120 hlist_del(¬ifier
->link
);
2122 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2124 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2126 struct preempt_notifier
*notifier
;
2128 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2129 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2133 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2134 struct task_struct
*next
)
2136 struct preempt_notifier
*notifier
;
2138 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2139 notifier
->ops
->sched_out(notifier
, next
);
2142 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2144 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2149 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2150 struct task_struct
*next
)
2154 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2157 * prepare_task_switch - prepare to switch tasks
2158 * @rq: the runqueue preparing to switch
2159 * @prev: the current task that is being switched out
2160 * @next: the task we are going to switch to.
2162 * This is called with the rq lock held and interrupts off. It must
2163 * be paired with a subsequent finish_task_switch after the context
2166 * prepare_task_switch sets up locking and calls architecture specific
2170 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2171 struct task_struct
*next
)
2173 trace_sched_switch(prev
, next
);
2174 sched_info_switch(rq
, prev
, next
);
2175 perf_event_task_sched_out(prev
, next
);
2176 fire_sched_out_preempt_notifiers(prev
, next
);
2177 prepare_lock_switch(rq
, next
);
2178 prepare_arch_switch(next
);
2182 * finish_task_switch - clean up after a task-switch
2183 * @rq: runqueue associated with task-switch
2184 * @prev: the thread we just switched away from.
2186 * finish_task_switch must be called after the context switch, paired
2187 * with a prepare_task_switch call before the context switch.
2188 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2189 * and do any other architecture-specific cleanup actions.
2191 * Note that we may have delayed dropping an mm in context_switch(). If
2192 * so, we finish that here outside of the runqueue lock. (Doing it
2193 * with the lock held can cause deadlocks; see schedule() for
2196 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2197 __releases(rq
->lock
)
2199 struct mm_struct
*mm
= rq
->prev_mm
;
2205 * A task struct has one reference for the use as "current".
2206 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2207 * schedule one last time. The schedule call will never return, and
2208 * the scheduled task must drop that reference.
2209 * The test for TASK_DEAD must occur while the runqueue locks are
2210 * still held, otherwise prev could be scheduled on another cpu, die
2211 * there before we look at prev->state, and then the reference would
2213 * Manfred Spraul <manfred@colorfullife.com>
2215 prev_state
= prev
->state
;
2216 vtime_task_switch(prev
);
2217 finish_arch_switch(prev
);
2218 perf_event_task_sched_in(prev
, current
);
2219 finish_lock_switch(rq
, prev
);
2220 finish_arch_post_lock_switch();
2222 fire_sched_in_preempt_notifiers(current
);
2225 if (unlikely(prev_state
== TASK_DEAD
)) {
2226 if (prev
->sched_class
->task_dead
)
2227 prev
->sched_class
->task_dead(prev
);
2230 * Remove function-return probe instances associated with this
2231 * task and put them back on the free list.
2233 kprobe_flush_task(prev
);
2234 put_task_struct(prev
);
2237 tick_nohz_task_switch(current
);
2242 /* rq->lock is NOT held, but preemption is disabled */
2243 static inline void post_schedule(struct rq
*rq
)
2245 if (rq
->post_schedule
) {
2246 unsigned long flags
;
2248 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2249 if (rq
->curr
->sched_class
->post_schedule
)
2250 rq
->curr
->sched_class
->post_schedule(rq
);
2251 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2253 rq
->post_schedule
= 0;
2259 static inline void post_schedule(struct rq
*rq
)
2266 * schedule_tail - first thing a freshly forked thread must call.
2267 * @prev: the thread we just switched away from.
2269 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2270 __releases(rq
->lock
)
2272 struct rq
*rq
= this_rq();
2274 finish_task_switch(rq
, prev
);
2277 * FIXME: do we need to worry about rq being invalidated by the
2282 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2283 /* In this case, finish_task_switch does not reenable preemption */
2286 if (current
->set_child_tid
)
2287 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2291 * context_switch - switch to the new MM and the new
2292 * thread's register state.
2295 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2296 struct task_struct
*next
)
2298 struct mm_struct
*mm
, *oldmm
;
2300 prepare_task_switch(rq
, prev
, next
);
2303 oldmm
= prev
->active_mm
;
2305 * For paravirt, this is coupled with an exit in switch_to to
2306 * combine the page table reload and the switch backend into
2309 arch_start_context_switch(prev
);
2312 next
->active_mm
= oldmm
;
2313 atomic_inc(&oldmm
->mm_count
);
2314 enter_lazy_tlb(oldmm
, next
);
2316 switch_mm(oldmm
, mm
, next
);
2319 prev
->active_mm
= NULL
;
2320 rq
->prev_mm
= oldmm
;
2323 * Since the runqueue lock will be released by the next
2324 * task (which is an invalid locking op but in the case
2325 * of the scheduler it's an obvious special-case), so we
2326 * do an early lockdep release here:
2328 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2329 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2332 context_tracking_task_switch(prev
, next
);
2333 /* Here we just switch the register state and the stack. */
2334 switch_to(prev
, next
, prev
);
2338 * this_rq must be evaluated again because prev may have moved
2339 * CPUs since it called schedule(), thus the 'rq' on its stack
2340 * frame will be invalid.
2342 finish_task_switch(this_rq(), prev
);
2346 * nr_running and nr_context_switches:
2348 * externally visible scheduler statistics: current number of runnable
2349 * threads, total number of context switches performed since bootup.
2351 unsigned long nr_running(void)
2353 unsigned long i
, sum
= 0;
2355 for_each_online_cpu(i
)
2356 sum
+= cpu_rq(i
)->nr_running
;
2361 unsigned long long nr_context_switches(void)
2364 unsigned long long sum
= 0;
2366 for_each_possible_cpu(i
)
2367 sum
+= cpu_rq(i
)->nr_switches
;
2372 unsigned long nr_iowait(void)
2374 unsigned long i
, sum
= 0;
2376 for_each_possible_cpu(i
)
2377 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2382 unsigned long nr_iowait_cpu(int cpu
)
2384 struct rq
*this = cpu_rq(cpu
);
2385 return atomic_read(&this->nr_iowait
);
2391 * sched_exec - execve() is a valuable balancing opportunity, because at
2392 * this point the task has the smallest effective memory and cache footprint.
2394 void sched_exec(void)
2396 struct task_struct
*p
= current
;
2397 unsigned long flags
;
2400 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2401 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2402 if (dest_cpu
== smp_processor_id())
2405 if (likely(cpu_active(dest_cpu
))) {
2406 struct migration_arg arg
= { p
, dest_cpu
};
2408 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2409 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2413 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2418 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2419 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2421 EXPORT_PER_CPU_SYMBOL(kstat
);
2422 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2425 * Return any ns on the sched_clock that have not yet been accounted in
2426 * @p in case that task is currently running.
2428 * Called with task_rq_lock() held on @rq.
2430 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
2434 if (task_current(rq
, p
)) {
2435 update_rq_clock(rq
);
2436 ns
= rq_clock_task(rq
) - p
->se
.exec_start
;
2444 unsigned long long task_delta_exec(struct task_struct
*p
)
2446 unsigned long flags
;
2450 rq
= task_rq_lock(p
, &flags
);
2451 ns
= do_task_delta_exec(p
, rq
);
2452 task_rq_unlock(rq
, p
, &flags
);
2458 * Return accounted runtime for the task.
2459 * In case the task is currently running, return the runtime plus current's
2460 * pending runtime that have not been accounted yet.
2462 unsigned long long task_sched_runtime(struct task_struct
*p
)
2464 unsigned long flags
;
2468 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2470 * 64-bit doesn't need locks to atomically read a 64bit value.
2471 * So we have a optimization chance when the task's delta_exec is 0.
2472 * Reading ->on_cpu is racy, but this is ok.
2474 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2475 * If we race with it entering cpu, unaccounted time is 0. This is
2476 * indistinguishable from the read occurring a few cycles earlier.
2479 return p
->se
.sum_exec_runtime
;
2482 rq
= task_rq_lock(p
, &flags
);
2483 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
2484 task_rq_unlock(rq
, p
, &flags
);
2490 * This function gets called by the timer code, with HZ frequency.
2491 * We call it with interrupts disabled.
2493 void scheduler_tick(void)
2495 int cpu
= smp_processor_id();
2496 struct rq
*rq
= cpu_rq(cpu
);
2497 struct task_struct
*curr
= rq
->curr
;
2501 raw_spin_lock(&rq
->lock
);
2502 update_rq_clock(rq
);
2503 curr
->sched_class
->task_tick(rq
, curr
, 0);
2504 update_cpu_load_active(rq
);
2505 raw_spin_unlock(&rq
->lock
);
2507 perf_event_task_tick();
2510 rq
->idle_balance
= idle_cpu(cpu
);
2511 trigger_load_balance(rq
);
2513 rq_last_tick_reset(rq
);
2516 #ifdef CONFIG_NO_HZ_FULL
2518 * scheduler_tick_max_deferment
2520 * Keep at least one tick per second when a single
2521 * active task is running because the scheduler doesn't
2522 * yet completely support full dynticks environment.
2524 * This makes sure that uptime, CFS vruntime, load
2525 * balancing, etc... continue to move forward, even
2526 * with a very low granularity.
2528 * Return: Maximum deferment in nanoseconds.
2530 u64
scheduler_tick_max_deferment(void)
2532 struct rq
*rq
= this_rq();
2533 unsigned long next
, now
= ACCESS_ONCE(jiffies
);
2535 next
= rq
->last_sched_tick
+ HZ
;
2537 if (time_before_eq(next
, now
))
2540 return jiffies_to_nsecs(next
- now
);
2544 notrace
unsigned long get_parent_ip(unsigned long addr
)
2546 if (in_lock_functions(addr
)) {
2547 addr
= CALLER_ADDR2
;
2548 if (in_lock_functions(addr
))
2549 addr
= CALLER_ADDR3
;
2554 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2555 defined(CONFIG_PREEMPT_TRACER))
2557 void preempt_count_add(int val
)
2559 #ifdef CONFIG_DEBUG_PREEMPT
2563 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2566 __preempt_count_add(val
);
2567 #ifdef CONFIG_DEBUG_PREEMPT
2569 * Spinlock count overflowing soon?
2571 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
2574 if (preempt_count() == val
) {
2575 unsigned long ip
= get_parent_ip(CALLER_ADDR1
);
2576 #ifdef CONFIG_DEBUG_PREEMPT
2577 current
->preempt_disable_ip
= ip
;
2579 trace_preempt_off(CALLER_ADDR0
, ip
);
2582 EXPORT_SYMBOL(preempt_count_add
);
2583 NOKPROBE_SYMBOL(preempt_count_add
);
2585 void preempt_count_sub(int val
)
2587 #ifdef CONFIG_DEBUG_PREEMPT
2591 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
2594 * Is the spinlock portion underflowing?
2596 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
2597 !(preempt_count() & PREEMPT_MASK
)))
2601 if (preempt_count() == val
)
2602 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
2603 __preempt_count_sub(val
);
2605 EXPORT_SYMBOL(preempt_count_sub
);
2606 NOKPROBE_SYMBOL(preempt_count_sub
);
2611 * Print scheduling while atomic bug:
2613 static noinline
void __schedule_bug(struct task_struct
*prev
)
2615 if (oops_in_progress
)
2618 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
2619 prev
->comm
, prev
->pid
, preempt_count());
2621 debug_show_held_locks(prev
);
2623 if (irqs_disabled())
2624 print_irqtrace_events(prev
);
2625 #ifdef CONFIG_DEBUG_PREEMPT
2626 if (in_atomic_preempt_off()) {
2627 pr_err("Preemption disabled at:");
2628 print_ip_sym(current
->preempt_disable_ip
);
2633 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
2637 * Various schedule()-time debugging checks and statistics:
2639 static inline void schedule_debug(struct task_struct
*prev
)
2642 * Test if we are atomic. Since do_exit() needs to call into
2643 * schedule() atomically, we ignore that path. Otherwise whine
2644 * if we are scheduling when we should not.
2646 if (unlikely(in_atomic_preempt_off() && prev
->state
!= TASK_DEAD
))
2647 __schedule_bug(prev
);
2650 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2652 schedstat_inc(this_rq(), sched_count
);
2656 * Pick up the highest-prio task:
2658 static inline struct task_struct
*
2659 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
2661 const struct sched_class
*class = &fair_sched_class
;
2662 struct task_struct
*p
;
2665 * Optimization: we know that if all tasks are in
2666 * the fair class we can call that function directly:
2668 if (likely(prev
->sched_class
== class &&
2669 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
2670 p
= fair_sched_class
.pick_next_task(rq
, prev
);
2671 if (unlikely(p
== RETRY_TASK
))
2674 /* assumes fair_sched_class->next == idle_sched_class */
2676 p
= idle_sched_class
.pick_next_task(rq
, prev
);
2682 for_each_class(class) {
2683 p
= class->pick_next_task(rq
, prev
);
2685 if (unlikely(p
== RETRY_TASK
))
2691 BUG(); /* the idle class will always have a runnable task */
2695 * __schedule() is the main scheduler function.
2697 * The main means of driving the scheduler and thus entering this function are:
2699 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2701 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2702 * paths. For example, see arch/x86/entry_64.S.
2704 * To drive preemption between tasks, the scheduler sets the flag in timer
2705 * interrupt handler scheduler_tick().
2707 * 3. Wakeups don't really cause entry into schedule(). They add a
2708 * task to the run-queue and that's it.
2710 * Now, if the new task added to the run-queue preempts the current
2711 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2712 * called on the nearest possible occasion:
2714 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2716 * - in syscall or exception context, at the next outmost
2717 * preempt_enable(). (this might be as soon as the wake_up()'s
2720 * - in IRQ context, return from interrupt-handler to
2721 * preemptible context
2723 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2726 * - cond_resched() call
2727 * - explicit schedule() call
2728 * - return from syscall or exception to user-space
2729 * - return from interrupt-handler to user-space
2731 static void __sched
__schedule(void)
2733 struct task_struct
*prev
, *next
;
2734 unsigned long *switch_count
;
2740 cpu
= smp_processor_id();
2742 rcu_note_context_switch(cpu
);
2745 schedule_debug(prev
);
2747 if (sched_feat(HRTICK
))
2751 * Make sure that signal_pending_state()->signal_pending() below
2752 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2753 * done by the caller to avoid the race with signal_wake_up().
2755 smp_mb__before_spinlock();
2756 raw_spin_lock_irq(&rq
->lock
);
2758 switch_count
= &prev
->nivcsw
;
2759 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2760 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
2761 prev
->state
= TASK_RUNNING
;
2763 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
2767 * If a worker went to sleep, notify and ask workqueue
2768 * whether it wants to wake up a task to maintain
2771 if (prev
->flags
& PF_WQ_WORKER
) {
2772 struct task_struct
*to_wakeup
;
2774 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
2776 try_to_wake_up_local(to_wakeup
);
2779 switch_count
= &prev
->nvcsw
;
2782 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
2783 update_rq_clock(rq
);
2785 next
= pick_next_task(rq
, prev
);
2786 clear_tsk_need_resched(prev
);
2787 clear_preempt_need_resched();
2788 rq
->skip_clock_update
= 0;
2790 if (likely(prev
!= next
)) {
2795 context_switch(rq
, prev
, next
); /* unlocks the rq */
2797 * The context switch have flipped the stack from under us
2798 * and restored the local variables which were saved when
2799 * this task called schedule() in the past. prev == current
2800 * is still correct, but it can be moved to another cpu/rq.
2802 cpu
= smp_processor_id();
2805 raw_spin_unlock_irq(&rq
->lock
);
2809 sched_preempt_enable_no_resched();
2814 static inline void sched_submit_work(struct task_struct
*tsk
)
2816 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
2819 * If we are going to sleep and we have plugged IO queued,
2820 * make sure to submit it to avoid deadlocks.
2822 if (blk_needs_flush_plug(tsk
))
2823 blk_schedule_flush_plug(tsk
);
2826 asmlinkage __visible
void __sched
schedule(void)
2828 struct task_struct
*tsk
= current
;
2830 sched_submit_work(tsk
);
2833 EXPORT_SYMBOL(schedule
);
2835 #ifdef CONFIG_CONTEXT_TRACKING
2836 asmlinkage __visible
void __sched
schedule_user(void)
2839 * If we come here after a random call to set_need_resched(),
2840 * or we have been woken up remotely but the IPI has not yet arrived,
2841 * we haven't yet exited the RCU idle mode. Do it here manually until
2842 * we find a better solution.
2851 * schedule_preempt_disabled - called with preemption disabled
2853 * Returns with preemption disabled. Note: preempt_count must be 1
2855 void __sched
schedule_preempt_disabled(void)
2857 sched_preempt_enable_no_resched();
2862 #ifdef CONFIG_PREEMPT
2864 * this is the entry point to schedule() from in-kernel preemption
2865 * off of preempt_enable. Kernel preemptions off return from interrupt
2866 * occur there and call schedule directly.
2868 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
2871 * If there is a non-zero preempt_count or interrupts are disabled,
2872 * we do not want to preempt the current task. Just return..
2874 if (likely(!preemptible()))
2878 __preempt_count_add(PREEMPT_ACTIVE
);
2880 __preempt_count_sub(PREEMPT_ACTIVE
);
2883 * Check again in case we missed a preemption opportunity
2884 * between schedule and now.
2887 } while (need_resched());
2889 NOKPROBE_SYMBOL(preempt_schedule
);
2890 EXPORT_SYMBOL(preempt_schedule
);
2891 #endif /* CONFIG_PREEMPT */
2894 * this is the entry point to schedule() from kernel preemption
2895 * off of irq context.
2896 * Note, that this is called and return with irqs disabled. This will
2897 * protect us against recursive calling from irq.
2899 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
2901 enum ctx_state prev_state
;
2903 /* Catch callers which need to be fixed */
2904 BUG_ON(preempt_count() || !irqs_disabled());
2906 prev_state
= exception_enter();
2909 __preempt_count_add(PREEMPT_ACTIVE
);
2912 local_irq_disable();
2913 __preempt_count_sub(PREEMPT_ACTIVE
);
2916 * Check again in case we missed a preemption opportunity
2917 * between schedule and now.
2920 } while (need_resched());
2922 exception_exit(prev_state
);
2925 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
2928 return try_to_wake_up(curr
->private, mode
, wake_flags
);
2930 EXPORT_SYMBOL(default_wake_function
);
2932 #ifdef CONFIG_RT_MUTEXES
2935 * rt_mutex_setprio - set the current priority of a task
2937 * @prio: prio value (kernel-internal form)
2939 * This function changes the 'effective' priority of a task. It does
2940 * not touch ->normal_prio like __setscheduler().
2942 * Used by the rt_mutex code to implement priority inheritance
2943 * logic. Call site only calls if the priority of the task changed.
2945 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
2947 int oldprio
, on_rq
, running
, enqueue_flag
= 0;
2949 const struct sched_class
*prev_class
;
2951 BUG_ON(prio
> MAX_PRIO
);
2953 rq
= __task_rq_lock(p
);
2956 * Idle task boosting is a nono in general. There is one
2957 * exception, when PREEMPT_RT and NOHZ is active:
2959 * The idle task calls get_next_timer_interrupt() and holds
2960 * the timer wheel base->lock on the CPU and another CPU wants
2961 * to access the timer (probably to cancel it). We can safely
2962 * ignore the boosting request, as the idle CPU runs this code
2963 * with interrupts disabled and will complete the lock
2964 * protected section without being interrupted. So there is no
2965 * real need to boost.
2967 if (unlikely(p
== rq
->idle
)) {
2968 WARN_ON(p
!= rq
->curr
);
2969 WARN_ON(p
->pi_blocked_on
);
2973 trace_sched_pi_setprio(p
, prio
);
2974 p
->pi_top_task
= rt_mutex_get_top_task(p
);
2976 prev_class
= p
->sched_class
;
2978 running
= task_current(rq
, p
);
2980 dequeue_task(rq
, p
, 0);
2982 p
->sched_class
->put_prev_task(rq
, p
);
2985 * Boosting condition are:
2986 * 1. -rt task is running and holds mutex A
2987 * --> -dl task blocks on mutex A
2989 * 2. -dl task is running and holds mutex A
2990 * --> -dl task blocks on mutex A and could preempt the
2993 if (dl_prio(prio
)) {
2994 if (!dl_prio(p
->normal_prio
) || (p
->pi_top_task
&&
2995 dl_entity_preempt(&p
->pi_top_task
->dl
, &p
->dl
))) {
2996 p
->dl
.dl_boosted
= 1;
2997 p
->dl
.dl_throttled
= 0;
2998 enqueue_flag
= ENQUEUE_REPLENISH
;
3000 p
->dl
.dl_boosted
= 0;
3001 p
->sched_class
= &dl_sched_class
;
3002 } else if (rt_prio(prio
)) {
3003 if (dl_prio(oldprio
))
3004 p
->dl
.dl_boosted
= 0;
3006 enqueue_flag
= ENQUEUE_HEAD
;
3007 p
->sched_class
= &rt_sched_class
;
3009 if (dl_prio(oldprio
))
3010 p
->dl
.dl_boosted
= 0;
3011 p
->sched_class
= &fair_sched_class
;
3017 p
->sched_class
->set_curr_task(rq
);
3019 enqueue_task(rq
, p
, enqueue_flag
);
3021 check_class_changed(rq
, p
, prev_class
, oldprio
);
3023 __task_rq_unlock(rq
);
3027 void set_user_nice(struct task_struct
*p
, long nice
)
3029 int old_prio
, delta
, on_rq
;
3030 unsigned long flags
;
3033 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3036 * We have to be careful, if called from sys_setpriority(),
3037 * the task might be in the middle of scheduling on another CPU.
3039 rq
= task_rq_lock(p
, &flags
);
3041 * The RT priorities are set via sched_setscheduler(), but we still
3042 * allow the 'normal' nice value to be set - but as expected
3043 * it wont have any effect on scheduling until the task is
3044 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3046 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3047 p
->static_prio
= NICE_TO_PRIO(nice
);
3052 dequeue_task(rq
, p
, 0);
3054 p
->static_prio
= NICE_TO_PRIO(nice
);
3057 p
->prio
= effective_prio(p
);
3058 delta
= p
->prio
- old_prio
;
3061 enqueue_task(rq
, p
, 0);
3063 * If the task increased its priority or is running and
3064 * lowered its priority, then reschedule its CPU:
3066 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3067 resched_task(rq
->curr
);
3070 task_rq_unlock(rq
, p
, &flags
);
3072 EXPORT_SYMBOL(set_user_nice
);
3075 * can_nice - check if a task can reduce its nice value
3079 int can_nice(const struct task_struct
*p
, const int nice
)
3081 /* convert nice value [19,-20] to rlimit style value [1,40] */
3082 int nice_rlim
= nice_to_rlimit(nice
);
3084 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3085 capable(CAP_SYS_NICE
));
3088 #ifdef __ARCH_WANT_SYS_NICE
3091 * sys_nice - change the priority of the current process.
3092 * @increment: priority increment
3094 * sys_setpriority is a more generic, but much slower function that
3095 * does similar things.
3097 SYSCALL_DEFINE1(nice
, int, increment
)
3102 * Setpriority might change our priority at the same moment.
3103 * We don't have to worry. Conceptually one call occurs first
3104 * and we have a single winner.
3106 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3107 nice
= task_nice(current
) + increment
;
3109 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3110 if (increment
< 0 && !can_nice(current
, nice
))
3113 retval
= security_task_setnice(current
, nice
);
3117 set_user_nice(current
, nice
);
3124 * task_prio - return the priority value of a given task.
3125 * @p: the task in question.
3127 * Return: The priority value as seen by users in /proc.
3128 * RT tasks are offset by -200. Normal tasks are centered
3129 * around 0, value goes from -16 to +15.
3131 int task_prio(const struct task_struct
*p
)
3133 return p
->prio
- MAX_RT_PRIO
;
3137 * idle_cpu - is a given cpu idle currently?
3138 * @cpu: the processor in question.
3140 * Return: 1 if the CPU is currently idle. 0 otherwise.
3142 int idle_cpu(int cpu
)
3144 struct rq
*rq
= cpu_rq(cpu
);
3146 if (rq
->curr
!= rq
->idle
)
3153 if (!llist_empty(&rq
->wake_list
))
3161 * idle_task - return the idle task for a given cpu.
3162 * @cpu: the processor in question.
3164 * Return: The idle task for the cpu @cpu.
3166 struct task_struct
*idle_task(int cpu
)
3168 return cpu_rq(cpu
)->idle
;
3172 * find_process_by_pid - find a process with a matching PID value.
3173 * @pid: the pid in question.
3175 * The task of @pid, if found. %NULL otherwise.
3177 static struct task_struct
*find_process_by_pid(pid_t pid
)
3179 return pid
? find_task_by_vpid(pid
) : current
;
3183 * This function initializes the sched_dl_entity of a newly becoming
3184 * SCHED_DEADLINE task.
3186 * Only the static values are considered here, the actual runtime and the
3187 * absolute deadline will be properly calculated when the task is enqueued
3188 * for the first time with its new policy.
3191 __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
3193 struct sched_dl_entity
*dl_se
= &p
->dl
;
3195 init_dl_task_timer(dl_se
);
3196 dl_se
->dl_runtime
= attr
->sched_runtime
;
3197 dl_se
->dl_deadline
= attr
->sched_deadline
;
3198 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
3199 dl_se
->flags
= attr
->sched_flags
;
3200 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
3201 dl_se
->dl_throttled
= 0;
3203 dl_se
->dl_yielded
= 0;
3206 static void __setscheduler_params(struct task_struct
*p
,
3207 const struct sched_attr
*attr
)
3209 int policy
= attr
->sched_policy
;
3211 if (policy
== -1) /* setparam */
3216 if (dl_policy(policy
))
3217 __setparam_dl(p
, attr
);
3218 else if (fair_policy(policy
))
3219 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
3222 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3223 * !rt_policy. Always setting this ensures that things like
3224 * getparam()/getattr() don't report silly values for !rt tasks.
3226 p
->rt_priority
= attr
->sched_priority
;
3227 p
->normal_prio
= normal_prio(p
);
3231 /* Actually do priority change: must hold pi & rq lock. */
3232 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
3233 const struct sched_attr
*attr
)
3235 __setscheduler_params(p
, attr
);
3238 * If we get here, there was no pi waiters boosting the
3239 * task. It is safe to use the normal prio.
3241 p
->prio
= normal_prio(p
);
3243 if (dl_prio(p
->prio
))
3244 p
->sched_class
= &dl_sched_class
;
3245 else if (rt_prio(p
->prio
))
3246 p
->sched_class
= &rt_sched_class
;
3248 p
->sched_class
= &fair_sched_class
;
3252 __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
3254 struct sched_dl_entity
*dl_se
= &p
->dl
;
3256 attr
->sched_priority
= p
->rt_priority
;
3257 attr
->sched_runtime
= dl_se
->dl_runtime
;
3258 attr
->sched_deadline
= dl_se
->dl_deadline
;
3259 attr
->sched_period
= dl_se
->dl_period
;
3260 attr
->sched_flags
= dl_se
->flags
;
3264 * This function validates the new parameters of a -deadline task.
3265 * We ask for the deadline not being zero, and greater or equal
3266 * than the runtime, as well as the period of being zero or
3267 * greater than deadline. Furthermore, we have to be sure that
3268 * user parameters are above the internal resolution of 1us (we
3269 * check sched_runtime only since it is always the smaller one) and
3270 * below 2^63 ns (we have to check both sched_deadline and
3271 * sched_period, as the latter can be zero).
3274 __checkparam_dl(const struct sched_attr
*attr
)
3277 if (attr
->sched_deadline
== 0)
3281 * Since we truncate DL_SCALE bits, make sure we're at least
3284 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
3288 * Since we use the MSB for wrap-around and sign issues, make
3289 * sure it's not set (mind that period can be equal to zero).
3291 if (attr
->sched_deadline
& (1ULL << 63) ||
3292 attr
->sched_period
& (1ULL << 63))
3295 /* runtime <= deadline <= period (if period != 0) */
3296 if ((attr
->sched_period
!= 0 &&
3297 attr
->sched_period
< attr
->sched_deadline
) ||
3298 attr
->sched_deadline
< attr
->sched_runtime
)
3305 * check the target process has a UID that matches the current process's
3307 static bool check_same_owner(struct task_struct
*p
)
3309 const struct cred
*cred
= current_cred(), *pcred
;
3313 pcred
= __task_cred(p
);
3314 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
3315 uid_eq(cred
->euid
, pcred
->uid
));
3320 static int __sched_setscheduler(struct task_struct
*p
,
3321 const struct sched_attr
*attr
,
3324 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
3325 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
3326 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
3327 int policy
= attr
->sched_policy
;
3328 unsigned long flags
;
3329 const struct sched_class
*prev_class
;
3333 /* may grab non-irq protected spin_locks */
3334 BUG_ON(in_interrupt());
3336 /* double check policy once rq lock held */
3338 reset_on_fork
= p
->sched_reset_on_fork
;
3339 policy
= oldpolicy
= p
->policy
;
3341 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
3343 if (policy
!= SCHED_DEADLINE
&&
3344 policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3345 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
3346 policy
!= SCHED_IDLE
)
3350 if (attr
->sched_flags
& ~(SCHED_FLAG_RESET_ON_FORK
))
3354 * Valid priorities for SCHED_FIFO and SCHED_RR are
3355 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3356 * SCHED_BATCH and SCHED_IDLE is 0.
3358 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3359 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
3361 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
3362 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
3366 * Allow unprivileged RT tasks to decrease priority:
3368 if (user
&& !capable(CAP_SYS_NICE
)) {
3369 if (fair_policy(policy
)) {
3370 if (attr
->sched_nice
< task_nice(p
) &&
3371 !can_nice(p
, attr
->sched_nice
))
3375 if (rt_policy(policy
)) {
3376 unsigned long rlim_rtprio
=
3377 task_rlimit(p
, RLIMIT_RTPRIO
);
3379 /* can't set/change the rt policy */
3380 if (policy
!= p
->policy
&& !rlim_rtprio
)
3383 /* can't increase priority */
3384 if (attr
->sched_priority
> p
->rt_priority
&&
3385 attr
->sched_priority
> rlim_rtprio
)
3390 * Can't set/change SCHED_DEADLINE policy at all for now
3391 * (safest behavior); in the future we would like to allow
3392 * unprivileged DL tasks to increase their relative deadline
3393 * or reduce their runtime (both ways reducing utilization)
3395 if (dl_policy(policy
))
3399 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3400 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3402 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
3403 if (!can_nice(p
, task_nice(p
)))
3407 /* can't change other user's priorities */
3408 if (!check_same_owner(p
))
3411 /* Normal users shall not reset the sched_reset_on_fork flag */
3412 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
3417 retval
= security_task_setscheduler(p
);
3423 * make sure no PI-waiters arrive (or leave) while we are
3424 * changing the priority of the task:
3426 * To be able to change p->policy safely, the appropriate
3427 * runqueue lock must be held.
3429 rq
= task_rq_lock(p
, &flags
);
3432 * Changing the policy of the stop threads its a very bad idea
3434 if (p
== rq
->stop
) {
3435 task_rq_unlock(rq
, p
, &flags
);
3440 * If not changing anything there's no need to proceed further,
3441 * but store a possible modification of reset_on_fork.
3443 if (unlikely(policy
== p
->policy
)) {
3444 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
3446 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
3448 if (dl_policy(policy
))
3451 p
->sched_reset_on_fork
= reset_on_fork
;
3452 task_rq_unlock(rq
, p
, &flags
);
3458 #ifdef CONFIG_RT_GROUP_SCHED
3460 * Do not allow realtime tasks into groups that have no runtime
3463 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
3464 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
3465 !task_group_is_autogroup(task_group(p
))) {
3466 task_rq_unlock(rq
, p
, &flags
);
3471 if (dl_bandwidth_enabled() && dl_policy(policy
)) {
3472 cpumask_t
*span
= rq
->rd
->span
;
3475 * Don't allow tasks with an affinity mask smaller than
3476 * the entire root_domain to become SCHED_DEADLINE. We
3477 * will also fail if there's no bandwidth available.
3479 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
3480 rq
->rd
->dl_bw
.bw
== 0) {
3481 task_rq_unlock(rq
, p
, &flags
);
3488 /* recheck policy now with rq lock held */
3489 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3490 policy
= oldpolicy
= -1;
3491 task_rq_unlock(rq
, p
, &flags
);
3496 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3497 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3500 if ((dl_policy(policy
) || dl_task(p
)) && dl_overflow(p
, policy
, attr
)) {
3501 task_rq_unlock(rq
, p
, &flags
);
3505 p
->sched_reset_on_fork
= reset_on_fork
;
3509 * Special case for priority boosted tasks.
3511 * If the new priority is lower or equal (user space view)
3512 * than the current (boosted) priority, we just store the new
3513 * normal parameters and do not touch the scheduler class and
3514 * the runqueue. This will be done when the task deboost
3517 if (rt_mutex_check_prio(p
, newprio
)) {
3518 __setscheduler_params(p
, attr
);
3519 task_rq_unlock(rq
, p
, &flags
);
3524 running
= task_current(rq
, p
);
3526 dequeue_task(rq
, p
, 0);
3528 p
->sched_class
->put_prev_task(rq
, p
);
3530 prev_class
= p
->sched_class
;
3531 __setscheduler(rq
, p
, attr
);
3534 p
->sched_class
->set_curr_task(rq
);
3537 * We enqueue to tail when the priority of a task is
3538 * increased (user space view).
3540 enqueue_task(rq
, p
, oldprio
<= p
->prio
? ENQUEUE_HEAD
: 0);
3543 check_class_changed(rq
, p
, prev_class
, oldprio
);
3544 task_rq_unlock(rq
, p
, &flags
);
3546 rt_mutex_adjust_pi(p
);
3551 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
3552 const struct sched_param
*param
, bool check
)
3554 struct sched_attr attr
= {
3555 .sched_policy
= policy
,
3556 .sched_priority
= param
->sched_priority
,
3557 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
3561 * Fixup the legacy SCHED_RESET_ON_FORK hack
3563 if (policy
& SCHED_RESET_ON_FORK
) {
3564 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
3565 policy
&= ~SCHED_RESET_ON_FORK
;
3566 attr
.sched_policy
= policy
;
3569 return __sched_setscheduler(p
, &attr
, check
);
3572 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3573 * @p: the task in question.
3574 * @policy: new policy.
3575 * @param: structure containing the new RT priority.
3577 * Return: 0 on success. An error code otherwise.
3579 * NOTE that the task may be already dead.
3581 int sched_setscheduler(struct task_struct
*p
, int policy
,
3582 const struct sched_param
*param
)
3584 return _sched_setscheduler(p
, policy
, param
, true);
3586 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3588 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
3590 return __sched_setscheduler(p
, attr
, true);
3592 EXPORT_SYMBOL_GPL(sched_setattr
);
3595 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3596 * @p: the task in question.
3597 * @policy: new policy.
3598 * @param: structure containing the new RT priority.
3600 * Just like sched_setscheduler, only don't bother checking if the
3601 * current context has permission. For example, this is needed in
3602 * stop_machine(): we create temporary high priority worker threads,
3603 * but our caller might not have that capability.
3605 * Return: 0 on success. An error code otherwise.
3607 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
3608 const struct sched_param
*param
)
3610 return _sched_setscheduler(p
, policy
, param
, false);
3614 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3616 struct sched_param lparam
;
3617 struct task_struct
*p
;
3620 if (!param
|| pid
< 0)
3622 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3627 p
= find_process_by_pid(pid
);
3629 retval
= sched_setscheduler(p
, policy
, &lparam
);
3636 * Mimics kernel/events/core.c perf_copy_attr().
3638 static int sched_copy_attr(struct sched_attr __user
*uattr
,
3639 struct sched_attr
*attr
)
3644 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
3648 * zero the full structure, so that a short copy will be nice.
3650 memset(attr
, 0, sizeof(*attr
));
3652 ret
= get_user(size
, &uattr
->size
);
3656 if (size
> PAGE_SIZE
) /* silly large */
3659 if (!size
) /* abi compat */
3660 size
= SCHED_ATTR_SIZE_VER0
;
3662 if (size
< SCHED_ATTR_SIZE_VER0
)
3666 * If we're handed a bigger struct than we know of,
3667 * ensure all the unknown bits are 0 - i.e. new
3668 * user-space does not rely on any kernel feature
3669 * extensions we dont know about yet.
3671 if (size
> sizeof(*attr
)) {
3672 unsigned char __user
*addr
;
3673 unsigned char __user
*end
;
3676 addr
= (void __user
*)uattr
+ sizeof(*attr
);
3677 end
= (void __user
*)uattr
+ size
;
3679 for (; addr
< end
; addr
++) {
3680 ret
= get_user(val
, addr
);
3686 size
= sizeof(*attr
);
3689 ret
= copy_from_user(attr
, uattr
, size
);
3694 * XXX: do we want to be lenient like existing syscalls; or do we want
3695 * to be strict and return an error on out-of-bounds values?
3697 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
3702 put_user(sizeof(*attr
), &uattr
->size
);
3707 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3708 * @pid: the pid in question.
3709 * @policy: new policy.
3710 * @param: structure containing the new RT priority.
3712 * Return: 0 on success. An error code otherwise.
3714 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
3715 struct sched_param __user
*, param
)
3717 /* negative values for policy are not valid */
3721 return do_sched_setscheduler(pid
, policy
, param
);
3725 * sys_sched_setparam - set/change the RT priority of a thread
3726 * @pid: the pid in question.
3727 * @param: structure containing the new RT priority.
3729 * Return: 0 on success. An error code otherwise.
3731 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3733 return do_sched_setscheduler(pid
, -1, param
);
3737 * sys_sched_setattr - same as above, but with extended sched_attr
3738 * @pid: the pid in question.
3739 * @uattr: structure containing the extended parameters.
3740 * @flags: for future extension.
3742 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
3743 unsigned int, flags
)
3745 struct sched_attr attr
;
3746 struct task_struct
*p
;
3749 if (!uattr
|| pid
< 0 || flags
)
3752 retval
= sched_copy_attr(uattr
, &attr
);
3756 if ((int)attr
.sched_policy
< 0)
3761 p
= find_process_by_pid(pid
);
3763 retval
= sched_setattr(p
, &attr
);
3770 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3771 * @pid: the pid in question.
3773 * Return: On success, the policy of the thread. Otherwise, a negative error
3776 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
3778 struct task_struct
*p
;
3786 p
= find_process_by_pid(pid
);
3788 retval
= security_task_getscheduler(p
);
3791 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
3798 * sys_sched_getparam - get the RT priority of a thread
3799 * @pid: the pid in question.
3800 * @param: structure containing the RT priority.
3802 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3805 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
3807 struct sched_param lp
= { .sched_priority
= 0 };
3808 struct task_struct
*p
;
3811 if (!param
|| pid
< 0)
3815 p
= find_process_by_pid(pid
);
3820 retval
= security_task_getscheduler(p
);
3824 if (task_has_rt_policy(p
))
3825 lp
.sched_priority
= p
->rt_priority
;
3829 * This one might sleep, we cannot do it with a spinlock held ...
3831 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3840 static int sched_read_attr(struct sched_attr __user
*uattr
,
3841 struct sched_attr
*attr
,
3846 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
3850 * If we're handed a smaller struct than we know of,
3851 * ensure all the unknown bits are 0 - i.e. old
3852 * user-space does not get uncomplete information.
3854 if (usize
< sizeof(*attr
)) {
3855 unsigned char *addr
;
3858 addr
= (void *)attr
+ usize
;
3859 end
= (void *)attr
+ sizeof(*attr
);
3861 for (; addr
< end
; addr
++) {
3869 ret
= copy_to_user(uattr
, attr
, attr
->size
);
3877 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3878 * @pid: the pid in question.
3879 * @uattr: structure containing the extended parameters.
3880 * @size: sizeof(attr) for fwd/bwd comp.
3881 * @flags: for future extension.
3883 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
3884 unsigned int, size
, unsigned int, flags
)
3886 struct sched_attr attr
= {
3887 .size
= sizeof(struct sched_attr
),
3889 struct task_struct
*p
;
3892 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
3893 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
3897 p
= find_process_by_pid(pid
);
3902 retval
= security_task_getscheduler(p
);
3906 attr
.sched_policy
= p
->policy
;
3907 if (p
->sched_reset_on_fork
)
3908 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
3909 if (task_has_dl_policy(p
))
3910 __getparam_dl(p
, &attr
);
3911 else if (task_has_rt_policy(p
))
3912 attr
.sched_priority
= p
->rt_priority
;
3914 attr
.sched_nice
= task_nice(p
);
3918 retval
= sched_read_attr(uattr
, &attr
, size
);
3926 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
3928 cpumask_var_t cpus_allowed
, new_mask
;
3929 struct task_struct
*p
;
3934 p
= find_process_by_pid(pid
);
3940 /* Prevent p going away */
3944 if (p
->flags
& PF_NO_SETAFFINITY
) {
3948 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
3952 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
3954 goto out_free_cpus_allowed
;
3957 if (!check_same_owner(p
)) {
3959 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
3966 retval
= security_task_setscheduler(p
);
3971 cpuset_cpus_allowed(p
, cpus_allowed
);
3972 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
3975 * Since bandwidth control happens on root_domain basis,
3976 * if admission test is enabled, we only admit -deadline
3977 * tasks allowed to run on all the CPUs in the task's
3981 if (task_has_dl_policy(p
)) {
3982 const struct cpumask
*span
= task_rq(p
)->rd
->span
;
3984 if (dl_bandwidth_enabled() && !cpumask_subset(span
, new_mask
)) {
3991 retval
= set_cpus_allowed_ptr(p
, new_mask
);
3994 cpuset_cpus_allowed(p
, cpus_allowed
);
3995 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
3997 * We must have raced with a concurrent cpuset
3998 * update. Just reset the cpus_allowed to the
3999 * cpuset's cpus_allowed
4001 cpumask_copy(new_mask
, cpus_allowed
);
4006 free_cpumask_var(new_mask
);
4007 out_free_cpus_allowed
:
4008 free_cpumask_var(cpus_allowed
);
4014 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4015 struct cpumask
*new_mask
)
4017 if (len
< cpumask_size())
4018 cpumask_clear(new_mask
);
4019 else if (len
> cpumask_size())
4020 len
= cpumask_size();
4022 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4026 * sys_sched_setaffinity - set the cpu affinity of a process
4027 * @pid: pid of the process
4028 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4029 * @user_mask_ptr: user-space pointer to the new cpu mask
4031 * Return: 0 on success. An error code otherwise.
4033 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4034 unsigned long __user
*, user_mask_ptr
)
4036 cpumask_var_t new_mask
;
4039 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4042 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4044 retval
= sched_setaffinity(pid
, new_mask
);
4045 free_cpumask_var(new_mask
);
4049 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4051 struct task_struct
*p
;
4052 unsigned long flags
;
4058 p
= find_process_by_pid(pid
);
4062 retval
= security_task_getscheduler(p
);
4066 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4067 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4068 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4077 * sys_sched_getaffinity - get the cpu affinity of a process
4078 * @pid: pid of the process
4079 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4080 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4082 * Return: 0 on success. An error code otherwise.
4084 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4085 unsigned long __user
*, user_mask_ptr
)
4090 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4092 if (len
& (sizeof(unsigned long)-1))
4095 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4098 ret
= sched_getaffinity(pid
, mask
);
4100 size_t retlen
= min_t(size_t, len
, cpumask_size());
4102 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4107 free_cpumask_var(mask
);
4113 * sys_sched_yield - yield the current processor to other threads.
4115 * This function yields the current CPU to other tasks. If there are no
4116 * other threads running on this CPU then this function will return.
4120 SYSCALL_DEFINE0(sched_yield
)
4122 struct rq
*rq
= this_rq_lock();
4124 schedstat_inc(rq
, yld_count
);
4125 current
->sched_class
->yield_task(rq
);
4128 * Since we are going to call schedule() anyway, there's
4129 * no need to preempt or enable interrupts:
4131 __release(rq
->lock
);
4132 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4133 do_raw_spin_unlock(&rq
->lock
);
4134 sched_preempt_enable_no_resched();
4141 static void __cond_resched(void)
4143 __preempt_count_add(PREEMPT_ACTIVE
);
4145 __preempt_count_sub(PREEMPT_ACTIVE
);
4148 int __sched
_cond_resched(void)
4151 if (should_resched()) {
4157 EXPORT_SYMBOL(_cond_resched
);
4160 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4161 * call schedule, and on return reacquire the lock.
4163 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4164 * operations here to prevent schedule() from being called twice (once via
4165 * spin_unlock(), once by hand).
4167 int __cond_resched_lock(spinlock_t
*lock
)
4169 bool need_rcu_resched
= rcu_should_resched();
4170 int resched
= should_resched();
4173 lockdep_assert_held(lock
);
4175 if (spin_needbreak(lock
) || resched
|| need_rcu_resched
) {
4179 else if (unlikely(need_rcu_resched
))
4188 EXPORT_SYMBOL(__cond_resched_lock
);
4190 int __sched
__cond_resched_softirq(void)
4192 BUG_ON(!in_softirq());
4194 rcu_cond_resched(); /* BH disabled OK, just recording QSes. */
4195 if (should_resched()) {
4203 EXPORT_SYMBOL(__cond_resched_softirq
);
4206 * yield - yield the current processor to other threads.
4208 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4210 * The scheduler is at all times free to pick the calling task as the most
4211 * eligible task to run, if removing the yield() call from your code breaks
4212 * it, its already broken.
4214 * Typical broken usage is:
4219 * where one assumes that yield() will let 'the other' process run that will
4220 * make event true. If the current task is a SCHED_FIFO task that will never
4221 * happen. Never use yield() as a progress guarantee!!
4223 * If you want to use yield() to wait for something, use wait_event().
4224 * If you want to use yield() to be 'nice' for others, use cond_resched().
4225 * If you still want to use yield(), do not!
4227 void __sched
yield(void)
4229 set_current_state(TASK_RUNNING
);
4232 EXPORT_SYMBOL(yield
);
4235 * yield_to - yield the current processor to another thread in
4236 * your thread group, or accelerate that thread toward the
4237 * processor it's on.
4239 * @preempt: whether task preemption is allowed or not
4241 * It's the caller's job to ensure that the target task struct
4242 * can't go away on us before we can do any checks.
4245 * true (>0) if we indeed boosted the target task.
4246 * false (0) if we failed to boost the target.
4247 * -ESRCH if there's no task to yield to.
4249 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
4251 struct task_struct
*curr
= current
;
4252 struct rq
*rq
, *p_rq
;
4253 unsigned long flags
;
4256 local_irq_save(flags
);
4262 * If we're the only runnable task on the rq and target rq also
4263 * has only one task, there's absolutely no point in yielding.
4265 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
4270 double_rq_lock(rq
, p_rq
);
4271 if (task_rq(p
) != p_rq
) {
4272 double_rq_unlock(rq
, p_rq
);
4276 if (!curr
->sched_class
->yield_to_task
)
4279 if (curr
->sched_class
!= p
->sched_class
)
4282 if (task_running(p_rq
, p
) || p
->state
)
4285 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
4287 schedstat_inc(rq
, yld_count
);
4289 * Make p's CPU reschedule; pick_next_entity takes care of
4292 if (preempt
&& rq
!= p_rq
)
4293 resched_task(p_rq
->curr
);
4297 double_rq_unlock(rq
, p_rq
);
4299 local_irq_restore(flags
);
4306 EXPORT_SYMBOL_GPL(yield_to
);
4309 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4310 * that process accounting knows that this is a task in IO wait state.
4312 void __sched
io_schedule(void)
4314 struct rq
*rq
= raw_rq();
4316 delayacct_blkio_start();
4317 atomic_inc(&rq
->nr_iowait
);
4318 blk_flush_plug(current
);
4319 current
->in_iowait
= 1;
4321 current
->in_iowait
= 0;
4322 atomic_dec(&rq
->nr_iowait
);
4323 delayacct_blkio_end();
4325 EXPORT_SYMBOL(io_schedule
);
4327 long __sched
io_schedule_timeout(long timeout
)
4329 struct rq
*rq
= raw_rq();
4332 delayacct_blkio_start();
4333 atomic_inc(&rq
->nr_iowait
);
4334 blk_flush_plug(current
);
4335 current
->in_iowait
= 1;
4336 ret
= schedule_timeout(timeout
);
4337 current
->in_iowait
= 0;
4338 atomic_dec(&rq
->nr_iowait
);
4339 delayacct_blkio_end();
4344 * sys_sched_get_priority_max - return maximum RT priority.
4345 * @policy: scheduling class.
4347 * Return: On success, this syscall returns the maximum
4348 * rt_priority that can be used by a given scheduling class.
4349 * On failure, a negative error code is returned.
4351 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4358 ret
= MAX_USER_RT_PRIO
-1;
4360 case SCHED_DEADLINE
:
4371 * sys_sched_get_priority_min - return minimum RT priority.
4372 * @policy: scheduling class.
4374 * Return: On success, this syscall returns the minimum
4375 * rt_priority that can be used by a given scheduling class.
4376 * On failure, a negative error code is returned.
4378 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
4387 case SCHED_DEADLINE
:
4397 * sys_sched_rr_get_interval - return the default timeslice of a process.
4398 * @pid: pid of the process.
4399 * @interval: userspace pointer to the timeslice value.
4401 * this syscall writes the default timeslice value of a given process
4402 * into the user-space timespec buffer. A value of '0' means infinity.
4404 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4407 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
4408 struct timespec __user
*, interval
)
4410 struct task_struct
*p
;
4411 unsigned int time_slice
;
4412 unsigned long flags
;
4422 p
= find_process_by_pid(pid
);
4426 retval
= security_task_getscheduler(p
);
4430 rq
= task_rq_lock(p
, &flags
);
4432 if (p
->sched_class
->get_rr_interval
)
4433 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
4434 task_rq_unlock(rq
, p
, &flags
);
4437 jiffies_to_timespec(time_slice
, &t
);
4438 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4446 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
4448 void sched_show_task(struct task_struct
*p
)
4450 unsigned long free
= 0;
4454 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4455 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
4456 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4457 #if BITS_PER_LONG == 32
4458 if (state
== TASK_RUNNING
)
4459 printk(KERN_CONT
" running ");
4461 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4463 if (state
== TASK_RUNNING
)
4464 printk(KERN_CONT
" running task ");
4466 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4468 #ifdef CONFIG_DEBUG_STACK_USAGE
4469 free
= stack_not_used(p
);
4472 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
4474 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
4475 task_pid_nr(p
), ppid
,
4476 (unsigned long)task_thread_info(p
)->flags
);
4478 print_worker_info(KERN_INFO
, p
);
4479 show_stack(p
, NULL
);
4482 void show_state_filter(unsigned long state_filter
)
4484 struct task_struct
*g
, *p
;
4486 #if BITS_PER_LONG == 32
4488 " task PC stack pid father\n");
4491 " task PC stack pid father\n");
4494 do_each_thread(g
, p
) {
4496 * reset the NMI-timeout, listing all files on a slow
4497 * console might take a lot of time:
4499 touch_nmi_watchdog();
4500 if (!state_filter
|| (p
->state
& state_filter
))
4502 } while_each_thread(g
, p
);
4504 touch_all_softlockup_watchdogs();
4506 #ifdef CONFIG_SCHED_DEBUG
4507 sysrq_sched_debug_show();
4511 * Only show locks if all tasks are dumped:
4514 debug_show_all_locks();
4517 void init_idle_bootup_task(struct task_struct
*idle
)
4519 idle
->sched_class
= &idle_sched_class
;
4523 * init_idle - set up an idle thread for a given CPU
4524 * @idle: task in question
4525 * @cpu: cpu the idle task belongs to
4527 * NOTE: this function does not set the idle thread's NEED_RESCHED
4528 * flag, to make booting more robust.
4530 void init_idle(struct task_struct
*idle
, int cpu
)
4532 struct rq
*rq
= cpu_rq(cpu
);
4533 unsigned long flags
;
4535 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4537 __sched_fork(0, idle
);
4538 idle
->state
= TASK_RUNNING
;
4539 idle
->se
.exec_start
= sched_clock();
4541 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
4543 * We're having a chicken and egg problem, even though we are
4544 * holding rq->lock, the cpu isn't yet set to this cpu so the
4545 * lockdep check in task_group() will fail.
4547 * Similar case to sched_fork(). / Alternatively we could
4548 * use task_rq_lock() here and obtain the other rq->lock.
4553 __set_task_cpu(idle
, cpu
);
4556 rq
->curr
= rq
->idle
= idle
;
4558 #if defined(CONFIG_SMP)
4561 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4563 /* Set the preempt count _outside_ the spinlocks! */
4564 init_idle_preempt_count(idle
, cpu
);
4567 * The idle tasks have their own, simple scheduling class:
4569 idle
->sched_class
= &idle_sched_class
;
4570 ftrace_graph_init_idle_task(idle
, cpu
);
4571 vtime_init_idle(idle
, cpu
);
4572 #if defined(CONFIG_SMP)
4573 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
4578 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
4580 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
4581 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
4583 cpumask_copy(&p
->cpus_allowed
, new_mask
);
4584 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
4588 * This is how migration works:
4590 * 1) we invoke migration_cpu_stop() on the target CPU using
4592 * 2) stopper starts to run (implicitly forcing the migrated thread
4594 * 3) it checks whether the migrated task is still in the wrong runqueue.
4595 * 4) if it's in the wrong runqueue then the migration thread removes
4596 * it and puts it into the right queue.
4597 * 5) stopper completes and stop_one_cpu() returns and the migration
4602 * Change a given task's CPU affinity. Migrate the thread to a
4603 * proper CPU and schedule it away if the CPU it's executing on
4604 * is removed from the allowed bitmask.
4606 * NOTE: the caller must have a valid reference to the task, the
4607 * task must not exit() & deallocate itself prematurely. The
4608 * call is not atomic; no spinlocks may be held.
4610 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
4612 unsigned long flags
;
4614 unsigned int dest_cpu
;
4617 rq
= task_rq_lock(p
, &flags
);
4619 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
4622 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
4627 do_set_cpus_allowed(p
, new_mask
);
4629 /* Can the task run on the task's current CPU? If so, we're done */
4630 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
4633 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
4635 struct migration_arg arg
= { p
, dest_cpu
};
4636 /* Need help from migration thread: drop lock and wait. */
4637 task_rq_unlock(rq
, p
, &flags
);
4638 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
4639 tlb_migrate_finish(p
->mm
);
4643 task_rq_unlock(rq
, p
, &flags
);
4647 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
4650 * Move (not current) task off this cpu, onto dest cpu. We're doing
4651 * this because either it can't run here any more (set_cpus_allowed()
4652 * away from this CPU, or CPU going down), or because we're
4653 * attempting to rebalance this task on exec (sched_exec).
4655 * So we race with normal scheduler movements, but that's OK, as long
4656 * as the task is no longer on this CPU.
4658 * Returns non-zero if task was successfully migrated.
4660 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4662 struct rq
*rq_dest
, *rq_src
;
4665 if (unlikely(!cpu_active(dest_cpu
)))
4668 rq_src
= cpu_rq(src_cpu
);
4669 rq_dest
= cpu_rq(dest_cpu
);
4671 raw_spin_lock(&p
->pi_lock
);
4672 double_rq_lock(rq_src
, rq_dest
);
4673 /* Already moved. */
4674 if (task_cpu(p
) != src_cpu
)
4676 /* Affinity changed (again). */
4677 if (!cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
4681 * If we're not on a rq, the next wake-up will ensure we're
4685 dequeue_task(rq_src
, p
, 0);
4686 set_task_cpu(p
, dest_cpu
);
4687 enqueue_task(rq_dest
, p
, 0);
4688 check_preempt_curr(rq_dest
, p
, 0);
4693 double_rq_unlock(rq_src
, rq_dest
);
4694 raw_spin_unlock(&p
->pi_lock
);
4698 #ifdef CONFIG_NUMA_BALANCING
4699 /* Migrate current task p to target_cpu */
4700 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
4702 struct migration_arg arg
= { p
, target_cpu
};
4703 int curr_cpu
= task_cpu(p
);
4705 if (curr_cpu
== target_cpu
)
4708 if (!cpumask_test_cpu(target_cpu
, tsk_cpus_allowed(p
)))
4711 /* TODO: This is not properly updating schedstats */
4713 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
4714 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
4718 * Requeue a task on a given node and accurately track the number of NUMA
4719 * tasks on the runqueues
4721 void sched_setnuma(struct task_struct
*p
, int nid
)
4724 unsigned long flags
;
4725 bool on_rq
, running
;
4727 rq
= task_rq_lock(p
, &flags
);
4729 running
= task_current(rq
, p
);
4732 dequeue_task(rq
, p
, 0);
4734 p
->sched_class
->put_prev_task(rq
, p
);
4736 p
->numa_preferred_nid
= nid
;
4739 p
->sched_class
->set_curr_task(rq
);
4741 enqueue_task(rq
, p
, 0);
4742 task_rq_unlock(rq
, p
, &flags
);
4747 * migration_cpu_stop - this will be executed by a highprio stopper thread
4748 * and performs thread migration by bumping thread off CPU then
4749 * 'pushing' onto another runqueue.
4751 static int migration_cpu_stop(void *data
)
4753 struct migration_arg
*arg
= data
;
4756 * The original target cpu might have gone down and we might
4757 * be on another cpu but it doesn't matter.
4759 local_irq_disable();
4760 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
4765 #ifdef CONFIG_HOTPLUG_CPU
4768 * Ensures that the idle task is using init_mm right before its cpu goes
4771 void idle_task_exit(void)
4773 struct mm_struct
*mm
= current
->active_mm
;
4775 BUG_ON(cpu_online(smp_processor_id()));
4777 if (mm
!= &init_mm
) {
4778 switch_mm(mm
, &init_mm
, current
);
4779 finish_arch_post_lock_switch();
4785 * Since this CPU is going 'away' for a while, fold any nr_active delta
4786 * we might have. Assumes we're called after migrate_tasks() so that the
4787 * nr_active count is stable.
4789 * Also see the comment "Global load-average calculations".
4791 static void calc_load_migrate(struct rq
*rq
)
4793 long delta
= calc_load_fold_active(rq
);
4795 atomic_long_add(delta
, &calc_load_tasks
);
4798 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
4802 static const struct sched_class fake_sched_class
= {
4803 .put_prev_task
= put_prev_task_fake
,
4806 static struct task_struct fake_task
= {
4808 * Avoid pull_{rt,dl}_task()
4810 .prio
= MAX_PRIO
+ 1,
4811 .sched_class
= &fake_sched_class
,
4815 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4816 * try_to_wake_up()->select_task_rq().
4818 * Called with rq->lock held even though we'er in stop_machine() and
4819 * there's no concurrency possible, we hold the required locks anyway
4820 * because of lock validation efforts.
4822 static void migrate_tasks(unsigned int dead_cpu
)
4824 struct rq
*rq
= cpu_rq(dead_cpu
);
4825 struct task_struct
*next
, *stop
= rq
->stop
;
4829 * Fudge the rq selection such that the below task selection loop
4830 * doesn't get stuck on the currently eligible stop task.
4832 * We're currently inside stop_machine() and the rq is either stuck
4833 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4834 * either way we should never end up calling schedule() until we're
4840 * put_prev_task() and pick_next_task() sched
4841 * class method both need to have an up-to-date
4842 * value of rq->clock[_task]
4844 update_rq_clock(rq
);
4848 * There's this thread running, bail when that's the only
4851 if (rq
->nr_running
== 1)
4854 next
= pick_next_task(rq
, &fake_task
);
4856 next
->sched_class
->put_prev_task(rq
, next
);
4858 /* Find suitable destination for @next, with force if needed. */
4859 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
4860 raw_spin_unlock(&rq
->lock
);
4862 __migrate_task(next
, dead_cpu
, dest_cpu
);
4864 raw_spin_lock(&rq
->lock
);
4870 #endif /* CONFIG_HOTPLUG_CPU */
4872 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4874 static struct ctl_table sd_ctl_dir
[] = {
4876 .procname
= "sched_domain",
4882 static struct ctl_table sd_ctl_root
[] = {
4884 .procname
= "kernel",
4886 .child
= sd_ctl_dir
,
4891 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
4893 struct ctl_table
*entry
=
4894 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
4899 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
4901 struct ctl_table
*entry
;
4904 * In the intermediate directories, both the child directory and
4905 * procname are dynamically allocated and could fail but the mode
4906 * will always be set. In the lowest directory the names are
4907 * static strings and all have proc handlers.
4909 for (entry
= *tablep
; entry
->mode
; entry
++) {
4911 sd_free_ctl_entry(&entry
->child
);
4912 if (entry
->proc_handler
== NULL
)
4913 kfree(entry
->procname
);
4920 static int min_load_idx
= 0;
4921 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
4924 set_table_entry(struct ctl_table
*entry
,
4925 const char *procname
, void *data
, int maxlen
,
4926 umode_t mode
, proc_handler
*proc_handler
,
4929 entry
->procname
= procname
;
4931 entry
->maxlen
= maxlen
;
4933 entry
->proc_handler
= proc_handler
;
4936 entry
->extra1
= &min_load_idx
;
4937 entry
->extra2
= &max_load_idx
;
4941 static struct ctl_table
*
4942 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
4944 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
4949 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
4950 sizeof(long), 0644, proc_doulongvec_minmax
, false);
4951 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
4952 sizeof(long), 0644, proc_doulongvec_minmax
, false);
4953 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
4954 sizeof(int), 0644, proc_dointvec_minmax
, true);
4955 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
4956 sizeof(int), 0644, proc_dointvec_minmax
, true);
4957 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
4958 sizeof(int), 0644, proc_dointvec_minmax
, true);
4959 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
4960 sizeof(int), 0644, proc_dointvec_minmax
, true);
4961 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
4962 sizeof(int), 0644, proc_dointvec_minmax
, true);
4963 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
4964 sizeof(int), 0644, proc_dointvec_minmax
, false);
4965 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
4966 sizeof(int), 0644, proc_dointvec_minmax
, false);
4967 set_table_entry(&table
[9], "cache_nice_tries",
4968 &sd
->cache_nice_tries
,
4969 sizeof(int), 0644, proc_dointvec_minmax
, false);
4970 set_table_entry(&table
[10], "flags", &sd
->flags
,
4971 sizeof(int), 0644, proc_dointvec_minmax
, false);
4972 set_table_entry(&table
[11], "max_newidle_lb_cost",
4973 &sd
->max_newidle_lb_cost
,
4974 sizeof(long), 0644, proc_doulongvec_minmax
, false);
4975 set_table_entry(&table
[12], "name", sd
->name
,
4976 CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
4977 /* &table[13] is terminator */
4982 static struct ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
4984 struct ctl_table
*entry
, *table
;
4985 struct sched_domain
*sd
;
4986 int domain_num
= 0, i
;
4989 for_each_domain(cpu
, sd
)
4991 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
4996 for_each_domain(cpu
, sd
) {
4997 snprintf(buf
, 32, "domain%d", i
);
4998 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5000 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5007 static struct ctl_table_header
*sd_sysctl_header
;
5008 static void register_sched_domain_sysctl(void)
5010 int i
, cpu_num
= num_possible_cpus();
5011 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5014 WARN_ON(sd_ctl_dir
[0].child
);
5015 sd_ctl_dir
[0].child
= entry
;
5020 for_each_possible_cpu(i
) {
5021 snprintf(buf
, 32, "cpu%d", i
);
5022 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5024 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5028 WARN_ON(sd_sysctl_header
);
5029 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5032 /* may be called multiple times per register */
5033 static void unregister_sched_domain_sysctl(void)
5035 if (sd_sysctl_header
)
5036 unregister_sysctl_table(sd_sysctl_header
);
5037 sd_sysctl_header
= NULL
;
5038 if (sd_ctl_dir
[0].child
)
5039 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5042 static void register_sched_domain_sysctl(void)
5045 static void unregister_sched_domain_sysctl(void)
5050 static void set_rq_online(struct rq
*rq
)
5053 const struct sched_class
*class;
5055 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5058 for_each_class(class) {
5059 if (class->rq_online
)
5060 class->rq_online(rq
);
5065 static void set_rq_offline(struct rq
*rq
)
5068 const struct sched_class
*class;
5070 for_each_class(class) {
5071 if (class->rq_offline
)
5072 class->rq_offline(rq
);
5075 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5081 * migration_call - callback that gets triggered when a CPU is added.
5082 * Here we can start up the necessary migration thread for the new CPU.
5085 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5087 int cpu
= (long)hcpu
;
5088 unsigned long flags
;
5089 struct rq
*rq
= cpu_rq(cpu
);
5091 switch (action
& ~CPU_TASKS_FROZEN
) {
5093 case CPU_UP_PREPARE
:
5094 rq
->calc_load_update
= calc_load_update
;
5098 /* Update our root-domain */
5099 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5101 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5105 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5108 #ifdef CONFIG_HOTPLUG_CPU
5110 sched_ttwu_pending();
5111 /* Update our root-domain */
5112 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5114 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5118 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
5119 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5123 calc_load_migrate(rq
);
5128 update_max_interval();
5134 * Register at high priority so that task migration (migrate_all_tasks)
5135 * happens before everything else. This has to be lower priority than
5136 * the notifier in the perf_event subsystem, though.
5138 static struct notifier_block migration_notifier
= {
5139 .notifier_call
= migration_call
,
5140 .priority
= CPU_PRI_MIGRATION
,
5143 static void __cpuinit
set_cpu_rq_start_time(void)
5145 int cpu
= smp_processor_id();
5146 struct rq
*rq
= cpu_rq(cpu
);
5147 rq
->age_stamp
= sched_clock_cpu(cpu
);
5150 static int sched_cpu_active(struct notifier_block
*nfb
,
5151 unsigned long action
, void *hcpu
)
5153 switch (action
& ~CPU_TASKS_FROZEN
) {
5155 set_cpu_rq_start_time();
5157 case CPU_DOWN_FAILED
:
5158 set_cpu_active((long)hcpu
, true);
5165 static int sched_cpu_inactive(struct notifier_block
*nfb
,
5166 unsigned long action
, void *hcpu
)
5168 unsigned long flags
;
5169 long cpu
= (long)hcpu
;
5171 switch (action
& ~CPU_TASKS_FROZEN
) {
5172 case CPU_DOWN_PREPARE
:
5173 set_cpu_active(cpu
, false);
5175 /* explicitly allow suspend */
5176 if (!(action
& CPU_TASKS_FROZEN
)) {
5177 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
5181 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
5182 cpus
= dl_bw_cpus(cpu
);
5183 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
5184 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
5187 return notifier_from_errno(-EBUSY
);
5195 static int __init
migration_init(void)
5197 void *cpu
= (void *)(long)smp_processor_id();
5200 /* Initialize migration for the boot CPU */
5201 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5202 BUG_ON(err
== NOTIFY_BAD
);
5203 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5204 register_cpu_notifier(&migration_notifier
);
5206 /* Register cpu active notifiers */
5207 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
5208 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
5212 early_initcall(migration_init
);
5217 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
5219 #ifdef CONFIG_SCHED_DEBUG
5221 static __read_mostly
int sched_debug_enabled
;
5223 static int __init
sched_debug_setup(char *str
)
5225 sched_debug_enabled
= 1;
5229 early_param("sched_debug", sched_debug_setup
);
5231 static inline bool sched_debug(void)
5233 return sched_debug_enabled
;
5236 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5237 struct cpumask
*groupmask
)
5239 struct sched_group
*group
= sd
->groups
;
5242 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5243 cpumask_clear(groupmask
);
5245 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5247 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5248 printk("does not load-balance\n");
5250 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5255 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5257 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5258 printk(KERN_ERR
"ERROR: domain->span does not contain "
5261 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5262 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5266 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5270 printk(KERN_ERR
"ERROR: group is NULL\n");
5275 * Even though we initialize ->capacity to something semi-sane,
5276 * we leave capacity_orig unset. This allows us to detect if
5277 * domain iteration is still funny without causing /0 traps.
5279 if (!group
->sgc
->capacity_orig
) {
5280 printk(KERN_CONT
"\n");
5281 printk(KERN_ERR
"ERROR: domain->cpu_capacity not set\n");
5285 if (!cpumask_weight(sched_group_cpus(group
))) {
5286 printk(KERN_CONT
"\n");
5287 printk(KERN_ERR
"ERROR: empty group\n");
5291 if (!(sd
->flags
& SD_OVERLAP
) &&
5292 cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5293 printk(KERN_CONT
"\n");
5294 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5298 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5300 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5302 printk(KERN_CONT
" %s", str
);
5303 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
) {
5304 printk(KERN_CONT
" (cpu_capacity = %d)",
5305 group
->sgc
->capacity
);
5308 group
= group
->next
;
5309 } while (group
!= sd
->groups
);
5310 printk(KERN_CONT
"\n");
5312 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
5313 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5316 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
5317 printk(KERN_ERR
"ERROR: parent span is not a superset "
5318 "of domain->span\n");
5322 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5326 if (!sched_debug_enabled
)
5330 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5334 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5337 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
5345 #else /* !CONFIG_SCHED_DEBUG */
5346 # define sched_domain_debug(sd, cpu) do { } while (0)
5347 static inline bool sched_debug(void)
5351 #endif /* CONFIG_SCHED_DEBUG */
5353 static int sd_degenerate(struct sched_domain
*sd
)
5355 if (cpumask_weight(sched_domain_span(sd
)) == 1)
5358 /* Following flags need at least 2 groups */
5359 if (sd
->flags
& (SD_LOAD_BALANCE
|
5360 SD_BALANCE_NEWIDLE
|
5363 SD_SHARE_CPUCAPACITY
|
5364 SD_SHARE_PKG_RESOURCES
|
5365 SD_SHARE_POWERDOMAIN
)) {
5366 if (sd
->groups
!= sd
->groups
->next
)
5370 /* Following flags don't use groups */
5371 if (sd
->flags
& (SD_WAKE_AFFINE
))
5378 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5380 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5382 if (sd_degenerate(parent
))
5385 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
5388 /* Flags needing groups don't count if only 1 group in parent */
5389 if (parent
->groups
== parent
->groups
->next
) {
5390 pflags
&= ~(SD_LOAD_BALANCE
|
5391 SD_BALANCE_NEWIDLE
|
5394 SD_SHARE_CPUCAPACITY
|
5395 SD_SHARE_PKG_RESOURCES
|
5397 SD_SHARE_POWERDOMAIN
);
5398 if (nr_node_ids
== 1)
5399 pflags
&= ~SD_SERIALIZE
;
5401 if (~cflags
& pflags
)
5407 static void free_rootdomain(struct rcu_head
*rcu
)
5409 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
5411 cpupri_cleanup(&rd
->cpupri
);
5412 cpudl_cleanup(&rd
->cpudl
);
5413 free_cpumask_var(rd
->dlo_mask
);
5414 free_cpumask_var(rd
->rto_mask
);
5415 free_cpumask_var(rd
->online
);
5416 free_cpumask_var(rd
->span
);
5420 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
5422 struct root_domain
*old_rd
= NULL
;
5423 unsigned long flags
;
5425 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5430 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
5433 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
5436 * If we dont want to free the old_rd yet then
5437 * set old_rd to NULL to skip the freeing later
5440 if (!atomic_dec_and_test(&old_rd
->refcount
))
5444 atomic_inc(&rd
->refcount
);
5447 cpumask_set_cpu(rq
->cpu
, rd
->span
);
5448 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
5451 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5454 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
5457 static int init_rootdomain(struct root_domain
*rd
)
5459 memset(rd
, 0, sizeof(*rd
));
5461 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
5463 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
5465 if (!alloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
5467 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
5470 init_dl_bw(&rd
->dl_bw
);
5471 if (cpudl_init(&rd
->cpudl
) != 0)
5474 if (cpupri_init(&rd
->cpupri
) != 0)
5479 free_cpumask_var(rd
->rto_mask
);
5481 free_cpumask_var(rd
->dlo_mask
);
5483 free_cpumask_var(rd
->online
);
5485 free_cpumask_var(rd
->span
);
5491 * By default the system creates a single root-domain with all cpus as
5492 * members (mimicking the global state we have today).
5494 struct root_domain def_root_domain
;
5496 static void init_defrootdomain(void)
5498 init_rootdomain(&def_root_domain
);
5500 atomic_set(&def_root_domain
.refcount
, 1);
5503 static struct root_domain
*alloc_rootdomain(void)
5505 struct root_domain
*rd
;
5507 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
5511 if (init_rootdomain(rd
) != 0) {
5519 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
5521 struct sched_group
*tmp
, *first
;
5530 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
5535 } while (sg
!= first
);
5538 static void free_sched_domain(struct rcu_head
*rcu
)
5540 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
5543 * If its an overlapping domain it has private groups, iterate and
5546 if (sd
->flags
& SD_OVERLAP
) {
5547 free_sched_groups(sd
->groups
, 1);
5548 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
5549 kfree(sd
->groups
->sgc
);
5555 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
5557 call_rcu(&sd
->rcu
, free_sched_domain
);
5560 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
5562 for (; sd
; sd
= sd
->parent
)
5563 destroy_sched_domain(sd
, cpu
);
5567 * Keep a special pointer to the highest sched_domain that has
5568 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5569 * allows us to avoid some pointer chasing select_idle_sibling().
5571 * Also keep a unique ID per domain (we use the first cpu number in
5572 * the cpumask of the domain), this allows us to quickly tell if
5573 * two cpus are in the same cache domain, see cpus_share_cache().
5575 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
5576 DEFINE_PER_CPU(int, sd_llc_size
);
5577 DEFINE_PER_CPU(int, sd_llc_id
);
5578 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
5579 DEFINE_PER_CPU(struct sched_domain
*, sd_busy
);
5580 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
5582 static void update_top_cache_domain(int cpu
)
5584 struct sched_domain
*sd
;
5585 struct sched_domain
*busy_sd
= NULL
;
5589 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
5591 id
= cpumask_first(sched_domain_span(sd
));
5592 size
= cpumask_weight(sched_domain_span(sd
));
5593 busy_sd
= sd
->parent
; /* sd_busy */
5595 rcu_assign_pointer(per_cpu(sd_busy
, cpu
), busy_sd
);
5597 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
5598 per_cpu(sd_llc_size
, cpu
) = size
;
5599 per_cpu(sd_llc_id
, cpu
) = id
;
5601 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
5602 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
5604 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
5605 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
5609 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5610 * hold the hotplug lock.
5613 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
5615 struct rq
*rq
= cpu_rq(cpu
);
5616 struct sched_domain
*tmp
;
5618 /* Remove the sched domains which do not contribute to scheduling. */
5619 for (tmp
= sd
; tmp
; ) {
5620 struct sched_domain
*parent
= tmp
->parent
;
5624 if (sd_parent_degenerate(tmp
, parent
)) {
5625 tmp
->parent
= parent
->parent
;
5627 parent
->parent
->child
= tmp
;
5629 * Transfer SD_PREFER_SIBLING down in case of a
5630 * degenerate parent; the spans match for this
5631 * so the property transfers.
5633 if (parent
->flags
& SD_PREFER_SIBLING
)
5634 tmp
->flags
|= SD_PREFER_SIBLING
;
5635 destroy_sched_domain(parent
, cpu
);
5640 if (sd
&& sd_degenerate(sd
)) {
5643 destroy_sched_domain(tmp
, cpu
);
5648 sched_domain_debug(sd
, cpu
);
5650 rq_attach_root(rq
, rd
);
5652 rcu_assign_pointer(rq
->sd
, sd
);
5653 destroy_sched_domains(tmp
, cpu
);
5655 update_top_cache_domain(cpu
);
5658 /* cpus with isolated domains */
5659 static cpumask_var_t cpu_isolated_map
;
5661 /* Setup the mask of cpus configured for isolated domains */
5662 static int __init
isolated_cpu_setup(char *str
)
5664 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
5665 cpulist_parse(str
, cpu_isolated_map
);
5669 __setup("isolcpus=", isolated_cpu_setup
);
5672 struct sched_domain
** __percpu sd
;
5673 struct root_domain
*rd
;
5684 * Build an iteration mask that can exclude certain CPUs from the upwards
5687 * Asymmetric node setups can result in situations where the domain tree is of
5688 * unequal depth, make sure to skip domains that already cover the entire
5691 * In that case build_sched_domains() will have terminated the iteration early
5692 * and our sibling sd spans will be empty. Domains should always include the
5693 * cpu they're built on, so check that.
5696 static void build_group_mask(struct sched_domain
*sd
, struct sched_group
*sg
)
5698 const struct cpumask
*span
= sched_domain_span(sd
);
5699 struct sd_data
*sdd
= sd
->private;
5700 struct sched_domain
*sibling
;
5703 for_each_cpu(i
, span
) {
5704 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
5705 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
5708 cpumask_set_cpu(i
, sched_group_mask(sg
));
5713 * Return the canonical balance cpu for this group, this is the first cpu
5714 * of this group that's also in the iteration mask.
5716 int group_balance_cpu(struct sched_group
*sg
)
5718 return cpumask_first_and(sched_group_cpus(sg
), sched_group_mask(sg
));
5722 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
5724 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
5725 const struct cpumask
*span
= sched_domain_span(sd
);
5726 struct cpumask
*covered
= sched_domains_tmpmask
;
5727 struct sd_data
*sdd
= sd
->private;
5728 struct sched_domain
*child
;
5731 cpumask_clear(covered
);
5733 for_each_cpu(i
, span
) {
5734 struct cpumask
*sg_span
;
5736 if (cpumask_test_cpu(i
, covered
))
5739 child
= *per_cpu_ptr(sdd
->sd
, i
);
5741 /* See the comment near build_group_mask(). */
5742 if (!cpumask_test_cpu(i
, sched_domain_span(child
)))
5745 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
5746 GFP_KERNEL
, cpu_to_node(cpu
));
5751 sg_span
= sched_group_cpus(sg
);
5753 child
= child
->child
;
5754 cpumask_copy(sg_span
, sched_domain_span(child
));
5756 cpumask_set_cpu(i
, sg_span
);
5758 cpumask_or(covered
, covered
, sg_span
);
5760 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, i
);
5761 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
5762 build_group_mask(sd
, sg
);
5765 * Initialize sgc->capacity such that even if we mess up the
5766 * domains and no possible iteration will get us here, we won't
5769 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
5770 sg
->sgc
->capacity_orig
= sg
->sgc
->capacity
;
5773 * Make sure the first group of this domain contains the
5774 * canonical balance cpu. Otherwise the sched_domain iteration
5775 * breaks. See update_sg_lb_stats().
5777 if ((!groups
&& cpumask_test_cpu(cpu
, sg_span
)) ||
5778 group_balance_cpu(sg
) == cpu
)
5788 sd
->groups
= groups
;
5793 free_sched_groups(first
, 0);
5798 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
5800 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
5801 struct sched_domain
*child
= sd
->child
;
5804 cpu
= cpumask_first(sched_domain_span(child
));
5807 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
5808 (*sg
)->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
5809 atomic_set(&(*sg
)->sgc
->ref
, 1); /* for claim_allocations */
5816 * build_sched_groups will build a circular linked list of the groups
5817 * covered by the given span, and will set each group's ->cpumask correctly,
5818 * and ->cpu_capacity to 0.
5820 * Assumes the sched_domain tree is fully constructed
5823 build_sched_groups(struct sched_domain
*sd
, int cpu
)
5825 struct sched_group
*first
= NULL
, *last
= NULL
;
5826 struct sd_data
*sdd
= sd
->private;
5827 const struct cpumask
*span
= sched_domain_span(sd
);
5828 struct cpumask
*covered
;
5831 get_group(cpu
, sdd
, &sd
->groups
);
5832 atomic_inc(&sd
->groups
->ref
);
5834 if (cpu
!= cpumask_first(span
))
5837 lockdep_assert_held(&sched_domains_mutex
);
5838 covered
= sched_domains_tmpmask
;
5840 cpumask_clear(covered
);
5842 for_each_cpu(i
, span
) {
5843 struct sched_group
*sg
;
5846 if (cpumask_test_cpu(i
, covered
))
5849 group
= get_group(i
, sdd
, &sg
);
5850 cpumask_setall(sched_group_mask(sg
));
5852 for_each_cpu(j
, span
) {
5853 if (get_group(j
, sdd
, NULL
) != group
)
5856 cpumask_set_cpu(j
, covered
);
5857 cpumask_set_cpu(j
, sched_group_cpus(sg
));
5872 * Initialize sched groups cpu_capacity.
5874 * cpu_capacity indicates the capacity of sched group, which is used while
5875 * distributing the load between different sched groups in a sched domain.
5876 * Typically cpu_capacity for all the groups in a sched domain will be same
5877 * unless there are asymmetries in the topology. If there are asymmetries,
5878 * group having more cpu_capacity will pickup more load compared to the
5879 * group having less cpu_capacity.
5881 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
5883 struct sched_group
*sg
= sd
->groups
;
5888 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
5890 } while (sg
!= sd
->groups
);
5892 if (cpu
!= group_balance_cpu(sg
))
5895 update_group_capacity(sd
, cpu
);
5896 atomic_set(&sg
->sgc
->nr_busy_cpus
, sg
->group_weight
);
5900 * Initializers for schedule domains
5901 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5904 static int default_relax_domain_level
= -1;
5905 int sched_domain_level_max
;
5907 static int __init
setup_relax_domain_level(char *str
)
5909 if (kstrtoint(str
, 0, &default_relax_domain_level
))
5910 pr_warn("Unable to set relax_domain_level\n");
5914 __setup("relax_domain_level=", setup_relax_domain_level
);
5916 static void set_domain_attribute(struct sched_domain
*sd
,
5917 struct sched_domain_attr
*attr
)
5921 if (!attr
|| attr
->relax_domain_level
< 0) {
5922 if (default_relax_domain_level
< 0)
5925 request
= default_relax_domain_level
;
5927 request
= attr
->relax_domain_level
;
5928 if (request
< sd
->level
) {
5929 /* turn off idle balance on this domain */
5930 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
5932 /* turn on idle balance on this domain */
5933 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
5937 static void __sdt_free(const struct cpumask
*cpu_map
);
5938 static int __sdt_alloc(const struct cpumask
*cpu_map
);
5940 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
5941 const struct cpumask
*cpu_map
)
5945 if (!atomic_read(&d
->rd
->refcount
))
5946 free_rootdomain(&d
->rd
->rcu
); /* fall through */
5948 free_percpu(d
->sd
); /* fall through */
5950 __sdt_free(cpu_map
); /* fall through */
5956 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
5957 const struct cpumask
*cpu_map
)
5959 memset(d
, 0, sizeof(*d
));
5961 if (__sdt_alloc(cpu_map
))
5962 return sa_sd_storage
;
5963 d
->sd
= alloc_percpu(struct sched_domain
*);
5965 return sa_sd_storage
;
5966 d
->rd
= alloc_rootdomain();
5969 return sa_rootdomain
;
5973 * NULL the sd_data elements we've used to build the sched_domain and
5974 * sched_group structure so that the subsequent __free_domain_allocs()
5975 * will not free the data we're using.
5977 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
5979 struct sd_data
*sdd
= sd
->private;
5981 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
5982 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
5984 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
5985 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
5987 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
5988 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
5992 static int sched_domains_numa_levels
;
5993 static int *sched_domains_numa_distance
;
5994 static struct cpumask
***sched_domains_numa_masks
;
5995 static int sched_domains_curr_level
;
5999 * SD_flags allowed in topology descriptions.
6001 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6002 * SD_SHARE_PKG_RESOURCES - describes shared caches
6003 * SD_NUMA - describes NUMA topologies
6004 * SD_SHARE_POWERDOMAIN - describes shared power domain
6007 * SD_ASYM_PACKING - describes SMT quirks
6009 #define TOPOLOGY_SD_FLAGS \
6010 (SD_SHARE_CPUCAPACITY | \
6011 SD_SHARE_PKG_RESOURCES | \
6014 SD_SHARE_POWERDOMAIN)
6016 static struct sched_domain
*
6017 sd_init(struct sched_domain_topology_level
*tl
, int cpu
)
6019 struct sched_domain
*sd
= *per_cpu_ptr(tl
->data
.sd
, cpu
);
6020 int sd_weight
, sd_flags
= 0;
6024 * Ugly hack to pass state to sd_numa_mask()...
6026 sched_domains_curr_level
= tl
->numa_level
;
6029 sd_weight
= cpumask_weight(tl
->mask(cpu
));
6032 sd_flags
= (*tl
->sd_flags
)();
6033 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
6034 "wrong sd_flags in topology description\n"))
6035 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
6037 *sd
= (struct sched_domain
){
6038 .min_interval
= sd_weight
,
6039 .max_interval
= 2*sd_weight
,
6041 .imbalance_pct
= 125,
6043 .cache_nice_tries
= 0,
6050 .flags
= 1*SD_LOAD_BALANCE
6051 | 1*SD_BALANCE_NEWIDLE
6056 | 0*SD_SHARE_CPUCAPACITY
6057 | 0*SD_SHARE_PKG_RESOURCES
6059 | 0*SD_PREFER_SIBLING
6064 .last_balance
= jiffies
,
6065 .balance_interval
= sd_weight
,
6067 .max_newidle_lb_cost
= 0,
6068 .next_decay_max_lb_cost
= jiffies
,
6069 #ifdef CONFIG_SCHED_DEBUG
6075 * Convert topological properties into behaviour.
6078 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
6079 sd
->imbalance_pct
= 110;
6080 sd
->smt_gain
= 1178; /* ~15% */
6082 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
6083 sd
->imbalance_pct
= 117;
6084 sd
->cache_nice_tries
= 1;
6088 } else if (sd
->flags
& SD_NUMA
) {
6089 sd
->cache_nice_tries
= 2;
6093 sd
->flags
|= SD_SERIALIZE
;
6094 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
6095 sd
->flags
&= ~(SD_BALANCE_EXEC
|
6102 sd
->flags
|= SD_PREFER_SIBLING
;
6103 sd
->cache_nice_tries
= 1;
6108 sd
->private = &tl
->data
;
6114 * Topology list, bottom-up.
6116 static struct sched_domain_topology_level default_topology
[] = {
6117 #ifdef CONFIG_SCHED_SMT
6118 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
6120 #ifdef CONFIG_SCHED_MC
6121 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
6123 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
6127 struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
6129 #define for_each_sd_topology(tl) \
6130 for (tl = sched_domain_topology; tl->mask; tl++)
6132 void set_sched_topology(struct sched_domain_topology_level
*tl
)
6134 sched_domain_topology
= tl
;
6139 static const struct cpumask
*sd_numa_mask(int cpu
)
6141 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
6144 static void sched_numa_warn(const char *str
)
6146 static int done
= false;
6154 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
6156 for (i
= 0; i
< nr_node_ids
; i
++) {
6157 printk(KERN_WARNING
" ");
6158 for (j
= 0; j
< nr_node_ids
; j
++)
6159 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
6160 printk(KERN_CONT
"\n");
6162 printk(KERN_WARNING
"\n");
6165 static bool find_numa_distance(int distance
)
6169 if (distance
== node_distance(0, 0))
6172 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6173 if (sched_domains_numa_distance
[i
] == distance
)
6180 static void sched_init_numa(void)
6182 int next_distance
, curr_distance
= node_distance(0, 0);
6183 struct sched_domain_topology_level
*tl
;
6187 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
6188 if (!sched_domains_numa_distance
)
6192 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6193 * unique distances in the node_distance() table.
6195 * Assumes node_distance(0,j) includes all distances in
6196 * node_distance(i,j) in order to avoid cubic time.
6198 next_distance
= curr_distance
;
6199 for (i
= 0; i
< nr_node_ids
; i
++) {
6200 for (j
= 0; j
< nr_node_ids
; j
++) {
6201 for (k
= 0; k
< nr_node_ids
; k
++) {
6202 int distance
= node_distance(i
, k
);
6204 if (distance
> curr_distance
&&
6205 (distance
< next_distance
||
6206 next_distance
== curr_distance
))
6207 next_distance
= distance
;
6210 * While not a strong assumption it would be nice to know
6211 * about cases where if node A is connected to B, B is not
6212 * equally connected to A.
6214 if (sched_debug() && node_distance(k
, i
) != distance
)
6215 sched_numa_warn("Node-distance not symmetric");
6217 if (sched_debug() && i
&& !find_numa_distance(distance
))
6218 sched_numa_warn("Node-0 not representative");
6220 if (next_distance
!= curr_distance
) {
6221 sched_domains_numa_distance
[level
++] = next_distance
;
6222 sched_domains_numa_levels
= level
;
6223 curr_distance
= next_distance
;
6228 * In case of sched_debug() we verify the above assumption.
6234 * 'level' contains the number of unique distances, excluding the
6235 * identity distance node_distance(i,i).
6237 * The sched_domains_numa_distance[] array includes the actual distance
6242 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6243 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6244 * the array will contain less then 'level' members. This could be
6245 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6246 * in other functions.
6248 * We reset it to 'level' at the end of this function.
6250 sched_domains_numa_levels
= 0;
6252 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
6253 if (!sched_domains_numa_masks
)
6257 * Now for each level, construct a mask per node which contains all
6258 * cpus of nodes that are that many hops away from us.
6260 for (i
= 0; i
< level
; i
++) {
6261 sched_domains_numa_masks
[i
] =
6262 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
6263 if (!sched_domains_numa_masks
[i
])
6266 for (j
= 0; j
< nr_node_ids
; j
++) {
6267 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
6271 sched_domains_numa_masks
[i
][j
] = mask
;
6273 for (k
= 0; k
< nr_node_ids
; k
++) {
6274 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
6277 cpumask_or(mask
, mask
, cpumask_of_node(k
));
6282 /* Compute default topology size */
6283 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
6285 tl
= kzalloc((i
+ level
+ 1) *
6286 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
6291 * Copy the default topology bits..
6293 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
6294 tl
[i
] = sched_domain_topology
[i
];
6297 * .. and append 'j' levels of NUMA goodness.
6299 for (j
= 0; j
< level
; i
++, j
++) {
6300 tl
[i
] = (struct sched_domain_topology_level
){
6301 .mask
= sd_numa_mask
,
6302 .sd_flags
= cpu_numa_flags
,
6303 .flags
= SDTL_OVERLAP
,
6309 sched_domain_topology
= tl
;
6311 sched_domains_numa_levels
= level
;
6314 static void sched_domains_numa_masks_set(int cpu
)
6317 int node
= cpu_to_node(cpu
);
6319 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6320 for (j
= 0; j
< nr_node_ids
; j
++) {
6321 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
6322 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6327 static void sched_domains_numa_masks_clear(int cpu
)
6330 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
6331 for (j
= 0; j
< nr_node_ids
; j
++)
6332 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
6337 * Update sched_domains_numa_masks[level][node] array when new cpus
6340 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6341 unsigned long action
,
6344 int cpu
= (long)hcpu
;
6346 switch (action
& ~CPU_TASKS_FROZEN
) {
6348 sched_domains_numa_masks_set(cpu
);
6352 sched_domains_numa_masks_clear(cpu
);
6362 static inline void sched_init_numa(void)
6366 static int sched_domains_numa_masks_update(struct notifier_block
*nfb
,
6367 unsigned long action
,
6372 #endif /* CONFIG_NUMA */
6374 static int __sdt_alloc(const struct cpumask
*cpu_map
)
6376 struct sched_domain_topology_level
*tl
;
6379 for_each_sd_topology(tl
) {
6380 struct sd_data
*sdd
= &tl
->data
;
6382 sdd
->sd
= alloc_percpu(struct sched_domain
*);
6386 sdd
->sg
= alloc_percpu(struct sched_group
*);
6390 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
6394 for_each_cpu(j
, cpu_map
) {
6395 struct sched_domain
*sd
;
6396 struct sched_group
*sg
;
6397 struct sched_group_capacity
*sgc
;
6399 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
6400 GFP_KERNEL
, cpu_to_node(j
));
6404 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
6406 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6407 GFP_KERNEL
, cpu_to_node(j
));
6413 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
6415 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
6416 GFP_KERNEL
, cpu_to_node(j
));
6420 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
6427 static void __sdt_free(const struct cpumask
*cpu_map
)
6429 struct sched_domain_topology_level
*tl
;
6432 for_each_sd_topology(tl
) {
6433 struct sd_data
*sdd
= &tl
->data
;
6435 for_each_cpu(j
, cpu_map
) {
6436 struct sched_domain
*sd
;
6439 sd
= *per_cpu_ptr(sdd
->sd
, j
);
6440 if (sd
&& (sd
->flags
& SD_OVERLAP
))
6441 free_sched_groups(sd
->groups
, 0);
6442 kfree(*per_cpu_ptr(sdd
->sd
, j
));
6446 kfree(*per_cpu_ptr(sdd
->sg
, j
));
6448 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
6450 free_percpu(sdd
->sd
);
6452 free_percpu(sdd
->sg
);
6454 free_percpu(sdd
->sgc
);
6459 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
6460 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6461 struct sched_domain
*child
, int cpu
)
6463 struct sched_domain
*sd
= sd_init(tl
, cpu
);
6467 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
6469 sd
->level
= child
->level
+ 1;
6470 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
6474 set_domain_attribute(sd
, attr
);
6480 * Build sched domains for a given set of cpus and attach the sched domains
6481 * to the individual cpus
6483 static int build_sched_domains(const struct cpumask
*cpu_map
,
6484 struct sched_domain_attr
*attr
)
6486 enum s_alloc alloc_state
;
6487 struct sched_domain
*sd
;
6489 int i
, ret
= -ENOMEM
;
6491 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6492 if (alloc_state
!= sa_rootdomain
)
6495 /* Set up domains for cpus specified by the cpu_map. */
6496 for_each_cpu(i
, cpu_map
) {
6497 struct sched_domain_topology_level
*tl
;
6500 for_each_sd_topology(tl
) {
6501 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, i
);
6502 if (tl
== sched_domain_topology
)
6503 *per_cpu_ptr(d
.sd
, i
) = sd
;
6504 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
6505 sd
->flags
|= SD_OVERLAP
;
6506 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
6511 /* Build the groups for the domains */
6512 for_each_cpu(i
, cpu_map
) {
6513 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6514 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
6515 if (sd
->flags
& SD_OVERLAP
) {
6516 if (build_overlap_sched_groups(sd
, i
))
6519 if (build_sched_groups(sd
, i
))
6525 /* Calculate CPU capacity for physical packages and nodes */
6526 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
6527 if (!cpumask_test_cpu(i
, cpu_map
))
6530 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
6531 claim_allocations(i
, sd
);
6532 init_sched_groups_capacity(i
, sd
);
6536 /* Attach the domains */
6538 for_each_cpu(i
, cpu_map
) {
6539 sd
= *per_cpu_ptr(d
.sd
, i
);
6540 cpu_attach_domain(sd
, d
.rd
, i
);
6546 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
6550 static cpumask_var_t
*doms_cur
; /* current sched domains */
6551 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6552 static struct sched_domain_attr
*dattr_cur
;
6553 /* attribues of custom domains in 'doms_cur' */
6556 * Special case: If a kmalloc of a doms_cur partition (array of
6557 * cpumask) fails, then fallback to a single sched domain,
6558 * as determined by the single cpumask fallback_doms.
6560 static cpumask_var_t fallback_doms
;
6563 * arch_update_cpu_topology lets virtualized architectures update the
6564 * cpu core maps. It is supposed to return 1 if the topology changed
6565 * or 0 if it stayed the same.
6567 int __weak
arch_update_cpu_topology(void)
6572 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
6575 cpumask_var_t
*doms
;
6577 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
6580 for (i
= 0; i
< ndoms
; i
++) {
6581 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
6582 free_sched_domains(doms
, i
);
6589 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
6592 for (i
= 0; i
< ndoms
; i
++)
6593 free_cpumask_var(doms
[i
]);
6598 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6599 * For now this just excludes isolated cpus, but could be used to
6600 * exclude other special cases in the future.
6602 static int init_sched_domains(const struct cpumask
*cpu_map
)
6606 arch_update_cpu_topology();
6608 doms_cur
= alloc_sched_domains(ndoms_cur
);
6610 doms_cur
= &fallback_doms
;
6611 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
6612 err
= build_sched_domains(doms_cur
[0], NULL
);
6613 register_sched_domain_sysctl();
6619 * Detach sched domains from a group of cpus specified in cpu_map
6620 * These cpus will now be attached to the NULL domain
6622 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
6627 for_each_cpu(i
, cpu_map
)
6628 cpu_attach_domain(NULL
, &def_root_domain
, i
);
6632 /* handle null as "default" */
6633 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
6634 struct sched_domain_attr
*new, int idx_new
)
6636 struct sched_domain_attr tmp
;
6643 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
6644 new ? (new + idx_new
) : &tmp
,
6645 sizeof(struct sched_domain_attr
));
6649 * Partition sched domains as specified by the 'ndoms_new'
6650 * cpumasks in the array doms_new[] of cpumasks. This compares
6651 * doms_new[] to the current sched domain partitioning, doms_cur[].
6652 * It destroys each deleted domain and builds each new domain.
6654 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6655 * The masks don't intersect (don't overlap.) We should setup one
6656 * sched domain for each mask. CPUs not in any of the cpumasks will
6657 * not be load balanced. If the same cpumask appears both in the
6658 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6661 * The passed in 'doms_new' should be allocated using
6662 * alloc_sched_domains. This routine takes ownership of it and will
6663 * free_sched_domains it when done with it. If the caller failed the
6664 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6665 * and partition_sched_domains() will fallback to the single partition
6666 * 'fallback_doms', it also forces the domains to be rebuilt.
6668 * If doms_new == NULL it will be replaced with cpu_online_mask.
6669 * ndoms_new == 0 is a special case for destroying existing domains,
6670 * and it will not create the default domain.
6672 * Call with hotplug lock held
6674 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
6675 struct sched_domain_attr
*dattr_new
)
6680 mutex_lock(&sched_domains_mutex
);
6682 /* always unregister in case we don't destroy any domains */
6683 unregister_sched_domain_sysctl();
6685 /* Let architecture update cpu core mappings. */
6686 new_topology
= arch_update_cpu_topology();
6688 n
= doms_new
? ndoms_new
: 0;
6690 /* Destroy deleted domains */
6691 for (i
= 0; i
< ndoms_cur
; i
++) {
6692 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6693 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
6694 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
6697 /* no match - a current sched domain not in new doms_new[] */
6698 detach_destroy_domains(doms_cur
[i
]);
6704 if (doms_new
== NULL
) {
6706 doms_new
= &fallback_doms
;
6707 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
6708 WARN_ON_ONCE(dattr_new
);
6711 /* Build new domains */
6712 for (i
= 0; i
< ndoms_new
; i
++) {
6713 for (j
= 0; j
< n
&& !new_topology
; j
++) {
6714 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
6715 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
6718 /* no match - add a new doms_new */
6719 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
6724 /* Remember the new sched domains */
6725 if (doms_cur
!= &fallback_doms
)
6726 free_sched_domains(doms_cur
, ndoms_cur
);
6727 kfree(dattr_cur
); /* kfree(NULL) is safe */
6728 doms_cur
= doms_new
;
6729 dattr_cur
= dattr_new
;
6730 ndoms_cur
= ndoms_new
;
6732 register_sched_domain_sysctl();
6734 mutex_unlock(&sched_domains_mutex
);
6737 static int num_cpus_frozen
; /* used to mark begin/end of suspend/resume */
6740 * Update cpusets according to cpu_active mask. If cpusets are
6741 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6742 * around partition_sched_domains().
6744 * If we come here as part of a suspend/resume, don't touch cpusets because we
6745 * want to restore it back to its original state upon resume anyway.
6747 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
6751 case CPU_ONLINE_FROZEN
:
6752 case CPU_DOWN_FAILED_FROZEN
:
6755 * num_cpus_frozen tracks how many CPUs are involved in suspend
6756 * resume sequence. As long as this is not the last online
6757 * operation in the resume sequence, just build a single sched
6758 * domain, ignoring cpusets.
6761 if (likely(num_cpus_frozen
)) {
6762 partition_sched_domains(1, NULL
, NULL
);
6767 * This is the last CPU online operation. So fall through and
6768 * restore the original sched domains by considering the
6769 * cpuset configurations.
6773 case CPU_DOWN_FAILED
:
6774 cpuset_update_active_cpus(true);
6782 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
6786 case CPU_DOWN_PREPARE
:
6787 cpuset_update_active_cpus(false);
6789 case CPU_DOWN_PREPARE_FROZEN
:
6791 partition_sched_domains(1, NULL
, NULL
);
6799 void __init
sched_init_smp(void)
6801 cpumask_var_t non_isolated_cpus
;
6803 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
6804 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
6809 * There's no userspace yet to cause hotplug operations; hence all the
6810 * cpu masks are stable and all blatant races in the below code cannot
6813 mutex_lock(&sched_domains_mutex
);
6814 init_sched_domains(cpu_active_mask
);
6815 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
6816 if (cpumask_empty(non_isolated_cpus
))
6817 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
6818 mutex_unlock(&sched_domains_mutex
);
6820 hotcpu_notifier(sched_domains_numa_masks_update
, CPU_PRI_SCHED_ACTIVE
);
6821 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
6822 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
6826 /* Move init over to a non-isolated CPU */
6827 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
6829 sched_init_granularity();
6830 free_cpumask_var(non_isolated_cpus
);
6832 init_sched_rt_class();
6833 init_sched_dl_class();
6836 void __init
sched_init_smp(void)
6838 sched_init_granularity();
6840 #endif /* CONFIG_SMP */
6842 const_debug
unsigned int sysctl_timer_migration
= 1;
6844 int in_sched_functions(unsigned long addr
)
6846 return in_lock_functions(addr
) ||
6847 (addr
>= (unsigned long)__sched_text_start
6848 && addr
< (unsigned long)__sched_text_end
);
6851 #ifdef CONFIG_CGROUP_SCHED
6853 * Default task group.
6854 * Every task in system belongs to this group at bootup.
6856 struct task_group root_task_group
;
6857 LIST_HEAD(task_groups
);
6860 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
6862 void __init
sched_init(void)
6865 unsigned long alloc_size
= 0, ptr
;
6867 #ifdef CONFIG_FAIR_GROUP_SCHED
6868 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6870 #ifdef CONFIG_RT_GROUP_SCHED
6871 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
6873 #ifdef CONFIG_CPUMASK_OFFSTACK
6874 alloc_size
+= num_possible_cpus() * cpumask_size();
6877 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
6879 #ifdef CONFIG_FAIR_GROUP_SCHED
6880 root_task_group
.se
= (struct sched_entity
**)ptr
;
6881 ptr
+= nr_cpu_ids
* sizeof(void **);
6883 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
6884 ptr
+= nr_cpu_ids
* sizeof(void **);
6886 #endif /* CONFIG_FAIR_GROUP_SCHED */
6887 #ifdef CONFIG_RT_GROUP_SCHED
6888 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
6889 ptr
+= nr_cpu_ids
* sizeof(void **);
6891 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
6892 ptr
+= nr_cpu_ids
* sizeof(void **);
6894 #endif /* CONFIG_RT_GROUP_SCHED */
6895 #ifdef CONFIG_CPUMASK_OFFSTACK
6896 for_each_possible_cpu(i
) {
6897 per_cpu(load_balance_mask
, i
) = (void *)ptr
;
6898 ptr
+= cpumask_size();
6900 #endif /* CONFIG_CPUMASK_OFFSTACK */
6903 init_rt_bandwidth(&def_rt_bandwidth
,
6904 global_rt_period(), global_rt_runtime());
6905 init_dl_bandwidth(&def_dl_bandwidth
,
6906 global_rt_period(), global_rt_runtime());
6909 init_defrootdomain();
6912 #ifdef CONFIG_RT_GROUP_SCHED
6913 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
6914 global_rt_period(), global_rt_runtime());
6915 #endif /* CONFIG_RT_GROUP_SCHED */
6917 #ifdef CONFIG_CGROUP_SCHED
6918 list_add(&root_task_group
.list
, &task_groups
);
6919 INIT_LIST_HEAD(&root_task_group
.children
);
6920 INIT_LIST_HEAD(&root_task_group
.siblings
);
6921 autogroup_init(&init_task
);
6923 #endif /* CONFIG_CGROUP_SCHED */
6925 for_each_possible_cpu(i
) {
6929 raw_spin_lock_init(&rq
->lock
);
6931 rq
->calc_load_active
= 0;
6932 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
6933 init_cfs_rq(&rq
->cfs
);
6934 init_rt_rq(&rq
->rt
, rq
);
6935 init_dl_rq(&rq
->dl
, rq
);
6936 #ifdef CONFIG_FAIR_GROUP_SCHED
6937 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
6938 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6940 * How much cpu bandwidth does root_task_group get?
6942 * In case of task-groups formed thr' the cgroup filesystem, it
6943 * gets 100% of the cpu resources in the system. This overall
6944 * system cpu resource is divided among the tasks of
6945 * root_task_group and its child task-groups in a fair manner,
6946 * based on each entity's (task or task-group's) weight
6947 * (se->load.weight).
6949 * In other words, if root_task_group has 10 tasks of weight
6950 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6951 * then A0's share of the cpu resource is:
6953 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6955 * We achieve this by letting root_task_group's tasks sit
6956 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6958 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
6959 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
6960 #endif /* CONFIG_FAIR_GROUP_SCHED */
6962 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
6963 #ifdef CONFIG_RT_GROUP_SCHED
6964 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
6967 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6968 rq
->cpu_load
[j
] = 0;
6970 rq
->last_load_update_tick
= jiffies
;
6975 rq
->cpu_capacity
= SCHED_CAPACITY_SCALE
;
6976 rq
->post_schedule
= 0;
6977 rq
->active_balance
= 0;
6978 rq
->next_balance
= jiffies
;
6983 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
6984 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
6986 INIT_LIST_HEAD(&rq
->cfs_tasks
);
6988 rq_attach_root(rq
, &def_root_domain
);
6989 #ifdef CONFIG_NO_HZ_COMMON
6992 #ifdef CONFIG_NO_HZ_FULL
6993 rq
->last_sched_tick
= 0;
6997 atomic_set(&rq
->nr_iowait
, 0);
7000 set_load_weight(&init_task
);
7002 #ifdef CONFIG_PREEMPT_NOTIFIERS
7003 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7007 * The boot idle thread does lazy MMU switching as well:
7009 atomic_inc(&init_mm
.mm_count
);
7010 enter_lazy_tlb(&init_mm
, current
);
7013 * Make us the idle thread. Technically, schedule() should not be
7014 * called from this thread, however somewhere below it might be,
7015 * but because we are the idle thread, we just pick up running again
7016 * when this runqueue becomes "idle".
7018 init_idle(current
, smp_processor_id());
7020 calc_load_update
= jiffies
+ LOAD_FREQ
;
7023 * During early bootup we pretend to be a normal task:
7025 current
->sched_class
= &fair_sched_class
;
7028 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
7029 /* May be allocated at isolcpus cmdline parse time */
7030 if (cpu_isolated_map
== NULL
)
7031 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7032 idle_thread_set_boot_cpu();
7033 set_cpu_rq_start_time();
7035 init_sched_fair_class();
7037 scheduler_running
= 1;
7040 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7041 static inline int preempt_count_equals(int preempt_offset
)
7043 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7045 return (nested
== preempt_offset
);
7048 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7050 static unsigned long prev_jiffy
; /* ratelimiting */
7052 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7053 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
7054 !is_idle_task(current
)) ||
7055 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7057 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7059 prev_jiffy
= jiffies
;
7062 "BUG: sleeping function called from invalid context at %s:%d\n",
7065 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7066 in_atomic(), irqs_disabled(),
7067 current
->pid
, current
->comm
);
7069 debug_show_held_locks(current
);
7070 if (irqs_disabled())
7071 print_irqtrace_events(current
);
7072 #ifdef CONFIG_DEBUG_PREEMPT
7073 if (!preempt_count_equals(preempt_offset
)) {
7074 pr_err("Preemption disabled at:");
7075 print_ip_sym(current
->preempt_disable_ip
);
7081 EXPORT_SYMBOL(__might_sleep
);
7084 #ifdef CONFIG_MAGIC_SYSRQ
7085 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7087 const struct sched_class
*prev_class
= p
->sched_class
;
7088 struct sched_attr attr
= {
7089 .sched_policy
= SCHED_NORMAL
,
7091 int old_prio
= p
->prio
;
7096 dequeue_task(rq
, p
, 0);
7097 __setscheduler(rq
, p
, &attr
);
7099 enqueue_task(rq
, p
, 0);
7100 resched_task(rq
->curr
);
7103 check_class_changed(rq
, p
, prev_class
, old_prio
);
7106 void normalize_rt_tasks(void)
7108 struct task_struct
*g
, *p
;
7109 unsigned long flags
;
7112 read_lock_irqsave(&tasklist_lock
, flags
);
7113 do_each_thread(g
, p
) {
7115 * Only normalize user tasks:
7120 p
->se
.exec_start
= 0;
7121 #ifdef CONFIG_SCHEDSTATS
7122 p
->se
.statistics
.wait_start
= 0;
7123 p
->se
.statistics
.sleep_start
= 0;
7124 p
->se
.statistics
.block_start
= 0;
7127 if (!dl_task(p
) && !rt_task(p
)) {
7129 * Renice negative nice level userspace
7132 if (task_nice(p
) < 0 && p
->mm
)
7133 set_user_nice(p
, 0);
7137 raw_spin_lock(&p
->pi_lock
);
7138 rq
= __task_rq_lock(p
);
7140 normalize_task(rq
, p
);
7142 __task_rq_unlock(rq
);
7143 raw_spin_unlock(&p
->pi_lock
);
7144 } while_each_thread(g
, p
);
7146 read_unlock_irqrestore(&tasklist_lock
, flags
);
7149 #endif /* CONFIG_MAGIC_SYSRQ */
7151 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7153 * These functions are only useful for the IA64 MCA handling, or kdb.
7155 * They can only be called when the whole system has been
7156 * stopped - every CPU needs to be quiescent, and no scheduling
7157 * activity can take place. Using them for anything else would
7158 * be a serious bug, and as a result, they aren't even visible
7159 * under any other configuration.
7163 * curr_task - return the current task for a given cpu.
7164 * @cpu: the processor in question.
7166 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7168 * Return: The current task for @cpu.
7170 struct task_struct
*curr_task(int cpu
)
7172 return cpu_curr(cpu
);
7175 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7179 * set_curr_task - set the current task for a given cpu.
7180 * @cpu: the processor in question.
7181 * @p: the task pointer to set.
7183 * Description: This function must only be used when non-maskable interrupts
7184 * are serviced on a separate stack. It allows the architecture to switch the
7185 * notion of the current task on a cpu in a non-blocking manner. This function
7186 * must be called with all CPU's synchronized, and interrupts disabled, the
7187 * and caller must save the original value of the current task (see
7188 * curr_task() above) and restore that value before reenabling interrupts and
7189 * re-starting the system.
7191 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7193 void set_curr_task(int cpu
, struct task_struct
*p
)
7200 #ifdef CONFIG_CGROUP_SCHED
7201 /* task_group_lock serializes the addition/removal of task groups */
7202 static DEFINE_SPINLOCK(task_group_lock
);
7204 static void free_sched_group(struct task_group
*tg
)
7206 free_fair_sched_group(tg
);
7207 free_rt_sched_group(tg
);
7212 /* allocate runqueue etc for a new task group */
7213 struct task_group
*sched_create_group(struct task_group
*parent
)
7215 struct task_group
*tg
;
7217 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
7219 return ERR_PTR(-ENOMEM
);
7221 if (!alloc_fair_sched_group(tg
, parent
))
7224 if (!alloc_rt_sched_group(tg
, parent
))
7230 free_sched_group(tg
);
7231 return ERR_PTR(-ENOMEM
);
7234 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
7236 unsigned long flags
;
7238 spin_lock_irqsave(&task_group_lock
, flags
);
7239 list_add_rcu(&tg
->list
, &task_groups
);
7241 WARN_ON(!parent
); /* root should already exist */
7243 tg
->parent
= parent
;
7244 INIT_LIST_HEAD(&tg
->children
);
7245 list_add_rcu(&tg
->siblings
, &parent
->children
);
7246 spin_unlock_irqrestore(&task_group_lock
, flags
);
7249 /* rcu callback to free various structures associated with a task group */
7250 static void free_sched_group_rcu(struct rcu_head
*rhp
)
7252 /* now it should be safe to free those cfs_rqs */
7253 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
7256 /* Destroy runqueue etc associated with a task group */
7257 void sched_destroy_group(struct task_group
*tg
)
7259 /* wait for possible concurrent references to cfs_rqs complete */
7260 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
7263 void sched_offline_group(struct task_group
*tg
)
7265 unsigned long flags
;
7268 /* end participation in shares distribution */
7269 for_each_possible_cpu(i
)
7270 unregister_fair_sched_group(tg
, i
);
7272 spin_lock_irqsave(&task_group_lock
, flags
);
7273 list_del_rcu(&tg
->list
);
7274 list_del_rcu(&tg
->siblings
);
7275 spin_unlock_irqrestore(&task_group_lock
, flags
);
7278 /* change task's runqueue when it moves between groups.
7279 * The caller of this function should have put the task in its new group
7280 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7281 * reflect its new group.
7283 void sched_move_task(struct task_struct
*tsk
)
7285 struct task_group
*tg
;
7287 unsigned long flags
;
7290 rq
= task_rq_lock(tsk
, &flags
);
7292 running
= task_current(rq
, tsk
);
7296 dequeue_task(rq
, tsk
, 0);
7297 if (unlikely(running
))
7298 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7300 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
,
7301 lockdep_is_held(&tsk
->sighand
->siglock
)),
7302 struct task_group
, css
);
7303 tg
= autogroup_task_group(tsk
, tg
);
7304 tsk
->sched_task_group
= tg
;
7306 #ifdef CONFIG_FAIR_GROUP_SCHED
7307 if (tsk
->sched_class
->task_move_group
)
7308 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
7311 set_task_rq(tsk
, task_cpu(tsk
));
7313 if (unlikely(running
))
7314 tsk
->sched_class
->set_curr_task(rq
);
7316 enqueue_task(rq
, tsk
, 0);
7318 task_rq_unlock(rq
, tsk
, &flags
);
7320 #endif /* CONFIG_CGROUP_SCHED */
7322 #ifdef CONFIG_RT_GROUP_SCHED
7324 * Ensure that the real time constraints are schedulable.
7326 static DEFINE_MUTEX(rt_constraints_mutex
);
7328 /* Must be called with tasklist_lock held */
7329 static inline int tg_has_rt_tasks(struct task_group
*tg
)
7331 struct task_struct
*g
, *p
;
7333 do_each_thread(g
, p
) {
7334 if (rt_task(p
) && task_rq(p
)->rt
.tg
== tg
)
7336 } while_each_thread(g
, p
);
7341 struct rt_schedulable_data
{
7342 struct task_group
*tg
;
7347 static int tg_rt_schedulable(struct task_group
*tg
, void *data
)
7349 struct rt_schedulable_data
*d
= data
;
7350 struct task_group
*child
;
7351 unsigned long total
, sum
= 0;
7352 u64 period
, runtime
;
7354 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7355 runtime
= tg
->rt_bandwidth
.rt_runtime
;
7358 period
= d
->rt_period
;
7359 runtime
= d
->rt_runtime
;
7363 * Cannot have more runtime than the period.
7365 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
7369 * Ensure we don't starve existing RT tasks.
7371 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
7374 total
= to_ratio(period
, runtime
);
7377 * Nobody can have more than the global setting allows.
7379 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
7383 * The sum of our children's runtime should not exceed our own.
7385 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
7386 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
7387 runtime
= child
->rt_bandwidth
.rt_runtime
;
7389 if (child
== d
->tg
) {
7390 period
= d
->rt_period
;
7391 runtime
= d
->rt_runtime
;
7394 sum
+= to_ratio(period
, runtime
);
7403 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
7407 struct rt_schedulable_data data
= {
7409 .rt_period
= period
,
7410 .rt_runtime
= runtime
,
7414 ret
= walk_tg_tree(tg_rt_schedulable
, tg_nop
, &data
);
7420 static int tg_set_rt_bandwidth(struct task_group
*tg
,
7421 u64 rt_period
, u64 rt_runtime
)
7425 mutex_lock(&rt_constraints_mutex
);
7426 read_lock(&tasklist_lock
);
7427 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
7431 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7432 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
7433 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
7435 for_each_possible_cpu(i
) {
7436 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
7438 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7439 rt_rq
->rt_runtime
= rt_runtime
;
7440 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7442 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
7444 read_unlock(&tasklist_lock
);
7445 mutex_unlock(&rt_constraints_mutex
);
7450 static int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
7452 u64 rt_runtime
, rt_period
;
7454 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7455 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
7456 if (rt_runtime_us
< 0)
7457 rt_runtime
= RUNTIME_INF
;
7459 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7462 static long sched_group_rt_runtime(struct task_group
*tg
)
7466 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
7469 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
7470 do_div(rt_runtime_us
, NSEC_PER_USEC
);
7471 return rt_runtime_us
;
7474 static int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
7476 u64 rt_runtime
, rt_period
;
7478 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
7479 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7484 return tg_set_rt_bandwidth(tg
, rt_period
, rt_runtime
);
7487 static long sched_group_rt_period(struct task_group
*tg
)
7491 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
7492 do_div(rt_period_us
, NSEC_PER_USEC
);
7493 return rt_period_us
;
7495 #endif /* CONFIG_RT_GROUP_SCHED */
7497 #ifdef CONFIG_RT_GROUP_SCHED
7498 static int sched_rt_global_constraints(void)
7502 mutex_lock(&rt_constraints_mutex
);
7503 read_lock(&tasklist_lock
);
7504 ret
= __rt_schedulable(NULL
, 0, 0);
7505 read_unlock(&tasklist_lock
);
7506 mutex_unlock(&rt_constraints_mutex
);
7511 static int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
7513 /* Don't accept realtime tasks when there is no way for them to run */
7514 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
7520 #else /* !CONFIG_RT_GROUP_SCHED */
7521 static int sched_rt_global_constraints(void)
7523 unsigned long flags
;
7526 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7527 for_each_possible_cpu(i
) {
7528 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
7530 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
7531 rt_rq
->rt_runtime
= global_rt_runtime();
7532 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
7534 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
7538 #endif /* CONFIG_RT_GROUP_SCHED */
7540 static int sched_dl_global_constraints(void)
7542 u64 runtime
= global_rt_runtime();
7543 u64 period
= global_rt_period();
7544 u64 new_bw
= to_ratio(period
, runtime
);
7546 unsigned long flags
;
7549 * Here we want to check the bandwidth not being set to some
7550 * value smaller than the currently allocated bandwidth in
7551 * any of the root_domains.
7553 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7554 * cycling on root_domains... Discussion on different/better
7555 * solutions is welcome!
7557 for_each_possible_cpu(cpu
) {
7558 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
7560 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7561 if (new_bw
< dl_b
->total_bw
)
7563 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7572 static void sched_dl_do_global(void)
7576 unsigned long flags
;
7578 def_dl_bandwidth
.dl_period
= global_rt_period();
7579 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
7581 if (global_rt_runtime() != RUNTIME_INF
)
7582 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
7585 * FIXME: As above...
7587 for_each_possible_cpu(cpu
) {
7588 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
7590 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
7592 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
7596 static int sched_rt_global_validate(void)
7598 if (sysctl_sched_rt_period
<= 0)
7601 if ((sysctl_sched_rt_runtime
!= RUNTIME_INF
) &&
7602 (sysctl_sched_rt_runtime
> sysctl_sched_rt_period
))
7608 static void sched_rt_do_global(void)
7610 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
7611 def_rt_bandwidth
.rt_period
= ns_to_ktime(global_rt_period());
7614 int sched_rt_handler(struct ctl_table
*table
, int write
,
7615 void __user
*buffer
, size_t *lenp
,
7618 int old_period
, old_runtime
;
7619 static DEFINE_MUTEX(mutex
);
7623 old_period
= sysctl_sched_rt_period
;
7624 old_runtime
= sysctl_sched_rt_runtime
;
7626 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7628 if (!ret
&& write
) {
7629 ret
= sched_rt_global_validate();
7633 ret
= sched_rt_global_constraints();
7637 ret
= sched_dl_global_constraints();
7641 sched_rt_do_global();
7642 sched_dl_do_global();
7646 sysctl_sched_rt_period
= old_period
;
7647 sysctl_sched_rt_runtime
= old_runtime
;
7649 mutex_unlock(&mutex
);
7654 int sched_rr_handler(struct ctl_table
*table
, int write
,
7655 void __user
*buffer
, size_t *lenp
,
7659 static DEFINE_MUTEX(mutex
);
7662 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
7663 /* make sure that internally we keep jiffies */
7664 /* also, writing zero resets timeslice to default */
7665 if (!ret
&& write
) {
7666 sched_rr_timeslice
= sched_rr_timeslice
<= 0 ?
7667 RR_TIMESLICE
: msecs_to_jiffies(sched_rr_timeslice
);
7669 mutex_unlock(&mutex
);
7673 #ifdef CONFIG_CGROUP_SCHED
7675 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
7677 return css
? container_of(css
, struct task_group
, css
) : NULL
;
7680 static struct cgroup_subsys_state
*
7681 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
7683 struct task_group
*parent
= css_tg(parent_css
);
7684 struct task_group
*tg
;
7687 /* This is early initialization for the top cgroup */
7688 return &root_task_group
.css
;
7691 tg
= sched_create_group(parent
);
7693 return ERR_PTR(-ENOMEM
);
7698 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
7700 struct task_group
*tg
= css_tg(css
);
7701 struct task_group
*parent
= css_tg(css
->parent
);
7704 sched_online_group(tg
, parent
);
7708 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
7710 struct task_group
*tg
= css_tg(css
);
7712 sched_destroy_group(tg
);
7715 static void cpu_cgroup_css_offline(struct cgroup_subsys_state
*css
)
7717 struct task_group
*tg
= css_tg(css
);
7719 sched_offline_group(tg
);
7722 static int cpu_cgroup_can_attach(struct cgroup_subsys_state
*css
,
7723 struct cgroup_taskset
*tset
)
7725 struct task_struct
*task
;
7727 cgroup_taskset_for_each(task
, tset
) {
7728 #ifdef CONFIG_RT_GROUP_SCHED
7729 if (!sched_rt_can_attach(css_tg(css
), task
))
7732 /* We don't support RT-tasks being in separate groups */
7733 if (task
->sched_class
!= &fair_sched_class
)
7740 static void cpu_cgroup_attach(struct cgroup_subsys_state
*css
,
7741 struct cgroup_taskset
*tset
)
7743 struct task_struct
*task
;
7745 cgroup_taskset_for_each(task
, tset
)
7746 sched_move_task(task
);
7749 static void cpu_cgroup_exit(struct cgroup_subsys_state
*css
,
7750 struct cgroup_subsys_state
*old_css
,
7751 struct task_struct
*task
)
7754 * cgroup_exit() is called in the copy_process() failure path.
7755 * Ignore this case since the task hasn't ran yet, this avoids
7756 * trying to poke a half freed task state from generic code.
7758 if (!(task
->flags
& PF_EXITING
))
7761 sched_move_task(task
);
7764 #ifdef CONFIG_FAIR_GROUP_SCHED
7765 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
7766 struct cftype
*cftype
, u64 shareval
)
7768 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
7771 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
7774 struct task_group
*tg
= css_tg(css
);
7776 return (u64
) scale_load_down(tg
->shares
);
7779 #ifdef CONFIG_CFS_BANDWIDTH
7780 static DEFINE_MUTEX(cfs_constraints_mutex
);
7782 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
7783 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
7785 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
7787 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
7789 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
7790 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7792 if (tg
== &root_task_group
)
7796 * Ensure we have at some amount of bandwidth every period. This is
7797 * to prevent reaching a state of large arrears when throttled via
7798 * entity_tick() resulting in prolonged exit starvation.
7800 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
7804 * Likewise, bound things on the otherside by preventing insane quota
7805 * periods. This also allows us to normalize in computing quota
7808 if (period
> max_cfs_quota_period
)
7811 mutex_lock(&cfs_constraints_mutex
);
7812 ret
= __cfs_schedulable(tg
, period
, quota
);
7816 runtime_enabled
= quota
!= RUNTIME_INF
;
7817 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
7819 * If we need to toggle cfs_bandwidth_used, off->on must occur
7820 * before making related changes, and on->off must occur afterwards
7822 if (runtime_enabled
&& !runtime_was_enabled
)
7823 cfs_bandwidth_usage_inc();
7824 raw_spin_lock_irq(&cfs_b
->lock
);
7825 cfs_b
->period
= ns_to_ktime(period
);
7826 cfs_b
->quota
= quota
;
7828 __refill_cfs_bandwidth_runtime(cfs_b
);
7829 /* restart the period timer (if active) to handle new period expiry */
7830 if (runtime_enabled
&& cfs_b
->timer_active
) {
7831 /* force a reprogram */
7832 __start_cfs_bandwidth(cfs_b
, true);
7834 raw_spin_unlock_irq(&cfs_b
->lock
);
7836 for_each_possible_cpu(i
) {
7837 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
7838 struct rq
*rq
= cfs_rq
->rq
;
7840 raw_spin_lock_irq(&rq
->lock
);
7841 cfs_rq
->runtime_enabled
= runtime_enabled
;
7842 cfs_rq
->runtime_remaining
= 0;
7844 if (cfs_rq
->throttled
)
7845 unthrottle_cfs_rq(cfs_rq
);
7846 raw_spin_unlock_irq(&rq
->lock
);
7848 if (runtime_was_enabled
&& !runtime_enabled
)
7849 cfs_bandwidth_usage_dec();
7851 mutex_unlock(&cfs_constraints_mutex
);
7856 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
7860 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7861 if (cfs_quota_us
< 0)
7862 quota
= RUNTIME_INF
;
7864 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
7866 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7869 long tg_get_cfs_quota(struct task_group
*tg
)
7873 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
7876 quota_us
= tg
->cfs_bandwidth
.quota
;
7877 do_div(quota_us
, NSEC_PER_USEC
);
7882 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
7886 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
7887 quota
= tg
->cfs_bandwidth
.quota
;
7889 return tg_set_cfs_bandwidth(tg
, period
, quota
);
7892 long tg_get_cfs_period(struct task_group
*tg
)
7896 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
7897 do_div(cfs_period_us
, NSEC_PER_USEC
);
7899 return cfs_period_us
;
7902 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
7905 return tg_get_cfs_quota(css_tg(css
));
7908 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
7909 struct cftype
*cftype
, s64 cfs_quota_us
)
7911 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
7914 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
7917 return tg_get_cfs_period(css_tg(css
));
7920 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
7921 struct cftype
*cftype
, u64 cfs_period_us
)
7923 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
7926 struct cfs_schedulable_data
{
7927 struct task_group
*tg
;
7932 * normalize group quota/period to be quota/max_period
7933 * note: units are usecs
7935 static u64
normalize_cfs_quota(struct task_group
*tg
,
7936 struct cfs_schedulable_data
*d
)
7944 period
= tg_get_cfs_period(tg
);
7945 quota
= tg_get_cfs_quota(tg
);
7948 /* note: these should typically be equivalent */
7949 if (quota
== RUNTIME_INF
|| quota
== -1)
7952 return to_ratio(period
, quota
);
7955 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
7957 struct cfs_schedulable_data
*d
= data
;
7958 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
7959 s64 quota
= 0, parent_quota
= -1;
7962 quota
= RUNTIME_INF
;
7964 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
7966 quota
= normalize_cfs_quota(tg
, d
);
7967 parent_quota
= parent_b
->hierarchal_quota
;
7970 * ensure max(child_quota) <= parent_quota, inherit when no
7973 if (quota
== RUNTIME_INF
)
7974 quota
= parent_quota
;
7975 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
7978 cfs_b
->hierarchal_quota
= quota
;
7983 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
7986 struct cfs_schedulable_data data
= {
7992 if (quota
!= RUNTIME_INF
) {
7993 do_div(data
.period
, NSEC_PER_USEC
);
7994 do_div(data
.quota
, NSEC_PER_USEC
);
7998 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
8004 static int cpu_stats_show(struct seq_file
*sf
, void *v
)
8006 struct task_group
*tg
= css_tg(seq_css(sf
));
8007 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
8009 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
8010 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
8011 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
8015 #endif /* CONFIG_CFS_BANDWIDTH */
8016 #endif /* CONFIG_FAIR_GROUP_SCHED */
8018 #ifdef CONFIG_RT_GROUP_SCHED
8019 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
8020 struct cftype
*cft
, s64 val
)
8022 return sched_group_set_rt_runtime(css_tg(css
), val
);
8025 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
8028 return sched_group_rt_runtime(css_tg(css
));
8031 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
8032 struct cftype
*cftype
, u64 rt_period_us
)
8034 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
8037 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
8040 return sched_group_rt_period(css_tg(css
));
8042 #endif /* CONFIG_RT_GROUP_SCHED */
8044 static struct cftype cpu_files
[] = {
8045 #ifdef CONFIG_FAIR_GROUP_SCHED
8048 .read_u64
= cpu_shares_read_u64
,
8049 .write_u64
= cpu_shares_write_u64
,
8052 #ifdef CONFIG_CFS_BANDWIDTH
8054 .name
= "cfs_quota_us",
8055 .read_s64
= cpu_cfs_quota_read_s64
,
8056 .write_s64
= cpu_cfs_quota_write_s64
,
8059 .name
= "cfs_period_us",
8060 .read_u64
= cpu_cfs_period_read_u64
,
8061 .write_u64
= cpu_cfs_period_write_u64
,
8065 .seq_show
= cpu_stats_show
,
8068 #ifdef CONFIG_RT_GROUP_SCHED
8070 .name
= "rt_runtime_us",
8071 .read_s64
= cpu_rt_runtime_read
,
8072 .write_s64
= cpu_rt_runtime_write
,
8075 .name
= "rt_period_us",
8076 .read_u64
= cpu_rt_period_read_uint
,
8077 .write_u64
= cpu_rt_period_write_uint
,
8083 struct cgroup_subsys cpu_cgrp_subsys
= {
8084 .css_alloc
= cpu_cgroup_css_alloc
,
8085 .css_free
= cpu_cgroup_css_free
,
8086 .css_online
= cpu_cgroup_css_online
,
8087 .css_offline
= cpu_cgroup_css_offline
,
8088 .can_attach
= cpu_cgroup_can_attach
,
8089 .attach
= cpu_cgroup_attach
,
8090 .exit
= cpu_cgroup_exit
,
8091 .base_cftypes
= cpu_files
,
8095 #endif /* CONFIG_CGROUP_SCHED */
8097 void dump_cpu_task(int cpu
)
8099 pr_info("Task dump for CPU %d:\n", cpu
);
8100 sched_show_task(cpu_curr(cpu
));