2 * linux/mm/memory_hotplug.c
7 #include <linux/stddef.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/highmem.h>
22 #include <linux/vmalloc.h>
23 #include <linux/ioport.h>
24 #include <linux/delay.h>
25 #include <linux/migrate.h>
26 #include <linux/page-isolation.h>
27 #include <linux/pfn.h>
28 #include <linux/suspend.h>
29 #include <linux/mm_inline.h>
30 #include <linux/firmware-map.h>
31 #include <linux/stop_machine.h>
32 #include <linux/hugetlb.h>
33 #include <linux/memblock.h>
35 #include <asm/tlbflush.h>
40 * online_page_callback contains pointer to current page onlining function.
41 * Initially it is generic_online_page(). If it is required it could be
42 * changed by calling set_online_page_callback() for callback registration
43 * and restore_online_page_callback() for generic callback restore.
46 static void generic_online_page(struct page
*page
);
48 static online_page_callback_t online_page_callback
= generic_online_page
;
49 static DEFINE_MUTEX(online_page_callback_lock
);
51 /* The same as the cpu_hotplug lock, but for memory hotplug. */
53 struct task_struct
*active_writer
;
54 struct mutex lock
; /* Synchronizes accesses to refcount, */
56 * Also blocks the new readers during
57 * an ongoing mem hotplug operation.
61 #ifdef CONFIG_DEBUG_LOCK_ALLOC
62 struct lockdep_map dep_map
;
65 .active_writer
= NULL
,
66 .lock
= __MUTEX_INITIALIZER(mem_hotplug
.lock
),
68 #ifdef CONFIG_DEBUG_LOCK_ALLOC
69 .dep_map
= {.name
= "mem_hotplug.lock" },
73 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
74 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
75 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
76 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
78 void get_online_mems(void)
81 if (mem_hotplug
.active_writer
== current
)
83 memhp_lock_acquire_read();
84 mutex_lock(&mem_hotplug
.lock
);
85 mem_hotplug
.refcount
++;
86 mutex_unlock(&mem_hotplug
.lock
);
90 void put_online_mems(void)
92 if (mem_hotplug
.active_writer
== current
)
94 mutex_lock(&mem_hotplug
.lock
);
96 if (WARN_ON(!mem_hotplug
.refcount
))
97 mem_hotplug
.refcount
++; /* try to fix things up */
99 if (!--mem_hotplug
.refcount
&& unlikely(mem_hotplug
.active_writer
))
100 wake_up_process(mem_hotplug
.active_writer
);
101 mutex_unlock(&mem_hotplug
.lock
);
102 memhp_lock_release();
106 static void mem_hotplug_begin(void)
108 mem_hotplug
.active_writer
= current
;
110 memhp_lock_acquire();
112 mutex_lock(&mem_hotplug
.lock
);
113 if (likely(!mem_hotplug
.refcount
))
115 __set_current_state(TASK_UNINTERRUPTIBLE
);
116 mutex_unlock(&mem_hotplug
.lock
);
121 static void mem_hotplug_done(void)
123 mem_hotplug
.active_writer
= NULL
;
124 mutex_unlock(&mem_hotplug
.lock
);
125 memhp_lock_release();
128 /* add this memory to iomem resource */
129 static struct resource
*register_memory_resource(u64 start
, u64 size
)
131 struct resource
*res
;
132 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
135 res
->name
= "System RAM";
137 res
->end
= start
+ size
- 1;
138 res
->flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
139 if (request_resource(&iomem_resource
, res
) < 0) {
140 pr_debug("System RAM resource %pR cannot be added\n", res
);
147 static void release_memory_resource(struct resource
*res
)
151 release_resource(res
);
156 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
157 void get_page_bootmem(unsigned long info
, struct page
*page
,
160 page
->lru
.next
= (struct list_head
*) type
;
161 SetPagePrivate(page
);
162 set_page_private(page
, info
);
163 atomic_inc(&page
->_count
);
166 void put_page_bootmem(struct page
*page
)
170 type
= (unsigned long) page
->lru
.next
;
171 BUG_ON(type
< MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE
||
172 type
> MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE
);
174 if (atomic_dec_return(&page
->_count
) == 1) {
175 ClearPagePrivate(page
);
176 set_page_private(page
, 0);
177 INIT_LIST_HEAD(&page
->lru
);
178 free_reserved_page(page
);
182 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
183 #ifndef CONFIG_SPARSEMEM_VMEMMAP
184 static void register_page_bootmem_info_section(unsigned long start_pfn
)
186 unsigned long *usemap
, mapsize
, section_nr
, i
;
187 struct mem_section
*ms
;
188 struct page
*page
, *memmap
;
190 section_nr
= pfn_to_section_nr(start_pfn
);
191 ms
= __nr_to_section(section_nr
);
193 /* Get section's memmap address */
194 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
197 * Get page for the memmap's phys address
198 * XXX: need more consideration for sparse_vmemmap...
200 page
= virt_to_page(memmap
);
201 mapsize
= sizeof(struct page
) * PAGES_PER_SECTION
;
202 mapsize
= PAGE_ALIGN(mapsize
) >> PAGE_SHIFT
;
204 /* remember memmap's page */
205 for (i
= 0; i
< mapsize
; i
++, page
++)
206 get_page_bootmem(section_nr
, page
, SECTION_INFO
);
208 usemap
= __nr_to_section(section_nr
)->pageblock_flags
;
209 page
= virt_to_page(usemap
);
211 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
213 for (i
= 0; i
< mapsize
; i
++, page
++)
214 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
217 #else /* CONFIG_SPARSEMEM_VMEMMAP */
218 static void register_page_bootmem_info_section(unsigned long start_pfn
)
220 unsigned long *usemap
, mapsize
, section_nr
, i
;
221 struct mem_section
*ms
;
222 struct page
*page
, *memmap
;
224 if (!pfn_valid(start_pfn
))
227 section_nr
= pfn_to_section_nr(start_pfn
);
228 ms
= __nr_to_section(section_nr
);
230 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
232 register_page_bootmem_memmap(section_nr
, memmap
, PAGES_PER_SECTION
);
234 usemap
= __nr_to_section(section_nr
)->pageblock_flags
;
235 page
= virt_to_page(usemap
);
237 mapsize
= PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT
;
239 for (i
= 0; i
< mapsize
; i
++, page
++)
240 get_page_bootmem(section_nr
, page
, MIX_SECTION_INFO
);
242 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
244 void register_page_bootmem_info_node(struct pglist_data
*pgdat
)
246 unsigned long i
, pfn
, end_pfn
, nr_pages
;
247 int node
= pgdat
->node_id
;
251 nr_pages
= PAGE_ALIGN(sizeof(struct pglist_data
)) >> PAGE_SHIFT
;
252 page
= virt_to_page(pgdat
);
254 for (i
= 0; i
< nr_pages
; i
++, page
++)
255 get_page_bootmem(node
, page
, NODE_INFO
);
257 zone
= &pgdat
->node_zones
[0];
258 for (; zone
< pgdat
->node_zones
+ MAX_NR_ZONES
- 1; zone
++) {
259 if (zone_is_initialized(zone
)) {
260 nr_pages
= zone
->wait_table_hash_nr_entries
261 * sizeof(wait_queue_head_t
);
262 nr_pages
= PAGE_ALIGN(nr_pages
) >> PAGE_SHIFT
;
263 page
= virt_to_page(zone
->wait_table
);
265 for (i
= 0; i
< nr_pages
; i
++, page
++)
266 get_page_bootmem(node
, page
, NODE_INFO
);
270 pfn
= pgdat
->node_start_pfn
;
271 end_pfn
= pgdat_end_pfn(pgdat
);
273 /* register section info */
274 for (; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
276 * Some platforms can assign the same pfn to multiple nodes - on
277 * node0 as well as nodeN. To avoid registering a pfn against
278 * multiple nodes we check that this pfn does not already
279 * reside in some other nodes.
281 if (pfn_valid(pfn
) && (pfn_to_nid(pfn
) == node
))
282 register_page_bootmem_info_section(pfn
);
285 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
287 static void grow_zone_span(struct zone
*zone
, unsigned long start_pfn
,
288 unsigned long end_pfn
)
290 unsigned long old_zone_end_pfn
;
292 zone_span_writelock(zone
);
294 old_zone_end_pfn
= zone_end_pfn(zone
);
295 if (zone_is_empty(zone
) || start_pfn
< zone
->zone_start_pfn
)
296 zone
->zone_start_pfn
= start_pfn
;
298 zone
->spanned_pages
= max(old_zone_end_pfn
, end_pfn
) -
299 zone
->zone_start_pfn
;
301 zone_span_writeunlock(zone
);
304 static void resize_zone(struct zone
*zone
, unsigned long start_pfn
,
305 unsigned long end_pfn
)
307 zone_span_writelock(zone
);
309 if (end_pfn
- start_pfn
) {
310 zone
->zone_start_pfn
= start_pfn
;
311 zone
->spanned_pages
= end_pfn
- start_pfn
;
314 * make it consist as free_area_init_core(),
315 * if spanned_pages = 0, then keep start_pfn = 0
317 zone
->zone_start_pfn
= 0;
318 zone
->spanned_pages
= 0;
321 zone_span_writeunlock(zone
);
324 static void fix_zone_id(struct zone
*zone
, unsigned long start_pfn
,
325 unsigned long end_pfn
)
327 enum zone_type zid
= zone_idx(zone
);
328 int nid
= zone
->zone_pgdat
->node_id
;
331 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
332 set_page_links(pfn_to_page(pfn
), zid
, nid
, pfn
);
335 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
336 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
337 static int __ref
ensure_zone_is_initialized(struct zone
*zone
,
338 unsigned long start_pfn
, unsigned long num_pages
)
340 if (!zone_is_initialized(zone
))
341 return init_currently_empty_zone(zone
, start_pfn
, num_pages
,
346 static int __meminit
move_pfn_range_left(struct zone
*z1
, struct zone
*z2
,
347 unsigned long start_pfn
, unsigned long end_pfn
)
351 unsigned long z1_start_pfn
;
353 ret
= ensure_zone_is_initialized(z1
, start_pfn
, end_pfn
- start_pfn
);
357 pgdat_resize_lock(z1
->zone_pgdat
, &flags
);
359 /* can't move pfns which are higher than @z2 */
360 if (end_pfn
> zone_end_pfn(z2
))
362 /* the move out part must be at the left most of @z2 */
363 if (start_pfn
> z2
->zone_start_pfn
)
365 /* must included/overlap */
366 if (end_pfn
<= z2
->zone_start_pfn
)
369 /* use start_pfn for z1's start_pfn if z1 is empty */
370 if (!zone_is_empty(z1
))
371 z1_start_pfn
= z1
->zone_start_pfn
;
373 z1_start_pfn
= start_pfn
;
375 resize_zone(z1
, z1_start_pfn
, end_pfn
);
376 resize_zone(z2
, end_pfn
, zone_end_pfn(z2
));
378 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
380 fix_zone_id(z1
, start_pfn
, end_pfn
);
384 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
388 static int __meminit
move_pfn_range_right(struct zone
*z1
, struct zone
*z2
,
389 unsigned long start_pfn
, unsigned long end_pfn
)
393 unsigned long z2_end_pfn
;
395 ret
= ensure_zone_is_initialized(z2
, start_pfn
, end_pfn
- start_pfn
);
399 pgdat_resize_lock(z1
->zone_pgdat
, &flags
);
401 /* can't move pfns which are lower than @z1 */
402 if (z1
->zone_start_pfn
> start_pfn
)
404 /* the move out part mast at the right most of @z1 */
405 if (zone_end_pfn(z1
) > end_pfn
)
407 /* must included/overlap */
408 if (start_pfn
>= zone_end_pfn(z1
))
411 /* use end_pfn for z2's end_pfn if z2 is empty */
412 if (!zone_is_empty(z2
))
413 z2_end_pfn
= zone_end_pfn(z2
);
415 z2_end_pfn
= end_pfn
;
417 resize_zone(z1
, z1
->zone_start_pfn
, start_pfn
);
418 resize_zone(z2
, start_pfn
, z2_end_pfn
);
420 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
422 fix_zone_id(z2
, start_pfn
, end_pfn
);
426 pgdat_resize_unlock(z1
->zone_pgdat
, &flags
);
430 static void grow_pgdat_span(struct pglist_data
*pgdat
, unsigned long start_pfn
,
431 unsigned long end_pfn
)
433 unsigned long old_pgdat_end_pfn
= pgdat_end_pfn(pgdat
);
435 if (!pgdat
->node_spanned_pages
|| start_pfn
< pgdat
->node_start_pfn
)
436 pgdat
->node_start_pfn
= start_pfn
;
438 pgdat
->node_spanned_pages
= max(old_pgdat_end_pfn
, end_pfn
) -
439 pgdat
->node_start_pfn
;
442 static int __meminit
__add_zone(struct zone
*zone
, unsigned long phys_start_pfn
)
444 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
445 int nr_pages
= PAGES_PER_SECTION
;
446 int nid
= pgdat
->node_id
;
451 zone_type
= zone
- pgdat
->node_zones
;
452 ret
= ensure_zone_is_initialized(zone
, phys_start_pfn
, nr_pages
);
456 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
457 grow_zone_span(zone
, phys_start_pfn
, phys_start_pfn
+ nr_pages
);
458 grow_pgdat_span(zone
->zone_pgdat
, phys_start_pfn
,
459 phys_start_pfn
+ nr_pages
);
460 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
461 memmap_init_zone(nr_pages
, nid
, zone_type
,
462 phys_start_pfn
, MEMMAP_HOTPLUG
);
466 static int __meminit
__add_section(int nid
, struct zone
*zone
,
467 unsigned long phys_start_pfn
)
471 if (pfn_valid(phys_start_pfn
))
474 ret
= sparse_add_one_section(zone
, phys_start_pfn
);
479 ret
= __add_zone(zone
, phys_start_pfn
);
484 return register_new_memory(nid
, __pfn_to_section(phys_start_pfn
));
488 * Reasonably generic function for adding memory. It is
489 * expected that archs that support memory hotplug will
490 * call this function after deciding the zone to which to
493 int __ref
__add_pages(int nid
, struct zone
*zone
, unsigned long phys_start_pfn
,
494 unsigned long nr_pages
)
498 int start_sec
, end_sec
;
499 /* during initialize mem_map, align hot-added range to section */
500 start_sec
= pfn_to_section_nr(phys_start_pfn
);
501 end_sec
= pfn_to_section_nr(phys_start_pfn
+ nr_pages
- 1);
503 for (i
= start_sec
; i
<= end_sec
; i
++) {
504 err
= __add_section(nid
, zone
, i
<< PFN_SECTION_SHIFT
);
507 * EEXIST is finally dealt with by ioresource collision
508 * check. see add_memory() => register_memory_resource()
509 * Warning will be printed if there is collision.
511 if (err
&& (err
!= -EEXIST
))
518 EXPORT_SYMBOL_GPL(__add_pages
);
520 #ifdef CONFIG_MEMORY_HOTREMOVE
521 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
522 static int find_smallest_section_pfn(int nid
, struct zone
*zone
,
523 unsigned long start_pfn
,
524 unsigned long end_pfn
)
526 struct mem_section
*ms
;
528 for (; start_pfn
< end_pfn
; start_pfn
+= PAGES_PER_SECTION
) {
529 ms
= __pfn_to_section(start_pfn
);
531 if (unlikely(!valid_section(ms
)))
534 if (unlikely(pfn_to_nid(start_pfn
) != nid
))
537 if (zone
&& zone
!= page_zone(pfn_to_page(start_pfn
)))
546 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
547 static int find_biggest_section_pfn(int nid
, struct zone
*zone
,
548 unsigned long start_pfn
,
549 unsigned long end_pfn
)
551 struct mem_section
*ms
;
554 /* pfn is the end pfn of a memory section. */
556 for (; pfn
>= start_pfn
; pfn
-= PAGES_PER_SECTION
) {
557 ms
= __pfn_to_section(pfn
);
559 if (unlikely(!valid_section(ms
)))
562 if (unlikely(pfn_to_nid(pfn
) != nid
))
565 if (zone
&& zone
!= page_zone(pfn_to_page(pfn
)))
574 static void shrink_zone_span(struct zone
*zone
, unsigned long start_pfn
,
575 unsigned long end_pfn
)
577 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
578 unsigned long z
= zone_end_pfn(zone
); /* zone_end_pfn namespace clash */
579 unsigned long zone_end_pfn
= z
;
581 struct mem_section
*ms
;
582 int nid
= zone_to_nid(zone
);
584 zone_span_writelock(zone
);
585 if (zone_start_pfn
== start_pfn
) {
587 * If the section is smallest section in the zone, it need
588 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
589 * In this case, we find second smallest valid mem_section
590 * for shrinking zone.
592 pfn
= find_smallest_section_pfn(nid
, zone
, end_pfn
,
595 zone
->zone_start_pfn
= pfn
;
596 zone
->spanned_pages
= zone_end_pfn
- pfn
;
598 } else if (zone_end_pfn
== end_pfn
) {
600 * If the section is biggest section in the zone, it need
601 * shrink zone->spanned_pages.
602 * In this case, we find second biggest valid mem_section for
605 pfn
= find_biggest_section_pfn(nid
, zone
, zone_start_pfn
,
608 zone
->spanned_pages
= pfn
- zone_start_pfn
+ 1;
612 * The section is not biggest or smallest mem_section in the zone, it
613 * only creates a hole in the zone. So in this case, we need not
614 * change the zone. But perhaps, the zone has only hole data. Thus
615 * it check the zone has only hole or not.
617 pfn
= zone_start_pfn
;
618 for (; pfn
< zone_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
619 ms
= __pfn_to_section(pfn
);
621 if (unlikely(!valid_section(ms
)))
624 if (page_zone(pfn_to_page(pfn
)) != zone
)
627 /* If the section is current section, it continues the loop */
628 if (start_pfn
== pfn
)
631 /* If we find valid section, we have nothing to do */
632 zone_span_writeunlock(zone
);
636 /* The zone has no valid section */
637 zone
->zone_start_pfn
= 0;
638 zone
->spanned_pages
= 0;
639 zone_span_writeunlock(zone
);
642 static void shrink_pgdat_span(struct pglist_data
*pgdat
,
643 unsigned long start_pfn
, unsigned long end_pfn
)
645 unsigned long pgdat_start_pfn
= pgdat
->node_start_pfn
;
646 unsigned long p
= pgdat_end_pfn(pgdat
); /* pgdat_end_pfn namespace clash */
647 unsigned long pgdat_end_pfn
= p
;
649 struct mem_section
*ms
;
650 int nid
= pgdat
->node_id
;
652 if (pgdat_start_pfn
== start_pfn
) {
654 * If the section is smallest section in the pgdat, it need
655 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
656 * In this case, we find second smallest valid mem_section
657 * for shrinking zone.
659 pfn
= find_smallest_section_pfn(nid
, NULL
, end_pfn
,
662 pgdat
->node_start_pfn
= pfn
;
663 pgdat
->node_spanned_pages
= pgdat_end_pfn
- pfn
;
665 } else if (pgdat_end_pfn
== end_pfn
) {
667 * If the section is biggest section in the pgdat, it need
668 * shrink pgdat->node_spanned_pages.
669 * In this case, we find second biggest valid mem_section for
672 pfn
= find_biggest_section_pfn(nid
, NULL
, pgdat_start_pfn
,
675 pgdat
->node_spanned_pages
= pfn
- pgdat_start_pfn
+ 1;
679 * If the section is not biggest or smallest mem_section in the pgdat,
680 * it only creates a hole in the pgdat. So in this case, we need not
682 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
683 * has only hole or not.
685 pfn
= pgdat_start_pfn
;
686 for (; pfn
< pgdat_end_pfn
; pfn
+= PAGES_PER_SECTION
) {
687 ms
= __pfn_to_section(pfn
);
689 if (unlikely(!valid_section(ms
)))
692 if (pfn_to_nid(pfn
) != nid
)
695 /* If the section is current section, it continues the loop */
696 if (start_pfn
== pfn
)
699 /* If we find valid section, we have nothing to do */
703 /* The pgdat has no valid section */
704 pgdat
->node_start_pfn
= 0;
705 pgdat
->node_spanned_pages
= 0;
708 static void __remove_zone(struct zone
*zone
, unsigned long start_pfn
)
710 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
711 int nr_pages
= PAGES_PER_SECTION
;
715 zone_type
= zone
- pgdat
->node_zones
;
717 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
718 shrink_zone_span(zone
, start_pfn
, start_pfn
+ nr_pages
);
719 shrink_pgdat_span(pgdat
, start_pfn
, start_pfn
+ nr_pages
);
720 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
723 static int __remove_section(struct zone
*zone
, struct mem_section
*ms
)
725 unsigned long start_pfn
;
729 if (!valid_section(ms
))
732 ret
= unregister_memory_section(ms
);
736 scn_nr
= __section_nr(ms
);
737 start_pfn
= section_nr_to_pfn(scn_nr
);
738 __remove_zone(zone
, start_pfn
);
740 sparse_remove_one_section(zone
, ms
);
745 * __remove_pages() - remove sections of pages from a zone
746 * @zone: zone from which pages need to be removed
747 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
748 * @nr_pages: number of pages to remove (must be multiple of section size)
750 * Generic helper function to remove section mappings and sysfs entries
751 * for the section of the memory we are removing. Caller needs to make
752 * sure that pages are marked reserved and zones are adjust properly by
753 * calling offline_pages().
755 int __remove_pages(struct zone
*zone
, unsigned long phys_start_pfn
,
756 unsigned long nr_pages
)
759 int sections_to_remove
;
760 resource_size_t start
, size
;
764 * We can only remove entire sections
766 BUG_ON(phys_start_pfn
& ~PAGE_SECTION_MASK
);
767 BUG_ON(nr_pages
% PAGES_PER_SECTION
);
769 start
= phys_start_pfn
<< PAGE_SHIFT
;
770 size
= nr_pages
* PAGE_SIZE
;
771 ret
= release_mem_region_adjustable(&iomem_resource
, start
, size
);
773 resource_size_t endres
= start
+ size
- 1;
775 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
776 &start
, &endres
, ret
);
779 sections_to_remove
= nr_pages
/ PAGES_PER_SECTION
;
780 for (i
= 0; i
< sections_to_remove
; i
++) {
781 unsigned long pfn
= phys_start_pfn
+ i
*PAGES_PER_SECTION
;
782 ret
= __remove_section(zone
, __pfn_to_section(pfn
));
788 EXPORT_SYMBOL_GPL(__remove_pages
);
789 #endif /* CONFIG_MEMORY_HOTREMOVE */
791 int set_online_page_callback(online_page_callback_t callback
)
796 mutex_lock(&online_page_callback_lock
);
798 if (online_page_callback
== generic_online_page
) {
799 online_page_callback
= callback
;
803 mutex_unlock(&online_page_callback_lock
);
808 EXPORT_SYMBOL_GPL(set_online_page_callback
);
810 int restore_online_page_callback(online_page_callback_t callback
)
815 mutex_lock(&online_page_callback_lock
);
817 if (online_page_callback
== callback
) {
818 online_page_callback
= generic_online_page
;
822 mutex_unlock(&online_page_callback_lock
);
827 EXPORT_SYMBOL_GPL(restore_online_page_callback
);
829 void __online_page_set_limits(struct page
*page
)
832 EXPORT_SYMBOL_GPL(__online_page_set_limits
);
834 void __online_page_increment_counters(struct page
*page
)
836 adjust_managed_page_count(page
, 1);
838 EXPORT_SYMBOL_GPL(__online_page_increment_counters
);
840 void __online_page_free(struct page
*page
)
842 __free_reserved_page(page
);
844 EXPORT_SYMBOL_GPL(__online_page_free
);
846 static void generic_online_page(struct page
*page
)
848 __online_page_set_limits(page
);
849 __online_page_increment_counters(page
);
850 __online_page_free(page
);
853 static int online_pages_range(unsigned long start_pfn
, unsigned long nr_pages
,
857 unsigned long onlined_pages
= *(unsigned long *)arg
;
859 if (PageReserved(pfn_to_page(start_pfn
)))
860 for (i
= 0; i
< nr_pages
; i
++) {
861 page
= pfn_to_page(start_pfn
+ i
);
862 (*online_page_callback
)(page
);
865 *(unsigned long *)arg
= onlined_pages
;
869 #ifdef CONFIG_MOVABLE_NODE
871 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
874 static bool can_online_high_movable(struct zone
*zone
)
878 #else /* CONFIG_MOVABLE_NODE */
879 /* ensure every online node has NORMAL memory */
880 static bool can_online_high_movable(struct zone
*zone
)
882 return node_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
884 #endif /* CONFIG_MOVABLE_NODE */
886 /* check which state of node_states will be changed when online memory */
887 static void node_states_check_changes_online(unsigned long nr_pages
,
888 struct zone
*zone
, struct memory_notify
*arg
)
890 int nid
= zone_to_nid(zone
);
891 enum zone_type zone_last
= ZONE_NORMAL
;
894 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
895 * contains nodes which have zones of 0...ZONE_NORMAL,
896 * set zone_last to ZONE_NORMAL.
898 * If we don't have HIGHMEM nor movable node,
899 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
900 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
902 if (N_MEMORY
== N_NORMAL_MEMORY
)
903 zone_last
= ZONE_MOVABLE
;
906 * if the memory to be online is in a zone of 0...zone_last, and
907 * the zones of 0...zone_last don't have memory before online, we will
908 * need to set the node to node_states[N_NORMAL_MEMORY] after
909 * the memory is online.
911 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_NORMAL_MEMORY
))
912 arg
->status_change_nid_normal
= nid
;
914 arg
->status_change_nid_normal
= -1;
916 #ifdef CONFIG_HIGHMEM
918 * If we have movable node, node_states[N_HIGH_MEMORY]
919 * contains nodes which have zones of 0...ZONE_HIGHMEM,
920 * set zone_last to ZONE_HIGHMEM.
922 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
923 * contains nodes which have zones of 0...ZONE_MOVABLE,
924 * set zone_last to ZONE_MOVABLE.
926 zone_last
= ZONE_HIGHMEM
;
927 if (N_MEMORY
== N_HIGH_MEMORY
)
928 zone_last
= ZONE_MOVABLE
;
930 if (zone_idx(zone
) <= zone_last
&& !node_state(nid
, N_HIGH_MEMORY
))
931 arg
->status_change_nid_high
= nid
;
933 arg
->status_change_nid_high
= -1;
935 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
939 * if the node don't have memory befor online, we will need to
940 * set the node to node_states[N_MEMORY] after the memory
943 if (!node_state(nid
, N_MEMORY
))
944 arg
->status_change_nid
= nid
;
946 arg
->status_change_nid
= -1;
949 static void node_states_set_node(int node
, struct memory_notify
*arg
)
951 if (arg
->status_change_nid_normal
>= 0)
952 node_set_state(node
, N_NORMAL_MEMORY
);
954 if (arg
->status_change_nid_high
>= 0)
955 node_set_state(node
, N_HIGH_MEMORY
);
957 node_set_state(node
, N_MEMORY
);
961 int __ref
online_pages(unsigned long pfn
, unsigned long nr_pages
, int online_type
)
964 unsigned long onlined_pages
= 0;
966 int need_zonelists_rebuild
= 0;
969 struct memory_notify arg
;
973 * This doesn't need a lock to do pfn_to_page().
974 * The section can't be removed here because of the
975 * memory_block->state_mutex.
977 zone
= page_zone(pfn_to_page(pfn
));
980 if ((zone_idx(zone
) > ZONE_NORMAL
|| online_type
== ONLINE_MOVABLE
) &&
981 !can_online_high_movable(zone
))
984 if (online_type
== ONLINE_KERNEL
&& zone_idx(zone
) == ZONE_MOVABLE
) {
985 if (move_pfn_range_left(zone
- 1, zone
, pfn
, pfn
+ nr_pages
))
988 if (online_type
== ONLINE_MOVABLE
&& zone_idx(zone
) == ZONE_MOVABLE
- 1) {
989 if (move_pfn_range_right(zone
, zone
+ 1, pfn
, pfn
+ nr_pages
))
993 /* Previous code may changed the zone of the pfn range */
994 zone
= page_zone(pfn_to_page(pfn
));
997 arg
.nr_pages
= nr_pages
;
998 node_states_check_changes_online(nr_pages
, zone
, &arg
);
1000 nid
= pfn_to_nid(pfn
);
1002 ret
= memory_notify(MEM_GOING_ONLINE
, &arg
);
1003 ret
= notifier_to_errno(ret
);
1005 memory_notify(MEM_CANCEL_ONLINE
, &arg
);
1009 * If this zone is not populated, then it is not in zonelist.
1010 * This means the page allocator ignores this zone.
1011 * So, zonelist must be updated after online.
1013 mutex_lock(&zonelists_mutex
);
1014 if (!populated_zone(zone
)) {
1015 need_zonelists_rebuild
= 1;
1016 build_all_zonelists(NULL
, zone
);
1019 ret
= walk_system_ram_range(pfn
, nr_pages
, &onlined_pages
,
1020 online_pages_range
);
1022 if (need_zonelists_rebuild
)
1023 zone_pcp_reset(zone
);
1024 mutex_unlock(&zonelists_mutex
);
1025 printk(KERN_DEBUG
"online_pages [mem %#010llx-%#010llx] failed\n",
1026 (unsigned long long) pfn
<< PAGE_SHIFT
,
1027 (((unsigned long long) pfn
+ nr_pages
)
1028 << PAGE_SHIFT
) - 1);
1029 memory_notify(MEM_CANCEL_ONLINE
, &arg
);
1033 zone
->present_pages
+= onlined_pages
;
1035 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
1036 zone
->zone_pgdat
->node_present_pages
+= onlined_pages
;
1037 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
1039 if (onlined_pages
) {
1040 node_states_set_node(zone_to_nid(zone
), &arg
);
1041 if (need_zonelists_rebuild
)
1042 build_all_zonelists(NULL
, NULL
);
1044 zone_pcp_update(zone
);
1047 mutex_unlock(&zonelists_mutex
);
1049 init_per_zone_wmark_min();
1052 kswapd_run(zone_to_nid(zone
));
1054 vm_total_pages
= nr_free_pagecache_pages();
1056 writeback_set_ratelimit();
1059 memory_notify(MEM_ONLINE
, &arg
);
1064 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1066 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1067 static pg_data_t __ref
*hotadd_new_pgdat(int nid
, u64 start
)
1069 struct pglist_data
*pgdat
;
1070 unsigned long zones_size
[MAX_NR_ZONES
] = {0};
1071 unsigned long zholes_size
[MAX_NR_ZONES
] = {0};
1072 unsigned long start_pfn
= PFN_DOWN(start
);
1074 pgdat
= NODE_DATA(nid
);
1076 pgdat
= arch_alloc_nodedata(nid
);
1080 arch_refresh_nodedata(nid
, pgdat
);
1083 /* we can use NODE_DATA(nid) from here */
1085 /* init node's zones as empty zones, we don't have any present pages.*/
1086 free_area_init_node(nid
, zones_size
, start_pfn
, zholes_size
);
1089 * The node we allocated has no zone fallback lists. For avoiding
1090 * to access not-initialized zonelist, build here.
1092 mutex_lock(&zonelists_mutex
);
1093 build_all_zonelists(pgdat
, NULL
);
1094 mutex_unlock(&zonelists_mutex
);
1099 static void rollback_node_hotadd(int nid
, pg_data_t
*pgdat
)
1101 arch_refresh_nodedata(nid
, NULL
);
1102 arch_free_nodedata(pgdat
);
1108 * try_online_node - online a node if offlined
1110 * called by cpu_up() to online a node without onlined memory.
1112 int try_online_node(int nid
)
1117 if (node_online(nid
))
1120 mem_hotplug_begin();
1121 pgdat
= hotadd_new_pgdat(nid
, 0);
1123 pr_err("Cannot online node %d due to NULL pgdat\n", nid
);
1127 node_set_online(nid
);
1128 ret
= register_one_node(nid
);
1131 if (pgdat
->node_zonelists
->_zonerefs
->zone
== NULL
) {
1132 mutex_lock(&zonelists_mutex
);
1133 build_all_zonelists(NULL
, NULL
);
1134 mutex_unlock(&zonelists_mutex
);
1142 static int check_hotplug_memory_range(u64 start
, u64 size
)
1144 u64 start_pfn
= PFN_DOWN(start
);
1145 u64 nr_pages
= size
>> PAGE_SHIFT
;
1147 /* Memory range must be aligned with section */
1148 if ((start_pfn
& ~PAGE_SECTION_MASK
) ||
1149 (nr_pages
% PAGES_PER_SECTION
) || (!nr_pages
)) {
1150 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1151 (unsigned long long)start
,
1152 (unsigned long long)size
);
1159 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1160 int __ref
add_memory(int nid
, u64 start
, u64 size
)
1162 pg_data_t
*pgdat
= NULL
;
1165 struct resource
*res
;
1168 ret
= check_hotplug_memory_range(start
, size
);
1172 res
= register_memory_resource(start
, size
);
1177 { /* Stupid hack to suppress address-never-null warning */
1178 void *p
= NODE_DATA(nid
);
1182 mem_hotplug_begin();
1184 new_node
= !node_online(nid
);
1186 pgdat
= hotadd_new_pgdat(nid
, start
);
1192 /* call arch's memory hotadd */
1193 ret
= arch_add_memory(nid
, start
, size
);
1198 /* we online node here. we can't roll back from here. */
1199 node_set_online(nid
);
1202 ret
= register_one_node(nid
);
1204 * If sysfs file of new node can't create, cpu on the node
1205 * can't be hot-added. There is no rollback way now.
1206 * So, check by BUG_ON() to catch it reluctantly..
1211 /* create new memmap entry */
1212 firmware_map_add_hotplug(start
, start
+ size
, "System RAM");
1217 /* rollback pgdat allocation and others */
1219 rollback_node_hotadd(nid
, pgdat
);
1220 release_memory_resource(res
);
1226 EXPORT_SYMBOL_GPL(add_memory
);
1228 #ifdef CONFIG_MEMORY_HOTREMOVE
1230 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1231 * set and the size of the free page is given by page_order(). Using this,
1232 * the function determines if the pageblock contains only free pages.
1233 * Due to buddy contraints, a free page at least the size of a pageblock will
1234 * be located at the start of the pageblock
1236 static inline int pageblock_free(struct page
*page
)
1238 return PageBuddy(page
) && page_order(page
) >= pageblock_order
;
1241 /* Return the start of the next active pageblock after a given page */
1242 static struct page
*next_active_pageblock(struct page
*page
)
1244 /* Ensure the starting page is pageblock-aligned */
1245 BUG_ON(page_to_pfn(page
) & (pageblock_nr_pages
- 1));
1247 /* If the entire pageblock is free, move to the end of free page */
1248 if (pageblock_free(page
)) {
1250 /* be careful. we don't have locks, page_order can be changed.*/
1251 order
= page_order(page
);
1252 if ((order
< MAX_ORDER
) && (order
>= pageblock_order
))
1253 return page
+ (1 << order
);
1256 return page
+ pageblock_nr_pages
;
1259 /* Checks if this range of memory is likely to be hot-removable. */
1260 int is_mem_section_removable(unsigned long start_pfn
, unsigned long nr_pages
)
1262 struct page
*page
= pfn_to_page(start_pfn
);
1263 struct page
*end_page
= page
+ nr_pages
;
1265 /* Check the starting page of each pageblock within the range */
1266 for (; page
< end_page
; page
= next_active_pageblock(page
)) {
1267 if (!is_pageblock_removable_nolock(page
))
1272 /* All pageblocks in the memory block are likely to be hot-removable */
1277 * Confirm all pages in a range [start, end) is belongs to the same zone.
1279 static int test_pages_in_a_zone(unsigned long start_pfn
, unsigned long end_pfn
)
1282 struct zone
*zone
= NULL
;
1285 for (pfn
= start_pfn
;
1287 pfn
+= MAX_ORDER_NR_PAGES
) {
1289 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1290 while ((i
< MAX_ORDER_NR_PAGES
) && !pfn_valid_within(pfn
+ i
))
1292 if (i
== MAX_ORDER_NR_PAGES
)
1294 page
= pfn_to_page(pfn
+ i
);
1295 if (zone
&& page_zone(page
) != zone
)
1297 zone
= page_zone(page
);
1303 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1304 * and hugepages). We scan pfn because it's much easier than scanning over
1305 * linked list. This function returns the pfn of the first found movable
1306 * page if it's found, otherwise 0.
1308 static unsigned long scan_movable_pages(unsigned long start
, unsigned long end
)
1312 for (pfn
= start
; pfn
< end
; pfn
++) {
1313 if (pfn_valid(pfn
)) {
1314 page
= pfn_to_page(pfn
);
1317 if (PageHuge(page
)) {
1318 if (is_hugepage_active(page
))
1321 pfn
= round_up(pfn
+ 1,
1322 1 << compound_order(page
)) - 1;
1329 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1331 do_migrate_range(unsigned long start_pfn
, unsigned long end_pfn
)
1335 int move_pages
= NR_OFFLINE_AT_ONCE_PAGES
;
1336 int not_managed
= 0;
1340 for (pfn
= start_pfn
; pfn
< end_pfn
&& move_pages
> 0; pfn
++) {
1341 if (!pfn_valid(pfn
))
1343 page
= pfn_to_page(pfn
);
1345 if (PageHuge(page
)) {
1346 struct page
*head
= compound_head(page
);
1347 pfn
= page_to_pfn(head
) + (1<<compound_order(head
)) - 1;
1348 if (compound_order(head
) > PFN_SECTION_SHIFT
) {
1352 if (isolate_huge_page(page
, &source
))
1353 move_pages
-= 1 << compound_order(head
);
1357 if (!get_page_unless_zero(page
))
1360 * We can skip free pages. And we can only deal with pages on
1363 ret
= isolate_lru_page(page
);
1364 if (!ret
) { /* Success */
1366 list_add_tail(&page
->lru
, &source
);
1368 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1369 page_is_file_cache(page
));
1372 #ifdef CONFIG_DEBUG_VM
1373 printk(KERN_ALERT
"removing pfn %lx from LRU failed\n",
1375 dump_page(page
, "failed to remove from LRU");
1378 /* Because we don't have big zone->lock. we should
1379 check this again here. */
1380 if (page_count(page
)) {
1387 if (!list_empty(&source
)) {
1389 putback_movable_pages(&source
);
1394 * alloc_migrate_target should be improooooved!!
1395 * migrate_pages returns # of failed pages.
1397 ret
= migrate_pages(&source
, alloc_migrate_target
, NULL
, 0,
1398 MIGRATE_SYNC
, MR_MEMORY_HOTPLUG
);
1400 putback_movable_pages(&source
);
1407 * remove from free_area[] and mark all as Reserved.
1410 offline_isolated_pages_cb(unsigned long start
, unsigned long nr_pages
,
1413 __offline_isolated_pages(start
, start
+ nr_pages
);
1418 offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1420 walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, NULL
,
1421 offline_isolated_pages_cb
);
1425 * Check all pages in range, recoreded as memory resource, are isolated.
1428 check_pages_isolated_cb(unsigned long start_pfn
, unsigned long nr_pages
,
1432 long offlined
= *(long *)data
;
1433 ret
= test_pages_isolated(start_pfn
, start_pfn
+ nr_pages
, true);
1434 offlined
= nr_pages
;
1436 *(long *)data
+= offlined
;
1441 check_pages_isolated(unsigned long start_pfn
, unsigned long end_pfn
)
1446 ret
= walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
, &offlined
,
1447 check_pages_isolated_cb
);
1449 offlined
= (long)ret
;
1453 #ifdef CONFIG_MOVABLE_NODE
1455 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1458 static bool can_offline_normal(struct zone
*zone
, unsigned long nr_pages
)
1462 #else /* CONFIG_MOVABLE_NODE */
1463 /* ensure the node has NORMAL memory if it is still online */
1464 static bool can_offline_normal(struct zone
*zone
, unsigned long nr_pages
)
1466 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1467 unsigned long present_pages
= 0;
1470 for (zt
= 0; zt
<= ZONE_NORMAL
; zt
++)
1471 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1473 if (present_pages
> nr_pages
)
1477 for (; zt
<= ZONE_MOVABLE
; zt
++)
1478 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1481 * we can't offline the last normal memory until all
1482 * higher memory is offlined.
1484 return present_pages
== 0;
1486 #endif /* CONFIG_MOVABLE_NODE */
1488 static int __init
cmdline_parse_movable_node(char *p
)
1490 #ifdef CONFIG_MOVABLE_NODE
1492 * Memory used by the kernel cannot be hot-removed because Linux
1493 * cannot migrate the kernel pages. When memory hotplug is
1494 * enabled, we should prevent memblock from allocating memory
1497 * ACPI SRAT records all hotpluggable memory ranges. But before
1498 * SRAT is parsed, we don't know about it.
1500 * The kernel image is loaded into memory at very early time. We
1501 * cannot prevent this anyway. So on NUMA system, we set any
1502 * node the kernel resides in as un-hotpluggable.
1504 * Since on modern servers, one node could have double-digit
1505 * gigabytes memory, we can assume the memory around the kernel
1506 * image is also un-hotpluggable. So before SRAT is parsed, just
1507 * allocate memory near the kernel image to try the best to keep
1508 * the kernel away from hotpluggable memory.
1510 memblock_set_bottom_up(true);
1511 movable_node_enabled
= true;
1513 pr_warn("movable_node option not supported\n");
1517 early_param("movable_node", cmdline_parse_movable_node
);
1519 /* check which state of node_states will be changed when offline memory */
1520 static void node_states_check_changes_offline(unsigned long nr_pages
,
1521 struct zone
*zone
, struct memory_notify
*arg
)
1523 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1524 unsigned long present_pages
= 0;
1525 enum zone_type zt
, zone_last
= ZONE_NORMAL
;
1528 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1529 * contains nodes which have zones of 0...ZONE_NORMAL,
1530 * set zone_last to ZONE_NORMAL.
1532 * If we don't have HIGHMEM nor movable node,
1533 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1534 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1536 if (N_MEMORY
== N_NORMAL_MEMORY
)
1537 zone_last
= ZONE_MOVABLE
;
1540 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1541 * If the memory to be offline is in a zone of 0...zone_last,
1542 * and it is the last present memory, 0...zone_last will
1543 * become empty after offline , thus we can determind we will
1544 * need to clear the node from node_states[N_NORMAL_MEMORY].
1546 for (zt
= 0; zt
<= zone_last
; zt
++)
1547 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1548 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1549 arg
->status_change_nid_normal
= zone_to_nid(zone
);
1551 arg
->status_change_nid_normal
= -1;
1553 #ifdef CONFIG_HIGHMEM
1555 * If we have movable node, node_states[N_HIGH_MEMORY]
1556 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1557 * set zone_last to ZONE_HIGHMEM.
1559 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1560 * contains nodes which have zones of 0...ZONE_MOVABLE,
1561 * set zone_last to ZONE_MOVABLE.
1563 zone_last
= ZONE_HIGHMEM
;
1564 if (N_MEMORY
== N_HIGH_MEMORY
)
1565 zone_last
= ZONE_MOVABLE
;
1567 for (; zt
<= zone_last
; zt
++)
1568 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1569 if (zone_idx(zone
) <= zone_last
&& nr_pages
>= present_pages
)
1570 arg
->status_change_nid_high
= zone_to_nid(zone
);
1572 arg
->status_change_nid_high
= -1;
1574 arg
->status_change_nid_high
= arg
->status_change_nid_normal
;
1578 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1580 zone_last
= ZONE_MOVABLE
;
1583 * check whether node_states[N_HIGH_MEMORY] will be changed
1584 * If we try to offline the last present @nr_pages from the node,
1585 * we can determind we will need to clear the node from
1586 * node_states[N_HIGH_MEMORY].
1588 for (; zt
<= zone_last
; zt
++)
1589 present_pages
+= pgdat
->node_zones
[zt
].present_pages
;
1590 if (nr_pages
>= present_pages
)
1591 arg
->status_change_nid
= zone_to_nid(zone
);
1593 arg
->status_change_nid
= -1;
1596 static void node_states_clear_node(int node
, struct memory_notify
*arg
)
1598 if (arg
->status_change_nid_normal
>= 0)
1599 node_clear_state(node
, N_NORMAL_MEMORY
);
1601 if ((N_MEMORY
!= N_NORMAL_MEMORY
) &&
1602 (arg
->status_change_nid_high
>= 0))
1603 node_clear_state(node
, N_HIGH_MEMORY
);
1605 if ((N_MEMORY
!= N_HIGH_MEMORY
) &&
1606 (arg
->status_change_nid
>= 0))
1607 node_clear_state(node
, N_MEMORY
);
1610 static int __ref
__offline_pages(unsigned long start_pfn
,
1611 unsigned long end_pfn
, unsigned long timeout
)
1613 unsigned long pfn
, nr_pages
, expire
;
1614 long offlined_pages
;
1615 int ret
, drain
, retry_max
, node
;
1616 unsigned long flags
;
1618 struct memory_notify arg
;
1620 /* at least, alignment against pageblock is necessary */
1621 if (!IS_ALIGNED(start_pfn
, pageblock_nr_pages
))
1623 if (!IS_ALIGNED(end_pfn
, pageblock_nr_pages
))
1625 /* This makes hotplug much easier...and readable.
1626 we assume this for now. .*/
1627 if (!test_pages_in_a_zone(start_pfn
, end_pfn
))
1630 mem_hotplug_begin();
1632 zone
= page_zone(pfn_to_page(start_pfn
));
1633 node
= zone_to_nid(zone
);
1634 nr_pages
= end_pfn
- start_pfn
;
1637 if (zone_idx(zone
) <= ZONE_NORMAL
&& !can_offline_normal(zone
, nr_pages
))
1640 /* set above range as isolated */
1641 ret
= start_isolate_page_range(start_pfn
, end_pfn
,
1642 MIGRATE_MOVABLE
, true);
1646 arg
.start_pfn
= start_pfn
;
1647 arg
.nr_pages
= nr_pages
;
1648 node_states_check_changes_offline(nr_pages
, zone
, &arg
);
1650 ret
= memory_notify(MEM_GOING_OFFLINE
, &arg
);
1651 ret
= notifier_to_errno(ret
);
1653 goto failed_removal
;
1656 expire
= jiffies
+ timeout
;
1660 /* start memory hot removal */
1662 if (time_after(jiffies
, expire
))
1663 goto failed_removal
;
1665 if (signal_pending(current
))
1666 goto failed_removal
;
1669 lru_add_drain_all();
1674 pfn
= scan_movable_pages(start_pfn
, end_pfn
);
1675 if (pfn
) { /* We have movable pages */
1676 ret
= do_migrate_range(pfn
, end_pfn
);
1682 if (--retry_max
== 0)
1683 goto failed_removal
;
1689 /* drain all zone's lru pagevec, this is asynchronous... */
1690 lru_add_drain_all();
1692 /* drain pcp pages, this is synchronous. */
1695 * dissolve free hugepages in the memory block before doing offlining
1696 * actually in order to make hugetlbfs's object counting consistent.
1698 dissolve_free_huge_pages(start_pfn
, end_pfn
);
1700 offlined_pages
= check_pages_isolated(start_pfn
, end_pfn
);
1701 if (offlined_pages
< 0) {
1703 goto failed_removal
;
1705 printk(KERN_INFO
"Offlined Pages %ld\n", offlined_pages
);
1706 /* Ok, all of our target is isolated.
1707 We cannot do rollback at this point. */
1708 offline_isolated_pages(start_pfn
, end_pfn
);
1709 /* reset pagetype flags and makes migrate type to be MOVABLE */
1710 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1711 /* removal success */
1712 adjust_managed_page_count(pfn_to_page(start_pfn
), -offlined_pages
);
1713 zone
->present_pages
-= offlined_pages
;
1715 pgdat_resize_lock(zone
->zone_pgdat
, &flags
);
1716 zone
->zone_pgdat
->node_present_pages
-= offlined_pages
;
1717 pgdat_resize_unlock(zone
->zone_pgdat
, &flags
);
1719 init_per_zone_wmark_min();
1721 if (!populated_zone(zone
)) {
1722 zone_pcp_reset(zone
);
1723 mutex_lock(&zonelists_mutex
);
1724 build_all_zonelists(NULL
, NULL
);
1725 mutex_unlock(&zonelists_mutex
);
1727 zone_pcp_update(zone
);
1729 node_states_clear_node(node
, &arg
);
1730 if (arg
.status_change_nid
>= 0)
1733 vm_total_pages
= nr_free_pagecache_pages();
1734 writeback_set_ratelimit();
1736 memory_notify(MEM_OFFLINE
, &arg
);
1741 printk(KERN_INFO
"memory offlining [mem %#010llx-%#010llx] failed\n",
1742 (unsigned long long) start_pfn
<< PAGE_SHIFT
,
1743 ((unsigned long long) end_pfn
<< PAGE_SHIFT
) - 1);
1744 memory_notify(MEM_CANCEL_OFFLINE
, &arg
);
1745 /* pushback to free area */
1746 undo_isolate_page_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1753 int offline_pages(unsigned long start_pfn
, unsigned long nr_pages
)
1755 return __offline_pages(start_pfn
, start_pfn
+ nr_pages
, 120 * HZ
);
1757 #endif /* CONFIG_MEMORY_HOTREMOVE */
1760 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1761 * @start_pfn: start pfn of the memory range
1762 * @end_pfn: end pfn of the memory range
1763 * @arg: argument passed to func
1764 * @func: callback for each memory section walked
1766 * This function walks through all present mem sections in range
1767 * [start_pfn, end_pfn) and call func on each mem section.
1769 * Returns the return value of func.
1771 int walk_memory_range(unsigned long start_pfn
, unsigned long end_pfn
,
1772 void *arg
, int (*func
)(struct memory_block
*, void *))
1774 struct memory_block
*mem
= NULL
;
1775 struct mem_section
*section
;
1776 unsigned long pfn
, section_nr
;
1779 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
1780 section_nr
= pfn_to_section_nr(pfn
);
1781 if (!present_section_nr(section_nr
))
1784 section
= __nr_to_section(section_nr
);
1785 /* same memblock? */
1787 if ((section_nr
>= mem
->start_section_nr
) &&
1788 (section_nr
<= mem
->end_section_nr
))
1791 mem
= find_memory_block_hinted(section
, mem
);
1795 ret
= func(mem
, arg
);
1797 kobject_put(&mem
->dev
.kobj
);
1803 kobject_put(&mem
->dev
.kobj
);
1808 #ifdef CONFIG_MEMORY_HOTREMOVE
1809 static int check_memblock_offlined_cb(struct memory_block
*mem
, void *arg
)
1811 int ret
= !is_memblock_offlined(mem
);
1813 if (unlikely(ret
)) {
1814 phys_addr_t beginpa
, endpa
;
1816 beginpa
= PFN_PHYS(section_nr_to_pfn(mem
->start_section_nr
));
1817 endpa
= PFN_PHYS(section_nr_to_pfn(mem
->end_section_nr
+ 1))-1;
1818 pr_warn("removing memory fails, because memory "
1819 "[%pa-%pa] is onlined\n",
1826 static int check_cpu_on_node(pg_data_t
*pgdat
)
1830 for_each_present_cpu(cpu
) {
1831 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1833 * the cpu on this node isn't removed, and we can't
1834 * offline this node.
1842 static void unmap_cpu_on_node(pg_data_t
*pgdat
)
1844 #ifdef CONFIG_ACPI_NUMA
1847 for_each_possible_cpu(cpu
)
1848 if (cpu_to_node(cpu
) == pgdat
->node_id
)
1849 numa_clear_node(cpu
);
1853 static int check_and_unmap_cpu_on_node(pg_data_t
*pgdat
)
1857 ret
= check_cpu_on_node(pgdat
);
1862 * the node will be offlined when we come here, so we can clear
1863 * the cpu_to_node() now.
1866 unmap_cpu_on_node(pgdat
);
1873 * Offline a node if all memory sections and cpus of the node are removed.
1875 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1876 * and online/offline operations before this call.
1878 void try_offline_node(int nid
)
1880 pg_data_t
*pgdat
= NODE_DATA(nid
);
1881 unsigned long start_pfn
= pgdat
->node_start_pfn
;
1882 unsigned long end_pfn
= start_pfn
+ pgdat
->node_spanned_pages
;
1884 struct page
*pgdat_page
= virt_to_page(pgdat
);
1887 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
1888 unsigned long section_nr
= pfn_to_section_nr(pfn
);
1890 if (!present_section_nr(section_nr
))
1893 if (pfn_to_nid(pfn
) != nid
)
1897 * some memory sections of this node are not removed, and we
1898 * can't offline node now.
1903 if (check_and_unmap_cpu_on_node(pgdat
))
1907 * all memory/cpu of this node are removed, we can offline this
1910 node_set_offline(nid
);
1911 unregister_one_node(nid
);
1913 if (!PageSlab(pgdat_page
) && !PageCompound(pgdat_page
))
1914 /* node data is allocated from boot memory */
1917 /* free waittable in each zone */
1918 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1919 struct zone
*zone
= pgdat
->node_zones
+ i
;
1922 * wait_table may be allocated from boot memory,
1923 * here only free if it's allocated by vmalloc.
1925 if (is_vmalloc_addr(zone
->wait_table
))
1926 vfree(zone
->wait_table
);
1930 * Since there is no way to guarentee the address of pgdat/zone is not
1931 * on stack of any kernel threads or used by other kernel objects
1932 * without reference counting or other symchronizing method, do not
1933 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1934 * the memory when the node is online again.
1936 memset(pgdat
, 0, sizeof(*pgdat
));
1938 EXPORT_SYMBOL(try_offline_node
);
1943 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1944 * and online/offline operations before this call, as required by
1945 * try_offline_node().
1947 void __ref
remove_memory(int nid
, u64 start
, u64 size
)
1951 BUG_ON(check_hotplug_memory_range(start
, size
));
1953 mem_hotplug_begin();
1956 * All memory blocks must be offlined before removing memory. Check
1957 * whether all memory blocks in question are offline and trigger a BUG()
1958 * if this is not the case.
1960 ret
= walk_memory_range(PFN_DOWN(start
), PFN_UP(start
+ size
- 1), NULL
,
1961 check_memblock_offlined_cb
);
1965 /* remove memmap entry */
1966 firmware_map_remove(start
, start
+ size
, "System RAM");
1968 arch_remove_memory(start
, size
);
1970 try_offline_node(nid
);
1974 EXPORT_SYMBOL_GPL(remove_memory
);
1975 #endif /* CONFIG_MEMORY_HOTREMOVE */