2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
37 #include <trace/events/kmem.h>
43 * 1. slab_mutex (Global Mutex)
45 * 3. slab_lock(page) (Only on some arches and for debugging)
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
94 * Overloading of page flags that are otherwise used for LRU management.
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache
*s
)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s
);
136 * Issues still to be resolved:
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 * - Variable sizing of the per node arrays
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 #define MIN_PARTIAL 5
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
160 #define MAX_PARTIAL 10
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
173 * Set of flags that will prevent slab merging
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
191 static struct notifier_block slab_notifier
;
195 * Tracking user of a slab.
197 #define TRACK_ADDRS_COUNT 16
199 unsigned long addr
; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
203 int cpu
; /* Was running on cpu */
204 int pid
; /* Pid context */
205 unsigned long when
; /* When did the operation occur */
208 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
211 static int sysfs_slab_add(struct kmem_cache
*);
212 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
213 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
215 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
216 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
218 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
221 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
223 #ifdef CONFIG_SLUB_STATS
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
228 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
232 /********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
236 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
238 return s
->node
[node
];
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache
*s
,
243 struct page
*page
, const void *object
)
250 base
= page_address(page
);
251 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
252 (object
- base
) % s
->size
) {
259 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
261 return *(void **)(object
+ s
->offset
);
264 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
266 prefetch(object
+ s
->offset
);
269 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
273 #ifdef CONFIG_DEBUG_PAGEALLOC
274 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
276 p
= get_freepointer(s
, object
);
281 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
283 *(void **)(object
+ s
->offset
) = fp
;
286 /* Loop over all objects in a slab */
287 #define for_each_object(__p, __s, __addr, __objects) \
288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
294 return (p
- addr
) / s
->size
;
297 static inline size_t slab_ksize(const struct kmem_cache
*s
)
299 #ifdef CONFIG_SLUB_DEBUG
301 * Debugging requires use of the padding between object
302 * and whatever may come after it.
304 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
305 return s
->object_size
;
309 * If we have the need to store the freelist pointer
310 * back there or track user information then we can
311 * only use the space before that information.
313 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
316 * Else we can use all the padding etc for the allocation
321 static inline int order_objects(int order
, unsigned long size
, int reserved
)
323 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
326 static inline struct kmem_cache_order_objects
oo_make(int order
,
327 unsigned long size
, int reserved
)
329 struct kmem_cache_order_objects x
= {
330 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
336 static inline int oo_order(struct kmem_cache_order_objects x
)
338 return x
.x
>> OO_SHIFT
;
341 static inline int oo_objects(struct kmem_cache_order_objects x
)
343 return x
.x
& OO_MASK
;
347 * Per slab locking using the pagelock
349 static __always_inline
void slab_lock(struct page
*page
)
351 bit_spin_lock(PG_locked
, &page
->flags
);
354 static __always_inline
void slab_unlock(struct page
*page
)
356 __bit_spin_unlock(PG_locked
, &page
->flags
);
359 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
362 tmp
.counters
= counters_new
;
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_count. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_count, so
367 * be careful and only assign to the fields we need.
369 page
->frozen
= tmp
.frozen
;
370 page
->inuse
= tmp
.inuse
;
371 page
->objects
= tmp
.objects
;
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
376 void *freelist_old
, unsigned long counters_old
,
377 void *freelist_new
, unsigned long counters_new
,
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s
->flags
& __CMPXCHG_DOUBLE
) {
384 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
385 freelist_old
, counters_old
,
386 freelist_new
, counters_new
))
392 if (page
->freelist
== freelist_old
&&
393 page
->counters
== counters_old
) {
394 page
->freelist
= freelist_new
;
395 set_page_slub_counters(page
, counters_new
);
403 stat(s
, CMPXCHG_DOUBLE_FAIL
);
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
412 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
413 void *freelist_old
, unsigned long counters_old
,
414 void *freelist_new
, unsigned long counters_new
,
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s
->flags
& __CMPXCHG_DOUBLE
) {
420 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
421 freelist_old
, counters_old
,
422 freelist_new
, counters_new
))
429 local_irq_save(flags
);
431 if (page
->freelist
== freelist_old
&&
432 page
->counters
== counters_old
) {
433 page
->freelist
= freelist_new
;
434 set_page_slub_counters(page
, counters_new
);
436 local_irq_restore(flags
);
440 local_irq_restore(flags
);
444 stat(s
, CMPXCHG_DOUBLE_FAIL
);
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
453 #ifdef CONFIG_SLUB_DEBUG
455 * Determine a map of object in use on a page.
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
460 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
463 void *addr
= page_address(page
);
465 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
466 set_bit(slab_index(p
, s
, addr
), map
);
472 #ifdef CONFIG_SLUB_DEBUG_ON
473 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
475 static int slub_debug
;
478 static char *slub_debug_slabs
;
479 static int disable_higher_order_debug
;
484 static void print_section(char *text
, u8
*addr
, unsigned int length
)
486 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
490 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
491 enum track_item alloc
)
496 p
= object
+ s
->offset
+ sizeof(void *);
498 p
= object
+ s
->inuse
;
503 static void set_track(struct kmem_cache
*s
, void *object
,
504 enum track_item alloc
, unsigned long addr
)
506 struct track
*p
= get_track(s
, object
, alloc
);
509 #ifdef CONFIG_STACKTRACE
510 struct stack_trace trace
;
513 trace
.nr_entries
= 0;
514 trace
.max_entries
= TRACK_ADDRS_COUNT
;
515 trace
.entries
= p
->addrs
;
517 save_stack_trace(&trace
);
519 /* See rant in lockdep.c */
520 if (trace
.nr_entries
!= 0 &&
521 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
524 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
528 p
->cpu
= smp_processor_id();
529 p
->pid
= current
->pid
;
532 memset(p
, 0, sizeof(struct track
));
535 static void init_tracking(struct kmem_cache
*s
, void *object
)
537 if (!(s
->flags
& SLAB_STORE_USER
))
540 set_track(s
, object
, TRACK_FREE
, 0UL);
541 set_track(s
, object
, TRACK_ALLOC
, 0UL);
544 static void print_track(const char *s
, struct track
*t
)
549 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
551 #ifdef CONFIG_STACKTRACE
554 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
556 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
563 static void print_tracking(struct kmem_cache
*s
, void *object
)
565 if (!(s
->flags
& SLAB_STORE_USER
))
568 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
569 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
572 static void print_page_info(struct page
*page
)
574 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
579 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
581 struct va_format vaf
;
587 pr_err("=============================================================================\n");
588 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
589 pr_err("-----------------------------------------------------------------------------\n\n");
591 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
595 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
597 struct va_format vaf
;
603 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
607 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
609 unsigned int off
; /* Offset of last byte */
610 u8
*addr
= page_address(page
);
612 print_tracking(s
, p
);
614 print_page_info(page
);
616 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p
, p
- addr
, get_freepointer(s
, p
));
620 print_section("Bytes b4 ", p
- 16, 16);
622 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
624 if (s
->flags
& SLAB_RED_ZONE
)
625 print_section("Redzone ", p
+ s
->object_size
,
626 s
->inuse
- s
->object_size
);
629 off
= s
->offset
+ sizeof(void *);
633 if (s
->flags
& SLAB_STORE_USER
)
634 off
+= 2 * sizeof(struct track
);
637 /* Beginning of the filler is the free pointer */
638 print_section("Padding ", p
+ off
, s
->size
- off
);
643 static void object_err(struct kmem_cache
*s
, struct page
*page
,
644 u8
*object
, char *reason
)
646 slab_bug(s
, "%s", reason
);
647 print_trailer(s
, page
, object
);
650 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
651 const char *fmt
, ...)
657 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
659 slab_bug(s
, "%s", buf
);
660 print_page_info(page
);
664 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
668 if (s
->flags
& __OBJECT_POISON
) {
669 memset(p
, POISON_FREE
, s
->object_size
- 1);
670 p
[s
->object_size
- 1] = POISON_END
;
673 if (s
->flags
& SLAB_RED_ZONE
)
674 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
677 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
678 void *from
, void *to
)
680 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
681 memset(from
, data
, to
- from
);
684 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
685 u8
*object
, char *what
,
686 u8
*start
, unsigned int value
, unsigned int bytes
)
691 fault
= memchr_inv(start
, value
, bytes
);
696 while (end
> fault
&& end
[-1] == value
)
699 slab_bug(s
, "%s overwritten", what
);
700 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault
, end
- 1, fault
[0], value
);
702 print_trailer(s
, page
, object
);
704 restore_bytes(s
, what
, value
, fault
, end
);
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
719 * object + s->object_size
720 * Padding to reach word boundary. This is also used for Redzoning.
721 * Padding is extended by another word if Redzoning is enabled and
722 * object_size == inuse.
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
728 * Meta data starts here.
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
732 * C. Padding to reach required alignment boundary or at mininum
733 * one word if debugging is on to be able to detect writes
734 * before the word boundary.
736 * Padding is done using 0x5a (POISON_INUSE)
739 * Nothing is used beyond s->size.
741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
742 * ignored. And therefore no slab options that rely on these boundaries
743 * may be used with merged slabcaches.
746 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
748 unsigned long off
= s
->inuse
; /* The end of info */
751 /* Freepointer is placed after the object. */
752 off
+= sizeof(void *);
754 if (s
->flags
& SLAB_STORE_USER
)
755 /* We also have user information there */
756 off
+= 2 * sizeof(struct track
);
761 return check_bytes_and_report(s
, page
, p
, "Object padding",
762 p
+ off
, POISON_INUSE
, s
->size
- off
);
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
774 if (!(s
->flags
& SLAB_POISON
))
777 start
= page_address(page
);
778 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
779 end
= start
+ length
;
780 remainder
= length
% s
->size
;
784 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
787 while (end
> fault
&& end
[-1] == POISON_INUSE
)
790 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
791 print_section("Padding ", end
- remainder
, remainder
);
793 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
797 static int check_object(struct kmem_cache
*s
, struct page
*page
,
798 void *object
, u8 val
)
801 u8
*endobject
= object
+ s
->object_size
;
803 if (s
->flags
& SLAB_RED_ZONE
) {
804 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
805 endobject
, val
, s
->inuse
- s
->object_size
))
808 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
809 check_bytes_and_report(s
, page
, p
, "Alignment padding",
810 endobject
, POISON_INUSE
,
811 s
->inuse
- s
->object_size
);
815 if (s
->flags
& SLAB_POISON
) {
816 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
817 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
818 POISON_FREE
, s
->object_size
- 1) ||
819 !check_bytes_and_report(s
, page
, p
, "Poison",
820 p
+ s
->object_size
- 1, POISON_END
, 1)))
823 * check_pad_bytes cleans up on its own.
825 check_pad_bytes(s
, page
, p
);
828 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
837 object_err(s
, page
, p
, "Freepointer corrupt");
839 * No choice but to zap it and thus lose the remainder
840 * of the free objects in this slab. May cause
841 * another error because the object count is now wrong.
843 set_freepointer(s
, p
, NULL
);
849 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
853 VM_BUG_ON(!irqs_disabled());
855 if (!PageSlab(page
)) {
856 slab_err(s
, page
, "Not a valid slab page");
860 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
861 if (page
->objects
> maxobj
) {
862 slab_err(s
, page
, "objects %u > max %u",
863 s
->name
, page
->objects
, maxobj
);
866 if (page
->inuse
> page
->objects
) {
867 slab_err(s
, page
, "inuse %u > max %u",
868 s
->name
, page
->inuse
, page
->objects
);
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s
, page
);
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
880 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
885 unsigned long max_objects
;
888 while (fp
&& nr
<= page
->objects
) {
891 if (!check_valid_pointer(s
, page
, fp
)) {
893 object_err(s
, page
, object
,
894 "Freechain corrupt");
895 set_freepointer(s
, object
, NULL
);
897 slab_err(s
, page
, "Freepointer corrupt");
898 page
->freelist
= NULL
;
899 page
->inuse
= page
->objects
;
900 slab_fix(s
, "Freelist cleared");
906 fp
= get_freepointer(s
, object
);
910 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
911 if (max_objects
> MAX_OBJS_PER_PAGE
)
912 max_objects
= MAX_OBJS_PER_PAGE
;
914 if (page
->objects
!= max_objects
) {
915 slab_err(s
, page
, "Wrong number of objects. Found %d but "
916 "should be %d", page
->objects
, max_objects
);
917 page
->objects
= max_objects
;
918 slab_fix(s
, "Number of objects adjusted.");
920 if (page
->inuse
!= page
->objects
- nr
) {
921 slab_err(s
, page
, "Wrong object count. Counter is %d but "
922 "counted were %d", page
->inuse
, page
->objects
- nr
);
923 page
->inuse
= page
->objects
- nr
;
924 slab_fix(s
, "Object count adjusted.");
926 return search
== NULL
;
929 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
932 if (s
->flags
& SLAB_TRACE
) {
933 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
935 alloc
? "alloc" : "free",
940 print_section("Object ", (void *)object
,
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
951 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
953 kmemleak_alloc(ptr
, size
, 1, flags
);
956 static inline void kfree_hook(const void *x
)
961 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
963 flags
&= gfp_allowed_mask
;
964 lockdep_trace_alloc(flags
);
965 might_sleep_if(flags
& __GFP_WAIT
);
967 return should_failslab(s
->object_size
, flags
, s
->flags
);
970 static inline void slab_post_alloc_hook(struct kmem_cache
*s
,
971 gfp_t flags
, void *object
)
973 flags
&= gfp_allowed_mask
;
974 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
975 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
, flags
);
978 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
980 kmemleak_free_recursive(x
, s
->flags
);
983 * Trouble is that we may no longer disable interrupts in the fast path
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
991 local_irq_save(flags
);
992 kmemcheck_slab_free(s
, x
, s
->object_size
);
993 debug_check_no_locks_freed(x
, s
->object_size
);
994 local_irq_restore(flags
);
997 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
998 debug_check_no_obj_freed(x
, s
->object_size
);
1002 * Tracking of fully allocated slabs for debugging purposes.
1004 static void add_full(struct kmem_cache
*s
,
1005 struct kmem_cache_node
*n
, struct page
*page
)
1007 if (!(s
->flags
& SLAB_STORE_USER
))
1010 lockdep_assert_held(&n
->list_lock
);
1011 list_add(&page
->lru
, &n
->full
);
1014 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1016 if (!(s
->flags
& SLAB_STORE_USER
))
1019 lockdep_assert_held(&n
->list_lock
);
1020 list_del(&page
->lru
);
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1026 struct kmem_cache_node
*n
= get_node(s
, node
);
1028 return atomic_long_read(&n
->nr_slabs
);
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1033 return atomic_long_read(&n
->nr_slabs
);
1036 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1038 struct kmem_cache_node
*n
= get_node(s
, node
);
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1047 atomic_long_inc(&n
->nr_slabs
);
1048 atomic_long_add(objects
, &n
->total_objects
);
1051 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1053 struct kmem_cache_node
*n
= get_node(s
, node
);
1055 atomic_long_dec(&n
->nr_slabs
);
1056 atomic_long_sub(objects
, &n
->total_objects
);
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1063 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1066 init_object(s
, object
, SLUB_RED_INACTIVE
);
1067 init_tracking(s
, object
);
1070 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1072 void *object
, unsigned long addr
)
1074 if (!check_slab(s
, page
))
1077 if (!check_valid_pointer(s
, page
, object
)) {
1078 object_err(s
, page
, object
, "Freelist Pointer check fails");
1082 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1085 /* Success perform special debug activities for allocs */
1086 if (s
->flags
& SLAB_STORE_USER
)
1087 set_track(s
, object
, TRACK_ALLOC
, addr
);
1088 trace(s
, page
, object
, 1);
1089 init_object(s
, object
, SLUB_RED_ACTIVE
);
1093 if (PageSlab(page
)) {
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
1097 * as used avoids touching the remaining objects.
1099 slab_fix(s
, "Marking all objects used");
1100 page
->inuse
= page
->objects
;
1101 page
->freelist
= NULL
;
1106 static noinline
struct kmem_cache_node
*free_debug_processing(
1107 struct kmem_cache
*s
, struct page
*page
, void *object
,
1108 unsigned long addr
, unsigned long *flags
)
1110 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1112 spin_lock_irqsave(&n
->list_lock
, *flags
);
1115 if (!check_slab(s
, page
))
1118 if (!check_valid_pointer(s
, page
, object
)) {
1119 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1123 if (on_freelist(s
, page
, object
)) {
1124 object_err(s
, page
, object
, "Object already free");
1128 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1131 if (unlikely(s
!= page
->slab_cache
)) {
1132 if (!PageSlab(page
)) {
1133 slab_err(s
, page
, "Attempt to free object(0x%p) "
1134 "outside of slab", object
);
1135 } else if (!page
->slab_cache
) {
1136 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1140 object_err(s
, page
, object
,
1141 "page slab pointer corrupt.");
1145 if (s
->flags
& SLAB_STORE_USER
)
1146 set_track(s
, object
, TRACK_FREE
, addr
);
1147 trace(s
, page
, object
, 0);
1148 init_object(s
, object
, SLUB_RED_INACTIVE
);
1152 * Keep node_lock to preserve integrity
1153 * until the object is actually freed
1159 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1160 slab_fix(s
, "Object at 0x%p not freed", object
);
1164 static int __init
setup_slub_debug(char *str
)
1166 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1167 if (*str
++ != '=' || !*str
)
1169 * No options specified. Switch on full debugging.
1175 * No options but restriction on slabs. This means full
1176 * debugging for slabs matching a pattern.
1180 if (tolower(*str
) == 'o') {
1182 * Avoid enabling debugging on caches if its minimum order
1183 * would increase as a result.
1185 disable_higher_order_debug
= 1;
1192 * Switch off all debugging measures.
1197 * Determine which debug features should be switched on
1199 for (; *str
&& *str
!= ','; str
++) {
1200 switch (tolower(*str
)) {
1202 slub_debug
|= SLAB_DEBUG_FREE
;
1205 slub_debug
|= SLAB_RED_ZONE
;
1208 slub_debug
|= SLAB_POISON
;
1211 slub_debug
|= SLAB_STORE_USER
;
1214 slub_debug
|= SLAB_TRACE
;
1217 slub_debug
|= SLAB_FAILSLAB
;
1220 pr_err("slub_debug option '%c' unknown. skipped\n",
1227 slub_debug_slabs
= str
+ 1;
1232 __setup("slub_debug", setup_slub_debug
);
1234 static unsigned long kmem_cache_flags(unsigned long object_size
,
1235 unsigned long flags
, const char *name
,
1236 void (*ctor
)(void *))
1239 * Enable debugging if selected on the kernel commandline.
1241 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1242 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1243 flags
|= slub_debug
;
1248 static inline void setup_object_debug(struct kmem_cache
*s
,
1249 struct page
*page
, void *object
) {}
1251 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1252 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1254 static inline struct kmem_cache_node
*free_debug_processing(
1255 struct kmem_cache
*s
, struct page
*page
, void *object
,
1256 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1258 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1260 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1261 void *object
, u8 val
) { return 1; }
1262 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1263 struct page
*page
) {}
1264 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1265 struct page
*page
) {}
1266 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
1267 unsigned long flags
, const char *name
,
1268 void (*ctor
)(void *))
1272 #define slub_debug 0
1274 #define disable_higher_order_debug 0
1276 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1278 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1280 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1282 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1285 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1287 kmemleak_alloc(ptr
, size
, 1, flags
);
1290 static inline void kfree_hook(const void *x
)
1295 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1298 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1301 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
,
1302 flags
& gfp_allowed_mask
);
1305 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
1307 kmemleak_free_recursive(x
, s
->flags
);
1310 #endif /* CONFIG_SLUB_DEBUG */
1313 * Slab allocation and freeing
1315 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1316 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1319 int order
= oo_order(oo
);
1321 flags
|= __GFP_NOTRACK
;
1323 if (memcg_charge_slab(s
, flags
, order
))
1326 if (node
== NUMA_NO_NODE
)
1327 page
= alloc_pages(flags
, order
);
1329 page
= alloc_pages_exact_node(node
, flags
, order
);
1332 memcg_uncharge_slab(s
, order
);
1337 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1340 struct kmem_cache_order_objects oo
= s
->oo
;
1343 flags
&= gfp_allowed_mask
;
1345 if (flags
& __GFP_WAIT
)
1348 flags
|= s
->allocflags
;
1351 * Let the initial higher-order allocation fail under memory pressure
1352 * so we fall-back to the minimum order allocation.
1354 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1356 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1357 if (unlikely(!page
)) {
1361 * Allocation may have failed due to fragmentation.
1362 * Try a lower order alloc if possible
1364 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1367 stat(s
, ORDER_FALLBACK
);
1370 if (kmemcheck_enabled
&& page
1371 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1372 int pages
= 1 << oo_order(oo
);
1374 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1377 * Objects from caches that have a constructor don't get
1378 * cleared when they're allocated, so we need to do it here.
1381 kmemcheck_mark_uninitialized_pages(page
, pages
);
1383 kmemcheck_mark_unallocated_pages(page
, pages
);
1386 if (flags
& __GFP_WAIT
)
1387 local_irq_disable();
1391 page
->objects
= oo_objects(oo
);
1392 mod_zone_page_state(page_zone(page
),
1393 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1394 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1400 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1403 setup_object_debug(s
, page
, object
);
1404 if (unlikely(s
->ctor
))
1408 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1416 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1418 page
= allocate_slab(s
,
1419 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1423 order
= compound_order(page
);
1424 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1425 page
->slab_cache
= s
;
1426 __SetPageSlab(page
);
1427 if (page
->pfmemalloc
)
1428 SetPageSlabPfmemalloc(page
);
1430 start
= page_address(page
);
1432 if (unlikely(s
->flags
& SLAB_POISON
))
1433 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1436 for_each_object(p
, s
, start
, page
->objects
) {
1437 setup_object(s
, page
, last
);
1438 set_freepointer(s
, last
, p
);
1441 setup_object(s
, page
, last
);
1442 set_freepointer(s
, last
, NULL
);
1444 page
->freelist
= start
;
1445 page
->inuse
= page
->objects
;
1451 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1453 int order
= compound_order(page
);
1454 int pages
= 1 << order
;
1456 if (kmem_cache_debug(s
)) {
1459 slab_pad_check(s
, page
);
1460 for_each_object(p
, s
, page_address(page
),
1462 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1465 kmemcheck_free_shadow(page
, compound_order(page
));
1467 mod_zone_page_state(page_zone(page
),
1468 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1469 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1472 __ClearPageSlabPfmemalloc(page
);
1473 __ClearPageSlab(page
);
1475 page_mapcount_reset(page
);
1476 if (current
->reclaim_state
)
1477 current
->reclaim_state
->reclaimed_slab
+= pages
;
1478 __free_pages(page
, order
);
1479 memcg_uncharge_slab(s
, order
);
1482 #define need_reserve_slab_rcu \
1483 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1485 static void rcu_free_slab(struct rcu_head
*h
)
1489 if (need_reserve_slab_rcu
)
1490 page
= virt_to_head_page(h
);
1492 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1494 __free_slab(page
->slab_cache
, page
);
1497 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1499 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1500 struct rcu_head
*head
;
1502 if (need_reserve_slab_rcu
) {
1503 int order
= compound_order(page
);
1504 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1506 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1507 head
= page_address(page
) + offset
;
1510 * RCU free overloads the RCU head over the LRU
1512 head
= (void *)&page
->lru
;
1515 call_rcu(head
, rcu_free_slab
);
1517 __free_slab(s
, page
);
1520 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1522 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1527 * Management of partially allocated slabs.
1530 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1533 if (tail
== DEACTIVATE_TO_TAIL
)
1534 list_add_tail(&page
->lru
, &n
->partial
);
1536 list_add(&page
->lru
, &n
->partial
);
1539 static inline void add_partial(struct kmem_cache_node
*n
,
1540 struct page
*page
, int tail
)
1542 lockdep_assert_held(&n
->list_lock
);
1543 __add_partial(n
, page
, tail
);
1547 __remove_partial(struct kmem_cache_node
*n
, struct page
*page
)
1549 list_del(&page
->lru
);
1553 static inline void remove_partial(struct kmem_cache_node
*n
,
1556 lockdep_assert_held(&n
->list_lock
);
1557 __remove_partial(n
, page
);
1561 * Remove slab from the partial list, freeze it and
1562 * return the pointer to the freelist.
1564 * Returns a list of objects or NULL if it fails.
1566 static inline void *acquire_slab(struct kmem_cache
*s
,
1567 struct kmem_cache_node
*n
, struct page
*page
,
1568 int mode
, int *objects
)
1571 unsigned long counters
;
1574 lockdep_assert_held(&n
->list_lock
);
1577 * Zap the freelist and set the frozen bit.
1578 * The old freelist is the list of objects for the
1579 * per cpu allocation list.
1581 freelist
= page
->freelist
;
1582 counters
= page
->counters
;
1583 new.counters
= counters
;
1584 *objects
= new.objects
- new.inuse
;
1586 new.inuse
= page
->objects
;
1587 new.freelist
= NULL
;
1589 new.freelist
= freelist
;
1592 VM_BUG_ON(new.frozen
);
1595 if (!__cmpxchg_double_slab(s
, page
,
1597 new.freelist
, new.counters
,
1601 remove_partial(n
, page
);
1606 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1607 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1610 * Try to allocate a partial slab from a specific node.
1612 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1613 struct kmem_cache_cpu
*c
, gfp_t flags
)
1615 struct page
*page
, *page2
;
1616 void *object
= NULL
;
1621 * Racy check. If we mistakenly see no partial slabs then we
1622 * just allocate an empty slab. If we mistakenly try to get a
1623 * partial slab and there is none available then get_partials()
1626 if (!n
|| !n
->nr_partial
)
1629 spin_lock(&n
->list_lock
);
1630 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1633 if (!pfmemalloc_match(page
, flags
))
1636 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1640 available
+= objects
;
1643 stat(s
, ALLOC_FROM_PARTIAL
);
1646 put_cpu_partial(s
, page
, 0);
1647 stat(s
, CPU_PARTIAL_NODE
);
1649 if (!kmem_cache_has_cpu_partial(s
)
1650 || available
> s
->cpu_partial
/ 2)
1654 spin_unlock(&n
->list_lock
);
1659 * Get a page from somewhere. Search in increasing NUMA distances.
1661 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1662 struct kmem_cache_cpu
*c
)
1665 struct zonelist
*zonelist
;
1668 enum zone_type high_zoneidx
= gfp_zone(flags
);
1670 unsigned int cpuset_mems_cookie
;
1673 * The defrag ratio allows a configuration of the tradeoffs between
1674 * inter node defragmentation and node local allocations. A lower
1675 * defrag_ratio increases the tendency to do local allocations
1676 * instead of attempting to obtain partial slabs from other nodes.
1678 * If the defrag_ratio is set to 0 then kmalloc() always
1679 * returns node local objects. If the ratio is higher then kmalloc()
1680 * may return off node objects because partial slabs are obtained
1681 * from other nodes and filled up.
1683 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1684 * defrag_ratio = 1000) then every (well almost) allocation will
1685 * first attempt to defrag slab caches on other nodes. This means
1686 * scanning over all nodes to look for partial slabs which may be
1687 * expensive if we do it every time we are trying to find a slab
1688 * with available objects.
1690 if (!s
->remote_node_defrag_ratio
||
1691 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1695 cpuset_mems_cookie
= read_mems_allowed_begin();
1696 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1697 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1698 struct kmem_cache_node
*n
;
1700 n
= get_node(s
, zone_to_nid(zone
));
1702 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1703 n
->nr_partial
> s
->min_partial
) {
1704 object
= get_partial_node(s
, n
, c
, flags
);
1707 * Don't check read_mems_allowed_retry()
1708 * here - if mems_allowed was updated in
1709 * parallel, that was a harmless race
1710 * between allocation and the cpuset
1717 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1723 * Get a partial page, lock it and return it.
1725 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1726 struct kmem_cache_cpu
*c
)
1729 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_mem_id() : node
;
1731 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1732 if (object
|| node
!= NUMA_NO_NODE
)
1735 return get_any_partial(s
, flags
, c
);
1738 #ifdef CONFIG_PREEMPT
1740 * Calculate the next globally unique transaction for disambiguiation
1741 * during cmpxchg. The transactions start with the cpu number and are then
1742 * incremented by CONFIG_NR_CPUS.
1744 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1747 * No preemption supported therefore also no need to check for
1753 static inline unsigned long next_tid(unsigned long tid
)
1755 return tid
+ TID_STEP
;
1758 static inline unsigned int tid_to_cpu(unsigned long tid
)
1760 return tid
% TID_STEP
;
1763 static inline unsigned long tid_to_event(unsigned long tid
)
1765 return tid
/ TID_STEP
;
1768 static inline unsigned int init_tid(int cpu
)
1773 static inline void note_cmpxchg_failure(const char *n
,
1774 const struct kmem_cache
*s
, unsigned long tid
)
1776 #ifdef SLUB_DEBUG_CMPXCHG
1777 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1779 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1781 #ifdef CONFIG_PREEMPT
1782 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1783 pr_warn("due to cpu change %d -> %d\n",
1784 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1787 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1788 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1789 tid_to_event(tid
), tid_to_event(actual_tid
));
1791 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1792 actual_tid
, tid
, next_tid(tid
));
1794 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1797 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1801 for_each_possible_cpu(cpu
)
1802 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1806 * Remove the cpu slab
1808 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1811 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1812 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1814 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1816 int tail
= DEACTIVATE_TO_HEAD
;
1820 if (page
->freelist
) {
1821 stat(s
, DEACTIVATE_REMOTE_FREES
);
1822 tail
= DEACTIVATE_TO_TAIL
;
1826 * Stage one: Free all available per cpu objects back
1827 * to the page freelist while it is still frozen. Leave the
1830 * There is no need to take the list->lock because the page
1833 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1835 unsigned long counters
;
1838 prior
= page
->freelist
;
1839 counters
= page
->counters
;
1840 set_freepointer(s
, freelist
, prior
);
1841 new.counters
= counters
;
1843 VM_BUG_ON(!new.frozen
);
1845 } while (!__cmpxchg_double_slab(s
, page
,
1847 freelist
, new.counters
,
1848 "drain percpu freelist"));
1850 freelist
= nextfree
;
1854 * Stage two: Ensure that the page is unfrozen while the
1855 * list presence reflects the actual number of objects
1858 * We setup the list membership and then perform a cmpxchg
1859 * with the count. If there is a mismatch then the page
1860 * is not unfrozen but the page is on the wrong list.
1862 * Then we restart the process which may have to remove
1863 * the page from the list that we just put it on again
1864 * because the number of objects in the slab may have
1869 old
.freelist
= page
->freelist
;
1870 old
.counters
= page
->counters
;
1871 VM_BUG_ON(!old
.frozen
);
1873 /* Determine target state of the slab */
1874 new.counters
= old
.counters
;
1877 set_freepointer(s
, freelist
, old
.freelist
);
1878 new.freelist
= freelist
;
1880 new.freelist
= old
.freelist
;
1884 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1886 else if (new.freelist
) {
1891 * Taking the spinlock removes the possiblity
1892 * that acquire_slab() will see a slab page that
1895 spin_lock(&n
->list_lock
);
1899 if (kmem_cache_debug(s
) && !lock
) {
1902 * This also ensures that the scanning of full
1903 * slabs from diagnostic functions will not see
1906 spin_lock(&n
->list_lock
);
1914 remove_partial(n
, page
);
1916 else if (l
== M_FULL
)
1918 remove_full(s
, n
, page
);
1920 if (m
== M_PARTIAL
) {
1922 add_partial(n
, page
, tail
);
1925 } else if (m
== M_FULL
) {
1927 stat(s
, DEACTIVATE_FULL
);
1928 add_full(s
, n
, page
);
1934 if (!__cmpxchg_double_slab(s
, page
,
1935 old
.freelist
, old
.counters
,
1936 new.freelist
, new.counters
,
1941 spin_unlock(&n
->list_lock
);
1944 stat(s
, DEACTIVATE_EMPTY
);
1945 discard_slab(s
, page
);
1951 * Unfreeze all the cpu partial slabs.
1953 * This function must be called with interrupts disabled
1954 * for the cpu using c (or some other guarantee must be there
1955 * to guarantee no concurrent accesses).
1957 static void unfreeze_partials(struct kmem_cache
*s
,
1958 struct kmem_cache_cpu
*c
)
1960 #ifdef CONFIG_SLUB_CPU_PARTIAL
1961 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
1962 struct page
*page
, *discard_page
= NULL
;
1964 while ((page
= c
->partial
)) {
1968 c
->partial
= page
->next
;
1970 n2
= get_node(s
, page_to_nid(page
));
1973 spin_unlock(&n
->list_lock
);
1976 spin_lock(&n
->list_lock
);
1981 old
.freelist
= page
->freelist
;
1982 old
.counters
= page
->counters
;
1983 VM_BUG_ON(!old
.frozen
);
1985 new.counters
= old
.counters
;
1986 new.freelist
= old
.freelist
;
1990 } while (!__cmpxchg_double_slab(s
, page
,
1991 old
.freelist
, old
.counters
,
1992 new.freelist
, new.counters
,
1993 "unfreezing slab"));
1995 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
)) {
1996 page
->next
= discard_page
;
1997 discard_page
= page
;
1999 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2000 stat(s
, FREE_ADD_PARTIAL
);
2005 spin_unlock(&n
->list_lock
);
2007 while (discard_page
) {
2008 page
= discard_page
;
2009 discard_page
= discard_page
->next
;
2011 stat(s
, DEACTIVATE_EMPTY
);
2012 discard_slab(s
, page
);
2019 * Put a page that was just frozen (in __slab_free) into a partial page
2020 * slot if available. This is done without interrupts disabled and without
2021 * preemption disabled. The cmpxchg is racy and may put the partial page
2022 * onto a random cpus partial slot.
2024 * If we did not find a slot then simply move all the partials to the
2025 * per node partial list.
2027 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2029 #ifdef CONFIG_SLUB_CPU_PARTIAL
2030 struct page
*oldpage
;
2037 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2040 pobjects
= oldpage
->pobjects
;
2041 pages
= oldpage
->pages
;
2042 if (drain
&& pobjects
> s
->cpu_partial
) {
2043 unsigned long flags
;
2045 * partial array is full. Move the existing
2046 * set to the per node partial list.
2048 local_irq_save(flags
);
2049 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2050 local_irq_restore(flags
);
2054 stat(s
, CPU_PARTIAL_DRAIN
);
2059 pobjects
+= page
->objects
- page
->inuse
;
2061 page
->pages
= pages
;
2062 page
->pobjects
= pobjects
;
2063 page
->next
= oldpage
;
2065 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2070 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2072 stat(s
, CPUSLAB_FLUSH
);
2073 deactivate_slab(s
, c
->page
, c
->freelist
);
2075 c
->tid
= next_tid(c
->tid
);
2083 * Called from IPI handler with interrupts disabled.
2085 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2087 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2093 unfreeze_partials(s
, c
);
2097 static void flush_cpu_slab(void *d
)
2099 struct kmem_cache
*s
= d
;
2101 __flush_cpu_slab(s
, smp_processor_id());
2104 static bool has_cpu_slab(int cpu
, void *info
)
2106 struct kmem_cache
*s
= info
;
2107 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2109 return c
->page
|| c
->partial
;
2112 static void flush_all(struct kmem_cache
*s
)
2114 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2118 * Check if the objects in a per cpu structure fit numa
2119 * locality expectations.
2121 static inline int node_match(struct page
*page
, int node
)
2124 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2130 #ifdef CONFIG_SLUB_DEBUG
2131 static int count_free(struct page
*page
)
2133 return page
->objects
- page
->inuse
;
2136 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2138 return atomic_long_read(&n
->total_objects
);
2140 #endif /* CONFIG_SLUB_DEBUG */
2142 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2143 static unsigned long count_partial(struct kmem_cache_node
*n
,
2144 int (*get_count
)(struct page
*))
2146 unsigned long flags
;
2147 unsigned long x
= 0;
2150 spin_lock_irqsave(&n
->list_lock
, flags
);
2151 list_for_each_entry(page
, &n
->partial
, lru
)
2152 x
+= get_count(page
);
2153 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2156 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2158 static noinline
void
2159 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2161 #ifdef CONFIG_SLUB_DEBUG
2162 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2163 DEFAULT_RATELIMIT_BURST
);
2166 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2169 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2171 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2172 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2175 if (oo_order(s
->min
) > get_order(s
->object_size
))
2176 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2179 for_each_online_node(node
) {
2180 struct kmem_cache_node
*n
= get_node(s
, node
);
2181 unsigned long nr_slabs
;
2182 unsigned long nr_objs
;
2183 unsigned long nr_free
;
2188 nr_free
= count_partial(n
, count_free
);
2189 nr_slabs
= node_nr_slabs(n
);
2190 nr_objs
= node_nr_objs(n
);
2192 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2193 node
, nr_slabs
, nr_objs
, nr_free
);
2198 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2199 int node
, struct kmem_cache_cpu
**pc
)
2202 struct kmem_cache_cpu
*c
= *pc
;
2205 freelist
= get_partial(s
, flags
, node
, c
);
2210 page
= new_slab(s
, flags
, node
);
2212 c
= raw_cpu_ptr(s
->cpu_slab
);
2217 * No other reference to the page yet so we can
2218 * muck around with it freely without cmpxchg
2220 freelist
= page
->freelist
;
2221 page
->freelist
= NULL
;
2223 stat(s
, ALLOC_SLAB
);
2232 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2234 if (unlikely(PageSlabPfmemalloc(page
)))
2235 return gfp_pfmemalloc_allowed(gfpflags
);
2241 * Check the page->freelist of a page and either transfer the freelist to the
2242 * per cpu freelist or deactivate the page.
2244 * The page is still frozen if the return value is not NULL.
2246 * If this function returns NULL then the page has been unfrozen.
2248 * This function must be called with interrupt disabled.
2250 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2253 unsigned long counters
;
2257 freelist
= page
->freelist
;
2258 counters
= page
->counters
;
2260 new.counters
= counters
;
2261 VM_BUG_ON(!new.frozen
);
2263 new.inuse
= page
->objects
;
2264 new.frozen
= freelist
!= NULL
;
2266 } while (!__cmpxchg_double_slab(s
, page
,
2275 * Slow path. The lockless freelist is empty or we need to perform
2278 * Processing is still very fast if new objects have been freed to the
2279 * regular freelist. In that case we simply take over the regular freelist
2280 * as the lockless freelist and zap the regular freelist.
2282 * If that is not working then we fall back to the partial lists. We take the
2283 * first element of the freelist as the object to allocate now and move the
2284 * rest of the freelist to the lockless freelist.
2286 * And if we were unable to get a new slab from the partial slab lists then
2287 * we need to allocate a new slab. This is the slowest path since it involves
2288 * a call to the page allocator and the setup of a new slab.
2290 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2291 unsigned long addr
, struct kmem_cache_cpu
*c
)
2295 unsigned long flags
;
2297 local_irq_save(flags
);
2298 #ifdef CONFIG_PREEMPT
2300 * We may have been preempted and rescheduled on a different
2301 * cpu before disabling interrupts. Need to reload cpu area
2304 c
= this_cpu_ptr(s
->cpu_slab
);
2312 if (unlikely(!node_match(page
, node
))) {
2313 stat(s
, ALLOC_NODE_MISMATCH
);
2314 deactivate_slab(s
, page
, c
->freelist
);
2321 * By rights, we should be searching for a slab page that was
2322 * PFMEMALLOC but right now, we are losing the pfmemalloc
2323 * information when the page leaves the per-cpu allocator
2325 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2326 deactivate_slab(s
, page
, c
->freelist
);
2332 /* must check again c->freelist in case of cpu migration or IRQ */
2333 freelist
= c
->freelist
;
2337 freelist
= get_freelist(s
, page
);
2341 stat(s
, DEACTIVATE_BYPASS
);
2345 stat(s
, ALLOC_REFILL
);
2349 * freelist is pointing to the list of objects to be used.
2350 * page is pointing to the page from which the objects are obtained.
2351 * That page must be frozen for per cpu allocations to work.
2353 VM_BUG_ON(!c
->page
->frozen
);
2354 c
->freelist
= get_freepointer(s
, freelist
);
2355 c
->tid
= next_tid(c
->tid
);
2356 local_irq_restore(flags
);
2362 page
= c
->page
= c
->partial
;
2363 c
->partial
= page
->next
;
2364 stat(s
, CPU_PARTIAL_ALLOC
);
2369 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2371 if (unlikely(!freelist
)) {
2372 slab_out_of_memory(s
, gfpflags
, node
);
2373 local_irq_restore(flags
);
2378 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2381 /* Only entered in the debug case */
2382 if (kmem_cache_debug(s
) &&
2383 !alloc_debug_processing(s
, page
, freelist
, addr
))
2384 goto new_slab
; /* Slab failed checks. Next slab needed */
2386 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2389 local_irq_restore(flags
);
2394 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2395 * have the fastpath folded into their functions. So no function call
2396 * overhead for requests that can be satisfied on the fastpath.
2398 * The fastpath works by first checking if the lockless freelist can be used.
2399 * If not then __slab_alloc is called for slow processing.
2401 * Otherwise we can simply pick the next object from the lockless free list.
2403 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2404 gfp_t gfpflags
, int node
, unsigned long addr
)
2407 struct kmem_cache_cpu
*c
;
2411 if (slab_pre_alloc_hook(s
, gfpflags
))
2414 s
= memcg_kmem_get_cache(s
, gfpflags
);
2417 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2418 * enabled. We may switch back and forth between cpus while
2419 * reading from one cpu area. That does not matter as long
2420 * as we end up on the original cpu again when doing the cmpxchg.
2422 * Preemption is disabled for the retrieval of the tid because that
2423 * must occur from the current processor. We cannot allow rescheduling
2424 * on a different processor between the determination of the pointer
2425 * and the retrieval of the tid.
2428 c
= this_cpu_ptr(s
->cpu_slab
);
2431 * The transaction ids are globally unique per cpu and per operation on
2432 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2433 * occurs on the right processor and that there was no operation on the
2434 * linked list in between.
2439 object
= c
->freelist
;
2441 if (unlikely(!object
|| !node_match(page
, node
))) {
2442 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2443 stat(s
, ALLOC_SLOWPATH
);
2445 void *next_object
= get_freepointer_safe(s
, object
);
2448 * The cmpxchg will only match if there was no additional
2449 * operation and if we are on the right processor.
2451 * The cmpxchg does the following atomically (without lock
2453 * 1. Relocate first pointer to the current per cpu area.
2454 * 2. Verify that tid and freelist have not been changed
2455 * 3. If they were not changed replace tid and freelist
2457 * Since this is without lock semantics the protection is only
2458 * against code executing on this cpu *not* from access by
2461 if (unlikely(!this_cpu_cmpxchg_double(
2462 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2464 next_object
, next_tid(tid
)))) {
2466 note_cmpxchg_failure("slab_alloc", s
, tid
);
2469 prefetch_freepointer(s
, next_object
);
2470 stat(s
, ALLOC_FASTPATH
);
2473 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2474 memset(object
, 0, s
->object_size
);
2476 slab_post_alloc_hook(s
, gfpflags
, object
);
2481 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2482 gfp_t gfpflags
, unsigned long addr
)
2484 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2487 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2489 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2491 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2496 EXPORT_SYMBOL(kmem_cache_alloc
);
2498 #ifdef CONFIG_TRACING
2499 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2501 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2502 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2505 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2509 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2511 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2513 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2514 s
->object_size
, s
->size
, gfpflags
, node
);
2518 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2520 #ifdef CONFIG_TRACING
2521 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2523 int node
, size_t size
)
2525 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2527 trace_kmalloc_node(_RET_IP_
, ret
,
2528 size
, s
->size
, gfpflags
, node
);
2531 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2536 * Slow patch handling. This may still be called frequently since objects
2537 * have a longer lifetime than the cpu slabs in most processing loads.
2539 * So we still attempt to reduce cache line usage. Just take the slab
2540 * lock and free the item. If there is no additional partial page
2541 * handling required then we can return immediately.
2543 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2544 void *x
, unsigned long addr
)
2547 void **object
= (void *)x
;
2550 unsigned long counters
;
2551 struct kmem_cache_node
*n
= NULL
;
2552 unsigned long uninitialized_var(flags
);
2554 stat(s
, FREE_SLOWPATH
);
2556 if (kmem_cache_debug(s
) &&
2557 !(n
= free_debug_processing(s
, page
, x
, addr
, &flags
)))
2562 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2565 prior
= page
->freelist
;
2566 counters
= page
->counters
;
2567 set_freepointer(s
, object
, prior
);
2568 new.counters
= counters
;
2569 was_frozen
= new.frozen
;
2571 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2573 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2576 * Slab was on no list before and will be
2578 * We can defer the list move and instead
2583 } else { /* Needs to be taken off a list */
2585 n
= get_node(s
, page_to_nid(page
));
2587 * Speculatively acquire the list_lock.
2588 * If the cmpxchg does not succeed then we may
2589 * drop the list_lock without any processing.
2591 * Otherwise the list_lock will synchronize with
2592 * other processors updating the list of slabs.
2594 spin_lock_irqsave(&n
->list_lock
, flags
);
2599 } while (!cmpxchg_double_slab(s
, page
,
2601 object
, new.counters
,
2607 * If we just froze the page then put it onto the
2608 * per cpu partial list.
2610 if (new.frozen
&& !was_frozen
) {
2611 put_cpu_partial(s
, page
, 1);
2612 stat(s
, CPU_PARTIAL_FREE
);
2615 * The list lock was not taken therefore no list
2616 * activity can be necessary.
2619 stat(s
, FREE_FROZEN
);
2623 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
))
2627 * Objects left in the slab. If it was not on the partial list before
2630 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2631 if (kmem_cache_debug(s
))
2632 remove_full(s
, n
, page
);
2633 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2634 stat(s
, FREE_ADD_PARTIAL
);
2636 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2642 * Slab on the partial list.
2644 remove_partial(n
, page
);
2645 stat(s
, FREE_REMOVE_PARTIAL
);
2647 /* Slab must be on the full list */
2648 remove_full(s
, n
, page
);
2651 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2653 discard_slab(s
, page
);
2657 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2658 * can perform fastpath freeing without additional function calls.
2660 * The fastpath is only possible if we are freeing to the current cpu slab
2661 * of this processor. This typically the case if we have just allocated
2664 * If fastpath is not possible then fall back to __slab_free where we deal
2665 * with all sorts of special processing.
2667 static __always_inline
void slab_free(struct kmem_cache
*s
,
2668 struct page
*page
, void *x
, unsigned long addr
)
2670 void **object
= (void *)x
;
2671 struct kmem_cache_cpu
*c
;
2674 slab_free_hook(s
, x
);
2678 * Determine the currently cpus per cpu slab.
2679 * The cpu may change afterward. However that does not matter since
2680 * data is retrieved via this pointer. If we are on the same cpu
2681 * during the cmpxchg then the free will succedd.
2684 c
= this_cpu_ptr(s
->cpu_slab
);
2689 if (likely(page
== c
->page
)) {
2690 set_freepointer(s
, object
, c
->freelist
);
2692 if (unlikely(!this_cpu_cmpxchg_double(
2693 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2695 object
, next_tid(tid
)))) {
2697 note_cmpxchg_failure("slab_free", s
, tid
);
2700 stat(s
, FREE_FASTPATH
);
2702 __slab_free(s
, page
, x
, addr
);
2706 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2708 s
= cache_from_obj(s
, x
);
2711 slab_free(s
, virt_to_head_page(x
), x
, _RET_IP_
);
2712 trace_kmem_cache_free(_RET_IP_
, x
);
2714 EXPORT_SYMBOL(kmem_cache_free
);
2717 * Object placement in a slab is made very easy because we always start at
2718 * offset 0. If we tune the size of the object to the alignment then we can
2719 * get the required alignment by putting one properly sized object after
2722 * Notice that the allocation order determines the sizes of the per cpu
2723 * caches. Each processor has always one slab available for allocations.
2724 * Increasing the allocation order reduces the number of times that slabs
2725 * must be moved on and off the partial lists and is therefore a factor in
2730 * Mininum / Maximum order of slab pages. This influences locking overhead
2731 * and slab fragmentation. A higher order reduces the number of partial slabs
2732 * and increases the number of allocations possible without having to
2733 * take the list_lock.
2735 static int slub_min_order
;
2736 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2737 static int slub_min_objects
;
2740 * Merge control. If this is set then no merging of slab caches will occur.
2741 * (Could be removed. This was introduced to pacify the merge skeptics.)
2743 static int slub_nomerge
;
2746 * Calculate the order of allocation given an slab object size.
2748 * The order of allocation has significant impact on performance and other
2749 * system components. Generally order 0 allocations should be preferred since
2750 * order 0 does not cause fragmentation in the page allocator. Larger objects
2751 * be problematic to put into order 0 slabs because there may be too much
2752 * unused space left. We go to a higher order if more than 1/16th of the slab
2755 * In order to reach satisfactory performance we must ensure that a minimum
2756 * number of objects is in one slab. Otherwise we may generate too much
2757 * activity on the partial lists which requires taking the list_lock. This is
2758 * less a concern for large slabs though which are rarely used.
2760 * slub_max_order specifies the order where we begin to stop considering the
2761 * number of objects in a slab as critical. If we reach slub_max_order then
2762 * we try to keep the page order as low as possible. So we accept more waste
2763 * of space in favor of a small page order.
2765 * Higher order allocations also allow the placement of more objects in a
2766 * slab and thereby reduce object handling overhead. If the user has
2767 * requested a higher mininum order then we start with that one instead of
2768 * the smallest order which will fit the object.
2770 static inline int slab_order(int size
, int min_objects
,
2771 int max_order
, int fract_leftover
, int reserved
)
2775 int min_order
= slub_min_order
;
2777 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2778 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2780 for (order
= max(min_order
,
2781 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2782 order
<= max_order
; order
++) {
2784 unsigned long slab_size
= PAGE_SIZE
<< order
;
2786 if (slab_size
< min_objects
* size
+ reserved
)
2789 rem
= (slab_size
- reserved
) % size
;
2791 if (rem
<= slab_size
/ fract_leftover
)
2799 static inline int calculate_order(int size
, int reserved
)
2807 * Attempt to find best configuration for a slab. This
2808 * works by first attempting to generate a layout with
2809 * the best configuration and backing off gradually.
2811 * First we reduce the acceptable waste in a slab. Then
2812 * we reduce the minimum objects required in a slab.
2814 min_objects
= slub_min_objects
;
2816 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2817 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2818 min_objects
= min(min_objects
, max_objects
);
2820 while (min_objects
> 1) {
2822 while (fraction
>= 4) {
2823 order
= slab_order(size
, min_objects
,
2824 slub_max_order
, fraction
, reserved
);
2825 if (order
<= slub_max_order
)
2833 * We were unable to place multiple objects in a slab. Now
2834 * lets see if we can place a single object there.
2836 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2837 if (order
<= slub_max_order
)
2841 * Doh this slab cannot be placed using slub_max_order.
2843 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2844 if (order
< MAX_ORDER
)
2850 init_kmem_cache_node(struct kmem_cache_node
*n
)
2853 spin_lock_init(&n
->list_lock
);
2854 INIT_LIST_HEAD(&n
->partial
);
2855 #ifdef CONFIG_SLUB_DEBUG
2856 atomic_long_set(&n
->nr_slabs
, 0);
2857 atomic_long_set(&n
->total_objects
, 0);
2858 INIT_LIST_HEAD(&n
->full
);
2862 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2864 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2865 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
2868 * Must align to double word boundary for the double cmpxchg
2869 * instructions to work; see __pcpu_double_call_return_bool().
2871 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2872 2 * sizeof(void *));
2877 init_kmem_cache_cpus(s
);
2882 static struct kmem_cache
*kmem_cache_node
;
2885 * No kmalloc_node yet so do it by hand. We know that this is the first
2886 * slab on the node for this slabcache. There are no concurrent accesses
2889 * Note that this function only works on the kmem_cache_node
2890 * when allocating for the kmem_cache_node. This is used for bootstrapping
2891 * memory on a fresh node that has no slab structures yet.
2893 static void early_kmem_cache_node_alloc(int node
)
2896 struct kmem_cache_node
*n
;
2898 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2900 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2903 if (page_to_nid(page
) != node
) {
2904 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
2905 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2910 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2913 kmem_cache_node
->node
[node
] = n
;
2914 #ifdef CONFIG_SLUB_DEBUG
2915 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2916 init_tracking(kmem_cache_node
, n
);
2918 init_kmem_cache_node(n
);
2919 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2922 * No locks need to be taken here as it has just been
2923 * initialized and there is no concurrent access.
2925 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2928 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2932 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2933 struct kmem_cache_node
*n
= s
->node
[node
];
2936 kmem_cache_free(kmem_cache_node
, n
);
2938 s
->node
[node
] = NULL
;
2942 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2946 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2947 struct kmem_cache_node
*n
;
2949 if (slab_state
== DOWN
) {
2950 early_kmem_cache_node_alloc(node
);
2953 n
= kmem_cache_alloc_node(kmem_cache_node
,
2957 free_kmem_cache_nodes(s
);
2962 init_kmem_cache_node(n
);
2967 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2969 if (min
< MIN_PARTIAL
)
2971 else if (min
> MAX_PARTIAL
)
2973 s
->min_partial
= min
;
2977 * calculate_sizes() determines the order and the distribution of data within
2980 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2982 unsigned long flags
= s
->flags
;
2983 unsigned long size
= s
->object_size
;
2987 * Round up object size to the next word boundary. We can only
2988 * place the free pointer at word boundaries and this determines
2989 * the possible location of the free pointer.
2991 size
= ALIGN(size
, sizeof(void *));
2993 #ifdef CONFIG_SLUB_DEBUG
2995 * Determine if we can poison the object itself. If the user of
2996 * the slab may touch the object after free or before allocation
2997 * then we should never poison the object itself.
2999 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
3001 s
->flags
|= __OBJECT_POISON
;
3003 s
->flags
&= ~__OBJECT_POISON
;
3007 * If we are Redzoning then check if there is some space between the
3008 * end of the object and the free pointer. If not then add an
3009 * additional word to have some bytes to store Redzone information.
3011 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3012 size
+= sizeof(void *);
3016 * With that we have determined the number of bytes in actual use
3017 * by the object. This is the potential offset to the free pointer.
3021 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
3024 * Relocate free pointer after the object if it is not
3025 * permitted to overwrite the first word of the object on
3028 * This is the case if we do RCU, have a constructor or
3029 * destructor or are poisoning the objects.
3032 size
+= sizeof(void *);
3035 #ifdef CONFIG_SLUB_DEBUG
3036 if (flags
& SLAB_STORE_USER
)
3038 * Need to store information about allocs and frees after
3041 size
+= 2 * sizeof(struct track
);
3043 if (flags
& SLAB_RED_ZONE
)
3045 * Add some empty padding so that we can catch
3046 * overwrites from earlier objects rather than let
3047 * tracking information or the free pointer be
3048 * corrupted if a user writes before the start
3051 size
+= sizeof(void *);
3055 * SLUB stores one object immediately after another beginning from
3056 * offset 0. In order to align the objects we have to simply size
3057 * each object to conform to the alignment.
3059 size
= ALIGN(size
, s
->align
);
3061 if (forced_order
>= 0)
3062 order
= forced_order
;
3064 order
= calculate_order(size
, s
->reserved
);
3071 s
->allocflags
|= __GFP_COMP
;
3073 if (s
->flags
& SLAB_CACHE_DMA
)
3074 s
->allocflags
|= GFP_DMA
;
3076 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3077 s
->allocflags
|= __GFP_RECLAIMABLE
;
3080 * Determine the number of objects per slab
3082 s
->oo
= oo_make(order
, size
, s
->reserved
);
3083 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3084 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3087 return !!oo_objects(s
->oo
);
3090 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3092 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3095 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3096 s
->reserved
= sizeof(struct rcu_head
);
3098 if (!calculate_sizes(s
, -1))
3100 if (disable_higher_order_debug
) {
3102 * Disable debugging flags that store metadata if the min slab
3105 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3106 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3108 if (!calculate_sizes(s
, -1))
3113 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3114 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3115 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3116 /* Enable fast mode */
3117 s
->flags
|= __CMPXCHG_DOUBLE
;
3121 * The larger the object size is, the more pages we want on the partial
3122 * list to avoid pounding the page allocator excessively.
3124 set_min_partial(s
, ilog2(s
->size
) / 2);
3127 * cpu_partial determined the maximum number of objects kept in the
3128 * per cpu partial lists of a processor.
3130 * Per cpu partial lists mainly contain slabs that just have one
3131 * object freed. If they are used for allocation then they can be
3132 * filled up again with minimal effort. The slab will never hit the
3133 * per node partial lists and therefore no locking will be required.
3135 * This setting also determines
3137 * A) The number of objects from per cpu partial slabs dumped to the
3138 * per node list when we reach the limit.
3139 * B) The number of objects in cpu partial slabs to extract from the
3140 * per node list when we run out of per cpu objects. We only fetch
3141 * 50% to keep some capacity around for frees.
3143 if (!kmem_cache_has_cpu_partial(s
))
3145 else if (s
->size
>= PAGE_SIZE
)
3147 else if (s
->size
>= 1024)
3149 else if (s
->size
>= 256)
3150 s
->cpu_partial
= 13;
3152 s
->cpu_partial
= 30;
3155 s
->remote_node_defrag_ratio
= 1000;
3157 if (!init_kmem_cache_nodes(s
))
3160 if (alloc_kmem_cache_cpus(s
))
3163 free_kmem_cache_nodes(s
);
3165 if (flags
& SLAB_PANIC
)
3166 panic("Cannot create slab %s size=%lu realsize=%u "
3167 "order=%u offset=%u flags=%lx\n",
3168 s
->name
, (unsigned long)s
->size
, s
->size
,
3169 oo_order(s
->oo
), s
->offset
, flags
);
3173 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3176 #ifdef CONFIG_SLUB_DEBUG
3177 void *addr
= page_address(page
);
3179 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3180 sizeof(long), GFP_ATOMIC
);
3183 slab_err(s
, page
, text
, s
->name
);
3186 get_map(s
, page
, map
);
3187 for_each_object(p
, s
, addr
, page
->objects
) {
3189 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3190 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3191 print_tracking(s
, p
);
3200 * Attempt to free all partial slabs on a node.
3201 * This is called from kmem_cache_close(). We must be the last thread
3202 * using the cache and therefore we do not need to lock anymore.
3204 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3206 struct page
*page
, *h
;
3208 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3210 __remove_partial(n
, page
);
3211 discard_slab(s
, page
);
3213 list_slab_objects(s
, page
,
3214 "Objects remaining in %s on kmem_cache_close()");
3220 * Release all resources used by a slab cache.
3222 static inline int kmem_cache_close(struct kmem_cache
*s
)
3227 /* Attempt to free all objects */
3228 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3229 struct kmem_cache_node
*n
= get_node(s
, node
);
3232 if (n
->nr_partial
|| slabs_node(s
, node
))
3235 free_percpu(s
->cpu_slab
);
3236 free_kmem_cache_nodes(s
);
3240 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3242 return kmem_cache_close(s
);
3245 /********************************************************************
3247 *******************************************************************/
3249 static int __init
setup_slub_min_order(char *str
)
3251 get_option(&str
, &slub_min_order
);
3256 __setup("slub_min_order=", setup_slub_min_order
);
3258 static int __init
setup_slub_max_order(char *str
)
3260 get_option(&str
, &slub_max_order
);
3261 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3266 __setup("slub_max_order=", setup_slub_max_order
);
3268 static int __init
setup_slub_min_objects(char *str
)
3270 get_option(&str
, &slub_min_objects
);
3275 __setup("slub_min_objects=", setup_slub_min_objects
);
3277 static int __init
setup_slub_nomerge(char *str
)
3283 __setup("slub_nomerge", setup_slub_nomerge
);
3285 void *__kmalloc(size_t size
, gfp_t flags
)
3287 struct kmem_cache
*s
;
3290 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3291 return kmalloc_large(size
, flags
);
3293 s
= kmalloc_slab(size
, flags
);
3295 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3298 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3300 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3304 EXPORT_SYMBOL(__kmalloc
);
3307 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3312 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3313 page
= alloc_kmem_pages_node(node
, flags
, get_order(size
));
3315 ptr
= page_address(page
);
3317 kmalloc_large_node_hook(ptr
, size
, flags
);
3321 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3323 struct kmem_cache
*s
;
3326 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3327 ret
= kmalloc_large_node(size
, flags
, node
);
3329 trace_kmalloc_node(_RET_IP_
, ret
,
3330 size
, PAGE_SIZE
<< get_order(size
),
3336 s
= kmalloc_slab(size
, flags
);
3338 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3341 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3343 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3347 EXPORT_SYMBOL(__kmalloc_node
);
3350 size_t ksize(const void *object
)
3354 if (unlikely(object
== ZERO_SIZE_PTR
))
3357 page
= virt_to_head_page(object
);
3359 if (unlikely(!PageSlab(page
))) {
3360 WARN_ON(!PageCompound(page
));
3361 return PAGE_SIZE
<< compound_order(page
);
3364 return slab_ksize(page
->slab_cache
);
3366 EXPORT_SYMBOL(ksize
);
3368 void kfree(const void *x
)
3371 void *object
= (void *)x
;
3373 trace_kfree(_RET_IP_
, x
);
3375 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3378 page
= virt_to_head_page(x
);
3379 if (unlikely(!PageSlab(page
))) {
3380 BUG_ON(!PageCompound(page
));
3382 __free_kmem_pages(page
, compound_order(page
));
3385 slab_free(page
->slab_cache
, page
, object
, _RET_IP_
);
3387 EXPORT_SYMBOL(kfree
);
3390 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3391 * the remaining slabs by the number of items in use. The slabs with the
3392 * most items in use come first. New allocations will then fill those up
3393 * and thus they can be removed from the partial lists.
3395 * The slabs with the least items are placed last. This results in them
3396 * being allocated from last increasing the chance that the last objects
3397 * are freed in them.
3399 int __kmem_cache_shrink(struct kmem_cache
*s
)
3403 struct kmem_cache_node
*n
;
3406 int objects
= oo_objects(s
->max
);
3407 struct list_head
*slabs_by_inuse
=
3408 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3409 unsigned long flags
;
3411 if (!slabs_by_inuse
)
3415 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3416 n
= get_node(s
, node
);
3421 for (i
= 0; i
< objects
; i
++)
3422 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3424 spin_lock_irqsave(&n
->list_lock
, flags
);
3427 * Build lists indexed by the items in use in each slab.
3429 * Note that concurrent frees may occur while we hold the
3430 * list_lock. page->inuse here is the upper limit.
3432 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3433 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3439 * Rebuild the partial list with the slabs filled up most
3440 * first and the least used slabs at the end.
3442 for (i
= objects
- 1; i
> 0; i
--)
3443 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3445 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3447 /* Release empty slabs */
3448 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3449 discard_slab(s
, page
);
3452 kfree(slabs_by_inuse
);
3456 static int slab_mem_going_offline_callback(void *arg
)
3458 struct kmem_cache
*s
;
3460 mutex_lock(&slab_mutex
);
3461 list_for_each_entry(s
, &slab_caches
, list
)
3462 __kmem_cache_shrink(s
);
3463 mutex_unlock(&slab_mutex
);
3468 static void slab_mem_offline_callback(void *arg
)
3470 struct kmem_cache_node
*n
;
3471 struct kmem_cache
*s
;
3472 struct memory_notify
*marg
= arg
;
3475 offline_node
= marg
->status_change_nid_normal
;
3478 * If the node still has available memory. we need kmem_cache_node
3481 if (offline_node
< 0)
3484 mutex_lock(&slab_mutex
);
3485 list_for_each_entry(s
, &slab_caches
, list
) {
3486 n
= get_node(s
, offline_node
);
3489 * if n->nr_slabs > 0, slabs still exist on the node
3490 * that is going down. We were unable to free them,
3491 * and offline_pages() function shouldn't call this
3492 * callback. So, we must fail.
3494 BUG_ON(slabs_node(s
, offline_node
));
3496 s
->node
[offline_node
] = NULL
;
3497 kmem_cache_free(kmem_cache_node
, n
);
3500 mutex_unlock(&slab_mutex
);
3503 static int slab_mem_going_online_callback(void *arg
)
3505 struct kmem_cache_node
*n
;
3506 struct kmem_cache
*s
;
3507 struct memory_notify
*marg
= arg
;
3508 int nid
= marg
->status_change_nid_normal
;
3512 * If the node's memory is already available, then kmem_cache_node is
3513 * already created. Nothing to do.
3519 * We are bringing a node online. No memory is available yet. We must
3520 * allocate a kmem_cache_node structure in order to bring the node
3523 mutex_lock(&slab_mutex
);
3524 list_for_each_entry(s
, &slab_caches
, list
) {
3526 * XXX: kmem_cache_alloc_node will fallback to other nodes
3527 * since memory is not yet available from the node that
3530 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3535 init_kmem_cache_node(n
);
3539 mutex_unlock(&slab_mutex
);
3543 static int slab_memory_callback(struct notifier_block
*self
,
3544 unsigned long action
, void *arg
)
3549 case MEM_GOING_ONLINE
:
3550 ret
= slab_mem_going_online_callback(arg
);
3552 case MEM_GOING_OFFLINE
:
3553 ret
= slab_mem_going_offline_callback(arg
);
3556 case MEM_CANCEL_ONLINE
:
3557 slab_mem_offline_callback(arg
);
3560 case MEM_CANCEL_OFFLINE
:
3564 ret
= notifier_from_errno(ret
);
3570 static struct notifier_block slab_memory_callback_nb
= {
3571 .notifier_call
= slab_memory_callback
,
3572 .priority
= SLAB_CALLBACK_PRI
,
3575 /********************************************************************
3576 * Basic setup of slabs
3577 *******************************************************************/
3580 * Used for early kmem_cache structures that were allocated using
3581 * the page allocator. Allocate them properly then fix up the pointers
3582 * that may be pointing to the wrong kmem_cache structure.
3585 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3588 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3590 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3593 * This runs very early, and only the boot processor is supposed to be
3594 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3597 __flush_cpu_slab(s
, smp_processor_id());
3598 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3599 struct kmem_cache_node
*n
= get_node(s
, node
);
3603 list_for_each_entry(p
, &n
->partial
, lru
)
3606 #ifdef CONFIG_SLUB_DEBUG
3607 list_for_each_entry(p
, &n
->full
, lru
)
3612 list_add(&s
->list
, &slab_caches
);
3616 void __init
kmem_cache_init(void)
3618 static __initdata
struct kmem_cache boot_kmem_cache
,
3619 boot_kmem_cache_node
;
3621 if (debug_guardpage_minorder())
3624 kmem_cache_node
= &boot_kmem_cache_node
;
3625 kmem_cache
= &boot_kmem_cache
;
3627 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3628 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3630 register_hotmemory_notifier(&slab_memory_callback_nb
);
3632 /* Able to allocate the per node structures */
3633 slab_state
= PARTIAL
;
3635 create_boot_cache(kmem_cache
, "kmem_cache",
3636 offsetof(struct kmem_cache
, node
) +
3637 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3638 SLAB_HWCACHE_ALIGN
);
3640 kmem_cache
= bootstrap(&boot_kmem_cache
);
3643 * Allocate kmem_cache_node properly from the kmem_cache slab.
3644 * kmem_cache_node is separately allocated so no need to
3645 * update any list pointers.
3647 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3649 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3650 create_kmalloc_caches(0);
3653 register_cpu_notifier(&slab_notifier
);
3656 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3658 slub_min_order
, slub_max_order
, slub_min_objects
,
3659 nr_cpu_ids
, nr_node_ids
);
3662 void __init
kmem_cache_init_late(void)
3667 * Find a mergeable slab cache
3669 static int slab_unmergeable(struct kmem_cache
*s
)
3671 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3674 if (!is_root_cache(s
))
3681 * We may have set a slab to be unmergeable during bootstrap.
3683 if (s
->refcount
< 0)
3689 static struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
3690 unsigned long flags
, const char *name
, void (*ctor
)(void *))
3692 struct kmem_cache
*s
;
3694 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3700 size
= ALIGN(size
, sizeof(void *));
3701 align
= calculate_alignment(flags
, align
, size
);
3702 size
= ALIGN(size
, align
);
3703 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3705 list_for_each_entry(s
, &slab_caches
, list
) {
3706 if (slab_unmergeable(s
))
3712 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3715 * Check if alignment is compatible.
3716 * Courtesy of Adrian Drzewiecki
3718 if ((s
->size
& ~(align
- 1)) != s
->size
)
3721 if (s
->size
- size
>= sizeof(void *))
3730 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
3731 unsigned long flags
, void (*ctor
)(void *))
3733 struct kmem_cache
*s
;
3735 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3738 struct kmem_cache
*c
;
3743 * Adjust the object sizes so that we clear
3744 * the complete object on kzalloc.
3746 s
->object_size
= max(s
->object_size
, (int)size
);
3747 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3749 for_each_memcg_cache_index(i
) {
3750 c
= cache_from_memcg_idx(s
, i
);
3753 c
->object_size
= s
->object_size
;
3754 c
->inuse
= max_t(int, c
->inuse
,
3755 ALIGN(size
, sizeof(void *)));
3758 if (sysfs_slab_alias(s
, name
)) {
3767 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3771 err
= kmem_cache_open(s
, flags
);
3775 /* Mutex is not taken during early boot */
3776 if (slab_state
<= UP
)
3779 memcg_propagate_slab_attrs(s
);
3780 err
= sysfs_slab_add(s
);
3782 kmem_cache_close(s
);
3789 * Use the cpu notifier to insure that the cpu slabs are flushed when
3792 static int slab_cpuup_callback(struct notifier_block
*nfb
,
3793 unsigned long action
, void *hcpu
)
3795 long cpu
= (long)hcpu
;
3796 struct kmem_cache
*s
;
3797 unsigned long flags
;
3800 case CPU_UP_CANCELED
:
3801 case CPU_UP_CANCELED_FROZEN
:
3803 case CPU_DEAD_FROZEN
:
3804 mutex_lock(&slab_mutex
);
3805 list_for_each_entry(s
, &slab_caches
, list
) {
3806 local_irq_save(flags
);
3807 __flush_cpu_slab(s
, cpu
);
3808 local_irq_restore(flags
);
3810 mutex_unlock(&slab_mutex
);
3818 static struct notifier_block slab_notifier
= {
3819 .notifier_call
= slab_cpuup_callback
3824 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3826 struct kmem_cache
*s
;
3829 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3830 return kmalloc_large(size
, gfpflags
);
3832 s
= kmalloc_slab(size
, gfpflags
);
3834 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3837 ret
= slab_alloc(s
, gfpflags
, caller
);
3839 /* Honor the call site pointer we received. */
3840 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3846 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3847 int node
, unsigned long caller
)
3849 struct kmem_cache
*s
;
3852 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3853 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3855 trace_kmalloc_node(caller
, ret
,
3856 size
, PAGE_SIZE
<< get_order(size
),
3862 s
= kmalloc_slab(size
, gfpflags
);
3864 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3867 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
3869 /* Honor the call site pointer we received. */
3870 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3877 static int count_inuse(struct page
*page
)
3882 static int count_total(struct page
*page
)
3884 return page
->objects
;
3888 #ifdef CONFIG_SLUB_DEBUG
3889 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3893 void *addr
= page_address(page
);
3895 if (!check_slab(s
, page
) ||
3896 !on_freelist(s
, page
, NULL
))
3899 /* Now we know that a valid freelist exists */
3900 bitmap_zero(map
, page
->objects
);
3902 get_map(s
, page
, map
);
3903 for_each_object(p
, s
, addr
, page
->objects
) {
3904 if (test_bit(slab_index(p
, s
, addr
), map
))
3905 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3909 for_each_object(p
, s
, addr
, page
->objects
)
3910 if (!test_bit(slab_index(p
, s
, addr
), map
))
3911 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3916 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3920 validate_slab(s
, page
, map
);
3924 static int validate_slab_node(struct kmem_cache
*s
,
3925 struct kmem_cache_node
*n
, unsigned long *map
)
3927 unsigned long count
= 0;
3929 unsigned long flags
;
3931 spin_lock_irqsave(&n
->list_lock
, flags
);
3933 list_for_each_entry(page
, &n
->partial
, lru
) {
3934 validate_slab_slab(s
, page
, map
);
3937 if (count
!= n
->nr_partial
)
3938 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3939 s
->name
, count
, n
->nr_partial
);
3941 if (!(s
->flags
& SLAB_STORE_USER
))
3944 list_for_each_entry(page
, &n
->full
, lru
) {
3945 validate_slab_slab(s
, page
, map
);
3948 if (count
!= atomic_long_read(&n
->nr_slabs
))
3949 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3950 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
3953 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3957 static long validate_slab_cache(struct kmem_cache
*s
)
3960 unsigned long count
= 0;
3961 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3962 sizeof(unsigned long), GFP_KERNEL
);
3968 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3969 struct kmem_cache_node
*n
= get_node(s
, node
);
3971 count
+= validate_slab_node(s
, n
, map
);
3977 * Generate lists of code addresses where slabcache objects are allocated
3982 unsigned long count
;
3989 DECLARE_BITMAP(cpus
, NR_CPUS
);
3995 unsigned long count
;
3996 struct location
*loc
;
3999 static void free_loc_track(struct loc_track
*t
)
4002 free_pages((unsigned long)t
->loc
,
4003 get_order(sizeof(struct location
) * t
->max
));
4006 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4011 order
= get_order(sizeof(struct location
) * max
);
4013 l
= (void *)__get_free_pages(flags
, order
);
4018 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4026 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4027 const struct track
*track
)
4029 long start
, end
, pos
;
4031 unsigned long caddr
;
4032 unsigned long age
= jiffies
- track
->when
;
4038 pos
= start
+ (end
- start
+ 1) / 2;
4041 * There is nothing at "end". If we end up there
4042 * we need to add something to before end.
4047 caddr
= t
->loc
[pos
].addr
;
4048 if (track
->addr
== caddr
) {
4054 if (age
< l
->min_time
)
4056 if (age
> l
->max_time
)
4059 if (track
->pid
< l
->min_pid
)
4060 l
->min_pid
= track
->pid
;
4061 if (track
->pid
> l
->max_pid
)
4062 l
->max_pid
= track
->pid
;
4064 cpumask_set_cpu(track
->cpu
,
4065 to_cpumask(l
->cpus
));
4067 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4071 if (track
->addr
< caddr
)
4078 * Not found. Insert new tracking element.
4080 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4086 (t
->count
- pos
) * sizeof(struct location
));
4089 l
->addr
= track
->addr
;
4093 l
->min_pid
= track
->pid
;
4094 l
->max_pid
= track
->pid
;
4095 cpumask_clear(to_cpumask(l
->cpus
));
4096 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4097 nodes_clear(l
->nodes
);
4098 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4102 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4103 struct page
*page
, enum track_item alloc
,
4106 void *addr
= page_address(page
);
4109 bitmap_zero(map
, page
->objects
);
4110 get_map(s
, page
, map
);
4112 for_each_object(p
, s
, addr
, page
->objects
)
4113 if (!test_bit(slab_index(p
, s
, addr
), map
))
4114 add_location(t
, s
, get_track(s
, p
, alloc
));
4117 static int list_locations(struct kmem_cache
*s
, char *buf
,
4118 enum track_item alloc
)
4122 struct loc_track t
= { 0, 0, NULL
};
4124 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4125 sizeof(unsigned long), GFP_KERNEL
);
4127 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4130 return sprintf(buf
, "Out of memory\n");
4132 /* Push back cpu slabs */
4135 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4136 struct kmem_cache_node
*n
= get_node(s
, node
);
4137 unsigned long flags
;
4140 if (!atomic_long_read(&n
->nr_slabs
))
4143 spin_lock_irqsave(&n
->list_lock
, flags
);
4144 list_for_each_entry(page
, &n
->partial
, lru
)
4145 process_slab(&t
, s
, page
, alloc
, map
);
4146 list_for_each_entry(page
, &n
->full
, lru
)
4147 process_slab(&t
, s
, page
, alloc
, map
);
4148 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4151 for (i
= 0; i
< t
.count
; i
++) {
4152 struct location
*l
= &t
.loc
[i
];
4154 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4156 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4159 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4161 len
+= sprintf(buf
+ len
, "<not-available>");
4163 if (l
->sum_time
!= l
->min_time
) {
4164 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4166 (long)div_u64(l
->sum_time
, l
->count
),
4169 len
+= sprintf(buf
+ len
, " age=%ld",
4172 if (l
->min_pid
!= l
->max_pid
)
4173 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4174 l
->min_pid
, l
->max_pid
);
4176 len
+= sprintf(buf
+ len
, " pid=%ld",
4179 if (num_online_cpus() > 1 &&
4180 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4181 len
< PAGE_SIZE
- 60) {
4182 len
+= sprintf(buf
+ len
, " cpus=");
4183 len
+= cpulist_scnprintf(buf
+ len
,
4184 PAGE_SIZE
- len
- 50,
4185 to_cpumask(l
->cpus
));
4188 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4189 len
< PAGE_SIZE
- 60) {
4190 len
+= sprintf(buf
+ len
, " nodes=");
4191 len
+= nodelist_scnprintf(buf
+ len
,
4192 PAGE_SIZE
- len
- 50,
4196 len
+= sprintf(buf
+ len
, "\n");
4202 len
+= sprintf(buf
, "No data\n");
4207 #ifdef SLUB_RESILIENCY_TEST
4208 static void resiliency_test(void)
4212 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4214 pr_err("SLUB resiliency testing\n");
4215 pr_err("-----------------------\n");
4216 pr_err("A. Corruption after allocation\n");
4218 p
= kzalloc(16, GFP_KERNEL
);
4220 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4223 validate_slab_cache(kmalloc_caches
[4]);
4225 /* Hmmm... The next two are dangerous */
4226 p
= kzalloc(32, GFP_KERNEL
);
4227 p
[32 + sizeof(void *)] = 0x34;
4228 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4230 pr_err("If allocated object is overwritten then not detectable\n\n");
4232 validate_slab_cache(kmalloc_caches
[5]);
4233 p
= kzalloc(64, GFP_KERNEL
);
4234 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4236 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4238 pr_err("If allocated object is overwritten then not detectable\n\n");
4239 validate_slab_cache(kmalloc_caches
[6]);
4241 pr_err("\nB. Corruption after free\n");
4242 p
= kzalloc(128, GFP_KERNEL
);
4245 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4246 validate_slab_cache(kmalloc_caches
[7]);
4248 p
= kzalloc(256, GFP_KERNEL
);
4251 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4252 validate_slab_cache(kmalloc_caches
[8]);
4254 p
= kzalloc(512, GFP_KERNEL
);
4257 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4258 validate_slab_cache(kmalloc_caches
[9]);
4262 static void resiliency_test(void) {};
4267 enum slab_stat_type
{
4268 SL_ALL
, /* All slabs */
4269 SL_PARTIAL
, /* Only partially allocated slabs */
4270 SL_CPU
, /* Only slabs used for cpu caches */
4271 SL_OBJECTS
, /* Determine allocated objects not slabs */
4272 SL_TOTAL
/* Determine object capacity not slabs */
4275 #define SO_ALL (1 << SL_ALL)
4276 #define SO_PARTIAL (1 << SL_PARTIAL)
4277 #define SO_CPU (1 << SL_CPU)
4278 #define SO_OBJECTS (1 << SL_OBJECTS)
4279 #define SO_TOTAL (1 << SL_TOTAL)
4281 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4282 char *buf
, unsigned long flags
)
4284 unsigned long total
= 0;
4287 unsigned long *nodes
;
4289 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4293 if (flags
& SO_CPU
) {
4296 for_each_possible_cpu(cpu
) {
4297 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4302 page
= ACCESS_ONCE(c
->page
);
4306 node
= page_to_nid(page
);
4307 if (flags
& SO_TOTAL
)
4309 else if (flags
& SO_OBJECTS
)
4317 page
= ACCESS_ONCE(c
->partial
);
4319 node
= page_to_nid(page
);
4320 if (flags
& SO_TOTAL
)
4322 else if (flags
& SO_OBJECTS
)
4333 #ifdef CONFIG_SLUB_DEBUG
4334 if (flags
& SO_ALL
) {
4335 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4336 struct kmem_cache_node
*n
= get_node(s
, node
);
4338 if (flags
& SO_TOTAL
)
4339 x
= atomic_long_read(&n
->total_objects
);
4340 else if (flags
& SO_OBJECTS
)
4341 x
= atomic_long_read(&n
->total_objects
) -
4342 count_partial(n
, count_free
);
4344 x
= atomic_long_read(&n
->nr_slabs
);
4351 if (flags
& SO_PARTIAL
) {
4352 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4353 struct kmem_cache_node
*n
= get_node(s
, node
);
4355 if (flags
& SO_TOTAL
)
4356 x
= count_partial(n
, count_total
);
4357 else if (flags
& SO_OBJECTS
)
4358 x
= count_partial(n
, count_inuse
);
4365 x
= sprintf(buf
, "%lu", total
);
4367 for_each_node_state(node
, N_NORMAL_MEMORY
)
4369 x
+= sprintf(buf
+ x
, " N%d=%lu",
4374 return x
+ sprintf(buf
+ x
, "\n");
4377 #ifdef CONFIG_SLUB_DEBUG
4378 static int any_slab_objects(struct kmem_cache
*s
)
4382 for_each_online_node(node
) {
4383 struct kmem_cache_node
*n
= get_node(s
, node
);
4388 if (atomic_long_read(&n
->total_objects
))
4395 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4396 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4398 struct slab_attribute
{
4399 struct attribute attr
;
4400 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4401 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4404 #define SLAB_ATTR_RO(_name) \
4405 static struct slab_attribute _name##_attr = \
4406 __ATTR(_name, 0400, _name##_show, NULL)
4408 #define SLAB_ATTR(_name) \
4409 static struct slab_attribute _name##_attr = \
4410 __ATTR(_name, 0600, _name##_show, _name##_store)
4412 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4414 return sprintf(buf
, "%d\n", s
->size
);
4416 SLAB_ATTR_RO(slab_size
);
4418 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4420 return sprintf(buf
, "%d\n", s
->align
);
4422 SLAB_ATTR_RO(align
);
4424 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4426 return sprintf(buf
, "%d\n", s
->object_size
);
4428 SLAB_ATTR_RO(object_size
);
4430 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4432 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4434 SLAB_ATTR_RO(objs_per_slab
);
4436 static ssize_t
order_store(struct kmem_cache
*s
,
4437 const char *buf
, size_t length
)
4439 unsigned long order
;
4442 err
= kstrtoul(buf
, 10, &order
);
4446 if (order
> slub_max_order
|| order
< slub_min_order
)
4449 calculate_sizes(s
, order
);
4453 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4455 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4459 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4461 return sprintf(buf
, "%lu\n", s
->min_partial
);
4464 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4470 err
= kstrtoul(buf
, 10, &min
);
4474 set_min_partial(s
, min
);
4477 SLAB_ATTR(min_partial
);
4479 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4481 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4484 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4487 unsigned long objects
;
4490 err
= kstrtoul(buf
, 10, &objects
);
4493 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4496 s
->cpu_partial
= objects
;
4500 SLAB_ATTR(cpu_partial
);
4502 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4506 return sprintf(buf
, "%pS\n", s
->ctor
);
4510 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4512 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4514 SLAB_ATTR_RO(aliases
);
4516 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4518 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4520 SLAB_ATTR_RO(partial
);
4522 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4524 return show_slab_objects(s
, buf
, SO_CPU
);
4526 SLAB_ATTR_RO(cpu_slabs
);
4528 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4530 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4532 SLAB_ATTR_RO(objects
);
4534 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4536 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4538 SLAB_ATTR_RO(objects_partial
);
4540 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4547 for_each_online_cpu(cpu
) {
4548 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4551 pages
+= page
->pages
;
4552 objects
+= page
->pobjects
;
4556 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4559 for_each_online_cpu(cpu
) {
4560 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4562 if (page
&& len
< PAGE_SIZE
- 20)
4563 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4564 page
->pobjects
, page
->pages
);
4567 return len
+ sprintf(buf
+ len
, "\n");
4569 SLAB_ATTR_RO(slabs_cpu_partial
);
4571 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4573 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4576 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4577 const char *buf
, size_t length
)
4579 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4581 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4584 SLAB_ATTR(reclaim_account
);
4586 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4588 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4590 SLAB_ATTR_RO(hwcache_align
);
4592 #ifdef CONFIG_ZONE_DMA
4593 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4595 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4597 SLAB_ATTR_RO(cache_dma
);
4600 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4602 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4604 SLAB_ATTR_RO(destroy_by_rcu
);
4606 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4608 return sprintf(buf
, "%d\n", s
->reserved
);
4610 SLAB_ATTR_RO(reserved
);
4612 #ifdef CONFIG_SLUB_DEBUG
4613 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4615 return show_slab_objects(s
, buf
, SO_ALL
);
4617 SLAB_ATTR_RO(slabs
);
4619 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4621 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4623 SLAB_ATTR_RO(total_objects
);
4625 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4627 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4630 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4631 const char *buf
, size_t length
)
4633 s
->flags
&= ~SLAB_DEBUG_FREE
;
4634 if (buf
[0] == '1') {
4635 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4636 s
->flags
|= SLAB_DEBUG_FREE
;
4640 SLAB_ATTR(sanity_checks
);
4642 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4644 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4647 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4650 s
->flags
&= ~SLAB_TRACE
;
4651 if (buf
[0] == '1') {
4652 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4653 s
->flags
|= SLAB_TRACE
;
4659 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4661 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4664 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4665 const char *buf
, size_t length
)
4667 if (any_slab_objects(s
))
4670 s
->flags
&= ~SLAB_RED_ZONE
;
4671 if (buf
[0] == '1') {
4672 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4673 s
->flags
|= SLAB_RED_ZONE
;
4675 calculate_sizes(s
, -1);
4678 SLAB_ATTR(red_zone
);
4680 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4682 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4685 static ssize_t
poison_store(struct kmem_cache
*s
,
4686 const char *buf
, size_t length
)
4688 if (any_slab_objects(s
))
4691 s
->flags
&= ~SLAB_POISON
;
4692 if (buf
[0] == '1') {
4693 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4694 s
->flags
|= SLAB_POISON
;
4696 calculate_sizes(s
, -1);
4701 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4703 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4706 static ssize_t
store_user_store(struct kmem_cache
*s
,
4707 const char *buf
, size_t length
)
4709 if (any_slab_objects(s
))
4712 s
->flags
&= ~SLAB_STORE_USER
;
4713 if (buf
[0] == '1') {
4714 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4715 s
->flags
|= SLAB_STORE_USER
;
4717 calculate_sizes(s
, -1);
4720 SLAB_ATTR(store_user
);
4722 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4727 static ssize_t
validate_store(struct kmem_cache
*s
,
4728 const char *buf
, size_t length
)
4732 if (buf
[0] == '1') {
4733 ret
= validate_slab_cache(s
);
4739 SLAB_ATTR(validate
);
4741 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4743 if (!(s
->flags
& SLAB_STORE_USER
))
4745 return list_locations(s
, buf
, TRACK_ALLOC
);
4747 SLAB_ATTR_RO(alloc_calls
);
4749 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4751 if (!(s
->flags
& SLAB_STORE_USER
))
4753 return list_locations(s
, buf
, TRACK_FREE
);
4755 SLAB_ATTR_RO(free_calls
);
4756 #endif /* CONFIG_SLUB_DEBUG */
4758 #ifdef CONFIG_FAILSLAB
4759 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4761 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4764 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4767 s
->flags
&= ~SLAB_FAILSLAB
;
4769 s
->flags
|= SLAB_FAILSLAB
;
4772 SLAB_ATTR(failslab
);
4775 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4780 static ssize_t
shrink_store(struct kmem_cache
*s
,
4781 const char *buf
, size_t length
)
4783 if (buf
[0] == '1') {
4784 int rc
= kmem_cache_shrink(s
);
4795 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4797 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4800 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4801 const char *buf
, size_t length
)
4803 unsigned long ratio
;
4806 err
= kstrtoul(buf
, 10, &ratio
);
4811 s
->remote_node_defrag_ratio
= ratio
* 10;
4815 SLAB_ATTR(remote_node_defrag_ratio
);
4818 #ifdef CONFIG_SLUB_STATS
4819 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4821 unsigned long sum
= 0;
4824 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4829 for_each_online_cpu(cpu
) {
4830 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4836 len
= sprintf(buf
, "%lu", sum
);
4839 for_each_online_cpu(cpu
) {
4840 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4841 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4845 return len
+ sprintf(buf
+ len
, "\n");
4848 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4852 for_each_online_cpu(cpu
)
4853 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4856 #define STAT_ATTR(si, text) \
4857 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4859 return show_stat(s, buf, si); \
4861 static ssize_t text##_store(struct kmem_cache *s, \
4862 const char *buf, size_t length) \
4864 if (buf[0] != '0') \
4866 clear_stat(s, si); \
4871 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4872 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4873 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4874 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4875 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4876 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4877 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4878 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4879 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4880 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4881 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
4882 STAT_ATTR(FREE_SLAB
, free_slab
);
4883 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4884 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4885 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4886 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4887 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4888 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4889 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
4890 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4891 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
4892 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
4893 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
4894 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
4895 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
4896 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
4899 static struct attribute
*slab_attrs
[] = {
4900 &slab_size_attr
.attr
,
4901 &object_size_attr
.attr
,
4902 &objs_per_slab_attr
.attr
,
4904 &min_partial_attr
.attr
,
4905 &cpu_partial_attr
.attr
,
4907 &objects_partial_attr
.attr
,
4909 &cpu_slabs_attr
.attr
,
4913 &hwcache_align_attr
.attr
,
4914 &reclaim_account_attr
.attr
,
4915 &destroy_by_rcu_attr
.attr
,
4917 &reserved_attr
.attr
,
4918 &slabs_cpu_partial_attr
.attr
,
4919 #ifdef CONFIG_SLUB_DEBUG
4920 &total_objects_attr
.attr
,
4922 &sanity_checks_attr
.attr
,
4924 &red_zone_attr
.attr
,
4926 &store_user_attr
.attr
,
4927 &validate_attr
.attr
,
4928 &alloc_calls_attr
.attr
,
4929 &free_calls_attr
.attr
,
4931 #ifdef CONFIG_ZONE_DMA
4932 &cache_dma_attr
.attr
,
4935 &remote_node_defrag_ratio_attr
.attr
,
4937 #ifdef CONFIG_SLUB_STATS
4938 &alloc_fastpath_attr
.attr
,
4939 &alloc_slowpath_attr
.attr
,
4940 &free_fastpath_attr
.attr
,
4941 &free_slowpath_attr
.attr
,
4942 &free_frozen_attr
.attr
,
4943 &free_add_partial_attr
.attr
,
4944 &free_remove_partial_attr
.attr
,
4945 &alloc_from_partial_attr
.attr
,
4946 &alloc_slab_attr
.attr
,
4947 &alloc_refill_attr
.attr
,
4948 &alloc_node_mismatch_attr
.attr
,
4949 &free_slab_attr
.attr
,
4950 &cpuslab_flush_attr
.attr
,
4951 &deactivate_full_attr
.attr
,
4952 &deactivate_empty_attr
.attr
,
4953 &deactivate_to_head_attr
.attr
,
4954 &deactivate_to_tail_attr
.attr
,
4955 &deactivate_remote_frees_attr
.attr
,
4956 &deactivate_bypass_attr
.attr
,
4957 &order_fallback_attr
.attr
,
4958 &cmpxchg_double_fail_attr
.attr
,
4959 &cmpxchg_double_cpu_fail_attr
.attr
,
4960 &cpu_partial_alloc_attr
.attr
,
4961 &cpu_partial_free_attr
.attr
,
4962 &cpu_partial_node_attr
.attr
,
4963 &cpu_partial_drain_attr
.attr
,
4965 #ifdef CONFIG_FAILSLAB
4966 &failslab_attr
.attr
,
4972 static struct attribute_group slab_attr_group
= {
4973 .attrs
= slab_attrs
,
4976 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4977 struct attribute
*attr
,
4980 struct slab_attribute
*attribute
;
4981 struct kmem_cache
*s
;
4984 attribute
= to_slab_attr(attr
);
4987 if (!attribute
->show
)
4990 err
= attribute
->show(s
, buf
);
4995 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4996 struct attribute
*attr
,
4997 const char *buf
, size_t len
)
4999 struct slab_attribute
*attribute
;
5000 struct kmem_cache
*s
;
5003 attribute
= to_slab_attr(attr
);
5006 if (!attribute
->store
)
5009 err
= attribute
->store(s
, buf
, len
);
5010 #ifdef CONFIG_MEMCG_KMEM
5011 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5014 mutex_lock(&slab_mutex
);
5015 if (s
->max_attr_size
< len
)
5016 s
->max_attr_size
= len
;
5019 * This is a best effort propagation, so this function's return
5020 * value will be determined by the parent cache only. This is
5021 * basically because not all attributes will have a well
5022 * defined semantics for rollbacks - most of the actions will
5023 * have permanent effects.
5025 * Returning the error value of any of the children that fail
5026 * is not 100 % defined, in the sense that users seeing the
5027 * error code won't be able to know anything about the state of
5030 * Only returning the error code for the parent cache at least
5031 * has well defined semantics. The cache being written to
5032 * directly either failed or succeeded, in which case we loop
5033 * through the descendants with best-effort propagation.
5035 for_each_memcg_cache_index(i
) {
5036 struct kmem_cache
*c
= cache_from_memcg_idx(s
, i
);
5038 attribute
->store(c
, buf
, len
);
5040 mutex_unlock(&slab_mutex
);
5046 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5048 #ifdef CONFIG_MEMCG_KMEM
5050 char *buffer
= NULL
;
5051 struct kmem_cache
*root_cache
;
5053 if (is_root_cache(s
))
5056 root_cache
= s
->memcg_params
->root_cache
;
5059 * This mean this cache had no attribute written. Therefore, no point
5060 * in copying default values around
5062 if (!root_cache
->max_attr_size
)
5065 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5068 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5070 if (!attr
|| !attr
->store
|| !attr
->show
)
5074 * It is really bad that we have to allocate here, so we will
5075 * do it only as a fallback. If we actually allocate, though,
5076 * we can just use the allocated buffer until the end.
5078 * Most of the slub attributes will tend to be very small in
5079 * size, but sysfs allows buffers up to a page, so they can
5080 * theoretically happen.
5084 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5087 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5088 if (WARN_ON(!buffer
))
5093 attr
->show(root_cache
, buf
);
5094 attr
->store(s
, buf
, strlen(buf
));
5098 free_page((unsigned long)buffer
);
5102 static void kmem_cache_release(struct kobject
*k
)
5104 slab_kmem_cache_release(to_slab(k
));
5107 static const struct sysfs_ops slab_sysfs_ops
= {
5108 .show
= slab_attr_show
,
5109 .store
= slab_attr_store
,
5112 static struct kobj_type slab_ktype
= {
5113 .sysfs_ops
= &slab_sysfs_ops
,
5114 .release
= kmem_cache_release
,
5117 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5119 struct kobj_type
*ktype
= get_ktype(kobj
);
5121 if (ktype
== &slab_ktype
)
5126 static const struct kset_uevent_ops slab_uevent_ops
= {
5127 .filter
= uevent_filter
,
5130 static struct kset
*slab_kset
;
5132 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5134 #ifdef CONFIG_MEMCG_KMEM
5135 if (!is_root_cache(s
))
5136 return s
->memcg_params
->root_cache
->memcg_kset
;
5141 #define ID_STR_LENGTH 64
5143 /* Create a unique string id for a slab cache:
5145 * Format :[flags-]size
5147 static char *create_unique_id(struct kmem_cache
*s
)
5149 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5156 * First flags affecting slabcache operations. We will only
5157 * get here for aliasable slabs so we do not need to support
5158 * too many flags. The flags here must cover all flags that
5159 * are matched during merging to guarantee that the id is
5162 if (s
->flags
& SLAB_CACHE_DMA
)
5164 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5166 if (s
->flags
& SLAB_DEBUG_FREE
)
5168 if (!(s
->flags
& SLAB_NOTRACK
))
5172 p
+= sprintf(p
, "%07d", s
->size
);
5174 #ifdef CONFIG_MEMCG_KMEM
5175 if (!is_root_cache(s
))
5176 p
+= sprintf(p
, "-%08d",
5177 memcg_cache_id(s
->memcg_params
->memcg
));
5180 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5184 static int sysfs_slab_add(struct kmem_cache
*s
)
5188 int unmergeable
= slab_unmergeable(s
);
5192 * Slabcache can never be merged so we can use the name proper.
5193 * This is typically the case for debug situations. In that
5194 * case we can catch duplicate names easily.
5196 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5200 * Create a unique name for the slab as a target
5203 name
= create_unique_id(s
);
5206 s
->kobj
.kset
= cache_kset(s
);
5207 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5211 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5215 #ifdef CONFIG_MEMCG_KMEM
5216 if (is_root_cache(s
)) {
5217 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5218 if (!s
->memcg_kset
) {
5225 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5227 /* Setup first alias */
5228 sysfs_slab_alias(s
, s
->name
);
5235 kobject_del(&s
->kobj
);
5237 kobject_put(&s
->kobj
);
5241 void sysfs_slab_remove(struct kmem_cache
*s
)
5243 if (slab_state
< FULL
)
5245 * Sysfs has not been setup yet so no need to remove the
5250 #ifdef CONFIG_MEMCG_KMEM
5251 kset_unregister(s
->memcg_kset
);
5253 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5254 kobject_del(&s
->kobj
);
5255 kobject_put(&s
->kobj
);
5259 * Need to buffer aliases during bootup until sysfs becomes
5260 * available lest we lose that information.
5262 struct saved_alias
{
5263 struct kmem_cache
*s
;
5265 struct saved_alias
*next
;
5268 static struct saved_alias
*alias_list
;
5270 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5272 struct saved_alias
*al
;
5274 if (slab_state
== FULL
) {
5276 * If we have a leftover link then remove it.
5278 sysfs_remove_link(&slab_kset
->kobj
, name
);
5279 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5282 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5288 al
->next
= alias_list
;
5293 static int __init
slab_sysfs_init(void)
5295 struct kmem_cache
*s
;
5298 mutex_lock(&slab_mutex
);
5300 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5302 mutex_unlock(&slab_mutex
);
5303 pr_err("Cannot register slab subsystem.\n");
5309 list_for_each_entry(s
, &slab_caches
, list
) {
5310 err
= sysfs_slab_add(s
);
5312 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5316 while (alias_list
) {
5317 struct saved_alias
*al
= alias_list
;
5319 alias_list
= alias_list
->next
;
5320 err
= sysfs_slab_alias(al
->s
, al
->name
);
5322 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5327 mutex_unlock(&slab_mutex
);
5332 __initcall(slab_sysfs_init
);
5333 #endif /* CONFIG_SYSFS */
5336 * The /proc/slabinfo ABI
5338 #ifdef CONFIG_SLABINFO
5339 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5341 unsigned long nr_slabs
= 0;
5342 unsigned long nr_objs
= 0;
5343 unsigned long nr_free
= 0;
5346 for_each_online_node(node
) {
5347 struct kmem_cache_node
*n
= get_node(s
, node
);
5352 nr_slabs
+= node_nr_slabs(n
);
5353 nr_objs
+= node_nr_objs(n
);
5354 nr_free
+= count_partial(n
, count_free
);
5357 sinfo
->active_objs
= nr_objs
- nr_free
;
5358 sinfo
->num_objs
= nr_objs
;
5359 sinfo
->active_slabs
= nr_slabs
;
5360 sinfo
->num_slabs
= nr_slabs
;
5361 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5362 sinfo
->cache_order
= oo_order(s
->oo
);
5365 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5369 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5370 size_t count
, loff_t
*ppos
)
5374 #endif /* CONFIG_SLABINFO */