4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
45 static void free_swap_count_continuations(struct swap_info_struct
*);
46 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
48 DEFINE_SPINLOCK(swap_lock
);
49 static unsigned int nr_swapfiles
;
50 atomic_long_t nr_swap_pages
;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages
;
53 static int least_priority
;
55 static const char Bad_file
[] = "Bad swap file entry ";
56 static const char Unused_file
[] = "Unused swap file entry ";
57 static const char Bad_offset
[] = "Bad swap offset entry ";
58 static const char Unused_offset
[] = "Unused swap offset entry ";
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
64 PLIST_HEAD(swap_active_head
);
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
78 static PLIST_HEAD(swap_avail_head
);
79 static DEFINE_SPINLOCK(swap_avail_lock
);
81 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
83 static DEFINE_MUTEX(swapon_mutex
);
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
89 static inline unsigned char swap_count(unsigned char ent
)
91 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
94 /* returns 1 if swap entry is freed */
96 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
98 swp_entry_t entry
= swp_entry(si
->type
, offset
);
102 page
= find_get_page(swap_address_space(entry
), entry
.val
);
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
112 if (trylock_page(page
)) {
113 ret
= try_to_free_swap(page
);
116 page_cache_release(page
);
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
124 static int discard_swap(struct swap_info_struct
*si
)
126 struct swap_extent
*se
;
127 sector_t start_block
;
131 /* Do not discard the swap header page! */
132 se
= &si
->first_swap_extent
;
133 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
134 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
136 err
= blkdev_issue_discard(si
->bdev
, start_block
,
137 nr_blocks
, GFP_KERNEL
, 0);
143 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
144 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
145 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
147 err
= blkdev_issue_discard(si
->bdev
, start_block
,
148 nr_blocks
, GFP_KERNEL
, 0);
154 return err
; /* That will often be -EOPNOTSUPP */
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
161 static void discard_swap_cluster(struct swap_info_struct
*si
,
162 pgoff_t start_page
, pgoff_t nr_pages
)
164 struct swap_extent
*se
= si
->curr_swap_extent
;
165 int found_extent
= 0;
168 struct list_head
*lh
;
170 if (se
->start_page
<= start_page
&&
171 start_page
< se
->start_page
+ se
->nr_pages
) {
172 pgoff_t offset
= start_page
- se
->start_page
;
173 sector_t start_block
= se
->start_block
+ offset
;
174 sector_t nr_blocks
= se
->nr_pages
- offset
;
176 if (nr_blocks
> nr_pages
)
177 nr_blocks
= nr_pages
;
178 start_page
+= nr_blocks
;
179 nr_pages
-= nr_blocks
;
182 si
->curr_swap_extent
= se
;
184 start_block
<<= PAGE_SHIFT
- 9;
185 nr_blocks
<<= PAGE_SHIFT
- 9;
186 if (blkdev_issue_discard(si
->bdev
, start_block
,
187 nr_blocks
, GFP_NOIO
, 0))
192 se
= list_entry(lh
, struct swap_extent
, list
);
196 #define SWAPFILE_CLUSTER 256
197 #define LATENCY_LIMIT 256
199 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
205 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
210 static inline void cluster_set_count(struct swap_cluster_info
*info
,
216 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
217 unsigned int c
, unsigned int f
)
223 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
228 static inline void cluster_set_next(struct swap_cluster_info
*info
,
234 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
235 unsigned int n
, unsigned int f
)
241 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
243 return info
->flags
& CLUSTER_FLAG_FREE
;
246 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
248 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
251 static inline void cluster_set_null(struct swap_cluster_info
*info
)
253 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
262 * If scan_swap_map() can't find a free cluster, it will check
263 * si->swap_map directly. To make sure the discarding cluster isn't
264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 * will be cleared after discard
267 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
268 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
270 if (cluster_is_null(&si
->discard_cluster_head
)) {
271 cluster_set_next_flag(&si
->discard_cluster_head
,
273 cluster_set_next_flag(&si
->discard_cluster_tail
,
276 unsigned int tail
= cluster_next(&si
->discard_cluster_tail
);
277 cluster_set_next(&si
->cluster_info
[tail
], idx
);
278 cluster_set_next_flag(&si
->discard_cluster_tail
,
282 schedule_work(&si
->discard_work
);
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
289 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
291 struct swap_cluster_info
*info
;
294 info
= si
->cluster_info
;
296 while (!cluster_is_null(&si
->discard_cluster_head
)) {
297 idx
= cluster_next(&si
->discard_cluster_head
);
299 cluster_set_next_flag(&si
->discard_cluster_head
,
300 cluster_next(&info
[idx
]), 0);
301 if (cluster_next(&si
->discard_cluster_tail
) == idx
) {
302 cluster_set_null(&si
->discard_cluster_head
);
303 cluster_set_null(&si
->discard_cluster_tail
);
305 spin_unlock(&si
->lock
);
307 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
310 spin_lock(&si
->lock
);
311 cluster_set_flag(&info
[idx
], CLUSTER_FLAG_FREE
);
312 if (cluster_is_null(&si
->free_cluster_head
)) {
313 cluster_set_next_flag(&si
->free_cluster_head
,
315 cluster_set_next_flag(&si
->free_cluster_tail
,
320 tail
= cluster_next(&si
->free_cluster_tail
);
321 cluster_set_next(&info
[tail
], idx
);
322 cluster_set_next_flag(&si
->free_cluster_tail
,
325 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
326 0, SWAPFILE_CLUSTER
);
330 static void swap_discard_work(struct work_struct
*work
)
332 struct swap_info_struct
*si
;
334 si
= container_of(work
, struct swap_info_struct
, discard_work
);
336 spin_lock(&si
->lock
);
337 swap_do_scheduled_discard(si
);
338 spin_unlock(&si
->lock
);
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
345 static void inc_cluster_info_page(struct swap_info_struct
*p
,
346 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
348 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
352 if (cluster_is_free(&cluster_info
[idx
])) {
353 VM_BUG_ON(cluster_next(&p
->free_cluster_head
) != idx
);
354 cluster_set_next_flag(&p
->free_cluster_head
,
355 cluster_next(&cluster_info
[idx
]), 0);
356 if (cluster_next(&p
->free_cluster_tail
) == idx
) {
357 cluster_set_null(&p
->free_cluster_tail
);
358 cluster_set_null(&p
->free_cluster_head
);
360 cluster_set_count_flag(&cluster_info
[idx
], 0, 0);
363 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
364 cluster_set_count(&cluster_info
[idx
],
365 cluster_count(&cluster_info
[idx
]) + 1);
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
373 static void dec_cluster_info_page(struct swap_info_struct
*p
,
374 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
376 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
381 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
382 cluster_set_count(&cluster_info
[idx
],
383 cluster_count(&cluster_info
[idx
]) - 1);
385 if (cluster_count(&cluster_info
[idx
]) == 0) {
387 * If the swap is discardable, prepare discard the cluster
388 * instead of free it immediately. The cluster will be freed
391 if ((p
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
392 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
393 swap_cluster_schedule_discard(p
, idx
);
397 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
398 if (cluster_is_null(&p
->free_cluster_head
)) {
399 cluster_set_next_flag(&p
->free_cluster_head
, idx
, 0);
400 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
402 unsigned int tail
= cluster_next(&p
->free_cluster_tail
);
403 cluster_set_next(&cluster_info
[tail
], idx
);
404 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
415 unsigned long offset
)
417 struct percpu_cluster
*percpu_cluster
;
420 offset
/= SWAPFILE_CLUSTER
;
421 conflict
= !cluster_is_null(&si
->free_cluster_head
) &&
422 offset
!= cluster_next(&si
->free_cluster_head
) &&
423 cluster_is_free(&si
->cluster_info
[offset
]);
428 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
429 cluster_set_null(&percpu_cluster
->index
);
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
438 unsigned long *offset
, unsigned long *scan_base
)
440 struct percpu_cluster
*cluster
;
445 cluster
= this_cpu_ptr(si
->percpu_cluster
);
446 if (cluster_is_null(&cluster
->index
)) {
447 if (!cluster_is_null(&si
->free_cluster_head
)) {
448 cluster
->index
= si
->free_cluster_head
;
449 cluster
->next
= cluster_next(&cluster
->index
) *
451 } else if (!cluster_is_null(&si
->discard_cluster_head
)) {
453 * we don't have free cluster but have some clusters in
454 * discarding, do discard now and reclaim them
456 swap_do_scheduled_discard(si
);
457 *scan_base
= *offset
= si
->cluster_next
;
466 * Other CPUs can use our cluster if they can't find a free cluster,
467 * check if there is still free entry in the cluster
470 while (tmp
< si
->max
&& tmp
< (cluster_next(&cluster
->index
) + 1) *
472 if (!si
->swap_map
[tmp
]) {
479 cluster_set_null(&cluster
->index
);
482 cluster
->next
= tmp
+ 1;
487 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
490 unsigned long offset
;
491 unsigned long scan_base
;
492 unsigned long last_in_cluster
= 0;
493 int latency_ration
= LATENCY_LIMIT
;
496 * We try to cluster swap pages by allocating them sequentially
497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
498 * way, however, we resort to first-free allocation, starting
499 * a new cluster. This prevents us from scattering swap pages
500 * all over the entire swap partition, so that we reduce
501 * overall disk seek times between swap pages. -- sct
502 * But we do now try to find an empty cluster. -Andrea
503 * And we let swap pages go all over an SSD partition. Hugh
506 si
->flags
+= SWP_SCANNING
;
507 scan_base
= offset
= si
->cluster_next
;
510 if (si
->cluster_info
) {
511 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
515 if (unlikely(!si
->cluster_nr
--)) {
516 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
517 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
521 spin_unlock(&si
->lock
);
524 * If seek is expensive, start searching for new cluster from
525 * start of partition, to minimize the span of allocated swap.
526 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527 * case, just handled by scan_swap_map_try_ssd_cluster() above.
529 scan_base
= offset
= si
->lowest_bit
;
530 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
532 /* Locate the first empty (unaligned) cluster */
533 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
534 if (si
->swap_map
[offset
])
535 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
536 else if (offset
== last_in_cluster
) {
537 spin_lock(&si
->lock
);
538 offset
-= SWAPFILE_CLUSTER
- 1;
539 si
->cluster_next
= offset
;
540 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
543 if (unlikely(--latency_ration
< 0)) {
545 latency_ration
= LATENCY_LIMIT
;
550 spin_lock(&si
->lock
);
551 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
555 if (si
->cluster_info
) {
556 while (scan_swap_map_ssd_cluster_conflict(si
, offset
))
557 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
559 if (!(si
->flags
& SWP_WRITEOK
))
561 if (!si
->highest_bit
)
563 if (offset
> si
->highest_bit
)
564 scan_base
= offset
= si
->lowest_bit
;
566 /* reuse swap entry of cache-only swap if not busy. */
567 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
569 spin_unlock(&si
->lock
);
570 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
571 spin_lock(&si
->lock
);
572 /* entry was freed successfully, try to use this again */
575 goto scan
; /* check next one */
578 if (si
->swap_map
[offset
])
581 if (offset
== si
->lowest_bit
)
583 if (offset
== si
->highest_bit
)
586 if (si
->inuse_pages
== si
->pages
) {
587 si
->lowest_bit
= si
->max
;
589 spin_lock(&swap_avail_lock
);
590 plist_del(&si
->avail_list
, &swap_avail_head
);
591 spin_unlock(&swap_avail_lock
);
593 si
->swap_map
[offset
] = usage
;
594 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
595 si
->cluster_next
= offset
+ 1;
596 si
->flags
-= SWP_SCANNING
;
601 spin_unlock(&si
->lock
);
602 while (++offset
<= si
->highest_bit
) {
603 if (!si
->swap_map
[offset
]) {
604 spin_lock(&si
->lock
);
607 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
608 spin_lock(&si
->lock
);
611 if (unlikely(--latency_ration
< 0)) {
613 latency_ration
= LATENCY_LIMIT
;
616 offset
= si
->lowest_bit
;
617 while (offset
< scan_base
) {
618 if (!si
->swap_map
[offset
]) {
619 spin_lock(&si
->lock
);
622 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
623 spin_lock(&si
->lock
);
626 if (unlikely(--latency_ration
< 0)) {
628 latency_ration
= LATENCY_LIMIT
;
632 spin_lock(&si
->lock
);
635 si
->flags
-= SWP_SCANNING
;
639 swp_entry_t
get_swap_page(void)
641 struct swap_info_struct
*si
, *next
;
644 if (atomic_long_read(&nr_swap_pages
) <= 0)
646 atomic_long_dec(&nr_swap_pages
);
648 spin_lock(&swap_avail_lock
);
651 plist_for_each_entry_safe(si
, next
, &swap_avail_head
, avail_list
) {
652 /* requeue si to after same-priority siblings */
653 plist_requeue(&si
->avail_list
, &swap_avail_head
);
654 spin_unlock(&swap_avail_lock
);
655 spin_lock(&si
->lock
);
656 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
657 spin_lock(&swap_avail_lock
);
658 if (plist_node_empty(&si
->avail_list
)) {
659 spin_unlock(&si
->lock
);
662 WARN(!si
->highest_bit
,
663 "swap_info %d in list but !highest_bit\n",
665 WARN(!(si
->flags
& SWP_WRITEOK
),
666 "swap_info %d in list but !SWP_WRITEOK\n",
668 plist_del(&si
->avail_list
, &swap_avail_head
);
669 spin_unlock(&si
->lock
);
673 /* This is called for allocating swap entry for cache */
674 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
675 spin_unlock(&si
->lock
);
677 return swp_entry(si
->type
, offset
);
678 pr_debug("scan_swap_map of si %d failed to find offset\n",
680 spin_lock(&swap_avail_lock
);
683 * if we got here, it's likely that si was almost full before,
684 * and since scan_swap_map() can drop the si->lock, multiple
685 * callers probably all tried to get a page from the same si
686 * and it filled up before we could get one; or, the si filled
687 * up between us dropping swap_avail_lock and taking si->lock.
688 * Since we dropped the swap_avail_lock, the swap_avail_head
689 * list may have been modified; so if next is still in the
690 * swap_avail_head list then try it, otherwise start over.
692 if (plist_node_empty(&next
->avail_list
))
696 spin_unlock(&swap_avail_lock
);
698 atomic_long_inc(&nr_swap_pages
);
700 return (swp_entry_t
) {0};
703 /* The only caller of this function is now suspend routine */
704 swp_entry_t
get_swap_page_of_type(int type
)
706 struct swap_info_struct
*si
;
709 si
= swap_info
[type
];
710 spin_lock(&si
->lock
);
711 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
712 atomic_long_dec(&nr_swap_pages
);
713 /* This is called for allocating swap entry, not cache */
714 offset
= scan_swap_map(si
, 1);
716 spin_unlock(&si
->lock
);
717 return swp_entry(type
, offset
);
719 atomic_long_inc(&nr_swap_pages
);
721 spin_unlock(&si
->lock
);
722 return (swp_entry_t
) {0};
725 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
727 struct swap_info_struct
*p
;
728 unsigned long offset
, type
;
732 type
= swp_type(entry
);
733 if (type
>= nr_swapfiles
)
736 if (!(p
->flags
& SWP_USED
))
738 offset
= swp_offset(entry
);
739 if (offset
>= p
->max
)
741 if (!p
->swap_map
[offset
])
747 pr_err("swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
750 pr_err("swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
753 pr_err("swap_free: %s%08lx\n", Unused_file
, entry
.val
);
756 pr_err("swap_free: %s%08lx\n", Bad_file
, entry
.val
);
761 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
762 swp_entry_t entry
, unsigned char usage
)
764 unsigned long offset
= swp_offset(entry
);
766 unsigned char has_cache
;
768 count
= p
->swap_map
[offset
];
769 has_cache
= count
& SWAP_HAS_CACHE
;
770 count
&= ~SWAP_HAS_CACHE
;
772 if (usage
== SWAP_HAS_CACHE
) {
773 VM_BUG_ON(!has_cache
);
775 } else if (count
== SWAP_MAP_SHMEM
) {
777 * Or we could insist on shmem.c using a special
778 * swap_shmem_free() and free_shmem_swap_and_cache()...
781 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
782 if (count
== COUNT_CONTINUED
) {
783 if (swap_count_continued(p
, offset
, count
))
784 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
786 count
= SWAP_MAP_MAX
;
792 mem_cgroup_uncharge_swap(entry
);
794 usage
= count
| has_cache
;
795 p
->swap_map
[offset
] = usage
;
797 /* free if no reference */
799 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
800 if (offset
< p
->lowest_bit
)
801 p
->lowest_bit
= offset
;
802 if (offset
> p
->highest_bit
) {
803 bool was_full
= !p
->highest_bit
;
804 p
->highest_bit
= offset
;
805 if (was_full
&& (p
->flags
& SWP_WRITEOK
)) {
806 spin_lock(&swap_avail_lock
);
807 WARN_ON(!plist_node_empty(&p
->avail_list
));
808 if (plist_node_empty(&p
->avail_list
))
809 plist_add(&p
->avail_list
,
811 spin_unlock(&swap_avail_lock
);
814 atomic_long_inc(&nr_swap_pages
);
816 frontswap_invalidate_page(p
->type
, offset
);
817 if (p
->flags
& SWP_BLKDEV
) {
818 struct gendisk
*disk
= p
->bdev
->bd_disk
;
819 if (disk
->fops
->swap_slot_free_notify
)
820 disk
->fops
->swap_slot_free_notify(p
->bdev
,
829 * Caller has made sure that the swap device corresponding to entry
830 * is still around or has not been recycled.
832 void swap_free(swp_entry_t entry
)
834 struct swap_info_struct
*p
;
836 p
= swap_info_get(entry
);
838 swap_entry_free(p
, entry
, 1);
839 spin_unlock(&p
->lock
);
844 * Called after dropping swapcache to decrease refcnt to swap entries.
846 void swapcache_free(swp_entry_t entry
, struct page
*page
)
848 struct swap_info_struct
*p
;
851 p
= swap_info_get(entry
);
853 count
= swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
855 mem_cgroup_uncharge_swapcache(page
, entry
, count
!= 0);
856 spin_unlock(&p
->lock
);
861 * How many references to page are currently swapped out?
862 * This does not give an exact answer when swap count is continued,
863 * but does include the high COUNT_CONTINUED flag to allow for that.
865 int page_swapcount(struct page
*page
)
868 struct swap_info_struct
*p
;
871 entry
.val
= page_private(page
);
872 p
= swap_info_get(entry
);
874 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
875 spin_unlock(&p
->lock
);
881 * We can write to an anon page without COW if there are no other references
882 * to it. And as a side-effect, free up its swap: because the old content
883 * on disk will never be read, and seeking back there to write new content
884 * later would only waste time away from clustering.
886 int reuse_swap_page(struct page
*page
)
890 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
891 if (unlikely(PageKsm(page
)))
893 count
= page_mapcount(page
);
894 if (count
<= 1 && PageSwapCache(page
)) {
895 count
+= page_swapcount(page
);
896 if (count
== 1 && !PageWriteback(page
)) {
897 delete_from_swap_cache(page
);
905 * If swap is getting full, or if there are no more mappings of this page,
906 * then try_to_free_swap is called to free its swap space.
908 int try_to_free_swap(struct page
*page
)
910 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
912 if (!PageSwapCache(page
))
914 if (PageWriteback(page
))
916 if (page_swapcount(page
))
920 * Once hibernation has begun to create its image of memory,
921 * there's a danger that one of the calls to try_to_free_swap()
922 * - most probably a call from __try_to_reclaim_swap() while
923 * hibernation is allocating its own swap pages for the image,
924 * but conceivably even a call from memory reclaim - will free
925 * the swap from a page which has already been recorded in the
926 * image as a clean swapcache page, and then reuse its swap for
927 * another page of the image. On waking from hibernation, the
928 * original page might be freed under memory pressure, then
929 * later read back in from swap, now with the wrong data.
931 * Hibernation suspends storage while it is writing the image
932 * to disk so check that here.
934 if (pm_suspended_storage())
937 delete_from_swap_cache(page
);
943 * Free the swap entry like above, but also try to
944 * free the page cache entry if it is the last user.
946 int free_swap_and_cache(swp_entry_t entry
)
948 struct swap_info_struct
*p
;
949 struct page
*page
= NULL
;
951 if (non_swap_entry(entry
))
954 p
= swap_info_get(entry
);
956 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
957 page
= find_get_page(swap_address_space(entry
),
959 if (page
&& !trylock_page(page
)) {
960 page_cache_release(page
);
964 spin_unlock(&p
->lock
);
968 * Not mapped elsewhere, or swap space full? Free it!
969 * Also recheck PageSwapCache now page is locked (above).
971 if (PageSwapCache(page
) && !PageWriteback(page
) &&
972 (!page_mapped(page
) || vm_swap_full())) {
973 delete_from_swap_cache(page
);
977 page_cache_release(page
);
982 #ifdef CONFIG_HIBERNATION
984 * Find the swap type that corresponds to given device (if any).
986 * @offset - number of the PAGE_SIZE-sized block of the device, starting
987 * from 0, in which the swap header is expected to be located.
989 * This is needed for the suspend to disk (aka swsusp).
991 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
993 struct block_device
*bdev
= NULL
;
997 bdev
= bdget(device
);
999 spin_lock(&swap_lock
);
1000 for (type
= 0; type
< nr_swapfiles
; type
++) {
1001 struct swap_info_struct
*sis
= swap_info
[type
];
1003 if (!(sis
->flags
& SWP_WRITEOK
))
1008 *bdev_p
= bdgrab(sis
->bdev
);
1010 spin_unlock(&swap_lock
);
1013 if (bdev
== sis
->bdev
) {
1014 struct swap_extent
*se
= &sis
->first_swap_extent
;
1016 if (se
->start_block
== offset
) {
1018 *bdev_p
= bdgrab(sis
->bdev
);
1020 spin_unlock(&swap_lock
);
1026 spin_unlock(&swap_lock
);
1034 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1035 * corresponding to given index in swap_info (swap type).
1037 sector_t
swapdev_block(int type
, pgoff_t offset
)
1039 struct block_device
*bdev
;
1041 if ((unsigned int)type
>= nr_swapfiles
)
1043 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1045 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1049 * Return either the total number of swap pages of given type, or the number
1050 * of free pages of that type (depending on @free)
1052 * This is needed for software suspend
1054 unsigned int count_swap_pages(int type
, int free
)
1058 spin_lock(&swap_lock
);
1059 if ((unsigned int)type
< nr_swapfiles
) {
1060 struct swap_info_struct
*sis
= swap_info
[type
];
1062 spin_lock(&sis
->lock
);
1063 if (sis
->flags
& SWP_WRITEOK
) {
1066 n
-= sis
->inuse_pages
;
1068 spin_unlock(&sis
->lock
);
1070 spin_unlock(&swap_lock
);
1073 #endif /* CONFIG_HIBERNATION */
1075 static inline int maybe_same_pte(pte_t pte
, pte_t swp_pte
)
1077 #ifdef CONFIG_MEM_SOFT_DIRTY
1079 * When pte keeps soft dirty bit the pte generated
1080 * from swap entry does not has it, still it's same
1081 * pte from logical point of view.
1083 pte_t swp_pte_dirty
= pte_swp_mksoft_dirty(swp_pte
);
1084 return pte_same(pte
, swp_pte
) || pte_same(pte
, swp_pte_dirty
);
1086 return pte_same(pte
, swp_pte
);
1091 * No need to decide whether this PTE shares the swap entry with others,
1092 * just let do_wp_page work it out if a write is requested later - to
1093 * force COW, vm_page_prot omits write permission from any private vma.
1095 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1096 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1098 struct page
*swapcache
;
1099 struct mem_cgroup
*memcg
;
1105 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1106 if (unlikely(!page
))
1109 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
,
1110 GFP_KERNEL
, &memcg
)) {
1115 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1116 if (unlikely(!maybe_same_pte(*pte
, swp_entry_to_pte(entry
)))) {
1117 mem_cgroup_cancel_charge_swapin(memcg
);
1122 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1123 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1125 set_pte_at(vma
->vm_mm
, addr
, pte
,
1126 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1127 if (page
== swapcache
)
1128 page_add_anon_rmap(page
, vma
, addr
);
1129 else /* ksm created a completely new copy */
1130 page_add_new_anon_rmap(page
, vma
, addr
);
1131 mem_cgroup_commit_charge_swapin(page
, memcg
);
1134 * Move the page to the active list so it is not
1135 * immediately swapped out again after swapon.
1137 activate_page(page
);
1139 pte_unmap_unlock(pte
, ptl
);
1141 if (page
!= swapcache
) {
1148 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1149 unsigned long addr
, unsigned long end
,
1150 swp_entry_t entry
, struct page
*page
)
1152 pte_t swp_pte
= swp_entry_to_pte(entry
);
1157 * We don't actually need pte lock while scanning for swp_pte: since
1158 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1159 * page table while we're scanning; though it could get zapped, and on
1160 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1161 * of unmatched parts which look like swp_pte, so unuse_pte must
1162 * recheck under pte lock. Scanning without pte lock lets it be
1163 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1165 pte
= pte_offset_map(pmd
, addr
);
1168 * swapoff spends a _lot_ of time in this loop!
1169 * Test inline before going to call unuse_pte.
1171 if (unlikely(maybe_same_pte(*pte
, swp_pte
))) {
1173 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1176 pte
= pte_offset_map(pmd
, addr
);
1178 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1184 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1185 unsigned long addr
, unsigned long end
,
1186 swp_entry_t entry
, struct page
*page
)
1192 pmd
= pmd_offset(pud
, addr
);
1194 next
= pmd_addr_end(addr
, end
);
1195 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1197 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1200 } while (pmd
++, addr
= next
, addr
!= end
);
1204 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1205 unsigned long addr
, unsigned long end
,
1206 swp_entry_t entry
, struct page
*page
)
1212 pud
= pud_offset(pgd
, addr
);
1214 next
= pud_addr_end(addr
, end
);
1215 if (pud_none_or_clear_bad(pud
))
1217 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1220 } while (pud
++, addr
= next
, addr
!= end
);
1224 static int unuse_vma(struct vm_area_struct
*vma
,
1225 swp_entry_t entry
, struct page
*page
)
1228 unsigned long addr
, end
, next
;
1231 if (page_anon_vma(page
)) {
1232 addr
= page_address_in_vma(page
, vma
);
1233 if (addr
== -EFAULT
)
1236 end
= addr
+ PAGE_SIZE
;
1238 addr
= vma
->vm_start
;
1242 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1244 next
= pgd_addr_end(addr
, end
);
1245 if (pgd_none_or_clear_bad(pgd
))
1247 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1250 } while (pgd
++, addr
= next
, addr
!= end
);
1254 static int unuse_mm(struct mm_struct
*mm
,
1255 swp_entry_t entry
, struct page
*page
)
1257 struct vm_area_struct
*vma
;
1260 if (!down_read_trylock(&mm
->mmap_sem
)) {
1262 * Activate page so shrink_inactive_list is unlikely to unmap
1263 * its ptes while lock is dropped, so swapoff can make progress.
1265 activate_page(page
);
1267 down_read(&mm
->mmap_sem
);
1270 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1271 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1274 up_read(&mm
->mmap_sem
);
1275 return (ret
< 0)? ret
: 0;
1279 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1280 * from current position to next entry still in use.
1281 * Recycle to start on reaching the end, returning 0 when empty.
1283 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1284 unsigned int prev
, bool frontswap
)
1286 unsigned int max
= si
->max
;
1287 unsigned int i
= prev
;
1288 unsigned char count
;
1291 * No need for swap_lock here: we're just looking
1292 * for whether an entry is in use, not modifying it; false
1293 * hits are okay, and sys_swapoff() has already prevented new
1294 * allocations from this area (while holding swap_lock).
1303 * No entries in use at top of swap_map,
1304 * loop back to start and recheck there.
1311 if (frontswap_test(si
, i
))
1316 count
= ACCESS_ONCE(si
->swap_map
[i
]);
1317 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1324 * We completely avoid races by reading each swap page in advance,
1325 * and then search for the process using it. All the necessary
1326 * page table adjustments can then be made atomically.
1328 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1329 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1331 int try_to_unuse(unsigned int type
, bool frontswap
,
1332 unsigned long pages_to_unuse
)
1334 struct swap_info_struct
*si
= swap_info
[type
];
1335 struct mm_struct
*start_mm
;
1336 volatile unsigned char *swap_map
; /* swap_map is accessed without
1337 * locking. Mark it as volatile
1338 * to prevent compiler doing
1341 unsigned char swcount
;
1348 * When searching mms for an entry, a good strategy is to
1349 * start at the first mm we freed the previous entry from
1350 * (though actually we don't notice whether we or coincidence
1351 * freed the entry). Initialize this start_mm with a hold.
1353 * A simpler strategy would be to start at the last mm we
1354 * freed the previous entry from; but that would take less
1355 * advantage of mmlist ordering, which clusters forked mms
1356 * together, child after parent. If we race with dup_mmap(), we
1357 * prefer to resolve parent before child, lest we miss entries
1358 * duplicated after we scanned child: using last mm would invert
1361 start_mm
= &init_mm
;
1362 atomic_inc(&init_mm
.mm_users
);
1365 * Keep on scanning until all entries have gone. Usually,
1366 * one pass through swap_map is enough, but not necessarily:
1367 * there are races when an instance of an entry might be missed.
1369 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1370 if (signal_pending(current
)) {
1376 * Get a page for the entry, using the existing swap
1377 * cache page if there is one. Otherwise, get a clean
1378 * page and read the swap into it.
1380 swap_map
= &si
->swap_map
[i
];
1381 entry
= swp_entry(type
, i
);
1382 page
= read_swap_cache_async(entry
,
1383 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1386 * Either swap_duplicate() failed because entry
1387 * has been freed independently, and will not be
1388 * reused since sys_swapoff() already disabled
1389 * allocation from here, or alloc_page() failed.
1391 swcount
= *swap_map
;
1393 * We don't hold lock here, so the swap entry could be
1394 * SWAP_MAP_BAD (when the cluster is discarding).
1395 * Instead of fail out, We can just skip the swap
1396 * entry because swapoff will wait for discarding
1399 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
1406 * Don't hold on to start_mm if it looks like exiting.
1408 if (atomic_read(&start_mm
->mm_users
) == 1) {
1410 start_mm
= &init_mm
;
1411 atomic_inc(&init_mm
.mm_users
);
1415 * Wait for and lock page. When do_swap_page races with
1416 * try_to_unuse, do_swap_page can handle the fault much
1417 * faster than try_to_unuse can locate the entry. This
1418 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1419 * defer to do_swap_page in such a case - in some tests,
1420 * do_swap_page and try_to_unuse repeatedly compete.
1422 wait_on_page_locked(page
);
1423 wait_on_page_writeback(page
);
1425 wait_on_page_writeback(page
);
1428 * Remove all references to entry.
1430 swcount
= *swap_map
;
1431 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1432 retval
= shmem_unuse(entry
, page
);
1433 /* page has already been unlocked and released */
1438 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1439 retval
= unuse_mm(start_mm
, entry
, page
);
1441 if (swap_count(*swap_map
)) {
1442 int set_start_mm
= (*swap_map
>= swcount
);
1443 struct list_head
*p
= &start_mm
->mmlist
;
1444 struct mm_struct
*new_start_mm
= start_mm
;
1445 struct mm_struct
*prev_mm
= start_mm
;
1446 struct mm_struct
*mm
;
1448 atomic_inc(&new_start_mm
->mm_users
);
1449 atomic_inc(&prev_mm
->mm_users
);
1450 spin_lock(&mmlist_lock
);
1451 while (swap_count(*swap_map
) && !retval
&&
1452 (p
= p
->next
) != &start_mm
->mmlist
) {
1453 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1454 if (!atomic_inc_not_zero(&mm
->mm_users
))
1456 spin_unlock(&mmlist_lock
);
1462 swcount
= *swap_map
;
1463 if (!swap_count(swcount
)) /* any usage ? */
1465 else if (mm
== &init_mm
)
1468 retval
= unuse_mm(mm
, entry
, page
);
1470 if (set_start_mm
&& *swap_map
< swcount
) {
1471 mmput(new_start_mm
);
1472 atomic_inc(&mm
->mm_users
);
1476 spin_lock(&mmlist_lock
);
1478 spin_unlock(&mmlist_lock
);
1481 start_mm
= new_start_mm
;
1485 page_cache_release(page
);
1490 * If a reference remains (rare), we would like to leave
1491 * the page in the swap cache; but try_to_unmap could
1492 * then re-duplicate the entry once we drop page lock,
1493 * so we might loop indefinitely; also, that page could
1494 * not be swapped out to other storage meanwhile. So:
1495 * delete from cache even if there's another reference,
1496 * after ensuring that the data has been saved to disk -
1497 * since if the reference remains (rarer), it will be
1498 * read from disk into another page. Splitting into two
1499 * pages would be incorrect if swap supported "shared
1500 * private" pages, but they are handled by tmpfs files.
1502 * Given how unuse_vma() targets one particular offset
1503 * in an anon_vma, once the anon_vma has been determined,
1504 * this splitting happens to be just what is needed to
1505 * handle where KSM pages have been swapped out: re-reading
1506 * is unnecessarily slow, but we can fix that later on.
1508 if (swap_count(*swap_map
) &&
1509 PageDirty(page
) && PageSwapCache(page
)) {
1510 struct writeback_control wbc
= {
1511 .sync_mode
= WB_SYNC_NONE
,
1514 swap_writepage(page
, &wbc
);
1516 wait_on_page_writeback(page
);
1520 * It is conceivable that a racing task removed this page from
1521 * swap cache just before we acquired the page lock at the top,
1522 * or while we dropped it in unuse_mm(). The page might even
1523 * be back in swap cache on another swap area: that we must not
1524 * delete, since it may not have been written out to swap yet.
1526 if (PageSwapCache(page
) &&
1527 likely(page_private(page
) == entry
.val
))
1528 delete_from_swap_cache(page
);
1531 * So we could skip searching mms once swap count went
1532 * to 1, we did not mark any present ptes as dirty: must
1533 * mark page dirty so shrink_page_list will preserve it.
1537 page_cache_release(page
);
1540 * Make sure that we aren't completely killing
1541 * interactive performance.
1544 if (frontswap
&& pages_to_unuse
> 0) {
1545 if (!--pages_to_unuse
)
1555 * After a successful try_to_unuse, if no swap is now in use, we know
1556 * we can empty the mmlist. swap_lock must be held on entry and exit.
1557 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1558 * added to the mmlist just after page_duplicate - before would be racy.
1560 static void drain_mmlist(void)
1562 struct list_head
*p
, *next
;
1565 for (type
= 0; type
< nr_swapfiles
; type
++)
1566 if (swap_info
[type
]->inuse_pages
)
1568 spin_lock(&mmlist_lock
);
1569 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1571 spin_unlock(&mmlist_lock
);
1575 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1576 * corresponds to page offset for the specified swap entry.
1577 * Note that the type of this function is sector_t, but it returns page offset
1578 * into the bdev, not sector offset.
1580 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1582 struct swap_info_struct
*sis
;
1583 struct swap_extent
*start_se
;
1584 struct swap_extent
*se
;
1587 sis
= swap_info
[swp_type(entry
)];
1590 offset
= swp_offset(entry
);
1591 start_se
= sis
->curr_swap_extent
;
1595 struct list_head
*lh
;
1597 if (se
->start_page
<= offset
&&
1598 offset
< (se
->start_page
+ se
->nr_pages
)) {
1599 return se
->start_block
+ (offset
- se
->start_page
);
1602 se
= list_entry(lh
, struct swap_extent
, list
);
1603 sis
->curr_swap_extent
= se
;
1604 BUG_ON(se
== start_se
); /* It *must* be present */
1609 * Returns the page offset into bdev for the specified page's swap entry.
1611 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1614 entry
.val
= page_private(page
);
1615 return map_swap_entry(entry
, bdev
);
1619 * Free all of a swapdev's extent information
1621 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1623 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1624 struct swap_extent
*se
;
1626 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1627 struct swap_extent
, list
);
1628 list_del(&se
->list
);
1632 if (sis
->flags
& SWP_FILE
) {
1633 struct file
*swap_file
= sis
->swap_file
;
1634 struct address_space
*mapping
= swap_file
->f_mapping
;
1636 sis
->flags
&= ~SWP_FILE
;
1637 mapping
->a_ops
->swap_deactivate(swap_file
);
1642 * Add a block range (and the corresponding page range) into this swapdev's
1643 * extent list. The extent list is kept sorted in page order.
1645 * This function rather assumes that it is called in ascending page order.
1648 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1649 unsigned long nr_pages
, sector_t start_block
)
1651 struct swap_extent
*se
;
1652 struct swap_extent
*new_se
;
1653 struct list_head
*lh
;
1655 if (start_page
== 0) {
1656 se
= &sis
->first_swap_extent
;
1657 sis
->curr_swap_extent
= se
;
1659 se
->nr_pages
= nr_pages
;
1660 se
->start_block
= start_block
;
1663 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1664 se
= list_entry(lh
, struct swap_extent
, list
);
1665 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1666 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1668 se
->nr_pages
+= nr_pages
;
1674 * No merge. Insert a new extent, preserving ordering.
1676 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1679 new_se
->start_page
= start_page
;
1680 new_se
->nr_pages
= nr_pages
;
1681 new_se
->start_block
= start_block
;
1683 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1688 * A `swap extent' is a simple thing which maps a contiguous range of pages
1689 * onto a contiguous range of disk blocks. An ordered list of swap extents
1690 * is built at swapon time and is then used at swap_writepage/swap_readpage
1691 * time for locating where on disk a page belongs.
1693 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1694 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1695 * swap files identically.
1697 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1698 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1699 * swapfiles are handled *identically* after swapon time.
1701 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1702 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1703 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1704 * requirements, they are simply tossed out - we will never use those blocks
1707 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1708 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1709 * which will scribble on the fs.
1711 * The amount of disk space which a single swap extent represents varies.
1712 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1713 * extents in the list. To avoid much list walking, we cache the previous
1714 * search location in `curr_swap_extent', and start new searches from there.
1715 * This is extremely effective. The average number of iterations in
1716 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1718 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1720 struct file
*swap_file
= sis
->swap_file
;
1721 struct address_space
*mapping
= swap_file
->f_mapping
;
1722 struct inode
*inode
= mapping
->host
;
1725 if (S_ISBLK(inode
->i_mode
)) {
1726 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1731 if (mapping
->a_ops
->swap_activate
) {
1732 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
1734 sis
->flags
|= SWP_FILE
;
1735 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1741 return generic_swapfile_activate(sis
, swap_file
, span
);
1744 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
1745 unsigned char *swap_map
,
1746 struct swap_cluster_info
*cluster_info
)
1751 p
->prio
= --least_priority
;
1753 * the plist prio is negated because plist ordering is
1754 * low-to-high, while swap ordering is high-to-low
1756 p
->list
.prio
= -p
->prio
;
1757 p
->avail_list
.prio
= -p
->prio
;
1758 p
->swap_map
= swap_map
;
1759 p
->cluster_info
= cluster_info
;
1760 p
->flags
|= SWP_WRITEOK
;
1761 atomic_long_add(p
->pages
, &nr_swap_pages
);
1762 total_swap_pages
+= p
->pages
;
1764 assert_spin_locked(&swap_lock
);
1766 * both lists are plists, and thus priority ordered.
1767 * swap_active_head needs to be priority ordered for swapoff(),
1768 * which on removal of any swap_info_struct with an auto-assigned
1769 * (i.e. negative) priority increments the auto-assigned priority
1770 * of any lower-priority swap_info_structs.
1771 * swap_avail_head needs to be priority ordered for get_swap_page(),
1772 * which allocates swap pages from the highest available priority
1775 plist_add(&p
->list
, &swap_active_head
);
1776 spin_lock(&swap_avail_lock
);
1777 plist_add(&p
->avail_list
, &swap_avail_head
);
1778 spin_unlock(&swap_avail_lock
);
1781 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1782 unsigned char *swap_map
,
1783 struct swap_cluster_info
*cluster_info
,
1784 unsigned long *frontswap_map
)
1786 frontswap_init(p
->type
, frontswap_map
);
1787 spin_lock(&swap_lock
);
1788 spin_lock(&p
->lock
);
1789 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
1790 spin_unlock(&p
->lock
);
1791 spin_unlock(&swap_lock
);
1794 static void reinsert_swap_info(struct swap_info_struct
*p
)
1796 spin_lock(&swap_lock
);
1797 spin_lock(&p
->lock
);
1798 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
1799 spin_unlock(&p
->lock
);
1800 spin_unlock(&swap_lock
);
1803 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1805 struct swap_info_struct
*p
= NULL
;
1806 unsigned char *swap_map
;
1807 struct swap_cluster_info
*cluster_info
;
1808 unsigned long *frontswap_map
;
1809 struct file
*swap_file
, *victim
;
1810 struct address_space
*mapping
;
1811 struct inode
*inode
;
1812 struct filename
*pathname
;
1814 unsigned int old_block_size
;
1816 if (!capable(CAP_SYS_ADMIN
))
1819 BUG_ON(!current
->mm
);
1821 pathname
= getname(specialfile
);
1822 if (IS_ERR(pathname
))
1823 return PTR_ERR(pathname
);
1825 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1826 err
= PTR_ERR(victim
);
1830 mapping
= victim
->f_mapping
;
1831 spin_lock(&swap_lock
);
1832 plist_for_each_entry(p
, &swap_active_head
, list
) {
1833 if (p
->flags
& SWP_WRITEOK
) {
1834 if (p
->swap_file
->f_mapping
== mapping
) {
1842 spin_unlock(&swap_lock
);
1845 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1846 vm_unacct_memory(p
->pages
);
1849 spin_unlock(&swap_lock
);
1852 spin_lock(&swap_avail_lock
);
1853 plist_del(&p
->avail_list
, &swap_avail_head
);
1854 spin_unlock(&swap_avail_lock
);
1855 spin_lock(&p
->lock
);
1857 struct swap_info_struct
*si
= p
;
1859 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
1862 si
->avail_list
.prio
--;
1866 plist_del(&p
->list
, &swap_active_head
);
1867 atomic_long_sub(p
->pages
, &nr_swap_pages
);
1868 total_swap_pages
-= p
->pages
;
1869 p
->flags
&= ~SWP_WRITEOK
;
1870 spin_unlock(&p
->lock
);
1871 spin_unlock(&swap_lock
);
1873 set_current_oom_origin();
1874 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
1875 clear_current_oom_origin();
1878 /* re-insert swap space back into swap_list */
1879 reinsert_swap_info(p
);
1883 flush_work(&p
->discard_work
);
1885 destroy_swap_extents(p
);
1886 if (p
->flags
& SWP_CONTINUED
)
1887 free_swap_count_continuations(p
);
1889 mutex_lock(&swapon_mutex
);
1890 spin_lock(&swap_lock
);
1891 spin_lock(&p
->lock
);
1894 /* wait for anyone still in scan_swap_map */
1895 p
->highest_bit
= 0; /* cuts scans short */
1896 while (p
->flags
>= SWP_SCANNING
) {
1897 spin_unlock(&p
->lock
);
1898 spin_unlock(&swap_lock
);
1899 schedule_timeout_uninterruptible(1);
1900 spin_lock(&swap_lock
);
1901 spin_lock(&p
->lock
);
1904 swap_file
= p
->swap_file
;
1905 old_block_size
= p
->old_block_size
;
1906 p
->swap_file
= NULL
;
1908 swap_map
= p
->swap_map
;
1910 cluster_info
= p
->cluster_info
;
1911 p
->cluster_info
= NULL
;
1912 frontswap_map
= frontswap_map_get(p
);
1913 spin_unlock(&p
->lock
);
1914 spin_unlock(&swap_lock
);
1915 frontswap_invalidate_area(p
->type
);
1916 frontswap_map_set(p
, NULL
);
1917 mutex_unlock(&swapon_mutex
);
1918 free_percpu(p
->percpu_cluster
);
1919 p
->percpu_cluster
= NULL
;
1921 vfree(cluster_info
);
1922 vfree(frontswap_map
);
1923 /* Destroy swap account information */
1924 swap_cgroup_swapoff(p
->type
);
1926 inode
= mapping
->host
;
1927 if (S_ISBLK(inode
->i_mode
)) {
1928 struct block_device
*bdev
= I_BDEV(inode
);
1929 set_blocksize(bdev
, old_block_size
);
1930 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1932 mutex_lock(&inode
->i_mutex
);
1933 inode
->i_flags
&= ~S_SWAPFILE
;
1934 mutex_unlock(&inode
->i_mutex
);
1936 filp_close(swap_file
, NULL
);
1939 * Clear the SWP_USED flag after all resources are freed so that swapon
1940 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1941 * not hold p->lock after we cleared its SWP_WRITEOK.
1943 spin_lock(&swap_lock
);
1945 spin_unlock(&swap_lock
);
1948 atomic_inc(&proc_poll_event
);
1949 wake_up_interruptible(&proc_poll_wait
);
1952 filp_close(victim
, NULL
);
1958 #ifdef CONFIG_PROC_FS
1959 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
1961 struct seq_file
*seq
= file
->private_data
;
1963 poll_wait(file
, &proc_poll_wait
, wait
);
1965 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
1966 seq
->poll_event
= atomic_read(&proc_poll_event
);
1967 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
1970 return POLLIN
| POLLRDNORM
;
1974 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1976 struct swap_info_struct
*si
;
1980 mutex_lock(&swapon_mutex
);
1983 return SEQ_START_TOKEN
;
1985 for (type
= 0; type
< nr_swapfiles
; type
++) {
1986 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1987 si
= swap_info
[type
];
1988 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1997 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1999 struct swap_info_struct
*si
= v
;
2002 if (v
== SEQ_START_TOKEN
)
2005 type
= si
->type
+ 1;
2007 for (; type
< nr_swapfiles
; type
++) {
2008 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2009 si
= swap_info
[type
];
2010 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2019 static void swap_stop(struct seq_file
*swap
, void *v
)
2021 mutex_unlock(&swapon_mutex
);
2024 static int swap_show(struct seq_file
*swap
, void *v
)
2026 struct swap_info_struct
*si
= v
;
2030 if (si
== SEQ_START_TOKEN
) {
2031 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2035 file
= si
->swap_file
;
2036 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
2037 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2038 len
< 40 ? 40 - len
: 1, " ",
2039 S_ISBLK(file_inode(file
)->i_mode
) ?
2040 "partition" : "file\t",
2041 si
->pages
<< (PAGE_SHIFT
- 10),
2042 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2047 static const struct seq_operations swaps_op
= {
2048 .start
= swap_start
,
2054 static int swaps_open(struct inode
*inode
, struct file
*file
)
2056 struct seq_file
*seq
;
2059 ret
= seq_open(file
, &swaps_op
);
2063 seq
= file
->private_data
;
2064 seq
->poll_event
= atomic_read(&proc_poll_event
);
2068 static const struct file_operations proc_swaps_operations
= {
2071 .llseek
= seq_lseek
,
2072 .release
= seq_release
,
2076 static int __init
procswaps_init(void)
2078 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2081 __initcall(procswaps_init
);
2082 #endif /* CONFIG_PROC_FS */
2084 #ifdef MAX_SWAPFILES_CHECK
2085 static int __init
max_swapfiles_check(void)
2087 MAX_SWAPFILES_CHECK();
2090 late_initcall(max_swapfiles_check
);
2093 static struct swap_info_struct
*alloc_swap_info(void)
2095 struct swap_info_struct
*p
;
2098 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2100 return ERR_PTR(-ENOMEM
);
2102 spin_lock(&swap_lock
);
2103 for (type
= 0; type
< nr_swapfiles
; type
++) {
2104 if (!(swap_info
[type
]->flags
& SWP_USED
))
2107 if (type
>= MAX_SWAPFILES
) {
2108 spin_unlock(&swap_lock
);
2110 return ERR_PTR(-EPERM
);
2112 if (type
>= nr_swapfiles
) {
2114 swap_info
[type
] = p
;
2116 * Write swap_info[type] before nr_swapfiles, in case a
2117 * racing procfs swap_start() or swap_next() is reading them.
2118 * (We never shrink nr_swapfiles, we never free this entry.)
2124 p
= swap_info
[type
];
2126 * Do not memset this entry: a racing procfs swap_next()
2127 * would be relying on p->type to remain valid.
2130 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2131 plist_node_init(&p
->list
, 0);
2132 plist_node_init(&p
->avail_list
, 0);
2133 p
->flags
= SWP_USED
;
2134 spin_unlock(&swap_lock
);
2135 spin_lock_init(&p
->lock
);
2140 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2144 if (S_ISBLK(inode
->i_mode
)) {
2145 p
->bdev
= bdgrab(I_BDEV(inode
));
2146 error
= blkdev_get(p
->bdev
,
2147 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
,
2153 p
->old_block_size
= block_size(p
->bdev
);
2154 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2157 p
->flags
|= SWP_BLKDEV
;
2158 } else if (S_ISREG(inode
->i_mode
)) {
2159 p
->bdev
= inode
->i_sb
->s_bdev
;
2160 mutex_lock(&inode
->i_mutex
);
2161 if (IS_SWAPFILE(inode
))
2169 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2170 union swap_header
*swap_header
,
2171 struct inode
*inode
)
2174 unsigned long maxpages
;
2175 unsigned long swapfilepages
;
2176 unsigned long last_page
;
2178 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2179 pr_err("Unable to find swap-space signature\n");
2183 /* swap partition endianess hack... */
2184 if (swab32(swap_header
->info
.version
) == 1) {
2185 swab32s(&swap_header
->info
.version
);
2186 swab32s(&swap_header
->info
.last_page
);
2187 swab32s(&swap_header
->info
.nr_badpages
);
2188 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2189 swab32s(&swap_header
->info
.badpages
[i
]);
2191 /* Check the swap header's sub-version */
2192 if (swap_header
->info
.version
!= 1) {
2193 pr_warn("Unable to handle swap header version %d\n",
2194 swap_header
->info
.version
);
2199 p
->cluster_next
= 1;
2203 * Find out how many pages are allowed for a single swap
2204 * device. There are two limiting factors: 1) the number
2205 * of bits for the swap offset in the swp_entry_t type, and
2206 * 2) the number of bits in the swap pte as defined by the
2207 * different architectures. In order to find the
2208 * largest possible bit mask, a swap entry with swap type 0
2209 * and swap offset ~0UL is created, encoded to a swap pte,
2210 * decoded to a swp_entry_t again, and finally the swap
2211 * offset is extracted. This will mask all the bits from
2212 * the initial ~0UL mask that can't be encoded in either
2213 * the swp_entry_t or the architecture definition of a
2216 maxpages
= swp_offset(pte_to_swp_entry(
2217 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2218 last_page
= swap_header
->info
.last_page
;
2219 if (last_page
> maxpages
) {
2220 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2221 maxpages
<< (PAGE_SHIFT
- 10),
2222 last_page
<< (PAGE_SHIFT
- 10));
2224 if (maxpages
> last_page
) {
2225 maxpages
= last_page
+ 1;
2226 /* p->max is an unsigned int: don't overflow it */
2227 if ((unsigned int)maxpages
== 0)
2228 maxpages
= UINT_MAX
;
2230 p
->highest_bit
= maxpages
- 1;
2234 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2235 if (swapfilepages
&& maxpages
> swapfilepages
) {
2236 pr_warn("Swap area shorter than signature indicates\n");
2239 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2241 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2247 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2248 union swap_header
*swap_header
,
2249 unsigned char *swap_map
,
2250 struct swap_cluster_info
*cluster_info
,
2251 unsigned long maxpages
,
2255 unsigned int nr_good_pages
;
2257 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2258 unsigned long idx
= p
->cluster_next
/ SWAPFILE_CLUSTER
;
2260 nr_good_pages
= maxpages
- 1; /* omit header page */
2262 cluster_set_null(&p
->free_cluster_head
);
2263 cluster_set_null(&p
->free_cluster_tail
);
2264 cluster_set_null(&p
->discard_cluster_head
);
2265 cluster_set_null(&p
->discard_cluster_tail
);
2267 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2268 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2269 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2271 if (page_nr
< maxpages
) {
2272 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2275 * Haven't marked the cluster free yet, no list
2276 * operation involved
2278 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2282 /* Haven't marked the cluster free yet, no list operation involved */
2283 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2284 inc_cluster_info_page(p
, cluster_info
, i
);
2286 if (nr_good_pages
) {
2287 swap_map
[0] = SWAP_MAP_BAD
;
2289 * Not mark the cluster free yet, no list
2290 * operation involved
2292 inc_cluster_info_page(p
, cluster_info
, 0);
2294 p
->pages
= nr_good_pages
;
2295 nr_extents
= setup_swap_extents(p
, span
);
2298 nr_good_pages
= p
->pages
;
2300 if (!nr_good_pages
) {
2301 pr_warn("Empty swap-file\n");
2308 for (i
= 0; i
< nr_clusters
; i
++) {
2309 if (!cluster_count(&cluster_info
[idx
])) {
2310 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2311 if (cluster_is_null(&p
->free_cluster_head
)) {
2312 cluster_set_next_flag(&p
->free_cluster_head
,
2314 cluster_set_next_flag(&p
->free_cluster_tail
,
2319 tail
= cluster_next(&p
->free_cluster_tail
);
2320 cluster_set_next(&cluster_info
[tail
], idx
);
2321 cluster_set_next_flag(&p
->free_cluster_tail
,
2326 if (idx
== nr_clusters
)
2333 * Helper to sys_swapon determining if a given swap
2334 * backing device queue supports DISCARD operations.
2336 static bool swap_discardable(struct swap_info_struct
*si
)
2338 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2340 if (!q
|| !blk_queue_discard(q
))
2346 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2348 struct swap_info_struct
*p
;
2349 struct filename
*name
;
2350 struct file
*swap_file
= NULL
;
2351 struct address_space
*mapping
;
2355 union swap_header
*swap_header
;
2358 unsigned long maxpages
;
2359 unsigned char *swap_map
= NULL
;
2360 struct swap_cluster_info
*cluster_info
= NULL
;
2361 unsigned long *frontswap_map
= NULL
;
2362 struct page
*page
= NULL
;
2363 struct inode
*inode
= NULL
;
2365 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2368 if (!capable(CAP_SYS_ADMIN
))
2371 p
= alloc_swap_info();
2375 INIT_WORK(&p
->discard_work
, swap_discard_work
);
2377 name
= getname(specialfile
);
2379 error
= PTR_ERR(name
);
2383 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2384 if (IS_ERR(swap_file
)) {
2385 error
= PTR_ERR(swap_file
);
2390 p
->swap_file
= swap_file
;
2391 mapping
= swap_file
->f_mapping
;
2393 for (i
= 0; i
< nr_swapfiles
; i
++) {
2394 struct swap_info_struct
*q
= swap_info
[i
];
2396 if (q
== p
|| !q
->swap_file
)
2398 if (mapping
== q
->swap_file
->f_mapping
) {
2404 inode
= mapping
->host
;
2405 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2406 error
= claim_swapfile(p
, inode
);
2407 if (unlikely(error
))
2411 * Read the swap header.
2413 if (!mapping
->a_ops
->readpage
) {
2417 page
= read_mapping_page(mapping
, 0, swap_file
);
2419 error
= PTR_ERR(page
);
2422 swap_header
= kmap(page
);
2424 maxpages
= read_swap_header(p
, swap_header
, inode
);
2425 if (unlikely(!maxpages
)) {
2430 /* OK, set up the swap map and apply the bad block list */
2431 swap_map
= vzalloc(maxpages
);
2436 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2437 p
->flags
|= SWP_SOLIDSTATE
;
2439 * select a random position to start with to help wear leveling
2442 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2444 cluster_info
= vzalloc(DIV_ROUND_UP(maxpages
,
2445 SWAPFILE_CLUSTER
) * sizeof(*cluster_info
));
2446 if (!cluster_info
) {
2450 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
2451 if (!p
->percpu_cluster
) {
2455 for_each_possible_cpu(i
) {
2456 struct percpu_cluster
*cluster
;
2457 cluster
= per_cpu_ptr(p
->percpu_cluster
, i
);
2458 cluster_set_null(&cluster
->index
);
2462 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2466 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2467 cluster_info
, maxpages
, &span
);
2468 if (unlikely(nr_extents
< 0)) {
2472 /* frontswap enabled? set up bit-per-page map for frontswap */
2473 if (frontswap_enabled
)
2474 frontswap_map
= vzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long));
2476 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2478 * When discard is enabled for swap with no particular
2479 * policy flagged, we set all swap discard flags here in
2480 * order to sustain backward compatibility with older
2481 * swapon(8) releases.
2483 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2487 * By flagging sys_swapon, a sysadmin can tell us to
2488 * either do single-time area discards only, or to just
2489 * perform discards for released swap page-clusters.
2490 * Now it's time to adjust the p->flags accordingly.
2492 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
2493 p
->flags
&= ~SWP_PAGE_DISCARD
;
2494 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
2495 p
->flags
&= ~SWP_AREA_DISCARD
;
2497 /* issue a swapon-time discard if it's still required */
2498 if (p
->flags
& SWP_AREA_DISCARD
) {
2499 int err
= discard_swap(p
);
2501 pr_err("swapon: discard_swap(%p): %d\n",
2506 mutex_lock(&swapon_mutex
);
2508 if (swap_flags
& SWAP_FLAG_PREFER
)
2510 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2511 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
2513 pr_info("Adding %uk swap on %s. "
2514 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2515 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2516 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2517 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2518 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2519 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
2520 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
2521 (frontswap_map
) ? "FS" : "");
2523 mutex_unlock(&swapon_mutex
);
2524 atomic_inc(&proc_poll_event
);
2525 wake_up_interruptible(&proc_poll_wait
);
2527 if (S_ISREG(inode
->i_mode
))
2528 inode
->i_flags
|= S_SWAPFILE
;
2532 free_percpu(p
->percpu_cluster
);
2533 p
->percpu_cluster
= NULL
;
2534 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2535 set_blocksize(p
->bdev
, p
->old_block_size
);
2536 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2538 destroy_swap_extents(p
);
2539 swap_cgroup_swapoff(p
->type
);
2540 spin_lock(&swap_lock
);
2541 p
->swap_file
= NULL
;
2543 spin_unlock(&swap_lock
);
2545 vfree(cluster_info
);
2547 if (inode
&& S_ISREG(inode
->i_mode
)) {
2548 mutex_unlock(&inode
->i_mutex
);
2551 filp_close(swap_file
, NULL
);
2554 if (page
&& !IS_ERR(page
)) {
2556 page_cache_release(page
);
2560 if (inode
&& S_ISREG(inode
->i_mode
))
2561 mutex_unlock(&inode
->i_mutex
);
2565 void si_swapinfo(struct sysinfo
*val
)
2568 unsigned long nr_to_be_unused
= 0;
2570 spin_lock(&swap_lock
);
2571 for (type
= 0; type
< nr_swapfiles
; type
++) {
2572 struct swap_info_struct
*si
= swap_info
[type
];
2574 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2575 nr_to_be_unused
+= si
->inuse_pages
;
2577 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
2578 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2579 spin_unlock(&swap_lock
);
2583 * Verify that a swap entry is valid and increment its swap map count.
2585 * Returns error code in following case.
2587 * - swp_entry is invalid -> EINVAL
2588 * - swp_entry is migration entry -> EINVAL
2589 * - swap-cache reference is requested but there is already one. -> EEXIST
2590 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2591 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2593 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2595 struct swap_info_struct
*p
;
2596 unsigned long offset
, type
;
2597 unsigned char count
;
2598 unsigned char has_cache
;
2601 if (non_swap_entry(entry
))
2604 type
= swp_type(entry
);
2605 if (type
>= nr_swapfiles
)
2607 p
= swap_info
[type
];
2608 offset
= swp_offset(entry
);
2610 spin_lock(&p
->lock
);
2611 if (unlikely(offset
>= p
->max
))
2614 count
= p
->swap_map
[offset
];
2617 * swapin_readahead() doesn't check if a swap entry is valid, so the
2618 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2620 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
2625 has_cache
= count
& SWAP_HAS_CACHE
;
2626 count
&= ~SWAP_HAS_CACHE
;
2629 if (usage
== SWAP_HAS_CACHE
) {
2631 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2632 if (!has_cache
&& count
)
2633 has_cache
= SWAP_HAS_CACHE
;
2634 else if (has_cache
) /* someone else added cache */
2636 else /* no users remaining */
2639 } else if (count
|| has_cache
) {
2641 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2643 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2645 else if (swap_count_continued(p
, offset
, count
))
2646 count
= COUNT_CONTINUED
;
2650 err
= -ENOENT
; /* unused swap entry */
2652 p
->swap_map
[offset
] = count
| has_cache
;
2655 spin_unlock(&p
->lock
);
2660 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2665 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2666 * (in which case its reference count is never incremented).
2668 void swap_shmem_alloc(swp_entry_t entry
)
2670 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2674 * Increase reference count of swap entry by 1.
2675 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2676 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2677 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2678 * might occur if a page table entry has got corrupted.
2680 int swap_duplicate(swp_entry_t entry
)
2684 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2685 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2690 * @entry: swap entry for which we allocate swap cache.
2692 * Called when allocating swap cache for existing swap entry,
2693 * This can return error codes. Returns 0 at success.
2694 * -EBUSY means there is a swap cache.
2695 * Note: return code is different from swap_duplicate().
2697 int swapcache_prepare(swp_entry_t entry
)
2699 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2702 struct swap_info_struct
*page_swap_info(struct page
*page
)
2704 swp_entry_t swap
= { .val
= page_private(page
) };
2705 BUG_ON(!PageSwapCache(page
));
2706 return swap_info
[swp_type(swap
)];
2710 * out-of-line __page_file_ methods to avoid include hell.
2712 struct address_space
*__page_file_mapping(struct page
*page
)
2714 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2715 return page_swap_info(page
)->swap_file
->f_mapping
;
2717 EXPORT_SYMBOL_GPL(__page_file_mapping
);
2719 pgoff_t
__page_file_index(struct page
*page
)
2721 swp_entry_t swap
= { .val
= page_private(page
) };
2722 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2723 return swp_offset(swap
);
2725 EXPORT_SYMBOL_GPL(__page_file_index
);
2728 * add_swap_count_continuation - called when a swap count is duplicated
2729 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2730 * page of the original vmalloc'ed swap_map, to hold the continuation count
2731 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2732 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2734 * These continuation pages are seldom referenced: the common paths all work
2735 * on the original swap_map, only referring to a continuation page when the
2736 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2738 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2739 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2740 * can be called after dropping locks.
2742 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2744 struct swap_info_struct
*si
;
2747 struct page
*list_page
;
2749 unsigned char count
;
2752 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2753 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2755 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2757 si
= swap_info_get(entry
);
2760 * An acceptable race has occurred since the failing
2761 * __swap_duplicate(): the swap entry has been freed,
2762 * perhaps even the whole swap_map cleared for swapoff.
2767 offset
= swp_offset(entry
);
2768 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2770 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2772 * The higher the swap count, the more likely it is that tasks
2773 * will race to add swap count continuation: we need to avoid
2774 * over-provisioning.
2780 spin_unlock(&si
->lock
);
2785 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2786 * no architecture is using highmem pages for kernel page tables: so it
2787 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2789 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2790 offset
&= ~PAGE_MASK
;
2793 * Page allocation does not initialize the page's lru field,
2794 * but it does always reset its private field.
2796 if (!page_private(head
)) {
2797 BUG_ON(count
& COUNT_CONTINUED
);
2798 INIT_LIST_HEAD(&head
->lru
);
2799 set_page_private(head
, SWP_CONTINUED
);
2800 si
->flags
|= SWP_CONTINUED
;
2803 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2807 * If the previous map said no continuation, but we've found
2808 * a continuation page, free our allocation and use this one.
2810 if (!(count
& COUNT_CONTINUED
))
2813 map
= kmap_atomic(list_page
) + offset
;
2818 * If this continuation count now has some space in it,
2819 * free our allocation and use this one.
2821 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2825 list_add_tail(&page
->lru
, &head
->lru
);
2826 page
= NULL
; /* now it's attached, don't free it */
2828 spin_unlock(&si
->lock
);
2836 * swap_count_continued - when the original swap_map count is incremented
2837 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2838 * into, carry if so, or else fail until a new continuation page is allocated;
2839 * when the original swap_map count is decremented from 0 with continuation,
2840 * borrow from the continuation and report whether it still holds more.
2841 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2843 static bool swap_count_continued(struct swap_info_struct
*si
,
2844 pgoff_t offset
, unsigned char count
)
2850 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2851 if (page_private(head
) != SWP_CONTINUED
) {
2852 BUG_ON(count
& COUNT_CONTINUED
);
2853 return false; /* need to add count continuation */
2856 offset
&= ~PAGE_MASK
;
2857 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2858 map
= kmap_atomic(page
) + offset
;
2860 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2861 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2863 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2865 * Think of how you add 1 to 999
2867 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2869 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2870 BUG_ON(page
== head
);
2871 map
= kmap_atomic(page
) + offset
;
2873 if (*map
== SWAP_CONT_MAX
) {
2875 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2877 return false; /* add count continuation */
2878 map
= kmap_atomic(page
) + offset
;
2879 init_map
: *map
= 0; /* we didn't zero the page */
2883 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2884 while (page
!= head
) {
2885 map
= kmap_atomic(page
) + offset
;
2886 *map
= COUNT_CONTINUED
;
2888 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2890 return true; /* incremented */
2892 } else { /* decrementing */
2894 * Think of how you subtract 1 from 1000
2896 BUG_ON(count
!= COUNT_CONTINUED
);
2897 while (*map
== COUNT_CONTINUED
) {
2899 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2900 BUG_ON(page
== head
);
2901 map
= kmap_atomic(page
) + offset
;
2908 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2909 while (page
!= head
) {
2910 map
= kmap_atomic(page
) + offset
;
2911 *map
= SWAP_CONT_MAX
| count
;
2912 count
= COUNT_CONTINUED
;
2914 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2916 return count
== COUNT_CONTINUED
;
2921 * free_swap_count_continuations - swapoff free all the continuation pages
2922 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2924 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2928 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2930 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2931 if (page_private(head
)) {
2932 struct list_head
*this, *next
;
2933 list_for_each_safe(this, next
, &head
->lru
) {
2935 page
= list_entry(this, struct page
, lru
);