4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22 #include <linux/mm_inline.h>
26 #ifdef CONFIG_VM_EVENT_COUNTERS
27 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
28 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
30 static void sum_vm_events(unsigned long *ret
)
35 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
37 for_each_online_cpu(cpu
) {
38 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
40 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
41 ret
[i
] += this->event
[i
];
46 * Accumulate the vm event counters across all CPUs.
47 * The result is unavoidably approximate - it can change
48 * during and after execution of this function.
50 void all_vm_events(unsigned long *ret
)
56 EXPORT_SYMBOL_GPL(all_vm_events
);
59 * Fold the foreign cpu events into our own.
61 * This is adding to the events on one processor
62 * but keeps the global counts constant.
64 void vm_events_fold_cpu(int cpu
)
66 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
69 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
70 count_vm_events(i
, fold_state
->event
[i
]);
71 fold_state
->event
[i
] = 0;
75 #endif /* CONFIG_VM_EVENT_COUNTERS */
78 * Manage combined zone based / global counters
80 * vm_stat contains the global counters
82 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
83 EXPORT_SYMBOL(vm_stat
);
87 int calculate_pressure_threshold(struct zone
*zone
)
90 int watermark_distance
;
93 * As vmstats are not up to date, there is drift between the estimated
94 * and real values. For high thresholds and a high number of CPUs, it
95 * is possible for the min watermark to be breached while the estimated
96 * value looks fine. The pressure threshold is a reduced value such
97 * that even the maximum amount of drift will not accidentally breach
100 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
101 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
104 * Maximum threshold is 125
106 threshold
= min(125, threshold
);
111 int calculate_normal_threshold(struct zone
*zone
)
114 int mem
; /* memory in 128 MB units */
117 * The threshold scales with the number of processors and the amount
118 * of memory per zone. More memory means that we can defer updates for
119 * longer, more processors could lead to more contention.
120 * fls() is used to have a cheap way of logarithmic scaling.
122 * Some sample thresholds:
124 * Threshold Processors (fls) Zonesize fls(mem+1)
125 * ------------------------------------------------------------------
142 * 125 1024 10 8-16 GB 8
143 * 125 1024 10 16-32 GB 9
146 mem
= zone
->managed_pages
>> (27 - PAGE_SHIFT
);
148 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
151 * Maximum threshold is 125
153 threshold
= min(125, threshold
);
159 * Refresh the thresholds for each zone.
161 void refresh_zone_stat_thresholds(void)
167 for_each_populated_zone(zone
) {
168 unsigned long max_drift
, tolerate_drift
;
170 threshold
= calculate_normal_threshold(zone
);
172 for_each_online_cpu(cpu
)
173 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
177 * Only set percpu_drift_mark if there is a danger that
178 * NR_FREE_PAGES reports the low watermark is ok when in fact
179 * the min watermark could be breached by an allocation
181 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
182 max_drift
= num_online_cpus() * threshold
;
183 if (max_drift
> tolerate_drift
)
184 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
189 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
190 int (*calculate_pressure
)(struct zone
*))
197 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
198 zone
= &pgdat
->node_zones
[i
];
199 if (!zone
->percpu_drift_mark
)
202 threshold
= (*calculate_pressure
)(zone
);
203 for_each_possible_cpu(cpu
)
204 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
210 * For use when we know that interrupts are disabled,
211 * or when we know that preemption is disabled and that
212 * particular counter cannot be updated from interrupt context.
214 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
217 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
218 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
222 x
= delta
+ __this_cpu_read(*p
);
224 t
= __this_cpu_read(pcp
->stat_threshold
);
226 if (unlikely(x
> t
|| x
< -t
)) {
227 zone_page_state_add(x
, zone
, item
);
230 __this_cpu_write(*p
, x
);
232 EXPORT_SYMBOL(__mod_zone_page_state
);
235 * Optimized increment and decrement functions.
237 * These are only for a single page and therefore can take a struct page *
238 * argument instead of struct zone *. This allows the inclusion of the code
239 * generated for page_zone(page) into the optimized functions.
241 * No overflow check is necessary and therefore the differential can be
242 * incremented or decremented in place which may allow the compilers to
243 * generate better code.
244 * The increment or decrement is known and therefore one boundary check can
247 * NOTE: These functions are very performance sensitive. Change only
250 * Some processors have inc/dec instructions that are atomic vs an interrupt.
251 * However, the code must first determine the differential location in a zone
252 * based on the processor number and then inc/dec the counter. There is no
253 * guarantee without disabling preemption that the processor will not change
254 * in between and therefore the atomicity vs. interrupt cannot be exploited
255 * in a useful way here.
257 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
259 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
260 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
263 v
= __this_cpu_inc_return(*p
);
264 t
= __this_cpu_read(pcp
->stat_threshold
);
265 if (unlikely(v
> t
)) {
266 s8 overstep
= t
>> 1;
268 zone_page_state_add(v
+ overstep
, zone
, item
);
269 __this_cpu_write(*p
, -overstep
);
273 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
275 __inc_zone_state(page_zone(page
), item
);
277 EXPORT_SYMBOL(__inc_zone_page_state
);
279 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
281 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
282 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
285 v
= __this_cpu_dec_return(*p
);
286 t
= __this_cpu_read(pcp
->stat_threshold
);
287 if (unlikely(v
< - t
)) {
288 s8 overstep
= t
>> 1;
290 zone_page_state_add(v
- overstep
, zone
, item
);
291 __this_cpu_write(*p
, overstep
);
295 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
297 __dec_zone_state(page_zone(page
), item
);
299 EXPORT_SYMBOL(__dec_zone_page_state
);
301 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
303 * If we have cmpxchg_local support then we do not need to incur the overhead
304 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
306 * mod_state() modifies the zone counter state through atomic per cpu
309 * Overstep mode specifies how overstep should handled:
311 * 1 Overstepping half of threshold
312 * -1 Overstepping minus half of threshold
314 static inline void mod_state(struct zone
*zone
,
315 enum zone_stat_item item
, int delta
, int overstep_mode
)
317 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
318 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
322 z
= 0; /* overflow to zone counters */
325 * The fetching of the stat_threshold is racy. We may apply
326 * a counter threshold to the wrong the cpu if we get
327 * rescheduled while executing here. However, the next
328 * counter update will apply the threshold again and
329 * therefore bring the counter under the threshold again.
331 * Most of the time the thresholds are the same anyways
332 * for all cpus in a zone.
334 t
= this_cpu_read(pcp
->stat_threshold
);
336 o
= this_cpu_read(*p
);
339 if (n
> t
|| n
< -t
) {
340 int os
= overstep_mode
* (t
>> 1) ;
342 /* Overflow must be added to zone counters */
346 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
349 zone_page_state_add(z
, zone
, item
);
352 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
355 mod_state(zone
, item
, delta
, 0);
357 EXPORT_SYMBOL(mod_zone_page_state
);
359 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
361 mod_state(zone
, item
, 1, 1);
364 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
366 mod_state(page_zone(page
), item
, 1, 1);
368 EXPORT_SYMBOL(inc_zone_page_state
);
370 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
372 mod_state(page_zone(page
), item
, -1, -1);
374 EXPORT_SYMBOL(dec_zone_page_state
);
377 * Use interrupt disable to serialize counter updates
379 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
384 local_irq_save(flags
);
385 __mod_zone_page_state(zone
, item
, delta
);
386 local_irq_restore(flags
);
388 EXPORT_SYMBOL(mod_zone_page_state
);
390 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
394 local_irq_save(flags
);
395 __inc_zone_state(zone
, item
);
396 local_irq_restore(flags
);
399 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
404 zone
= page_zone(page
);
405 local_irq_save(flags
);
406 __inc_zone_state(zone
, item
);
407 local_irq_restore(flags
);
409 EXPORT_SYMBOL(inc_zone_page_state
);
411 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
415 local_irq_save(flags
);
416 __dec_zone_page_state(page
, item
);
417 local_irq_restore(flags
);
419 EXPORT_SYMBOL(dec_zone_page_state
);
422 static inline void fold_diff(int *diff
)
426 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
428 atomic_long_add(diff
[i
], &vm_stat
[i
]);
432 * Update the zone counters for the current cpu.
434 * Note that refresh_cpu_vm_stats strives to only access
435 * node local memory. The per cpu pagesets on remote zones are placed
436 * in the memory local to the processor using that pageset. So the
437 * loop over all zones will access a series of cachelines local to
440 * The call to zone_page_state_add updates the cachelines with the
441 * statistics in the remote zone struct as well as the global cachelines
442 * with the global counters. These could cause remote node cache line
443 * bouncing and will have to be only done when necessary.
445 static void refresh_cpu_vm_stats(void)
449 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
451 for_each_populated_zone(zone
) {
452 struct per_cpu_pageset __percpu
*p
= zone
->pageset
;
454 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++) {
457 v
= this_cpu_xchg(p
->vm_stat_diff
[i
], 0);
460 atomic_long_add(v
, &zone
->vm_stat
[i
]);
463 /* 3 seconds idle till flush */
464 __this_cpu_write(p
->expire
, 3);
471 * Deal with draining the remote pageset of this
474 * Check if there are pages remaining in this pageset
475 * if not then there is nothing to expire.
477 if (!__this_cpu_read(p
->expire
) ||
478 !__this_cpu_read(p
->pcp
.count
))
482 * We never drain zones local to this processor.
484 if (zone_to_nid(zone
) == numa_node_id()) {
485 __this_cpu_write(p
->expire
, 0);
490 if (__this_cpu_dec_return(p
->expire
))
493 if (__this_cpu_read(p
->pcp
.count
))
494 drain_zone_pages(zone
, this_cpu_ptr(&p
->pcp
));
497 fold_diff(global_diff
);
501 * Fold the data for an offline cpu into the global array.
502 * There cannot be any access by the offline cpu and therefore
503 * synchronization is simplified.
505 void cpu_vm_stats_fold(int cpu
)
509 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
511 for_each_populated_zone(zone
) {
512 struct per_cpu_pageset
*p
;
514 p
= per_cpu_ptr(zone
->pageset
, cpu
);
516 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
517 if (p
->vm_stat_diff
[i
]) {
520 v
= p
->vm_stat_diff
[i
];
521 p
->vm_stat_diff
[i
] = 0;
522 atomic_long_add(v
, &zone
->vm_stat
[i
]);
527 fold_diff(global_diff
);
531 * this is only called if !populated_zone(zone), which implies no other users of
532 * pset->vm_stat_diff[] exsist.
534 void drain_zonestat(struct zone
*zone
, struct per_cpu_pageset
*pset
)
538 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
539 if (pset
->vm_stat_diff
[i
]) {
540 int v
= pset
->vm_stat_diff
[i
];
541 pset
->vm_stat_diff
[i
] = 0;
542 atomic_long_add(v
, &zone
->vm_stat
[i
]);
543 atomic_long_add(v
, &vm_stat
[i
]);
550 * zonelist = the list of zones passed to the allocator
551 * z = the zone from which the allocation occurred.
553 * Must be called with interrupts disabled.
555 * When __GFP_OTHER_NODE is set assume the node of the preferred
556 * zone is the local node. This is useful for daemons who allocate
557 * memory on behalf of other processes.
559 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
, gfp_t flags
)
561 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
562 __inc_zone_state(z
, NUMA_HIT
);
564 __inc_zone_state(z
, NUMA_MISS
);
565 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
567 if (z
->node
== ((flags
& __GFP_OTHER_NODE
) ?
568 preferred_zone
->node
: numa_node_id()))
569 __inc_zone_state(z
, NUMA_LOCAL
);
571 __inc_zone_state(z
, NUMA_OTHER
);
575 #ifdef CONFIG_COMPACTION
577 struct contig_page_info
{
578 unsigned long free_pages
;
579 unsigned long free_blocks_total
;
580 unsigned long free_blocks_suitable
;
584 * Calculate the number of free pages in a zone, how many contiguous
585 * pages are free and how many are large enough to satisfy an allocation of
586 * the target size. Note that this function makes no attempt to estimate
587 * how many suitable free blocks there *might* be if MOVABLE pages were
588 * migrated. Calculating that is possible, but expensive and can be
589 * figured out from userspace
591 static void fill_contig_page_info(struct zone
*zone
,
592 unsigned int suitable_order
,
593 struct contig_page_info
*info
)
597 info
->free_pages
= 0;
598 info
->free_blocks_total
= 0;
599 info
->free_blocks_suitable
= 0;
601 for (order
= 0; order
< MAX_ORDER
; order
++) {
602 unsigned long blocks
;
604 /* Count number of free blocks */
605 blocks
= zone
->free_area
[order
].nr_free
;
606 info
->free_blocks_total
+= blocks
;
608 /* Count free base pages */
609 info
->free_pages
+= blocks
<< order
;
611 /* Count the suitable free blocks */
612 if (order
>= suitable_order
)
613 info
->free_blocks_suitable
+= blocks
<<
614 (order
- suitable_order
);
619 * A fragmentation index only makes sense if an allocation of a requested
620 * size would fail. If that is true, the fragmentation index indicates
621 * whether external fragmentation or a lack of memory was the problem.
622 * The value can be used to determine if page reclaim or compaction
625 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
627 unsigned long requested
= 1UL << order
;
629 if (!info
->free_blocks_total
)
632 /* Fragmentation index only makes sense when a request would fail */
633 if (info
->free_blocks_suitable
)
637 * Index is between 0 and 1 so return within 3 decimal places
639 * 0 => allocation would fail due to lack of memory
640 * 1 => allocation would fail due to fragmentation
642 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
645 /* Same as __fragmentation index but allocs contig_page_info on stack */
646 int fragmentation_index(struct zone
*zone
, unsigned int order
)
648 struct contig_page_info info
;
650 fill_contig_page_info(zone
, order
, &info
);
651 return __fragmentation_index(order
, &info
);
655 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
656 #include <linux/proc_fs.h>
657 #include <linux/seq_file.h>
659 static char * const migratetype_names
[MIGRATE_TYPES
] = {
667 #ifdef CONFIG_MEMORY_ISOLATION
672 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
676 for (pgdat
= first_online_pgdat();
678 pgdat
= next_online_pgdat(pgdat
))
684 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
686 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
689 return next_online_pgdat(pgdat
);
692 static void frag_stop(struct seq_file
*m
, void *arg
)
696 /* Walk all the zones in a node and print using a callback */
697 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
698 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
701 struct zone
*node_zones
= pgdat
->node_zones
;
704 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
705 if (!populated_zone(zone
))
708 spin_lock_irqsave(&zone
->lock
, flags
);
709 print(m
, pgdat
, zone
);
710 spin_unlock_irqrestore(&zone
->lock
, flags
);
715 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
716 #ifdef CONFIG_ZONE_DMA
717 #define TEXT_FOR_DMA(xx) xx "_dma",
719 #define TEXT_FOR_DMA(xx)
722 #ifdef CONFIG_ZONE_DMA32
723 #define TEXT_FOR_DMA32(xx) xx "_dma32",
725 #define TEXT_FOR_DMA32(xx)
728 #ifdef CONFIG_HIGHMEM
729 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
731 #define TEXT_FOR_HIGHMEM(xx)
734 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
735 TEXT_FOR_HIGHMEM(xx) xx "_movable",
737 const char * const vmstat_text
[] = {
738 /* Zoned VM counters */
752 "nr_slab_reclaimable",
753 "nr_slab_unreclaimable",
754 "nr_page_table_pages",
759 "nr_vmscan_immediate_reclaim",
775 "workingset_refault",
776 "workingset_activate",
777 "workingset_nodereclaim",
778 "nr_anon_transparent_hugepages",
780 "nr_dirty_threshold",
781 "nr_dirty_background_threshold",
783 #ifdef CONFIG_VM_EVENT_COUNTERS
789 TEXTS_FOR_ZONES("pgalloc")
798 TEXTS_FOR_ZONES("pgrefill")
799 TEXTS_FOR_ZONES("pgsteal_kswapd")
800 TEXTS_FOR_ZONES("pgsteal_direct")
801 TEXTS_FOR_ZONES("pgscan_kswapd")
802 TEXTS_FOR_ZONES("pgscan_direct")
803 "pgscan_direct_throttle",
806 "zone_reclaim_failed",
811 "kswapd_low_wmark_hit_quickly",
812 "kswapd_high_wmark_hit_quickly",
821 #ifdef CONFIG_NUMA_BALANCING
823 "numa_huge_pte_updates",
825 "numa_hint_faults_local",
826 "numa_pages_migrated",
828 #ifdef CONFIG_MIGRATION
832 #ifdef CONFIG_COMPACTION
833 "compact_migrate_scanned",
834 "compact_free_scanned",
841 #ifdef CONFIG_HUGETLB_PAGE
842 "htlb_buddy_alloc_success",
843 "htlb_buddy_alloc_fail",
845 "unevictable_pgs_culled",
846 "unevictable_pgs_scanned",
847 "unevictable_pgs_rescued",
848 "unevictable_pgs_mlocked",
849 "unevictable_pgs_munlocked",
850 "unevictable_pgs_cleared",
851 "unevictable_pgs_stranded",
853 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
855 "thp_fault_fallback",
856 "thp_collapse_alloc",
857 "thp_collapse_alloc_failed",
859 "thp_zero_page_alloc",
860 "thp_zero_page_alloc_failed",
862 #ifdef CONFIG_DEBUG_TLBFLUSH
864 "nr_tlb_remote_flush",
865 "nr_tlb_remote_flush_received",
866 #endif /* CONFIG_SMP */
867 "nr_tlb_local_flush_all",
868 "nr_tlb_local_flush_one",
869 #endif /* CONFIG_DEBUG_TLBFLUSH */
871 #ifdef CONFIG_DEBUG_VM_VMACACHE
872 "vmacache_find_calls",
873 "vmacache_find_hits",
875 #endif /* CONFIG_VM_EVENTS_COUNTERS */
877 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
880 #ifdef CONFIG_PROC_FS
881 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
886 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
887 for (order
= 0; order
< MAX_ORDER
; ++order
)
888 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
893 * This walks the free areas for each zone.
895 static int frag_show(struct seq_file
*m
, void *arg
)
897 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
898 walk_zones_in_node(m
, pgdat
, frag_show_print
);
902 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
903 pg_data_t
*pgdat
, struct zone
*zone
)
907 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
908 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
911 migratetype_names
[mtype
]);
912 for (order
= 0; order
< MAX_ORDER
; ++order
) {
913 unsigned long freecount
= 0;
914 struct free_area
*area
;
915 struct list_head
*curr
;
917 area
= &(zone
->free_area
[order
]);
919 list_for_each(curr
, &area
->free_list
[mtype
])
921 seq_printf(m
, "%6lu ", freecount
);
927 /* Print out the free pages at each order for each migatetype */
928 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
931 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
934 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
935 for (order
= 0; order
< MAX_ORDER
; ++order
)
936 seq_printf(m
, "%6d ", order
);
939 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
944 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
945 pg_data_t
*pgdat
, struct zone
*zone
)
949 unsigned long start_pfn
= zone
->zone_start_pfn
;
950 unsigned long end_pfn
= zone_end_pfn(zone
);
951 unsigned long count
[MIGRATE_TYPES
] = { 0, };
953 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
959 page
= pfn_to_page(pfn
);
961 /* Watch for unexpected holes punched in the memmap */
962 if (!memmap_valid_within(pfn
, page
, zone
))
965 mtype
= get_pageblock_migratetype(page
);
967 if (mtype
< MIGRATE_TYPES
)
972 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
973 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
974 seq_printf(m
, "%12lu ", count
[mtype
]);
978 /* Print out the free pages at each order for each migratetype */
979 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
982 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
984 seq_printf(m
, "\n%-23s", "Number of blocks type ");
985 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
986 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
988 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
994 * This prints out statistics in relation to grouping pages by mobility.
995 * It is expensive to collect so do not constantly read the file.
997 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
999 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1001 /* check memoryless node */
1002 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1005 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
1006 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
1008 pagetypeinfo_showfree(m
, pgdat
);
1009 pagetypeinfo_showblockcount(m
, pgdat
);
1014 static const struct seq_operations fragmentation_op
= {
1015 .start
= frag_start
,
1021 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
1023 return seq_open(file
, &fragmentation_op
);
1026 static const struct file_operations fragmentation_file_operations
= {
1027 .open
= fragmentation_open
,
1029 .llseek
= seq_lseek
,
1030 .release
= seq_release
,
1033 static const struct seq_operations pagetypeinfo_op
= {
1034 .start
= frag_start
,
1037 .show
= pagetypeinfo_show
,
1040 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
1042 return seq_open(file
, &pagetypeinfo_op
);
1045 static const struct file_operations pagetypeinfo_file_ops
= {
1046 .open
= pagetypeinfo_open
,
1048 .llseek
= seq_lseek
,
1049 .release
= seq_release
,
1052 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1056 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
1066 zone_page_state(zone
, NR_FREE_PAGES
),
1067 min_wmark_pages(zone
),
1068 low_wmark_pages(zone
),
1069 high_wmark_pages(zone
),
1070 zone
->pages_scanned
,
1071 zone
->spanned_pages
,
1072 zone
->present_pages
,
1073 zone
->managed_pages
);
1075 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1076 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
1077 zone_page_state(zone
, i
));
1080 "\n protection: (%lu",
1081 zone
->lowmem_reserve
[0]);
1082 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
1083 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
1087 for_each_online_cpu(i
) {
1088 struct per_cpu_pageset
*pageset
;
1090 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1099 pageset
->pcp
.batch
);
1101 seq_printf(m
, "\n vm stats threshold: %d",
1102 pageset
->stat_threshold
);
1106 "\n all_unreclaimable: %u"
1108 "\n inactive_ratio: %u",
1109 !zone_reclaimable(zone
),
1110 zone
->zone_start_pfn
,
1111 zone
->inactive_ratio
);
1116 * Output information about zones in @pgdat.
1118 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1120 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1121 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1125 static const struct seq_operations zoneinfo_op
= {
1126 .start
= frag_start
, /* iterate over all zones. The same as in
1130 .show
= zoneinfo_show
,
1133 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1135 return seq_open(file
, &zoneinfo_op
);
1138 static const struct file_operations proc_zoneinfo_file_operations
= {
1139 .open
= zoneinfo_open
,
1141 .llseek
= seq_lseek
,
1142 .release
= seq_release
,
1145 enum writeback_stat_item
{
1147 NR_DIRTY_BG_THRESHOLD
,
1148 NR_VM_WRITEBACK_STAT_ITEMS
,
1151 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1154 int i
, stat_items_size
;
1156 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1158 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1159 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1161 #ifdef CONFIG_VM_EVENT_COUNTERS
1162 stat_items_size
+= sizeof(struct vm_event_state
);
1165 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1168 return ERR_PTR(-ENOMEM
);
1169 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1170 v
[i
] = global_page_state(i
);
1171 v
+= NR_VM_ZONE_STAT_ITEMS
;
1173 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1174 v
+ NR_DIRTY_THRESHOLD
);
1175 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1177 #ifdef CONFIG_VM_EVENT_COUNTERS
1179 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1182 return (unsigned long *)m
->private + *pos
;
1185 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1188 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1190 return (unsigned long *)m
->private + *pos
;
1193 static int vmstat_show(struct seq_file
*m
, void *arg
)
1195 unsigned long *l
= arg
;
1196 unsigned long off
= l
- (unsigned long *)m
->private;
1198 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1202 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1208 static const struct seq_operations vmstat_op
= {
1209 .start
= vmstat_start
,
1210 .next
= vmstat_next
,
1211 .stop
= vmstat_stop
,
1212 .show
= vmstat_show
,
1215 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1217 return seq_open(file
, &vmstat_op
);
1220 static const struct file_operations proc_vmstat_file_operations
= {
1221 .open
= vmstat_open
,
1223 .llseek
= seq_lseek
,
1224 .release
= seq_release
,
1226 #endif /* CONFIG_PROC_FS */
1229 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1230 int sysctl_stat_interval __read_mostly
= HZ
;
1232 static void vmstat_update(struct work_struct
*w
)
1234 refresh_cpu_vm_stats();
1235 schedule_delayed_work(this_cpu_ptr(&vmstat_work
),
1236 round_jiffies_relative(sysctl_stat_interval
));
1239 static void start_cpu_timer(int cpu
)
1241 struct delayed_work
*work
= &per_cpu(vmstat_work
, cpu
);
1243 INIT_DEFERRABLE_WORK(work
, vmstat_update
);
1244 schedule_delayed_work_on(cpu
, work
, __round_jiffies_relative(HZ
, cpu
));
1247 static void vmstat_cpu_dead(int node
)
1252 for_each_online_cpu(cpu
)
1253 if (cpu_to_node(cpu
) == node
)
1256 node_clear_state(node
, N_CPU
);
1262 * Use the cpu notifier to insure that the thresholds are recalculated
1265 static int vmstat_cpuup_callback(struct notifier_block
*nfb
,
1266 unsigned long action
,
1269 long cpu
= (long)hcpu
;
1273 case CPU_ONLINE_FROZEN
:
1274 refresh_zone_stat_thresholds();
1275 start_cpu_timer(cpu
);
1276 node_set_state(cpu_to_node(cpu
), N_CPU
);
1278 case CPU_DOWN_PREPARE
:
1279 case CPU_DOWN_PREPARE_FROZEN
:
1280 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1281 per_cpu(vmstat_work
, cpu
).work
.func
= NULL
;
1283 case CPU_DOWN_FAILED
:
1284 case CPU_DOWN_FAILED_FROZEN
:
1285 start_cpu_timer(cpu
);
1288 case CPU_DEAD_FROZEN
:
1289 refresh_zone_stat_thresholds();
1290 vmstat_cpu_dead(cpu_to_node(cpu
));
1298 static struct notifier_block vmstat_notifier
=
1299 { &vmstat_cpuup_callback
, NULL
, 0 };
1302 static int __init
setup_vmstat(void)
1307 cpu_notifier_register_begin();
1308 __register_cpu_notifier(&vmstat_notifier
);
1310 for_each_online_cpu(cpu
) {
1311 start_cpu_timer(cpu
);
1312 node_set_state(cpu_to_node(cpu
), N_CPU
);
1314 cpu_notifier_register_done();
1316 #ifdef CONFIG_PROC_FS
1317 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1318 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1319 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1320 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1324 module_init(setup_vmstat
)
1326 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1327 #include <linux/debugfs.h>
1331 * Return an index indicating how much of the available free memory is
1332 * unusable for an allocation of the requested size.
1334 static int unusable_free_index(unsigned int order
,
1335 struct contig_page_info
*info
)
1337 /* No free memory is interpreted as all free memory is unusable */
1338 if (info
->free_pages
== 0)
1342 * Index should be a value between 0 and 1. Return a value to 3
1345 * 0 => no fragmentation
1346 * 1 => high fragmentation
1348 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1352 static void unusable_show_print(struct seq_file
*m
,
1353 pg_data_t
*pgdat
, struct zone
*zone
)
1357 struct contig_page_info info
;
1359 seq_printf(m
, "Node %d, zone %8s ",
1362 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1363 fill_contig_page_info(zone
, order
, &info
);
1364 index
= unusable_free_index(order
, &info
);
1365 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1372 * Display unusable free space index
1374 * The unusable free space index measures how much of the available free
1375 * memory cannot be used to satisfy an allocation of a given size and is a
1376 * value between 0 and 1. The higher the value, the more of free memory is
1377 * unusable and by implication, the worse the external fragmentation is. This
1378 * can be expressed as a percentage by multiplying by 100.
1380 static int unusable_show(struct seq_file
*m
, void *arg
)
1382 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1384 /* check memoryless node */
1385 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1388 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1393 static const struct seq_operations unusable_op
= {
1394 .start
= frag_start
,
1397 .show
= unusable_show
,
1400 static int unusable_open(struct inode
*inode
, struct file
*file
)
1402 return seq_open(file
, &unusable_op
);
1405 static const struct file_operations unusable_file_ops
= {
1406 .open
= unusable_open
,
1408 .llseek
= seq_lseek
,
1409 .release
= seq_release
,
1412 static void extfrag_show_print(struct seq_file
*m
,
1413 pg_data_t
*pgdat
, struct zone
*zone
)
1418 /* Alloc on stack as interrupts are disabled for zone walk */
1419 struct contig_page_info info
;
1421 seq_printf(m
, "Node %d, zone %8s ",
1424 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1425 fill_contig_page_info(zone
, order
, &info
);
1426 index
= __fragmentation_index(order
, &info
);
1427 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1434 * Display fragmentation index for orders that allocations would fail for
1436 static int extfrag_show(struct seq_file
*m
, void *arg
)
1438 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1440 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1445 static const struct seq_operations extfrag_op
= {
1446 .start
= frag_start
,
1449 .show
= extfrag_show
,
1452 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1454 return seq_open(file
, &extfrag_op
);
1457 static const struct file_operations extfrag_file_ops
= {
1458 .open
= extfrag_open
,
1460 .llseek
= seq_lseek
,
1461 .release
= seq_release
,
1464 static int __init
extfrag_debug_init(void)
1466 struct dentry
*extfrag_debug_root
;
1468 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1469 if (!extfrag_debug_root
)
1472 if (!debugfs_create_file("unusable_index", 0444,
1473 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1476 if (!debugfs_create_file("extfrag_index", 0444,
1477 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1482 debugfs_remove_recursive(extfrag_debug_root
);
1486 module_init(extfrag_debug_init
);