2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #define pr_fmt(fmt) "UDP: " fmt
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
116 struct udp_table udp_table __read_mostly
;
117 EXPORT_SYMBOL(udp_table
);
119 long sysctl_udp_mem
[3] __read_mostly
;
120 EXPORT_SYMBOL(sysctl_udp_mem
);
122 int sysctl_udp_rmem_min __read_mostly
;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min
);
125 int sysctl_udp_wmem_min __read_mostly
;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min
);
128 atomic_long_t udp_memory_allocated
;
129 EXPORT_SYMBOL(udp_memory_allocated
);
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
134 static int udp_lib_lport_inuse(struct net
*net
, __u16 num
,
135 const struct udp_hslot
*hslot
,
136 unsigned long *bitmap
,
138 int (*saddr_comp
)(const struct sock
*sk1
,
139 const struct sock
*sk2
),
143 struct hlist_nulls_node
*node
;
144 kuid_t uid
= sock_i_uid(sk
);
146 sk_nulls_for_each(sk2
, node
, &hslot
->head
)
147 if (net_eq(sock_net(sk2
), net
) &&
149 (bitmap
|| udp_sk(sk2
)->udp_port_hash
== num
) &&
150 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
151 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
152 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
153 (!sk2
->sk_reuseport
|| !sk
->sk_reuseport
||
154 !uid_eq(uid
, sock_i_uid(sk2
))) &&
155 (*saddr_comp
)(sk
, sk2
)) {
157 __set_bit(udp_sk(sk2
)->udp_port_hash
>> log
,
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
169 static int udp_lib_lport_inuse2(struct net
*net
, __u16 num
,
170 struct udp_hslot
*hslot2
,
172 int (*saddr_comp
)(const struct sock
*sk1
,
173 const struct sock
*sk2
))
176 struct hlist_nulls_node
*node
;
177 kuid_t uid
= sock_i_uid(sk
);
180 spin_lock(&hslot2
->lock
);
181 udp_portaddr_for_each_entry(sk2
, node
, &hslot2
->head
)
182 if (net_eq(sock_net(sk2
), net
) &&
184 (udp_sk(sk2
)->udp_port_hash
== num
) &&
185 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
186 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
187 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
188 (!sk2
->sk_reuseport
|| !sk
->sk_reuseport
||
189 !uid_eq(uid
, sock_i_uid(sk2
))) &&
190 (*saddr_comp
)(sk
, sk2
)) {
194 spin_unlock(&hslot2
->lock
);
199 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
201 * @sk: socket struct in question
202 * @snum: port number to look up
203 * @saddr_comp: AF-dependent comparison of bound local IP addresses
204 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
207 int udp_lib_get_port(struct sock
*sk
, unsigned short snum
,
208 int (*saddr_comp
)(const struct sock
*sk1
,
209 const struct sock
*sk2
),
210 unsigned int hash2_nulladdr
)
212 struct udp_hslot
*hslot
, *hslot2
;
213 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
215 struct net
*net
= sock_net(sk
);
218 int low
, high
, remaining
;
220 unsigned short first
, last
;
221 DECLARE_BITMAP(bitmap
, PORTS_PER_CHAIN
);
223 inet_get_local_port_range(net
, &low
, &high
);
224 remaining
= (high
- low
) + 1;
226 rand
= prandom_u32();
227 first
= (((u64
)rand
* remaining
) >> 32) + low
;
229 * force rand to be an odd multiple of UDP_HTABLE_SIZE
231 rand
= (rand
| 1) * (udptable
->mask
+ 1);
232 last
= first
+ udptable
->mask
+ 1;
234 hslot
= udp_hashslot(udptable
, net
, first
);
235 bitmap_zero(bitmap
, PORTS_PER_CHAIN
);
236 spin_lock_bh(&hslot
->lock
);
237 udp_lib_lport_inuse(net
, snum
, hslot
, bitmap
, sk
,
238 saddr_comp
, udptable
->log
);
242 * Iterate on all possible values of snum for this hash.
243 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 * give us randomization and full range coverage.
247 if (low
<= snum
&& snum
<= high
&&
248 !test_bit(snum
>> udptable
->log
, bitmap
) &&
249 !inet_is_local_reserved_port(net
, snum
))
252 } while (snum
!= first
);
253 spin_unlock_bh(&hslot
->lock
);
254 } while (++first
!= last
);
257 hslot
= udp_hashslot(udptable
, net
, snum
);
258 spin_lock_bh(&hslot
->lock
);
259 if (hslot
->count
> 10) {
261 unsigned int slot2
= udp_sk(sk
)->udp_portaddr_hash
^ snum
;
263 slot2
&= udptable
->mask
;
264 hash2_nulladdr
&= udptable
->mask
;
266 hslot2
= udp_hashslot2(udptable
, slot2
);
267 if (hslot
->count
< hslot2
->count
)
268 goto scan_primary_hash
;
270 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
,
272 if (!exist
&& (hash2_nulladdr
!= slot2
)) {
273 hslot2
= udp_hashslot2(udptable
, hash2_nulladdr
);
274 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
,
283 if (udp_lib_lport_inuse(net
, snum
, hslot
, NULL
, sk
,
288 inet_sk(sk
)->inet_num
= snum
;
289 udp_sk(sk
)->udp_port_hash
= snum
;
290 udp_sk(sk
)->udp_portaddr_hash
^= snum
;
291 if (sk_unhashed(sk
)) {
292 sk_nulls_add_node_rcu(sk
, &hslot
->head
);
294 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, 1);
296 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
297 spin_lock(&hslot2
->lock
);
298 hlist_nulls_add_head_rcu(&udp_sk(sk
)->udp_portaddr_node
,
301 spin_unlock(&hslot2
->lock
);
305 spin_unlock_bh(&hslot
->lock
);
309 EXPORT_SYMBOL(udp_lib_get_port
);
311 static int ipv4_rcv_saddr_equal(const struct sock
*sk1
, const struct sock
*sk2
)
313 struct inet_sock
*inet1
= inet_sk(sk1
), *inet2
= inet_sk(sk2
);
315 return (!ipv6_only_sock(sk2
) &&
316 (!inet1
->inet_rcv_saddr
|| !inet2
->inet_rcv_saddr
||
317 inet1
->inet_rcv_saddr
== inet2
->inet_rcv_saddr
));
320 static unsigned int udp4_portaddr_hash(struct net
*net
, __be32 saddr
,
323 return jhash_1word((__force u32
)saddr
, net_hash_mix(net
)) ^ port
;
326 int udp_v4_get_port(struct sock
*sk
, unsigned short snum
)
328 unsigned int hash2_nulladdr
=
329 udp4_portaddr_hash(sock_net(sk
), htonl(INADDR_ANY
), snum
);
330 unsigned int hash2_partial
=
331 udp4_portaddr_hash(sock_net(sk
), inet_sk(sk
)->inet_rcv_saddr
, 0);
333 /* precompute partial secondary hash */
334 udp_sk(sk
)->udp_portaddr_hash
= hash2_partial
;
335 return udp_lib_get_port(sk
, snum
, ipv4_rcv_saddr_equal
, hash2_nulladdr
);
338 static inline int compute_score(struct sock
*sk
, struct net
*net
, __be32 saddr
,
340 __be16 sport
, __be32 daddr
, __be16 dport
, int dif
)
344 if (net_eq(sock_net(sk
), net
) && udp_sk(sk
)->udp_port_hash
== hnum
&&
345 !ipv6_only_sock(sk
)) {
346 struct inet_sock
*inet
= inet_sk(sk
);
348 score
= (sk
->sk_family
== PF_INET
? 2 : 1);
349 if (inet
->inet_rcv_saddr
) {
350 if (inet
->inet_rcv_saddr
!= daddr
)
354 if (inet
->inet_daddr
) {
355 if (inet
->inet_daddr
!= saddr
)
359 if (inet
->inet_dport
) {
360 if (inet
->inet_dport
!= sport
)
364 if (sk
->sk_bound_dev_if
) {
365 if (sk
->sk_bound_dev_if
!= dif
)
374 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
376 static inline int compute_score2(struct sock
*sk
, struct net
*net
,
377 __be32 saddr
, __be16 sport
,
378 __be32 daddr
, unsigned int hnum
, int dif
)
382 if (net_eq(sock_net(sk
), net
) && !ipv6_only_sock(sk
)) {
383 struct inet_sock
*inet
= inet_sk(sk
);
385 if (inet
->inet_rcv_saddr
!= daddr
)
387 if (inet
->inet_num
!= hnum
)
390 score
= (sk
->sk_family
== PF_INET
? 2 : 1);
391 if (inet
->inet_daddr
) {
392 if (inet
->inet_daddr
!= saddr
)
396 if (inet
->inet_dport
) {
397 if (inet
->inet_dport
!= sport
)
401 if (sk
->sk_bound_dev_if
) {
402 if (sk
->sk_bound_dev_if
!= dif
)
410 static unsigned int udp_ehashfn(struct net
*net
, const __be32 laddr
,
411 const __u16 lport
, const __be32 faddr
,
414 static u32 udp_ehash_secret __read_mostly
;
416 net_get_random_once(&udp_ehash_secret
, sizeof(udp_ehash_secret
));
418 return __inet_ehashfn(laddr
, lport
, faddr
, fport
,
419 udp_ehash_secret
+ net_hash_mix(net
));
423 /* called with read_rcu_lock() */
424 static struct sock
*udp4_lib_lookup2(struct net
*net
,
425 __be32 saddr
, __be16 sport
,
426 __be32 daddr
, unsigned int hnum
, int dif
,
427 struct udp_hslot
*hslot2
, unsigned int slot2
)
429 struct sock
*sk
, *result
;
430 struct hlist_nulls_node
*node
;
431 int score
, badness
, matches
= 0, reuseport
= 0;
437 udp_portaddr_for_each_entry_rcu(sk
, node
, &hslot2
->head
) {
438 score
= compute_score2(sk
, net
, saddr
, sport
,
440 if (score
> badness
) {
443 reuseport
= sk
->sk_reuseport
;
445 hash
= udp_ehashfn(net
, daddr
, hnum
,
449 } else if (score
== badness
&& reuseport
) {
451 if (((u64
)hash
* matches
) >> 32 == 0)
453 hash
= next_pseudo_random32(hash
);
457 * if the nulls value we got at the end of this lookup is
458 * not the expected one, we must restart lookup.
459 * We probably met an item that was moved to another chain.
461 if (get_nulls_value(node
) != slot2
)
464 if (unlikely(!atomic_inc_not_zero_hint(&result
->sk_refcnt
, 2)))
466 else if (unlikely(compute_score2(result
, net
, saddr
, sport
,
467 daddr
, hnum
, dif
) < badness
)) {
475 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
476 * harder than this. -DaveM
478 struct sock
*__udp4_lib_lookup(struct net
*net
, __be32 saddr
,
479 __be16 sport
, __be32 daddr
, __be16 dport
,
480 int dif
, struct udp_table
*udptable
)
482 struct sock
*sk
, *result
;
483 struct hlist_nulls_node
*node
;
484 unsigned short hnum
= ntohs(dport
);
485 unsigned int hash2
, slot2
, slot
= udp_hashfn(net
, hnum
, udptable
->mask
);
486 struct udp_hslot
*hslot2
, *hslot
= &udptable
->hash
[slot
];
487 int score
, badness
, matches
= 0, reuseport
= 0;
491 if (hslot
->count
> 10) {
492 hash2
= udp4_portaddr_hash(net
, daddr
, hnum
);
493 slot2
= hash2
& udptable
->mask
;
494 hslot2
= &udptable
->hash2
[slot2
];
495 if (hslot
->count
< hslot2
->count
)
498 result
= udp4_lib_lookup2(net
, saddr
, sport
,
502 hash2
= udp4_portaddr_hash(net
, htonl(INADDR_ANY
), hnum
);
503 slot2
= hash2
& udptable
->mask
;
504 hslot2
= &udptable
->hash2
[slot2
];
505 if (hslot
->count
< hslot2
->count
)
508 result
= udp4_lib_lookup2(net
, saddr
, sport
,
509 htonl(INADDR_ANY
), hnum
, dif
,
518 sk_nulls_for_each_rcu(sk
, node
, &hslot
->head
) {
519 score
= compute_score(sk
, net
, saddr
, hnum
, sport
,
521 if (score
> badness
) {
524 reuseport
= sk
->sk_reuseport
;
526 hash
= udp_ehashfn(net
, daddr
, hnum
,
530 } else if (score
== badness
&& reuseport
) {
532 if (((u64
)hash
* matches
) >> 32 == 0)
534 hash
= next_pseudo_random32(hash
);
538 * if the nulls value we got at the end of this lookup is
539 * not the expected one, we must restart lookup.
540 * We probably met an item that was moved to another chain.
542 if (get_nulls_value(node
) != slot
)
546 if (unlikely(!atomic_inc_not_zero_hint(&result
->sk_refcnt
, 2)))
548 else if (unlikely(compute_score(result
, net
, saddr
, hnum
, sport
,
549 daddr
, dport
, dif
) < badness
)) {
557 EXPORT_SYMBOL_GPL(__udp4_lib_lookup
);
559 static inline struct sock
*__udp4_lib_lookup_skb(struct sk_buff
*skb
,
560 __be16 sport
, __be16 dport
,
561 struct udp_table
*udptable
)
563 const struct iphdr
*iph
= ip_hdr(skb
);
565 return __udp4_lib_lookup(dev_net(skb_dst(skb
)->dev
), iph
->saddr
, sport
,
566 iph
->daddr
, dport
, inet_iif(skb
),
570 struct sock
*udp4_lib_lookup(struct net
*net
, __be32 saddr
, __be16 sport
,
571 __be32 daddr
, __be16 dport
, int dif
)
573 return __udp4_lib_lookup(net
, saddr
, sport
, daddr
, dport
, dif
, &udp_table
);
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup
);
577 static inline bool __udp_is_mcast_sock(struct net
*net
, struct sock
*sk
,
578 __be16 loc_port
, __be32 loc_addr
,
579 __be16 rmt_port
, __be32 rmt_addr
,
580 int dif
, unsigned short hnum
)
582 struct inet_sock
*inet
= inet_sk(sk
);
584 if (!net_eq(sock_net(sk
), net
) ||
585 udp_sk(sk
)->udp_port_hash
!= hnum
||
586 (inet
->inet_daddr
&& inet
->inet_daddr
!= rmt_addr
) ||
587 (inet
->inet_dport
!= rmt_port
&& inet
->inet_dport
) ||
588 (inet
->inet_rcv_saddr
&& inet
->inet_rcv_saddr
!= loc_addr
) ||
589 ipv6_only_sock(sk
) ||
590 (sk
->sk_bound_dev_if
&& sk
->sk_bound_dev_if
!= dif
))
592 if (!ip_mc_sf_allow(sk
, loc_addr
, rmt_addr
, dif
))
597 static inline struct sock
*udp_v4_mcast_next(struct net
*net
, struct sock
*sk
,
598 __be16 loc_port
, __be32 loc_addr
,
599 __be16 rmt_port
, __be32 rmt_addr
,
602 struct hlist_nulls_node
*node
;
604 unsigned short hnum
= ntohs(loc_port
);
606 sk_nulls_for_each_from(s
, node
) {
607 if (__udp_is_mcast_sock(net
, s
,
619 * This routine is called by the ICMP module when it gets some
620 * sort of error condition. If err < 0 then the socket should
621 * be closed and the error returned to the user. If err > 0
622 * it's just the icmp type << 8 | icmp code.
623 * Header points to the ip header of the error packet. We move
624 * on past this. Then (as it used to claim before adjustment)
625 * header points to the first 8 bytes of the udp header. We need
626 * to find the appropriate port.
629 void __udp4_lib_err(struct sk_buff
*skb
, u32 info
, struct udp_table
*udptable
)
631 struct inet_sock
*inet
;
632 const struct iphdr
*iph
= (const struct iphdr
*)skb
->data
;
633 struct udphdr
*uh
= (struct udphdr
*)(skb
->data
+(iph
->ihl
<<2));
634 const int type
= icmp_hdr(skb
)->type
;
635 const int code
= icmp_hdr(skb
)->code
;
639 struct net
*net
= dev_net(skb
->dev
);
641 sk
= __udp4_lib_lookup(net
, iph
->daddr
, uh
->dest
,
642 iph
->saddr
, uh
->source
, skb
->dev
->ifindex
, udptable
);
644 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
645 return; /* No socket for error */
654 case ICMP_TIME_EXCEEDED
:
657 case ICMP_SOURCE_QUENCH
:
659 case ICMP_PARAMETERPROB
:
663 case ICMP_DEST_UNREACH
:
664 if (code
== ICMP_FRAG_NEEDED
) { /* Path MTU discovery */
665 ipv4_sk_update_pmtu(skb
, sk
, info
);
666 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
) {
674 if (code
<= NR_ICMP_UNREACH
) {
675 harderr
= icmp_err_convert
[code
].fatal
;
676 err
= icmp_err_convert
[code
].errno
;
680 ipv4_sk_redirect(skb
, sk
);
685 * RFC1122: OK. Passes ICMP errors back to application, as per
688 if (!inet
->recverr
) {
689 if (!harderr
|| sk
->sk_state
!= TCP_ESTABLISHED
)
692 ip_icmp_error(sk
, skb
, err
, uh
->dest
, info
, (u8
*)(uh
+1));
695 sk
->sk_error_report(sk
);
700 void udp_err(struct sk_buff
*skb
, u32 info
)
702 __udp4_lib_err(skb
, info
, &udp_table
);
706 * Throw away all pending data and cancel the corking. Socket is locked.
708 void udp_flush_pending_frames(struct sock
*sk
)
710 struct udp_sock
*up
= udp_sk(sk
);
715 ip_flush_pending_frames(sk
);
718 EXPORT_SYMBOL(udp_flush_pending_frames
);
721 * udp4_hwcsum - handle outgoing HW checksumming
722 * @skb: sk_buff containing the filled-in UDP header
723 * (checksum field must be zeroed out)
724 * @src: source IP address
725 * @dst: destination IP address
727 void udp4_hwcsum(struct sk_buff
*skb
, __be32 src
, __be32 dst
)
729 struct udphdr
*uh
= udp_hdr(skb
);
730 int offset
= skb_transport_offset(skb
);
731 int len
= skb
->len
- offset
;
735 if (!skb_has_frag_list(skb
)) {
737 * Only one fragment on the socket.
739 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
740 skb
->csum_offset
= offsetof(struct udphdr
, check
);
741 uh
->check
= ~csum_tcpudp_magic(src
, dst
, len
,
744 struct sk_buff
*frags
;
747 * HW-checksum won't work as there are two or more
748 * fragments on the socket so that all csums of sk_buffs
751 skb_walk_frags(skb
, frags
) {
752 csum
= csum_add(csum
, frags
->csum
);
756 csum
= skb_checksum(skb
, offset
, hlen
, csum
);
757 skb
->ip_summed
= CHECKSUM_NONE
;
759 uh
->check
= csum_tcpudp_magic(src
, dst
, len
, IPPROTO_UDP
, csum
);
761 uh
->check
= CSUM_MANGLED_0
;
764 EXPORT_SYMBOL_GPL(udp4_hwcsum
);
766 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
767 * for the simple case like when setting the checksum for a UDP tunnel.
769 void udp_set_csum(bool nocheck
, struct sk_buff
*skb
,
770 __be32 saddr
, __be32 daddr
, int len
)
772 struct udphdr
*uh
= udp_hdr(skb
);
776 else if (skb_is_gso(skb
))
777 uh
->check
= ~udp_v4_check(len
, saddr
, daddr
, 0);
778 else if (skb_dst(skb
) && skb_dst(skb
)->dev
&&
779 (skb_dst(skb
)->dev
->features
& NETIF_F_V4_CSUM
)) {
781 BUG_ON(skb
->ip_summed
== CHECKSUM_PARTIAL
);
783 skb
->ip_summed
= CHECKSUM_PARTIAL
;
784 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
785 skb
->csum_offset
= offsetof(struct udphdr
, check
);
786 uh
->check
= ~udp_v4_check(len
, saddr
, daddr
, 0);
790 BUG_ON(skb
->ip_summed
== CHECKSUM_PARTIAL
);
793 csum
= skb_checksum(skb
, 0, len
, 0);
794 uh
->check
= udp_v4_check(len
, saddr
, daddr
, csum
);
796 uh
->check
= CSUM_MANGLED_0
;
798 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
801 EXPORT_SYMBOL(udp_set_csum
);
803 static int udp_send_skb(struct sk_buff
*skb
, struct flowi4
*fl4
)
805 struct sock
*sk
= skb
->sk
;
806 struct inet_sock
*inet
= inet_sk(sk
);
809 int is_udplite
= IS_UDPLITE(sk
);
810 int offset
= skb_transport_offset(skb
);
811 int len
= skb
->len
- offset
;
815 * Create a UDP header
818 uh
->source
= inet
->inet_sport
;
819 uh
->dest
= fl4
->fl4_dport
;
820 uh
->len
= htons(len
);
823 if (is_udplite
) /* UDP-Lite */
824 csum
= udplite_csum(skb
);
826 else if (sk
->sk_no_check_tx
) { /* UDP csum disabled */
828 skb
->ip_summed
= CHECKSUM_NONE
;
831 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) { /* UDP hardware csum */
833 udp4_hwcsum(skb
, fl4
->saddr
, fl4
->daddr
);
837 csum
= udp_csum(skb
);
839 /* add protocol-dependent pseudo-header */
840 uh
->check
= csum_tcpudp_magic(fl4
->saddr
, fl4
->daddr
, len
,
841 sk
->sk_protocol
, csum
);
843 uh
->check
= CSUM_MANGLED_0
;
846 err
= ip_send_skb(sock_net(sk
), skb
);
848 if (err
== -ENOBUFS
&& !inet
->recverr
) {
849 UDP_INC_STATS_USER(sock_net(sk
),
850 UDP_MIB_SNDBUFERRORS
, is_udplite
);
854 UDP_INC_STATS_USER(sock_net(sk
),
855 UDP_MIB_OUTDATAGRAMS
, is_udplite
);
860 * Push out all pending data as one UDP datagram. Socket is locked.
862 int udp_push_pending_frames(struct sock
*sk
)
864 struct udp_sock
*up
= udp_sk(sk
);
865 struct inet_sock
*inet
= inet_sk(sk
);
866 struct flowi4
*fl4
= &inet
->cork
.fl
.u
.ip4
;
870 skb
= ip_finish_skb(sk
, fl4
);
874 err
= udp_send_skb(skb
, fl4
);
881 EXPORT_SYMBOL(udp_push_pending_frames
);
883 int udp_sendmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
886 struct inet_sock
*inet
= inet_sk(sk
);
887 struct udp_sock
*up
= udp_sk(sk
);
888 struct flowi4 fl4_stack
;
891 struct ipcm_cookie ipc
;
892 struct rtable
*rt
= NULL
;
895 __be32 daddr
, faddr
, saddr
;
898 int err
, is_udplite
= IS_UDPLITE(sk
);
899 int corkreq
= up
->corkflag
|| msg
->msg_flags
&MSG_MORE
;
900 int (*getfrag
)(void *, char *, int, int, int, struct sk_buff
*);
902 struct ip_options_data opt_copy
;
911 if (msg
->msg_flags
& MSG_OOB
) /* Mirror BSD error message compatibility */
919 getfrag
= is_udplite
? udplite_getfrag
: ip_generic_getfrag
;
921 fl4
= &inet
->cork
.fl
.u
.ip4
;
924 * There are pending frames.
925 * The socket lock must be held while it's corked.
928 if (likely(up
->pending
)) {
929 if (unlikely(up
->pending
!= AF_INET
)) {
937 ulen
+= sizeof(struct udphdr
);
940 * Get and verify the address.
943 DECLARE_SOCKADDR(struct sockaddr_in
*, usin
, msg
->msg_name
);
944 if (msg
->msg_namelen
< sizeof(*usin
))
946 if (usin
->sin_family
!= AF_INET
) {
947 if (usin
->sin_family
!= AF_UNSPEC
)
948 return -EAFNOSUPPORT
;
951 daddr
= usin
->sin_addr
.s_addr
;
952 dport
= usin
->sin_port
;
956 if (sk
->sk_state
!= TCP_ESTABLISHED
)
957 return -EDESTADDRREQ
;
958 daddr
= inet
->inet_daddr
;
959 dport
= inet
->inet_dport
;
960 /* Open fast path for connected socket.
961 Route will not be used, if at least one option is set.
965 ipc
.addr
= inet
->inet_saddr
;
967 ipc
.oif
= sk
->sk_bound_dev_if
;
969 sock_tx_timestamp(sk
, &ipc
.tx_flags
);
971 if (msg
->msg_controllen
) {
972 err
= ip_cmsg_send(sock_net(sk
), msg
, &ipc
,
973 sk
->sk_family
== AF_INET6
);
981 struct ip_options_rcu
*inet_opt
;
984 inet_opt
= rcu_dereference(inet
->inet_opt
);
986 memcpy(&opt_copy
, inet_opt
,
987 sizeof(*inet_opt
) + inet_opt
->opt
.optlen
);
988 ipc
.opt
= &opt_copy
.opt
;
994 ipc
.addr
= faddr
= daddr
;
996 if (ipc
.opt
&& ipc
.opt
->opt
.srr
) {
999 faddr
= ipc
.opt
->opt
.faddr
;
1002 tos
= get_rttos(&ipc
, inet
);
1003 if (sock_flag(sk
, SOCK_LOCALROUTE
) ||
1004 (msg
->msg_flags
& MSG_DONTROUTE
) ||
1005 (ipc
.opt
&& ipc
.opt
->opt
.is_strictroute
)) {
1010 if (ipv4_is_multicast(daddr
)) {
1012 ipc
.oif
= inet
->mc_index
;
1014 saddr
= inet
->mc_addr
;
1016 } else if (!ipc
.oif
)
1017 ipc
.oif
= inet
->uc_index
;
1020 rt
= (struct rtable
*)sk_dst_check(sk
, 0);
1023 struct net
*net
= sock_net(sk
);
1026 flowi4_init_output(fl4
, ipc
.oif
, sk
->sk_mark
, tos
,
1027 RT_SCOPE_UNIVERSE
, sk
->sk_protocol
,
1028 inet_sk_flowi_flags(sk
),
1029 faddr
, saddr
, dport
, inet
->inet_sport
);
1031 security_sk_classify_flow(sk
, flowi4_to_flowi(fl4
));
1032 rt
= ip_route_output_flow(net
, fl4
, sk
);
1036 if (err
== -ENETUNREACH
)
1037 IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
1042 if ((rt
->rt_flags
& RTCF_BROADCAST
) &&
1043 !sock_flag(sk
, SOCK_BROADCAST
))
1046 sk_dst_set(sk
, dst_clone(&rt
->dst
));
1049 if (msg
->msg_flags
&MSG_CONFIRM
)
1055 daddr
= ipc
.addr
= fl4
->daddr
;
1057 /* Lockless fast path for the non-corking case. */
1059 skb
= ip_make_skb(sk
, fl4
, getfrag
, msg
->msg_iov
, ulen
,
1060 sizeof(struct udphdr
), &ipc
, &rt
,
1063 if (!IS_ERR_OR_NULL(skb
))
1064 err
= udp_send_skb(skb
, fl4
);
1069 if (unlikely(up
->pending
)) {
1070 /* The socket is already corked while preparing it. */
1071 /* ... which is an evident application bug. --ANK */
1074 LIMIT_NETDEBUG(KERN_DEBUG
pr_fmt("cork app bug 2\n"));
1079 * Now cork the socket to pend data.
1081 fl4
= &inet
->cork
.fl
.u
.ip4
;
1084 fl4
->fl4_dport
= dport
;
1085 fl4
->fl4_sport
= inet
->inet_sport
;
1086 up
->pending
= AF_INET
;
1090 err
= ip_append_data(sk
, fl4
, getfrag
, msg
->msg_iov
, ulen
,
1091 sizeof(struct udphdr
), &ipc
, &rt
,
1092 corkreq
? msg
->msg_flags
|MSG_MORE
: msg
->msg_flags
);
1094 udp_flush_pending_frames(sk
);
1096 err
= udp_push_pending_frames(sk
);
1097 else if (unlikely(skb_queue_empty(&sk
->sk_write_queue
)))
1108 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1109 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1110 * we don't have a good statistic (IpOutDiscards but it can be too many
1111 * things). We could add another new stat but at least for now that
1112 * seems like overkill.
1114 if (err
== -ENOBUFS
|| test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1115 UDP_INC_STATS_USER(sock_net(sk
),
1116 UDP_MIB_SNDBUFERRORS
, is_udplite
);
1121 dst_confirm(&rt
->dst
);
1122 if (!(msg
->msg_flags
&MSG_PROBE
) || len
)
1123 goto back_from_confirm
;
1127 EXPORT_SYMBOL(udp_sendmsg
);
1129 int udp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1130 size_t size
, int flags
)
1132 struct inet_sock
*inet
= inet_sk(sk
);
1133 struct udp_sock
*up
= udp_sk(sk
);
1136 if (flags
& MSG_SENDPAGE_NOTLAST
)
1140 struct msghdr msg
= { .msg_flags
= flags
|MSG_MORE
};
1142 /* Call udp_sendmsg to specify destination address which
1143 * sendpage interface can't pass.
1144 * This will succeed only when the socket is connected.
1146 ret
= udp_sendmsg(NULL
, sk
, &msg
, 0);
1153 if (unlikely(!up
->pending
)) {
1156 LIMIT_NETDEBUG(KERN_DEBUG
pr_fmt("udp cork app bug 3\n"));
1160 ret
= ip_append_page(sk
, &inet
->cork
.fl
.u
.ip4
,
1161 page
, offset
, size
, flags
);
1162 if (ret
== -EOPNOTSUPP
) {
1164 return sock_no_sendpage(sk
->sk_socket
, page
, offset
,
1168 udp_flush_pending_frames(sk
);
1173 if (!(up
->corkflag
|| (flags
&MSG_MORE
)))
1174 ret
= udp_push_pending_frames(sk
);
1184 * first_packet_length - return length of first packet in receive queue
1187 * Drops all bad checksum frames, until a valid one is found.
1188 * Returns the length of found skb, or 0 if none is found.
1190 static unsigned int first_packet_length(struct sock
*sk
)
1192 struct sk_buff_head list_kill
, *rcvq
= &sk
->sk_receive_queue
;
1193 struct sk_buff
*skb
;
1196 __skb_queue_head_init(&list_kill
);
1198 spin_lock_bh(&rcvq
->lock
);
1199 while ((skb
= skb_peek(rcvq
)) != NULL
&&
1200 udp_lib_checksum_complete(skb
)) {
1201 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_CSUMERRORS
,
1203 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
,
1205 atomic_inc(&sk
->sk_drops
);
1206 __skb_unlink(skb
, rcvq
);
1207 __skb_queue_tail(&list_kill
, skb
);
1209 res
= skb
? skb
->len
: 0;
1210 spin_unlock_bh(&rcvq
->lock
);
1212 if (!skb_queue_empty(&list_kill
)) {
1213 bool slow
= lock_sock_fast(sk
);
1215 __skb_queue_purge(&list_kill
);
1216 sk_mem_reclaim_partial(sk
);
1217 unlock_sock_fast(sk
, slow
);
1223 * IOCTL requests applicable to the UDP protocol
1226 int udp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
1231 int amount
= sk_wmem_alloc_get(sk
);
1233 return put_user(amount
, (int __user
*)arg
);
1238 unsigned int amount
= first_packet_length(sk
);
1242 * We will only return the amount
1243 * of this packet since that is all
1244 * that will be read.
1246 amount
-= sizeof(struct udphdr
);
1248 return put_user(amount
, (int __user
*)arg
);
1252 return -ENOIOCTLCMD
;
1257 EXPORT_SYMBOL(udp_ioctl
);
1260 * This should be easy, if there is something there we
1261 * return it, otherwise we block.
1264 int udp_recvmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
1265 size_t len
, int noblock
, int flags
, int *addr_len
)
1267 struct inet_sock
*inet
= inet_sk(sk
);
1268 DECLARE_SOCKADDR(struct sockaddr_in
*, sin
, msg
->msg_name
);
1269 struct sk_buff
*skb
;
1270 unsigned int ulen
, copied
;
1271 int peeked
, off
= 0;
1273 int is_udplite
= IS_UDPLITE(sk
);
1276 if (flags
& MSG_ERRQUEUE
)
1277 return ip_recv_error(sk
, msg
, len
, addr_len
);
1280 skb
= __skb_recv_datagram(sk
, flags
| (noblock
? MSG_DONTWAIT
: 0),
1281 &peeked
, &off
, &err
);
1285 ulen
= skb
->len
- sizeof(struct udphdr
);
1289 else if (copied
< ulen
)
1290 msg
->msg_flags
|= MSG_TRUNC
;
1293 * If checksum is needed at all, try to do it while copying the
1294 * data. If the data is truncated, or if we only want a partial
1295 * coverage checksum (UDP-Lite), do it before the copy.
1298 if (copied
< ulen
|| UDP_SKB_CB(skb
)->partial_cov
) {
1299 if (udp_lib_checksum_complete(skb
))
1303 if (skb_csum_unnecessary(skb
))
1304 err
= skb_copy_datagram_iovec(skb
, sizeof(struct udphdr
),
1305 msg
->msg_iov
, copied
);
1307 err
= skb_copy_and_csum_datagram_iovec(skb
,
1308 sizeof(struct udphdr
),
1315 if (unlikely(err
)) {
1316 trace_kfree_skb(skb
, udp_recvmsg
);
1318 atomic_inc(&sk
->sk_drops
);
1319 UDP_INC_STATS_USER(sock_net(sk
),
1320 UDP_MIB_INERRORS
, is_udplite
);
1326 UDP_INC_STATS_USER(sock_net(sk
),
1327 UDP_MIB_INDATAGRAMS
, is_udplite
);
1329 sock_recv_ts_and_drops(msg
, sk
, skb
);
1331 /* Copy the address. */
1333 sin
->sin_family
= AF_INET
;
1334 sin
->sin_port
= udp_hdr(skb
)->source
;
1335 sin
->sin_addr
.s_addr
= ip_hdr(skb
)->saddr
;
1336 memset(sin
->sin_zero
, 0, sizeof(sin
->sin_zero
));
1337 *addr_len
= sizeof(*sin
);
1339 if (inet
->cmsg_flags
)
1340 ip_cmsg_recv(msg
, skb
);
1343 if (flags
& MSG_TRUNC
)
1347 skb_free_datagram_locked(sk
, skb
);
1352 slow
= lock_sock_fast(sk
);
1353 if (!skb_kill_datagram(sk
, skb
, flags
)) {
1354 UDP_INC_STATS_USER(sock_net(sk
), UDP_MIB_CSUMERRORS
, is_udplite
);
1355 UDP_INC_STATS_USER(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1357 unlock_sock_fast(sk
, slow
);
1362 /* starting over for a new packet */
1363 msg
->msg_flags
&= ~MSG_TRUNC
;
1368 int udp_disconnect(struct sock
*sk
, int flags
)
1370 struct inet_sock
*inet
= inet_sk(sk
);
1372 * 1003.1g - break association.
1375 sk
->sk_state
= TCP_CLOSE
;
1376 inet
->inet_daddr
= 0;
1377 inet
->inet_dport
= 0;
1378 sock_rps_reset_rxhash(sk
);
1379 sk
->sk_bound_dev_if
= 0;
1380 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
1381 inet_reset_saddr(sk
);
1383 if (!(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
)) {
1384 sk
->sk_prot
->unhash(sk
);
1385 inet
->inet_sport
= 0;
1390 EXPORT_SYMBOL(udp_disconnect
);
1392 void udp_lib_unhash(struct sock
*sk
)
1394 if (sk_hashed(sk
)) {
1395 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
1396 struct udp_hslot
*hslot
, *hslot2
;
1398 hslot
= udp_hashslot(udptable
, sock_net(sk
),
1399 udp_sk(sk
)->udp_port_hash
);
1400 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
1402 spin_lock_bh(&hslot
->lock
);
1403 if (sk_nulls_del_node_init_rcu(sk
)) {
1405 inet_sk(sk
)->inet_num
= 0;
1406 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, -1);
1408 spin_lock(&hslot2
->lock
);
1409 hlist_nulls_del_init_rcu(&udp_sk(sk
)->udp_portaddr_node
);
1411 spin_unlock(&hslot2
->lock
);
1413 spin_unlock_bh(&hslot
->lock
);
1416 EXPORT_SYMBOL(udp_lib_unhash
);
1419 * inet_rcv_saddr was changed, we must rehash secondary hash
1421 void udp_lib_rehash(struct sock
*sk
, u16 newhash
)
1423 if (sk_hashed(sk
)) {
1424 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
1425 struct udp_hslot
*hslot
, *hslot2
, *nhslot2
;
1427 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
1428 nhslot2
= udp_hashslot2(udptable
, newhash
);
1429 udp_sk(sk
)->udp_portaddr_hash
= newhash
;
1430 if (hslot2
!= nhslot2
) {
1431 hslot
= udp_hashslot(udptable
, sock_net(sk
),
1432 udp_sk(sk
)->udp_port_hash
);
1433 /* we must lock primary chain too */
1434 spin_lock_bh(&hslot
->lock
);
1436 spin_lock(&hslot2
->lock
);
1437 hlist_nulls_del_init_rcu(&udp_sk(sk
)->udp_portaddr_node
);
1439 spin_unlock(&hslot2
->lock
);
1441 spin_lock(&nhslot2
->lock
);
1442 hlist_nulls_add_head_rcu(&udp_sk(sk
)->udp_portaddr_node
,
1445 spin_unlock(&nhslot2
->lock
);
1447 spin_unlock_bh(&hslot
->lock
);
1451 EXPORT_SYMBOL(udp_lib_rehash
);
1453 static void udp_v4_rehash(struct sock
*sk
)
1455 u16 new_hash
= udp4_portaddr_hash(sock_net(sk
),
1456 inet_sk(sk
)->inet_rcv_saddr
,
1457 inet_sk(sk
)->inet_num
);
1458 udp_lib_rehash(sk
, new_hash
);
1461 static int __udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1465 if (inet_sk(sk
)->inet_daddr
) {
1466 sock_rps_save_rxhash(sk
, skb
);
1467 sk_mark_napi_id(sk
, skb
);
1470 rc
= sock_queue_rcv_skb(sk
, skb
);
1472 int is_udplite
= IS_UDPLITE(sk
);
1474 /* Note that an ENOMEM error is charged twice */
1476 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_RCVBUFERRORS
,
1478 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1480 trace_udp_fail_queue_rcv_skb(rc
, sk
);
1488 static struct static_key udp_encap_needed __read_mostly
;
1489 void udp_encap_enable(void)
1491 if (!static_key_enabled(&udp_encap_needed
))
1492 static_key_slow_inc(&udp_encap_needed
);
1494 EXPORT_SYMBOL(udp_encap_enable
);
1499 * >0: "udp encap" protocol resubmission
1501 * Note that in the success and error cases, the skb is assumed to
1502 * have either been requeued or freed.
1504 int udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1506 struct udp_sock
*up
= udp_sk(sk
);
1508 int is_udplite
= IS_UDPLITE(sk
);
1511 * Charge it to the socket, dropping if the queue is full.
1513 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1517 if (static_key_false(&udp_encap_needed
) && up
->encap_type
) {
1518 int (*encap_rcv
)(struct sock
*sk
, struct sk_buff
*skb
);
1521 * This is an encapsulation socket so pass the skb to
1522 * the socket's udp_encap_rcv() hook. Otherwise, just
1523 * fall through and pass this up the UDP socket.
1524 * up->encap_rcv() returns the following value:
1525 * =0 if skb was successfully passed to the encap
1526 * handler or was discarded by it.
1527 * >0 if skb should be passed on to UDP.
1528 * <0 if skb should be resubmitted as proto -N
1531 /* if we're overly short, let UDP handle it */
1532 encap_rcv
= ACCESS_ONCE(up
->encap_rcv
);
1533 if (skb
->len
> sizeof(struct udphdr
) && encap_rcv
!= NULL
) {
1536 /* Verify checksum before giving to encap */
1537 if (udp_lib_checksum_complete(skb
))
1540 ret
= encap_rcv(sk
, skb
);
1542 UDP_INC_STATS_BH(sock_net(sk
),
1543 UDP_MIB_INDATAGRAMS
,
1549 /* FALLTHROUGH -- it's a UDP Packet */
1553 * UDP-Lite specific tests, ignored on UDP sockets
1555 if ((is_udplite
& UDPLITE_RECV_CC
) && UDP_SKB_CB(skb
)->partial_cov
) {
1558 * MIB statistics other than incrementing the error count are
1559 * disabled for the following two types of errors: these depend
1560 * on the application settings, not on the functioning of the
1561 * protocol stack as such.
1563 * RFC 3828 here recommends (sec 3.3): "There should also be a
1564 * way ... to ... at least let the receiving application block
1565 * delivery of packets with coverage values less than a value
1566 * provided by the application."
1568 if (up
->pcrlen
== 0) { /* full coverage was set */
1569 LIMIT_NETDEBUG(KERN_WARNING
"UDPLite: partial coverage %d while full coverage %d requested\n",
1570 UDP_SKB_CB(skb
)->cscov
, skb
->len
);
1573 /* The next case involves violating the min. coverage requested
1574 * by the receiver. This is subtle: if receiver wants x and x is
1575 * greater than the buffersize/MTU then receiver will complain
1576 * that it wants x while sender emits packets of smaller size y.
1577 * Therefore the above ...()->partial_cov statement is essential.
1579 if (UDP_SKB_CB(skb
)->cscov
< up
->pcrlen
) {
1580 LIMIT_NETDEBUG(KERN_WARNING
"UDPLite: coverage %d too small, need min %d\n",
1581 UDP_SKB_CB(skb
)->cscov
, up
->pcrlen
);
1586 if (rcu_access_pointer(sk
->sk_filter
) &&
1587 udp_lib_checksum_complete(skb
))
1591 if (sk_rcvqueues_full(sk
, skb
, sk
->sk_rcvbuf
))
1596 ipv4_pktinfo_prepare(sk
, skb
);
1598 if (!sock_owned_by_user(sk
))
1599 rc
= __udp_queue_rcv_skb(sk
, skb
);
1600 else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
1609 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_CSUMERRORS
, is_udplite
);
1611 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1612 atomic_inc(&sk
->sk_drops
);
1618 static void flush_stack(struct sock
**stack
, unsigned int count
,
1619 struct sk_buff
*skb
, unsigned int final
)
1622 struct sk_buff
*skb1
= NULL
;
1625 for (i
= 0; i
< count
; i
++) {
1627 if (likely(skb1
== NULL
))
1628 skb1
= (i
== final
) ? skb
: skb_clone(skb
, GFP_ATOMIC
);
1631 atomic_inc(&sk
->sk_drops
);
1632 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_RCVBUFERRORS
,
1634 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
,
1638 if (skb1
&& udp_queue_rcv_skb(sk
, skb1
) <= 0)
1645 /* For TCP sockets, sk_rx_dst is protected by socket lock
1646 * For UDP, we use xchg() to guard against concurrent changes.
1648 static void udp_sk_rx_dst_set(struct sock
*sk
, struct dst_entry
*dst
)
1650 struct dst_entry
*old
;
1653 old
= xchg(&sk
->sk_rx_dst
, dst
);
1658 * Multicasts and broadcasts go to each listener.
1660 * Note: called only from the BH handler context.
1662 static int __udp4_lib_mcast_deliver(struct net
*net
, struct sk_buff
*skb
,
1664 __be32 saddr
, __be32 daddr
,
1665 struct udp_table
*udptable
)
1667 struct sock
*sk
, *stack
[256 / sizeof(struct sock
*)];
1668 struct udp_hslot
*hslot
= udp_hashslot(udptable
, net
, ntohs(uh
->dest
));
1670 unsigned int i
, count
= 0;
1672 spin_lock(&hslot
->lock
);
1673 sk
= sk_nulls_head(&hslot
->head
);
1674 dif
= skb
->dev
->ifindex
;
1675 sk
= udp_v4_mcast_next(net
, sk
, uh
->dest
, daddr
, uh
->source
, saddr
, dif
);
1677 stack
[count
++] = sk
;
1678 sk
= udp_v4_mcast_next(net
, sk_nulls_next(sk
), uh
->dest
,
1679 daddr
, uh
->source
, saddr
, dif
);
1680 if (unlikely(count
== ARRAY_SIZE(stack
))) {
1683 flush_stack(stack
, count
, skb
, ~0);
1688 * before releasing chain lock, we must take a reference on sockets
1690 for (i
= 0; i
< count
; i
++)
1691 sock_hold(stack
[i
]);
1693 spin_unlock(&hslot
->lock
);
1696 * do the slow work with no lock held
1699 flush_stack(stack
, count
, skb
, count
- 1);
1701 for (i
= 0; i
< count
; i
++)
1709 /* Initialize UDP checksum. If exited with zero value (success),
1710 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1711 * Otherwise, csum completion requires chacksumming packet body,
1712 * including udp header and folding it to skb->csum.
1714 static inline int udp4_csum_init(struct sk_buff
*skb
, struct udphdr
*uh
,
1719 UDP_SKB_CB(skb
)->partial_cov
= 0;
1720 UDP_SKB_CB(skb
)->cscov
= skb
->len
;
1722 if (proto
== IPPROTO_UDPLITE
) {
1723 err
= udplite_checksum_init(skb
, uh
);
1728 return skb_checksum_init_zero_check(skb
, proto
, uh
->check
,
1729 inet_compute_pseudo
);
1733 * All we need to do is get the socket, and then do a checksum.
1736 int __udp4_lib_rcv(struct sk_buff
*skb
, struct udp_table
*udptable
,
1741 unsigned short ulen
;
1742 struct rtable
*rt
= skb_rtable(skb
);
1743 __be32 saddr
, daddr
;
1744 struct net
*net
= dev_net(skb
->dev
);
1747 * Validate the packet.
1749 if (!pskb_may_pull(skb
, sizeof(struct udphdr
)))
1750 goto drop
; /* No space for header. */
1753 ulen
= ntohs(uh
->len
);
1754 saddr
= ip_hdr(skb
)->saddr
;
1755 daddr
= ip_hdr(skb
)->daddr
;
1757 if (ulen
> skb
->len
)
1760 if (proto
== IPPROTO_UDP
) {
1761 /* UDP validates ulen. */
1762 if (ulen
< sizeof(*uh
) || pskb_trim_rcsum(skb
, ulen
))
1767 if (udp4_csum_init(skb
, uh
, proto
))
1770 sk
= skb_steal_sock(skb
);
1772 struct dst_entry
*dst
= skb_dst(skb
);
1775 if (unlikely(sk
->sk_rx_dst
!= dst
))
1776 udp_sk_rx_dst_set(sk
, dst
);
1778 ret
= udp_queue_rcv_skb(sk
, skb
);
1780 /* a return value > 0 means to resubmit the input, but
1781 * it wants the return to be -protocol, or 0
1787 if (rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
))
1788 return __udp4_lib_mcast_deliver(net
, skb
, uh
,
1789 saddr
, daddr
, udptable
);
1791 sk
= __udp4_lib_lookup_skb(skb
, uh
->source
, uh
->dest
, udptable
);
1797 ret
= udp_queue_rcv_skb(sk
, skb
);
1800 /* a return value > 0 means to resubmit the input, but
1801 * it wants the return to be -protocol, or 0
1808 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1812 /* No socket. Drop packet silently, if checksum is wrong */
1813 if (udp_lib_checksum_complete(skb
))
1816 UDP_INC_STATS_BH(net
, UDP_MIB_NOPORTS
, proto
== IPPROTO_UDPLITE
);
1817 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_PORT_UNREACH
, 0);
1820 * Hmm. We got an UDP packet to a port to which we
1821 * don't wanna listen. Ignore it.
1827 LIMIT_NETDEBUG(KERN_DEBUG
"UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1828 proto
== IPPROTO_UDPLITE
? "Lite" : "",
1829 &saddr
, ntohs(uh
->source
),
1831 &daddr
, ntohs(uh
->dest
));
1836 * RFC1122: OK. Discards the bad packet silently (as far as
1837 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1839 LIMIT_NETDEBUG(KERN_DEBUG
"UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1840 proto
== IPPROTO_UDPLITE
? "Lite" : "",
1841 &saddr
, ntohs(uh
->source
), &daddr
, ntohs(uh
->dest
),
1843 UDP_INC_STATS_BH(net
, UDP_MIB_CSUMERRORS
, proto
== IPPROTO_UDPLITE
);
1845 UDP_INC_STATS_BH(net
, UDP_MIB_INERRORS
, proto
== IPPROTO_UDPLITE
);
1850 /* We can only early demux multicast if there is a single matching socket.
1851 * If more than one socket found returns NULL
1853 static struct sock
*__udp4_lib_mcast_demux_lookup(struct net
*net
,
1854 __be16 loc_port
, __be32 loc_addr
,
1855 __be16 rmt_port
, __be32 rmt_addr
,
1858 struct sock
*sk
, *result
;
1859 struct hlist_nulls_node
*node
;
1860 unsigned short hnum
= ntohs(loc_port
);
1861 unsigned int count
, slot
= udp_hashfn(net
, hnum
, udp_table
.mask
);
1862 struct udp_hslot
*hslot
= &udp_table
.hash
[slot
];
1864 /* Do not bother scanning a too big list */
1865 if (hslot
->count
> 10)
1872 sk_nulls_for_each_rcu(sk
, node
, &hslot
->head
) {
1873 if (__udp_is_mcast_sock(net
, sk
,
1882 * if the nulls value we got at the end of this lookup is
1883 * not the expected one, we must restart lookup.
1884 * We probably met an item that was moved to another chain.
1886 if (get_nulls_value(node
) != slot
)
1891 unlikely(!atomic_inc_not_zero_hint(&result
->sk_refcnt
, 2)))
1893 else if (unlikely(!__udp_is_mcast_sock(net
, result
,
1905 /* For unicast we should only early demux connected sockets or we can
1906 * break forwarding setups. The chains here can be long so only check
1907 * if the first socket is an exact match and if not move on.
1909 static struct sock
*__udp4_lib_demux_lookup(struct net
*net
,
1910 __be16 loc_port
, __be32 loc_addr
,
1911 __be16 rmt_port
, __be32 rmt_addr
,
1914 struct sock
*sk
, *result
;
1915 struct hlist_nulls_node
*node
;
1916 unsigned short hnum
= ntohs(loc_port
);
1917 unsigned int hash2
= udp4_portaddr_hash(net
, loc_addr
, hnum
);
1918 unsigned int slot2
= hash2
& udp_table
.mask
;
1919 struct udp_hslot
*hslot2
= &udp_table
.hash2
[slot2
];
1920 INET_ADDR_COOKIE(acookie
, rmt_addr
, loc_addr
);
1921 const __portpair ports
= INET_COMBINED_PORTS(rmt_port
, hnum
);
1925 udp_portaddr_for_each_entry_rcu(sk
, node
, &hslot2
->head
) {
1926 if (INET_MATCH(sk
, net
, acookie
,
1927 rmt_addr
, loc_addr
, ports
, dif
))
1929 /* Only check first socket in chain */
1934 if (unlikely(!atomic_inc_not_zero_hint(&result
->sk_refcnt
, 2)))
1936 else if (unlikely(!INET_MATCH(sk
, net
, acookie
,
1947 void udp_v4_early_demux(struct sk_buff
*skb
)
1949 struct net
*net
= dev_net(skb
->dev
);
1950 const struct iphdr
*iph
;
1951 const struct udphdr
*uh
;
1953 struct dst_entry
*dst
;
1954 int dif
= skb
->dev
->ifindex
;
1956 /* validate the packet */
1957 if (!pskb_may_pull(skb
, skb_transport_offset(skb
) + sizeof(struct udphdr
)))
1963 if (skb
->pkt_type
== PACKET_BROADCAST
||
1964 skb
->pkt_type
== PACKET_MULTICAST
)
1965 sk
= __udp4_lib_mcast_demux_lookup(net
, uh
->dest
, iph
->daddr
,
1966 uh
->source
, iph
->saddr
, dif
);
1967 else if (skb
->pkt_type
== PACKET_HOST
)
1968 sk
= __udp4_lib_demux_lookup(net
, uh
->dest
, iph
->daddr
,
1969 uh
->source
, iph
->saddr
, dif
);
1977 skb
->destructor
= sock_edemux
;
1978 dst
= sk
->sk_rx_dst
;
1981 dst
= dst_check(dst
, 0);
1983 skb_dst_set_noref(skb
, dst
);
1986 int udp_rcv(struct sk_buff
*skb
)
1988 return __udp4_lib_rcv(skb
, &udp_table
, IPPROTO_UDP
);
1991 void udp_destroy_sock(struct sock
*sk
)
1993 struct udp_sock
*up
= udp_sk(sk
);
1994 bool slow
= lock_sock_fast(sk
);
1995 udp_flush_pending_frames(sk
);
1996 unlock_sock_fast(sk
, slow
);
1997 if (static_key_false(&udp_encap_needed
) && up
->encap_type
) {
1998 void (*encap_destroy
)(struct sock
*sk
);
1999 encap_destroy
= ACCESS_ONCE(up
->encap_destroy
);
2006 * Socket option code for UDP
2008 int udp_lib_setsockopt(struct sock
*sk
, int level
, int optname
,
2009 char __user
*optval
, unsigned int optlen
,
2010 int (*push_pending_frames
)(struct sock
*))
2012 struct udp_sock
*up
= udp_sk(sk
);
2015 int is_udplite
= IS_UDPLITE(sk
);
2017 if (optlen
< sizeof(int))
2020 if (get_user(val
, (int __user
*)optval
))
2023 valbool
= val
? 1 : 0;
2032 (*push_pending_frames
)(sk
);
2040 case UDP_ENCAP_ESPINUDP
:
2041 case UDP_ENCAP_ESPINUDP_NON_IKE
:
2042 up
->encap_rcv
= xfrm4_udp_encap_rcv
;
2044 case UDP_ENCAP_L2TPINUDP
:
2045 up
->encap_type
= val
;
2054 case UDP_NO_CHECK6_TX
:
2055 up
->no_check6_tx
= valbool
;
2058 case UDP_NO_CHECK6_RX
:
2059 up
->no_check6_rx
= valbool
;
2063 * UDP-Lite's partial checksum coverage (RFC 3828).
2065 /* The sender sets actual checksum coverage length via this option.
2066 * The case coverage > packet length is handled by send module. */
2067 case UDPLITE_SEND_CSCOV
:
2068 if (!is_udplite
) /* Disable the option on UDP sockets */
2069 return -ENOPROTOOPT
;
2070 if (val
!= 0 && val
< 8) /* Illegal coverage: use default (8) */
2072 else if (val
> USHRT_MAX
)
2075 up
->pcflag
|= UDPLITE_SEND_CC
;
2078 /* The receiver specifies a minimum checksum coverage value. To make
2079 * sense, this should be set to at least 8 (as done below). If zero is
2080 * used, this again means full checksum coverage. */
2081 case UDPLITE_RECV_CSCOV
:
2082 if (!is_udplite
) /* Disable the option on UDP sockets */
2083 return -ENOPROTOOPT
;
2084 if (val
!= 0 && val
< 8) /* Avoid silly minimal values. */
2086 else if (val
> USHRT_MAX
)
2089 up
->pcflag
|= UDPLITE_RECV_CC
;
2099 EXPORT_SYMBOL(udp_lib_setsockopt
);
2101 int udp_setsockopt(struct sock
*sk
, int level
, int optname
,
2102 char __user
*optval
, unsigned int optlen
)
2104 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2105 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
2106 udp_push_pending_frames
);
2107 return ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
2110 #ifdef CONFIG_COMPAT
2111 int compat_udp_setsockopt(struct sock
*sk
, int level
, int optname
,
2112 char __user
*optval
, unsigned int optlen
)
2114 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2115 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
2116 udp_push_pending_frames
);
2117 return compat_ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
2121 int udp_lib_getsockopt(struct sock
*sk
, int level
, int optname
,
2122 char __user
*optval
, int __user
*optlen
)
2124 struct udp_sock
*up
= udp_sk(sk
);
2127 if (get_user(len
, optlen
))
2130 len
= min_t(unsigned int, len
, sizeof(int));
2141 val
= up
->encap_type
;
2144 case UDP_NO_CHECK6_TX
:
2145 val
= up
->no_check6_tx
;
2148 case UDP_NO_CHECK6_RX
:
2149 val
= up
->no_check6_rx
;
2152 /* The following two cannot be changed on UDP sockets, the return is
2153 * always 0 (which corresponds to the full checksum coverage of UDP). */
2154 case UDPLITE_SEND_CSCOV
:
2158 case UDPLITE_RECV_CSCOV
:
2163 return -ENOPROTOOPT
;
2166 if (put_user(len
, optlen
))
2168 if (copy_to_user(optval
, &val
, len
))
2172 EXPORT_SYMBOL(udp_lib_getsockopt
);
2174 int udp_getsockopt(struct sock
*sk
, int level
, int optname
,
2175 char __user
*optval
, int __user
*optlen
)
2177 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2178 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
2179 return ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
2182 #ifdef CONFIG_COMPAT
2183 int compat_udp_getsockopt(struct sock
*sk
, int level
, int optname
,
2184 char __user
*optval
, int __user
*optlen
)
2186 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
2187 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
2188 return compat_ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
2192 * udp_poll - wait for a UDP event.
2193 * @file - file struct
2195 * @wait - poll table
2197 * This is same as datagram poll, except for the special case of
2198 * blocking sockets. If application is using a blocking fd
2199 * and a packet with checksum error is in the queue;
2200 * then it could get return from select indicating data available
2201 * but then block when reading it. Add special case code
2202 * to work around these arguably broken applications.
2204 unsigned int udp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
2206 unsigned int mask
= datagram_poll(file
, sock
, wait
);
2207 struct sock
*sk
= sock
->sk
;
2209 sock_rps_record_flow(sk
);
2211 /* Check for false positives due to checksum errors */
2212 if ((mask
& POLLRDNORM
) && !(file
->f_flags
& O_NONBLOCK
) &&
2213 !(sk
->sk_shutdown
& RCV_SHUTDOWN
) && !first_packet_length(sk
))
2214 mask
&= ~(POLLIN
| POLLRDNORM
);
2219 EXPORT_SYMBOL(udp_poll
);
2221 struct proto udp_prot
= {
2223 .owner
= THIS_MODULE
,
2224 .close
= udp_lib_close
,
2225 .connect
= ip4_datagram_connect
,
2226 .disconnect
= udp_disconnect
,
2228 .destroy
= udp_destroy_sock
,
2229 .setsockopt
= udp_setsockopt
,
2230 .getsockopt
= udp_getsockopt
,
2231 .sendmsg
= udp_sendmsg
,
2232 .recvmsg
= udp_recvmsg
,
2233 .sendpage
= udp_sendpage
,
2234 .backlog_rcv
= __udp_queue_rcv_skb
,
2235 .release_cb
= ip4_datagram_release_cb
,
2236 .hash
= udp_lib_hash
,
2237 .unhash
= udp_lib_unhash
,
2238 .rehash
= udp_v4_rehash
,
2239 .get_port
= udp_v4_get_port
,
2240 .memory_allocated
= &udp_memory_allocated
,
2241 .sysctl_mem
= sysctl_udp_mem
,
2242 .sysctl_wmem
= &sysctl_udp_wmem_min
,
2243 .sysctl_rmem
= &sysctl_udp_rmem_min
,
2244 .obj_size
= sizeof(struct udp_sock
),
2245 .slab_flags
= SLAB_DESTROY_BY_RCU
,
2246 .h
.udp_table
= &udp_table
,
2247 #ifdef CONFIG_COMPAT
2248 .compat_setsockopt
= compat_udp_setsockopt
,
2249 .compat_getsockopt
= compat_udp_getsockopt
,
2251 .clear_sk
= sk_prot_clear_portaddr_nulls
,
2253 EXPORT_SYMBOL(udp_prot
);
2255 /* ------------------------------------------------------------------------ */
2256 #ifdef CONFIG_PROC_FS
2258 static struct sock
*udp_get_first(struct seq_file
*seq
, int start
)
2261 struct udp_iter_state
*state
= seq
->private;
2262 struct net
*net
= seq_file_net(seq
);
2264 for (state
->bucket
= start
; state
->bucket
<= state
->udp_table
->mask
;
2266 struct hlist_nulls_node
*node
;
2267 struct udp_hslot
*hslot
= &state
->udp_table
->hash
[state
->bucket
];
2269 if (hlist_nulls_empty(&hslot
->head
))
2272 spin_lock_bh(&hslot
->lock
);
2273 sk_nulls_for_each(sk
, node
, &hslot
->head
) {
2274 if (!net_eq(sock_net(sk
), net
))
2276 if (sk
->sk_family
== state
->family
)
2279 spin_unlock_bh(&hslot
->lock
);
2286 static struct sock
*udp_get_next(struct seq_file
*seq
, struct sock
*sk
)
2288 struct udp_iter_state
*state
= seq
->private;
2289 struct net
*net
= seq_file_net(seq
);
2292 sk
= sk_nulls_next(sk
);
2293 } while (sk
&& (!net_eq(sock_net(sk
), net
) || sk
->sk_family
!= state
->family
));
2296 if (state
->bucket
<= state
->udp_table
->mask
)
2297 spin_unlock_bh(&state
->udp_table
->hash
[state
->bucket
].lock
);
2298 return udp_get_first(seq
, state
->bucket
+ 1);
2303 static struct sock
*udp_get_idx(struct seq_file
*seq
, loff_t pos
)
2305 struct sock
*sk
= udp_get_first(seq
, 0);
2308 while (pos
&& (sk
= udp_get_next(seq
, sk
)) != NULL
)
2310 return pos
? NULL
: sk
;
2313 static void *udp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2315 struct udp_iter_state
*state
= seq
->private;
2316 state
->bucket
= MAX_UDP_PORTS
;
2318 return *pos
? udp_get_idx(seq
, *pos
-1) : SEQ_START_TOKEN
;
2321 static void *udp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2325 if (v
== SEQ_START_TOKEN
)
2326 sk
= udp_get_idx(seq
, 0);
2328 sk
= udp_get_next(seq
, v
);
2334 static void udp_seq_stop(struct seq_file
*seq
, void *v
)
2336 struct udp_iter_state
*state
= seq
->private;
2338 if (state
->bucket
<= state
->udp_table
->mask
)
2339 spin_unlock_bh(&state
->udp_table
->hash
[state
->bucket
].lock
);
2342 int udp_seq_open(struct inode
*inode
, struct file
*file
)
2344 struct udp_seq_afinfo
*afinfo
= PDE_DATA(inode
);
2345 struct udp_iter_state
*s
;
2348 err
= seq_open_net(inode
, file
, &afinfo
->seq_ops
,
2349 sizeof(struct udp_iter_state
));
2353 s
= ((struct seq_file
*)file
->private_data
)->private;
2354 s
->family
= afinfo
->family
;
2355 s
->udp_table
= afinfo
->udp_table
;
2358 EXPORT_SYMBOL(udp_seq_open
);
2360 /* ------------------------------------------------------------------------ */
2361 int udp_proc_register(struct net
*net
, struct udp_seq_afinfo
*afinfo
)
2363 struct proc_dir_entry
*p
;
2366 afinfo
->seq_ops
.start
= udp_seq_start
;
2367 afinfo
->seq_ops
.next
= udp_seq_next
;
2368 afinfo
->seq_ops
.stop
= udp_seq_stop
;
2370 p
= proc_create_data(afinfo
->name
, S_IRUGO
, net
->proc_net
,
2371 afinfo
->seq_fops
, afinfo
);
2376 EXPORT_SYMBOL(udp_proc_register
);
2378 void udp_proc_unregister(struct net
*net
, struct udp_seq_afinfo
*afinfo
)
2380 remove_proc_entry(afinfo
->name
, net
->proc_net
);
2382 EXPORT_SYMBOL(udp_proc_unregister
);
2384 /* ------------------------------------------------------------------------ */
2385 static void udp4_format_sock(struct sock
*sp
, struct seq_file
*f
,
2388 struct inet_sock
*inet
= inet_sk(sp
);
2389 __be32 dest
= inet
->inet_daddr
;
2390 __be32 src
= inet
->inet_rcv_saddr
;
2391 __u16 destp
= ntohs(inet
->inet_dport
);
2392 __u16 srcp
= ntohs(inet
->inet_sport
);
2394 seq_printf(f
, "%5d: %08X:%04X %08X:%04X"
2395 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2396 bucket
, src
, srcp
, dest
, destp
, sp
->sk_state
,
2397 sk_wmem_alloc_get(sp
),
2398 sk_rmem_alloc_get(sp
),
2400 from_kuid_munged(seq_user_ns(f
), sock_i_uid(sp
)),
2402 atomic_read(&sp
->sk_refcnt
), sp
,
2403 atomic_read(&sp
->sk_drops
));
2406 int udp4_seq_show(struct seq_file
*seq
, void *v
)
2408 seq_setwidth(seq
, 127);
2409 if (v
== SEQ_START_TOKEN
)
2410 seq_puts(seq
, " sl local_address rem_address st tx_queue "
2411 "rx_queue tr tm->when retrnsmt uid timeout "
2412 "inode ref pointer drops");
2414 struct udp_iter_state
*state
= seq
->private;
2416 udp4_format_sock(v
, seq
, state
->bucket
);
2422 static const struct file_operations udp_afinfo_seq_fops
= {
2423 .owner
= THIS_MODULE
,
2424 .open
= udp_seq_open
,
2426 .llseek
= seq_lseek
,
2427 .release
= seq_release_net
2430 /* ------------------------------------------------------------------------ */
2431 static struct udp_seq_afinfo udp4_seq_afinfo
= {
2434 .udp_table
= &udp_table
,
2435 .seq_fops
= &udp_afinfo_seq_fops
,
2437 .show
= udp4_seq_show
,
2441 static int __net_init
udp4_proc_init_net(struct net
*net
)
2443 return udp_proc_register(net
, &udp4_seq_afinfo
);
2446 static void __net_exit
udp4_proc_exit_net(struct net
*net
)
2448 udp_proc_unregister(net
, &udp4_seq_afinfo
);
2451 static struct pernet_operations udp4_net_ops
= {
2452 .init
= udp4_proc_init_net
,
2453 .exit
= udp4_proc_exit_net
,
2456 int __init
udp4_proc_init(void)
2458 return register_pernet_subsys(&udp4_net_ops
);
2461 void udp4_proc_exit(void)
2463 unregister_pernet_subsys(&udp4_net_ops
);
2465 #endif /* CONFIG_PROC_FS */
2467 static __initdata
unsigned long uhash_entries
;
2468 static int __init
set_uhash_entries(char *str
)
2475 ret
= kstrtoul(str
, 0, &uhash_entries
);
2479 if (uhash_entries
&& uhash_entries
< UDP_HTABLE_SIZE_MIN
)
2480 uhash_entries
= UDP_HTABLE_SIZE_MIN
;
2483 __setup("uhash_entries=", set_uhash_entries
);
2485 void __init
udp_table_init(struct udp_table
*table
, const char *name
)
2489 table
->hash
= alloc_large_system_hash(name
,
2490 2 * sizeof(struct udp_hslot
),
2492 21, /* one slot per 2 MB */
2496 UDP_HTABLE_SIZE_MIN
,
2499 table
->hash2
= table
->hash
+ (table
->mask
+ 1);
2500 for (i
= 0; i
<= table
->mask
; i
++) {
2501 INIT_HLIST_NULLS_HEAD(&table
->hash
[i
].head
, i
);
2502 table
->hash
[i
].count
= 0;
2503 spin_lock_init(&table
->hash
[i
].lock
);
2505 for (i
= 0; i
<= table
->mask
; i
++) {
2506 INIT_HLIST_NULLS_HEAD(&table
->hash2
[i
].head
, i
);
2507 table
->hash2
[i
].count
= 0;
2508 spin_lock_init(&table
->hash2
[i
].lock
);
2512 void __init
udp_init(void)
2514 unsigned long limit
;
2516 udp_table_init(&udp_table
, "UDP");
2517 limit
= nr_free_buffer_pages() / 8;
2518 limit
= max(limit
, 128UL);
2519 sysctl_udp_mem
[0] = limit
/ 4 * 3;
2520 sysctl_udp_mem
[1] = limit
;
2521 sysctl_udp_mem
[2] = sysctl_udp_mem
[0] * 2;
2523 sysctl_udp_rmem_min
= SK_MEM_QUANTUM
;
2524 sysctl_udp_wmem_min
= SK_MEM_QUANTUM
;
2527 struct sk_buff
*skb_udp_tunnel_segment(struct sk_buff
*skb
,
2528 netdev_features_t features
)
2530 struct sk_buff
*segs
= ERR_PTR(-EINVAL
);
2531 u16 mac_offset
= skb
->mac_header
;
2532 int mac_len
= skb
->mac_len
;
2533 int tnl_hlen
= skb_inner_mac_header(skb
) - skb_transport_header(skb
);
2534 __be16 protocol
= skb
->protocol
;
2535 netdev_features_t enc_features
;
2536 int udp_offset
, outer_hlen
;
2537 unsigned int oldlen
;
2540 oldlen
= (u16
)~skb
->len
;
2542 if (unlikely(!pskb_may_pull(skb
, tnl_hlen
)))
2545 skb
->encapsulation
= 0;
2546 __skb_pull(skb
, tnl_hlen
);
2547 skb_reset_mac_header(skb
);
2548 skb_set_network_header(skb
, skb_inner_network_offset(skb
));
2549 skb
->mac_len
= skb_inner_network_offset(skb
);
2550 skb
->protocol
= htons(ETH_P_TEB
);
2552 need_csum
= !!(skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_TUNNEL_CSUM
);
2554 skb
->encap_hdr_csum
= 1;
2556 /* segment inner packet. */
2557 enc_features
= skb
->dev
->hw_enc_features
& netif_skb_features(skb
);
2558 segs
= skb_mac_gso_segment(skb
, enc_features
);
2559 if (!segs
|| IS_ERR(segs
)) {
2560 skb_gso_error_unwind(skb
, protocol
, tnl_hlen
, mac_offset
,
2565 outer_hlen
= skb_tnl_header_len(skb
);
2566 udp_offset
= outer_hlen
- tnl_hlen
;
2572 skb_reset_inner_headers(skb
);
2573 skb
->encapsulation
= 1;
2575 skb
->mac_len
= mac_len
;
2577 skb_push(skb
, outer_hlen
);
2578 skb_reset_mac_header(skb
);
2579 skb_set_network_header(skb
, mac_len
);
2580 skb_set_transport_header(skb
, udp_offset
);
2581 len
= skb
->len
- udp_offset
;
2583 uh
->len
= htons(len
);
2586 __be32 delta
= htonl(oldlen
+ len
);
2588 uh
->check
= ~csum_fold((__force __wsum
)
2589 ((__force u32
)uh
->check
+
2590 (__force u32
)delta
));
2591 uh
->check
= gso_make_checksum(skb
, ~uh
->check
);
2594 uh
->check
= CSUM_MANGLED_0
;
2597 skb
->protocol
= protocol
;
2598 } while ((skb
= skb
->next
));