2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <asm/unaligned.h>
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "debugfs_key.h"
29 * DOC: Key handling basics
31 * Key handling in mac80211 is done based on per-interface (sub_if_data)
32 * keys and per-station keys. Since each station belongs to an interface,
33 * each station key also belongs to that interface.
35 * Hardware acceleration is done on a best-effort basis for algorithms
36 * that are implemented in software, for each key the hardware is asked
37 * to enable that key for offloading but if it cannot do that the key is
38 * simply kept for software encryption (unless it is for an algorithm
39 * that isn't implemented in software).
40 * There is currently no way of knowing whether a key is handled in SW
41 * or HW except by looking into debugfs.
43 * All key management is internally protected by a mutex. Within all
44 * other parts of mac80211, key references are, just as STA structure
45 * references, protected by RCU. Note, however, that some things are
46 * unprotected, namely the key->sta dereferences within the hardware
47 * acceleration functions. This means that sta_info_destroy() must
48 * remove the key which waits for an RCU grace period.
51 static const u8 bcast_addr
[ETH_ALEN
] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
53 static void assert_key_lock(struct ieee80211_local
*local
)
55 lockdep_assert_held(&local
->key_mtx
);
58 static void increment_tailroom_need_count(struct ieee80211_sub_if_data
*sdata
)
61 * When this count is zero, SKB resizing for allocating tailroom
62 * for IV or MMIC is skipped. But, this check has created two race
63 * cases in xmit path while transiting from zero count to one:
65 * 1. SKB resize was skipped because no key was added but just before
66 * the xmit key is added and SW encryption kicks off.
68 * 2. SKB resize was skipped because all the keys were hw planted but
69 * just before xmit one of the key is deleted and SW encryption kicks
72 * In both the above case SW encryption will find not enough space for
73 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
75 * Solution has been explained at
76 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
79 if (!sdata
->crypto_tx_tailroom_needed_cnt
++) {
81 * Flush all XMIT packets currently using HW encryption or no
82 * encryption at all if the count transition is from 0 -> 1.
88 static int ieee80211_key_enable_hw_accel(struct ieee80211_key
*key
)
90 struct ieee80211_sub_if_data
*sdata
;
96 if (key
->flags
& KEY_FLAG_TAINTED
)
99 if (!key
->local
->ops
->set_key
)
100 goto out_unsupported
;
102 assert_key_lock(key
->local
);
107 * If this is a per-STA GTK, check if it
108 * is supported; if not, return.
110 if (sta
&& !(key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
) &&
111 !(key
->local
->hw
.flags
& IEEE80211_HW_SUPPORTS_PER_STA_GTK
))
112 goto out_unsupported
;
114 if (sta
&& !sta
->uploaded
)
115 goto out_unsupported
;
118 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) {
120 * The driver doesn't know anything about VLAN interfaces.
121 * Hence, don't send GTKs for VLAN interfaces to the driver.
123 if (!(key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
))
124 goto out_unsupported
;
127 ret
= drv_set_key(key
->local
, SET_KEY
, sdata
,
128 sta
? &sta
->sta
: NULL
, &key
->conf
);
131 key
->flags
|= KEY_FLAG_UPLOADED_TO_HARDWARE
;
133 if (!((key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
) ||
134 (key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_IV
) ||
135 (key
->conf
.flags
& IEEE80211_KEY_FLAG_PUT_IV_SPACE
)))
136 sdata
->crypto_tx_tailroom_needed_cnt
--;
138 WARN_ON((key
->conf
.flags
& IEEE80211_KEY_FLAG_PUT_IV_SPACE
) &&
139 (key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_IV
));
144 if (ret
!= -ENOSPC
&& ret
!= -EOPNOTSUPP
)
146 "failed to set key (%d, %pM) to hardware (%d)\n",
148 sta
? sta
->sta
.addr
: bcast_addr
, ret
);
151 switch (key
->conf
.cipher
) {
152 case WLAN_CIPHER_SUITE_WEP40
:
153 case WLAN_CIPHER_SUITE_WEP104
:
154 case WLAN_CIPHER_SUITE_TKIP
:
155 case WLAN_CIPHER_SUITE_CCMP
:
156 case WLAN_CIPHER_SUITE_AES_CMAC
:
157 /* all of these we can do in software */
164 static void ieee80211_key_disable_hw_accel(struct ieee80211_key
*key
)
166 struct ieee80211_sub_if_data
*sdata
;
167 struct sta_info
*sta
;
172 if (!key
|| !key
->local
->ops
->set_key
)
175 assert_key_lock(key
->local
);
177 if (!(key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
))
183 if (!((key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
) ||
184 (key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_IV
) ||
185 (key
->conf
.flags
& IEEE80211_KEY_FLAG_PUT_IV_SPACE
)))
186 increment_tailroom_need_count(sdata
);
188 ret
= drv_set_key(key
->local
, DISABLE_KEY
, sdata
,
189 sta
? &sta
->sta
: NULL
, &key
->conf
);
193 "failed to remove key (%d, %pM) from hardware (%d)\n",
195 sta
? sta
->sta
.addr
: bcast_addr
, ret
);
197 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
200 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data
*sdata
,
201 int idx
, bool uni
, bool multi
)
203 struct ieee80211_key
*key
= NULL
;
205 assert_key_lock(sdata
->local
);
207 if (idx
>= 0 && idx
< NUM_DEFAULT_KEYS
)
208 key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
211 rcu_assign_pointer(sdata
->default_unicast_key
, key
);
212 drv_set_default_unicast_key(sdata
->local
, sdata
, idx
);
216 rcu_assign_pointer(sdata
->default_multicast_key
, key
);
218 ieee80211_debugfs_key_update_default(sdata
);
221 void ieee80211_set_default_key(struct ieee80211_sub_if_data
*sdata
, int idx
,
222 bool uni
, bool multi
)
224 mutex_lock(&sdata
->local
->key_mtx
);
225 __ieee80211_set_default_key(sdata
, idx
, uni
, multi
);
226 mutex_unlock(&sdata
->local
->key_mtx
);
230 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data
*sdata
, int idx
)
232 struct ieee80211_key
*key
= NULL
;
234 assert_key_lock(sdata
->local
);
236 if (idx
>= NUM_DEFAULT_KEYS
&&
237 idx
< NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
238 key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
240 rcu_assign_pointer(sdata
->default_mgmt_key
, key
);
242 ieee80211_debugfs_key_update_default(sdata
);
245 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data
*sdata
,
248 mutex_lock(&sdata
->local
->key_mtx
);
249 __ieee80211_set_default_mgmt_key(sdata
, idx
);
250 mutex_unlock(&sdata
->local
->key_mtx
);
254 static void ieee80211_key_replace(struct ieee80211_sub_if_data
*sdata
,
255 struct sta_info
*sta
,
257 struct ieee80211_key
*old
,
258 struct ieee80211_key
*new)
261 bool defunikey
, defmultikey
, defmgmtkey
;
263 /* caller must provide at least one old/new */
264 if (WARN_ON(!new && !old
))
268 list_add_tail(&new->list
, &sdata
->key_list
);
270 WARN_ON(new && old
&& new->conf
.keyidx
!= old
->conf
.keyidx
);
273 idx
= old
->conf
.keyidx
;
275 idx
= new->conf
.keyidx
;
279 rcu_assign_pointer(sta
->ptk
[idx
], new);
282 rcu_assign_pointer(sta
->gtk
[idx
], new);
287 old
== key_mtx_dereference(sdata
->local
,
288 sdata
->default_unicast_key
);
290 old
== key_mtx_dereference(sdata
->local
,
291 sdata
->default_multicast_key
);
293 old
== key_mtx_dereference(sdata
->local
,
294 sdata
->default_mgmt_key
);
296 if (defunikey
&& !new)
297 __ieee80211_set_default_key(sdata
, -1, true, false);
298 if (defmultikey
&& !new)
299 __ieee80211_set_default_key(sdata
, -1, false, true);
300 if (defmgmtkey
&& !new)
301 __ieee80211_set_default_mgmt_key(sdata
, -1);
303 rcu_assign_pointer(sdata
->keys
[idx
], new);
304 if (defunikey
&& new)
305 __ieee80211_set_default_key(sdata
, new->conf
.keyidx
,
307 if (defmultikey
&& new)
308 __ieee80211_set_default_key(sdata
, new->conf
.keyidx
,
310 if (defmgmtkey
&& new)
311 __ieee80211_set_default_mgmt_key(sdata
,
316 list_del(&old
->list
);
319 struct ieee80211_key
*
320 ieee80211_key_alloc(u32 cipher
, int idx
, size_t key_len
,
322 size_t seq_len
, const u8
*seq
,
323 const struct ieee80211_cipher_scheme
*cs
)
325 struct ieee80211_key
*key
;
328 if (WARN_ON(idx
< 0 || idx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
))
329 return ERR_PTR(-EINVAL
);
331 key
= kzalloc(sizeof(struct ieee80211_key
) + key_len
, GFP_KERNEL
);
333 return ERR_PTR(-ENOMEM
);
336 * Default to software encryption; we'll later upload the
337 * key to the hardware if possible.
342 key
->conf
.cipher
= cipher
;
343 key
->conf
.keyidx
= idx
;
344 key
->conf
.keylen
= key_len
;
346 case WLAN_CIPHER_SUITE_WEP40
:
347 case WLAN_CIPHER_SUITE_WEP104
:
348 key
->conf
.iv_len
= IEEE80211_WEP_IV_LEN
;
349 key
->conf
.icv_len
= IEEE80211_WEP_ICV_LEN
;
351 case WLAN_CIPHER_SUITE_TKIP
:
352 key
->conf
.iv_len
= IEEE80211_TKIP_IV_LEN
;
353 key
->conf
.icv_len
= IEEE80211_TKIP_ICV_LEN
;
355 for (i
= 0; i
< IEEE80211_NUM_TIDS
; i
++) {
356 key
->u
.tkip
.rx
[i
].iv32
=
357 get_unaligned_le32(&seq
[2]);
358 key
->u
.tkip
.rx
[i
].iv16
=
359 get_unaligned_le16(seq
);
362 spin_lock_init(&key
->u
.tkip
.txlock
);
364 case WLAN_CIPHER_SUITE_CCMP
:
365 key
->conf
.iv_len
= IEEE80211_CCMP_HDR_LEN
;
366 key
->conf
.icv_len
= IEEE80211_CCMP_MIC_LEN
;
368 for (i
= 0; i
< IEEE80211_NUM_TIDS
+ 1; i
++)
369 for (j
= 0; j
< IEEE80211_CCMP_PN_LEN
; j
++)
370 key
->u
.ccmp
.rx_pn
[i
][j
] =
371 seq
[IEEE80211_CCMP_PN_LEN
- j
- 1];
374 * Initialize AES key state here as an optimization so that
375 * it does not need to be initialized for every packet.
377 key
->u
.ccmp
.tfm
= ieee80211_aes_key_setup_encrypt(key_data
);
378 if (IS_ERR(key
->u
.ccmp
.tfm
)) {
379 err
= PTR_ERR(key
->u
.ccmp
.tfm
);
384 case WLAN_CIPHER_SUITE_AES_CMAC
:
385 key
->conf
.iv_len
= 0;
386 key
->conf
.icv_len
= sizeof(struct ieee80211_mmie
);
388 for (j
= 0; j
< IEEE80211_CMAC_PN_LEN
; j
++)
389 key
->u
.aes_cmac
.rx_pn
[j
] =
390 seq
[IEEE80211_CMAC_PN_LEN
- j
- 1];
392 * Initialize AES key state here as an optimization so that
393 * it does not need to be initialized for every packet.
395 key
->u
.aes_cmac
.tfm
=
396 ieee80211_aes_cmac_key_setup(key_data
);
397 if (IS_ERR(key
->u
.aes_cmac
.tfm
)) {
398 err
= PTR_ERR(key
->u
.aes_cmac
.tfm
);
405 size_t len
= (seq_len
> MAX_PN_LEN
) ?
406 MAX_PN_LEN
: seq_len
;
408 key
->conf
.iv_len
= cs
->hdr_len
;
409 key
->conf
.icv_len
= cs
->mic_len
;
410 for (i
= 0; i
< IEEE80211_NUM_TIDS
+ 1; i
++)
411 for (j
= 0; j
< len
; j
++)
412 key
->u
.gen
.rx_pn
[i
][j
] =
416 memcpy(key
->conf
.key
, key_data
, key_len
);
417 INIT_LIST_HEAD(&key
->list
);
422 static void ieee80211_key_free_common(struct ieee80211_key
*key
)
424 if (key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
)
425 ieee80211_aes_key_free(key
->u
.ccmp
.tfm
);
426 if (key
->conf
.cipher
== WLAN_CIPHER_SUITE_AES_CMAC
)
427 ieee80211_aes_cmac_key_free(key
->u
.aes_cmac
.tfm
);
431 static void __ieee80211_key_destroy(struct ieee80211_key
*key
,
435 ieee80211_key_disable_hw_accel(key
);
438 struct ieee80211_sub_if_data
*sdata
= key
->sdata
;
440 ieee80211_debugfs_key_remove(key
);
442 if (delay_tailroom
) {
443 /* see ieee80211_delayed_tailroom_dec */
444 sdata
->crypto_tx_tailroom_pending_dec
++;
445 schedule_delayed_work(&sdata
->dec_tailroom_needed_wk
,
448 sdata
->crypto_tx_tailroom_needed_cnt
--;
452 ieee80211_key_free_common(key
);
455 static void ieee80211_key_destroy(struct ieee80211_key
*key
,
462 * Synchronize so the TX path can no longer be using
463 * this key before we free/remove it.
467 __ieee80211_key_destroy(key
, delay_tailroom
);
470 void ieee80211_key_free_unused(struct ieee80211_key
*key
)
472 WARN_ON(key
->sdata
|| key
->local
);
473 ieee80211_key_free_common(key
);
476 int ieee80211_key_link(struct ieee80211_key
*key
,
477 struct ieee80211_sub_if_data
*sdata
,
478 struct sta_info
*sta
)
480 struct ieee80211_local
*local
= sdata
->local
;
481 struct ieee80211_key
*old_key
;
485 if (WARN_ON(!sdata
|| !key
))
488 pairwise
= key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
;
489 idx
= key
->conf
.keyidx
;
490 key
->local
= sdata
->local
;
494 mutex_lock(&sdata
->local
->key_mtx
);
497 old_key
= key_mtx_dereference(sdata
->local
, sta
->ptk
[idx
]);
499 old_key
= key_mtx_dereference(sdata
->local
, sta
->gtk
[idx
]);
501 old_key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
503 increment_tailroom_need_count(sdata
);
505 ieee80211_key_replace(sdata
, sta
, pairwise
, old_key
, key
);
506 ieee80211_key_destroy(old_key
, true);
508 ieee80211_debugfs_key_add(key
);
510 if (!local
->wowlan
) {
511 ret
= ieee80211_key_enable_hw_accel(key
);
513 ieee80211_key_free(key
, true);
518 mutex_unlock(&sdata
->local
->key_mtx
);
523 void ieee80211_key_free(struct ieee80211_key
*key
, bool delay_tailroom
)
529 * Replace key with nothingness if it was ever used.
532 ieee80211_key_replace(key
->sdata
, key
->sta
,
533 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
535 ieee80211_key_destroy(key
, delay_tailroom
);
538 void ieee80211_enable_keys(struct ieee80211_sub_if_data
*sdata
)
540 struct ieee80211_key
*key
;
544 if (WARN_ON(!ieee80211_sdata_running(sdata
)))
547 mutex_lock(&sdata
->local
->key_mtx
);
549 sdata
->crypto_tx_tailroom_needed_cnt
= 0;
551 list_for_each_entry(key
, &sdata
->key_list
, list
) {
552 increment_tailroom_need_count(sdata
);
553 ieee80211_key_enable_hw_accel(key
);
556 mutex_unlock(&sdata
->local
->key_mtx
);
559 void ieee80211_iter_keys(struct ieee80211_hw
*hw
,
560 struct ieee80211_vif
*vif
,
561 void (*iter
)(struct ieee80211_hw
*hw
,
562 struct ieee80211_vif
*vif
,
563 struct ieee80211_sta
*sta
,
564 struct ieee80211_key_conf
*key
,
568 struct ieee80211_local
*local
= hw_to_local(hw
);
569 struct ieee80211_key
*key
, *tmp
;
570 struct ieee80211_sub_if_data
*sdata
;
574 mutex_lock(&local
->key_mtx
);
576 sdata
= vif_to_sdata(vif
);
577 list_for_each_entry_safe(key
, tmp
, &sdata
->key_list
, list
)
578 iter(hw
, &sdata
->vif
,
579 key
->sta
? &key
->sta
->sta
: NULL
,
580 &key
->conf
, iter_data
);
582 list_for_each_entry(sdata
, &local
->interfaces
, list
)
583 list_for_each_entry_safe(key
, tmp
,
584 &sdata
->key_list
, list
)
585 iter(hw
, &sdata
->vif
,
586 key
->sta
? &key
->sta
->sta
: NULL
,
587 &key
->conf
, iter_data
);
589 mutex_unlock(&local
->key_mtx
);
591 EXPORT_SYMBOL(ieee80211_iter_keys
);
593 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data
*sdata
,
594 struct list_head
*keys
)
596 struct ieee80211_key
*key
, *tmp
;
598 sdata
->crypto_tx_tailroom_needed_cnt
-=
599 sdata
->crypto_tx_tailroom_pending_dec
;
600 sdata
->crypto_tx_tailroom_pending_dec
= 0;
602 ieee80211_debugfs_key_remove_mgmt_default(sdata
);
604 list_for_each_entry_safe(key
, tmp
, &sdata
->key_list
, list
) {
605 ieee80211_key_replace(key
->sdata
, key
->sta
,
606 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
608 list_add_tail(&key
->list
, keys
);
611 ieee80211_debugfs_key_update_default(sdata
);
614 void ieee80211_free_keys(struct ieee80211_sub_if_data
*sdata
,
615 bool force_synchronize
)
617 struct ieee80211_local
*local
= sdata
->local
;
618 struct ieee80211_sub_if_data
*vlan
;
619 struct ieee80211_key
*key
, *tmp
;
622 cancel_delayed_work_sync(&sdata
->dec_tailroom_needed_wk
);
624 mutex_lock(&local
->key_mtx
);
626 ieee80211_free_keys_iface(sdata
, &keys
);
628 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
629 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
630 ieee80211_free_keys_iface(vlan
, &keys
);
633 if (!list_empty(&keys
) || force_synchronize
)
635 list_for_each_entry_safe(key
, tmp
, &keys
, list
)
636 __ieee80211_key_destroy(key
, false);
638 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
||
639 sdata
->crypto_tx_tailroom_pending_dec
);
640 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
641 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
642 WARN_ON_ONCE(vlan
->crypto_tx_tailroom_needed_cnt
||
643 vlan
->crypto_tx_tailroom_pending_dec
);
646 mutex_unlock(&local
->key_mtx
);
649 void ieee80211_free_sta_keys(struct ieee80211_local
*local
,
650 struct sta_info
*sta
)
652 struct ieee80211_key
*key
;
655 mutex_lock(&local
->key_mtx
);
656 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
657 key
= key_mtx_dereference(local
, sta
->gtk
[i
]);
660 ieee80211_key_replace(key
->sdata
, key
->sta
,
661 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
663 __ieee80211_key_destroy(key
, true);
666 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
667 key
= key_mtx_dereference(local
, sta
->ptk
[i
]);
670 ieee80211_key_replace(key
->sdata
, key
->sta
,
671 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
673 __ieee80211_key_destroy(key
, true);
676 mutex_unlock(&local
->key_mtx
);
679 void ieee80211_delayed_tailroom_dec(struct work_struct
*wk
)
681 struct ieee80211_sub_if_data
*sdata
;
683 sdata
= container_of(wk
, struct ieee80211_sub_if_data
,
684 dec_tailroom_needed_wk
.work
);
687 * The reason for the delayed tailroom needed decrementing is to
688 * make roaming faster: during roaming, all keys are first deleted
689 * and then new keys are installed. The first new key causes the
690 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
691 * the cost of synchronize_net() (which can be slow). Avoid this
692 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
693 * key removal for a while, so if we roam the value is larger than
694 * zero and no 0->1 transition happens.
696 * The cost is that if the AP switching was from an AP with keys
697 * to one without, we still allocate tailroom while it would no
698 * longer be needed. However, in the typical (fast) roaming case
699 * within an ESS this usually won't happen.
702 mutex_lock(&sdata
->local
->key_mtx
);
703 sdata
->crypto_tx_tailroom_needed_cnt
-=
704 sdata
->crypto_tx_tailroom_pending_dec
;
705 sdata
->crypto_tx_tailroom_pending_dec
= 0;
706 mutex_unlock(&sdata
->local
->key_mtx
);
709 void ieee80211_gtk_rekey_notify(struct ieee80211_vif
*vif
, const u8
*bssid
,
710 const u8
*replay_ctr
, gfp_t gfp
)
712 struct ieee80211_sub_if_data
*sdata
= vif_to_sdata(vif
);
714 trace_api_gtk_rekey_notify(sdata
, bssid
, replay_ctr
);
716 cfg80211_gtk_rekey_notify(sdata
->dev
, bssid
, replay_ctr
, gfp
);
718 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify
);
720 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf
*keyconf
,
721 struct ieee80211_key_seq
*seq
)
723 struct ieee80211_key
*key
;
726 if (WARN_ON(!(keyconf
->flags
& IEEE80211_KEY_FLAG_GENERATE_IV
)))
729 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
731 switch (key
->conf
.cipher
) {
732 case WLAN_CIPHER_SUITE_TKIP
:
733 seq
->tkip
.iv32
= key
->u
.tkip
.tx
.iv32
;
734 seq
->tkip
.iv16
= key
->u
.tkip
.tx
.iv16
;
736 case WLAN_CIPHER_SUITE_CCMP
:
737 pn64
= atomic64_read(&key
->u
.ccmp
.tx_pn
);
738 seq
->ccmp
.pn
[5] = pn64
;
739 seq
->ccmp
.pn
[4] = pn64
>> 8;
740 seq
->ccmp
.pn
[3] = pn64
>> 16;
741 seq
->ccmp
.pn
[2] = pn64
>> 24;
742 seq
->ccmp
.pn
[1] = pn64
>> 32;
743 seq
->ccmp
.pn
[0] = pn64
>> 40;
745 case WLAN_CIPHER_SUITE_AES_CMAC
:
746 pn64
= atomic64_read(&key
->u
.aes_cmac
.tx_pn
);
747 seq
->ccmp
.pn
[5] = pn64
;
748 seq
->ccmp
.pn
[4] = pn64
>> 8;
749 seq
->ccmp
.pn
[3] = pn64
>> 16;
750 seq
->ccmp
.pn
[2] = pn64
>> 24;
751 seq
->ccmp
.pn
[1] = pn64
>> 32;
752 seq
->ccmp
.pn
[0] = pn64
>> 40;
758 EXPORT_SYMBOL(ieee80211_get_key_tx_seq
);
760 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf
*keyconf
,
761 int tid
, struct ieee80211_key_seq
*seq
)
763 struct ieee80211_key
*key
;
766 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
768 switch (key
->conf
.cipher
) {
769 case WLAN_CIPHER_SUITE_TKIP
:
770 if (WARN_ON(tid
< 0 || tid
>= IEEE80211_NUM_TIDS
))
772 seq
->tkip
.iv32
= key
->u
.tkip
.rx
[tid
].iv32
;
773 seq
->tkip
.iv16
= key
->u
.tkip
.rx
[tid
].iv16
;
775 case WLAN_CIPHER_SUITE_CCMP
:
776 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
779 pn
= key
->u
.ccmp
.rx_pn
[IEEE80211_NUM_TIDS
];
781 pn
= key
->u
.ccmp
.rx_pn
[tid
];
782 memcpy(seq
->ccmp
.pn
, pn
, IEEE80211_CCMP_PN_LEN
);
784 case WLAN_CIPHER_SUITE_AES_CMAC
:
785 if (WARN_ON(tid
!= 0))
787 pn
= key
->u
.aes_cmac
.rx_pn
;
788 memcpy(seq
->aes_cmac
.pn
, pn
, IEEE80211_CMAC_PN_LEN
);
792 EXPORT_SYMBOL(ieee80211_get_key_rx_seq
);
794 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf
*keyconf
,
795 struct ieee80211_key_seq
*seq
)
797 struct ieee80211_key
*key
;
800 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
802 switch (key
->conf
.cipher
) {
803 case WLAN_CIPHER_SUITE_TKIP
:
804 key
->u
.tkip
.tx
.iv32
= seq
->tkip
.iv32
;
805 key
->u
.tkip
.tx
.iv16
= seq
->tkip
.iv16
;
807 case WLAN_CIPHER_SUITE_CCMP
:
808 pn64
= (u64
)seq
->ccmp
.pn
[5] |
809 ((u64
)seq
->ccmp
.pn
[4] << 8) |
810 ((u64
)seq
->ccmp
.pn
[3] << 16) |
811 ((u64
)seq
->ccmp
.pn
[2] << 24) |
812 ((u64
)seq
->ccmp
.pn
[1] << 32) |
813 ((u64
)seq
->ccmp
.pn
[0] << 40);
814 atomic64_set(&key
->u
.ccmp
.tx_pn
, pn64
);
816 case WLAN_CIPHER_SUITE_AES_CMAC
:
817 pn64
= (u64
)seq
->aes_cmac
.pn
[5] |
818 ((u64
)seq
->aes_cmac
.pn
[4] << 8) |
819 ((u64
)seq
->aes_cmac
.pn
[3] << 16) |
820 ((u64
)seq
->aes_cmac
.pn
[2] << 24) |
821 ((u64
)seq
->aes_cmac
.pn
[1] << 32) |
822 ((u64
)seq
->aes_cmac
.pn
[0] << 40);
823 atomic64_set(&key
->u
.aes_cmac
.tx_pn
, pn64
);
830 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq
);
832 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf
*keyconf
,
833 int tid
, struct ieee80211_key_seq
*seq
)
835 struct ieee80211_key
*key
;
838 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
840 switch (key
->conf
.cipher
) {
841 case WLAN_CIPHER_SUITE_TKIP
:
842 if (WARN_ON(tid
< 0 || tid
>= IEEE80211_NUM_TIDS
))
844 key
->u
.tkip
.rx
[tid
].iv32
= seq
->tkip
.iv32
;
845 key
->u
.tkip
.rx
[tid
].iv16
= seq
->tkip
.iv16
;
847 case WLAN_CIPHER_SUITE_CCMP
:
848 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
851 pn
= key
->u
.ccmp
.rx_pn
[IEEE80211_NUM_TIDS
];
853 pn
= key
->u
.ccmp
.rx_pn
[tid
];
854 memcpy(pn
, seq
->ccmp
.pn
, IEEE80211_CCMP_PN_LEN
);
856 case WLAN_CIPHER_SUITE_AES_CMAC
:
857 if (WARN_ON(tid
!= 0))
859 pn
= key
->u
.aes_cmac
.rx_pn
;
860 memcpy(pn
, seq
->aes_cmac
.pn
, IEEE80211_CMAC_PN_LEN
);
867 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq
);
869 void ieee80211_remove_key(struct ieee80211_key_conf
*keyconf
)
871 struct ieee80211_key
*key
;
873 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
875 assert_key_lock(key
->local
);
878 * if key was uploaded, we assume the driver will/has remove(d)
879 * it, so adjust bookkeeping accordingly
881 if (key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
) {
882 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
884 if (!((key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
) ||
885 (key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_IV
) ||
886 (key
->conf
.flags
& IEEE80211_KEY_FLAG_PUT_IV_SPACE
)))
887 increment_tailroom_need_count(key
->sdata
);
890 ieee80211_key_free(key
, false);
892 EXPORT_SYMBOL_GPL(ieee80211_remove_key
);
894 struct ieee80211_key_conf
*
895 ieee80211_gtk_rekey_add(struct ieee80211_vif
*vif
,
896 struct ieee80211_key_conf
*keyconf
)
898 struct ieee80211_sub_if_data
*sdata
= vif_to_sdata(vif
);
899 struct ieee80211_local
*local
= sdata
->local
;
900 struct ieee80211_key
*key
;
903 if (WARN_ON(!local
->wowlan
))
904 return ERR_PTR(-EINVAL
);
906 if (WARN_ON(vif
->type
!= NL80211_IFTYPE_STATION
))
907 return ERR_PTR(-EINVAL
);
909 key
= ieee80211_key_alloc(keyconf
->cipher
, keyconf
->keyidx
,
910 keyconf
->keylen
, keyconf
->key
,
913 return ERR_CAST(key
);
915 if (sdata
->u
.mgd
.mfp
!= IEEE80211_MFP_DISABLED
)
916 key
->conf
.flags
|= IEEE80211_KEY_FLAG_RX_MGMT
;
918 err
= ieee80211_key_link(key
, sdata
, NULL
);
924 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add
);