Merge tag 'locks-v3.16-2' of git://git.samba.org/jlayton/linux
[linux/fpc-iii.git] / net / mac80211 / key.c
blob16d97f044a202e61020f3ef563941e4c9adace0a
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <asm/unaligned.h>
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "debugfs_key.h"
24 #include "aes_ccm.h"
25 #include "aes_cmac.h"
28 /**
29 * DOC: Key handling basics
31 * Key handling in mac80211 is done based on per-interface (sub_if_data)
32 * keys and per-station keys. Since each station belongs to an interface,
33 * each station key also belongs to that interface.
35 * Hardware acceleration is done on a best-effort basis for algorithms
36 * that are implemented in software, for each key the hardware is asked
37 * to enable that key for offloading but if it cannot do that the key is
38 * simply kept for software encryption (unless it is for an algorithm
39 * that isn't implemented in software).
40 * There is currently no way of knowing whether a key is handled in SW
41 * or HW except by looking into debugfs.
43 * All key management is internally protected by a mutex. Within all
44 * other parts of mac80211, key references are, just as STA structure
45 * references, protected by RCU. Note, however, that some things are
46 * unprotected, namely the key->sta dereferences within the hardware
47 * acceleration functions. This means that sta_info_destroy() must
48 * remove the key which waits for an RCU grace period.
51 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
53 static void assert_key_lock(struct ieee80211_local *local)
55 lockdep_assert_held(&local->key_mtx);
58 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
61 * When this count is zero, SKB resizing for allocating tailroom
62 * for IV or MMIC is skipped. But, this check has created two race
63 * cases in xmit path while transiting from zero count to one:
65 * 1. SKB resize was skipped because no key was added but just before
66 * the xmit key is added and SW encryption kicks off.
68 * 2. SKB resize was skipped because all the keys were hw planted but
69 * just before xmit one of the key is deleted and SW encryption kicks
70 * off.
72 * In both the above case SW encryption will find not enough space for
73 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
75 * Solution has been explained at
76 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
79 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
81 * Flush all XMIT packets currently using HW encryption or no
82 * encryption at all if the count transition is from 0 -> 1.
84 synchronize_net();
88 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
90 struct ieee80211_sub_if_data *sdata;
91 struct sta_info *sta;
92 int ret;
94 might_sleep();
96 if (key->flags & KEY_FLAG_TAINTED)
97 return -EINVAL;
99 if (!key->local->ops->set_key)
100 goto out_unsupported;
102 assert_key_lock(key->local);
104 sta = key->sta;
107 * If this is a per-STA GTK, check if it
108 * is supported; if not, return.
110 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
111 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
112 goto out_unsupported;
114 if (sta && !sta->uploaded)
115 goto out_unsupported;
117 sdata = key->sdata;
118 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
120 * The driver doesn't know anything about VLAN interfaces.
121 * Hence, don't send GTKs for VLAN interfaces to the driver.
123 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
124 goto out_unsupported;
127 ret = drv_set_key(key->local, SET_KEY, sdata,
128 sta ? &sta->sta : NULL, &key->conf);
130 if (!ret) {
131 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
133 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
134 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
135 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
136 sdata->crypto_tx_tailroom_needed_cnt--;
138 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
139 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
141 return 0;
144 if (ret != -ENOSPC && ret != -EOPNOTSUPP)
145 sdata_err(sdata,
146 "failed to set key (%d, %pM) to hardware (%d)\n",
147 key->conf.keyidx,
148 sta ? sta->sta.addr : bcast_addr, ret);
150 out_unsupported:
151 switch (key->conf.cipher) {
152 case WLAN_CIPHER_SUITE_WEP40:
153 case WLAN_CIPHER_SUITE_WEP104:
154 case WLAN_CIPHER_SUITE_TKIP:
155 case WLAN_CIPHER_SUITE_CCMP:
156 case WLAN_CIPHER_SUITE_AES_CMAC:
157 /* all of these we can do in software */
158 return 0;
159 default:
160 return -EINVAL;
164 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
166 struct ieee80211_sub_if_data *sdata;
167 struct sta_info *sta;
168 int ret;
170 might_sleep();
172 if (!key || !key->local->ops->set_key)
173 return;
175 assert_key_lock(key->local);
177 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
178 return;
180 sta = key->sta;
181 sdata = key->sdata;
183 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
184 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
185 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
186 increment_tailroom_need_count(sdata);
188 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
189 sta ? &sta->sta : NULL, &key->conf);
191 if (ret)
192 sdata_err(sdata,
193 "failed to remove key (%d, %pM) from hardware (%d)\n",
194 key->conf.keyidx,
195 sta ? sta->sta.addr : bcast_addr, ret);
197 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
200 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
201 int idx, bool uni, bool multi)
203 struct ieee80211_key *key = NULL;
205 assert_key_lock(sdata->local);
207 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
208 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
210 if (uni) {
211 rcu_assign_pointer(sdata->default_unicast_key, key);
212 drv_set_default_unicast_key(sdata->local, sdata, idx);
215 if (multi)
216 rcu_assign_pointer(sdata->default_multicast_key, key);
218 ieee80211_debugfs_key_update_default(sdata);
221 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
222 bool uni, bool multi)
224 mutex_lock(&sdata->local->key_mtx);
225 __ieee80211_set_default_key(sdata, idx, uni, multi);
226 mutex_unlock(&sdata->local->key_mtx);
229 static void
230 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
232 struct ieee80211_key *key = NULL;
234 assert_key_lock(sdata->local);
236 if (idx >= NUM_DEFAULT_KEYS &&
237 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
238 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
240 rcu_assign_pointer(sdata->default_mgmt_key, key);
242 ieee80211_debugfs_key_update_default(sdata);
245 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
246 int idx)
248 mutex_lock(&sdata->local->key_mtx);
249 __ieee80211_set_default_mgmt_key(sdata, idx);
250 mutex_unlock(&sdata->local->key_mtx);
254 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
255 struct sta_info *sta,
256 bool pairwise,
257 struct ieee80211_key *old,
258 struct ieee80211_key *new)
260 int idx;
261 bool defunikey, defmultikey, defmgmtkey;
263 /* caller must provide at least one old/new */
264 if (WARN_ON(!new && !old))
265 return;
267 if (new)
268 list_add_tail(&new->list, &sdata->key_list);
270 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
272 if (old)
273 idx = old->conf.keyidx;
274 else
275 idx = new->conf.keyidx;
277 if (sta) {
278 if (pairwise) {
279 rcu_assign_pointer(sta->ptk[idx], new);
280 sta->ptk_idx = idx;
281 } else {
282 rcu_assign_pointer(sta->gtk[idx], new);
283 sta->gtk_idx = idx;
285 } else {
286 defunikey = old &&
287 old == key_mtx_dereference(sdata->local,
288 sdata->default_unicast_key);
289 defmultikey = old &&
290 old == key_mtx_dereference(sdata->local,
291 sdata->default_multicast_key);
292 defmgmtkey = old &&
293 old == key_mtx_dereference(sdata->local,
294 sdata->default_mgmt_key);
296 if (defunikey && !new)
297 __ieee80211_set_default_key(sdata, -1, true, false);
298 if (defmultikey && !new)
299 __ieee80211_set_default_key(sdata, -1, false, true);
300 if (defmgmtkey && !new)
301 __ieee80211_set_default_mgmt_key(sdata, -1);
303 rcu_assign_pointer(sdata->keys[idx], new);
304 if (defunikey && new)
305 __ieee80211_set_default_key(sdata, new->conf.keyidx,
306 true, false);
307 if (defmultikey && new)
308 __ieee80211_set_default_key(sdata, new->conf.keyidx,
309 false, true);
310 if (defmgmtkey && new)
311 __ieee80211_set_default_mgmt_key(sdata,
312 new->conf.keyidx);
315 if (old)
316 list_del(&old->list);
319 struct ieee80211_key *
320 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
321 const u8 *key_data,
322 size_t seq_len, const u8 *seq,
323 const struct ieee80211_cipher_scheme *cs)
325 struct ieee80211_key *key;
326 int i, j, err;
328 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
329 return ERR_PTR(-EINVAL);
331 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
332 if (!key)
333 return ERR_PTR(-ENOMEM);
336 * Default to software encryption; we'll later upload the
337 * key to the hardware if possible.
339 key->conf.flags = 0;
340 key->flags = 0;
342 key->conf.cipher = cipher;
343 key->conf.keyidx = idx;
344 key->conf.keylen = key_len;
345 switch (cipher) {
346 case WLAN_CIPHER_SUITE_WEP40:
347 case WLAN_CIPHER_SUITE_WEP104:
348 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
349 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
350 break;
351 case WLAN_CIPHER_SUITE_TKIP:
352 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
353 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
354 if (seq) {
355 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
356 key->u.tkip.rx[i].iv32 =
357 get_unaligned_le32(&seq[2]);
358 key->u.tkip.rx[i].iv16 =
359 get_unaligned_le16(seq);
362 spin_lock_init(&key->u.tkip.txlock);
363 break;
364 case WLAN_CIPHER_SUITE_CCMP:
365 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
366 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
367 if (seq) {
368 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
369 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
370 key->u.ccmp.rx_pn[i][j] =
371 seq[IEEE80211_CCMP_PN_LEN - j - 1];
374 * Initialize AES key state here as an optimization so that
375 * it does not need to be initialized for every packet.
377 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
378 if (IS_ERR(key->u.ccmp.tfm)) {
379 err = PTR_ERR(key->u.ccmp.tfm);
380 kfree(key);
381 return ERR_PTR(err);
383 break;
384 case WLAN_CIPHER_SUITE_AES_CMAC:
385 key->conf.iv_len = 0;
386 key->conf.icv_len = sizeof(struct ieee80211_mmie);
387 if (seq)
388 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
389 key->u.aes_cmac.rx_pn[j] =
390 seq[IEEE80211_CMAC_PN_LEN - j - 1];
392 * Initialize AES key state here as an optimization so that
393 * it does not need to be initialized for every packet.
395 key->u.aes_cmac.tfm =
396 ieee80211_aes_cmac_key_setup(key_data);
397 if (IS_ERR(key->u.aes_cmac.tfm)) {
398 err = PTR_ERR(key->u.aes_cmac.tfm);
399 kfree(key);
400 return ERR_PTR(err);
402 break;
403 default:
404 if (cs) {
405 size_t len = (seq_len > MAX_PN_LEN) ?
406 MAX_PN_LEN : seq_len;
408 key->conf.iv_len = cs->hdr_len;
409 key->conf.icv_len = cs->mic_len;
410 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
411 for (j = 0; j < len; j++)
412 key->u.gen.rx_pn[i][j] =
413 seq[len - j - 1];
416 memcpy(key->conf.key, key_data, key_len);
417 INIT_LIST_HEAD(&key->list);
419 return key;
422 static void ieee80211_key_free_common(struct ieee80211_key *key)
424 if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
425 ieee80211_aes_key_free(key->u.ccmp.tfm);
426 if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
427 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
428 kfree(key);
431 static void __ieee80211_key_destroy(struct ieee80211_key *key,
432 bool delay_tailroom)
434 if (key->local)
435 ieee80211_key_disable_hw_accel(key);
437 if (key->local) {
438 struct ieee80211_sub_if_data *sdata = key->sdata;
440 ieee80211_debugfs_key_remove(key);
442 if (delay_tailroom) {
443 /* see ieee80211_delayed_tailroom_dec */
444 sdata->crypto_tx_tailroom_pending_dec++;
445 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
446 HZ/2);
447 } else {
448 sdata->crypto_tx_tailroom_needed_cnt--;
452 ieee80211_key_free_common(key);
455 static void ieee80211_key_destroy(struct ieee80211_key *key,
456 bool delay_tailroom)
458 if (!key)
459 return;
462 * Synchronize so the TX path can no longer be using
463 * this key before we free/remove it.
465 synchronize_net();
467 __ieee80211_key_destroy(key, delay_tailroom);
470 void ieee80211_key_free_unused(struct ieee80211_key *key)
472 WARN_ON(key->sdata || key->local);
473 ieee80211_key_free_common(key);
476 int ieee80211_key_link(struct ieee80211_key *key,
477 struct ieee80211_sub_if_data *sdata,
478 struct sta_info *sta)
480 struct ieee80211_local *local = sdata->local;
481 struct ieee80211_key *old_key;
482 int idx, ret;
483 bool pairwise;
485 if (WARN_ON(!sdata || !key))
486 return -EINVAL;
488 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
489 idx = key->conf.keyidx;
490 key->local = sdata->local;
491 key->sdata = sdata;
492 key->sta = sta;
494 mutex_lock(&sdata->local->key_mtx);
496 if (sta && pairwise)
497 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
498 else if (sta)
499 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
500 else
501 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
503 increment_tailroom_need_count(sdata);
505 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
506 ieee80211_key_destroy(old_key, true);
508 ieee80211_debugfs_key_add(key);
510 if (!local->wowlan) {
511 ret = ieee80211_key_enable_hw_accel(key);
512 if (ret)
513 ieee80211_key_free(key, true);
514 } else {
515 ret = 0;
518 mutex_unlock(&sdata->local->key_mtx);
520 return ret;
523 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
525 if (!key)
526 return;
529 * Replace key with nothingness if it was ever used.
531 if (key->sdata)
532 ieee80211_key_replace(key->sdata, key->sta,
533 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
534 key, NULL);
535 ieee80211_key_destroy(key, delay_tailroom);
538 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
540 struct ieee80211_key *key;
542 ASSERT_RTNL();
544 if (WARN_ON(!ieee80211_sdata_running(sdata)))
545 return;
547 mutex_lock(&sdata->local->key_mtx);
549 sdata->crypto_tx_tailroom_needed_cnt = 0;
551 list_for_each_entry(key, &sdata->key_list, list) {
552 increment_tailroom_need_count(sdata);
553 ieee80211_key_enable_hw_accel(key);
556 mutex_unlock(&sdata->local->key_mtx);
559 void ieee80211_iter_keys(struct ieee80211_hw *hw,
560 struct ieee80211_vif *vif,
561 void (*iter)(struct ieee80211_hw *hw,
562 struct ieee80211_vif *vif,
563 struct ieee80211_sta *sta,
564 struct ieee80211_key_conf *key,
565 void *data),
566 void *iter_data)
568 struct ieee80211_local *local = hw_to_local(hw);
569 struct ieee80211_key *key, *tmp;
570 struct ieee80211_sub_if_data *sdata;
572 ASSERT_RTNL();
574 mutex_lock(&local->key_mtx);
575 if (vif) {
576 sdata = vif_to_sdata(vif);
577 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
578 iter(hw, &sdata->vif,
579 key->sta ? &key->sta->sta : NULL,
580 &key->conf, iter_data);
581 } else {
582 list_for_each_entry(sdata, &local->interfaces, list)
583 list_for_each_entry_safe(key, tmp,
584 &sdata->key_list, list)
585 iter(hw, &sdata->vif,
586 key->sta ? &key->sta->sta : NULL,
587 &key->conf, iter_data);
589 mutex_unlock(&local->key_mtx);
591 EXPORT_SYMBOL(ieee80211_iter_keys);
593 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
594 struct list_head *keys)
596 struct ieee80211_key *key, *tmp;
598 sdata->crypto_tx_tailroom_needed_cnt -=
599 sdata->crypto_tx_tailroom_pending_dec;
600 sdata->crypto_tx_tailroom_pending_dec = 0;
602 ieee80211_debugfs_key_remove_mgmt_default(sdata);
604 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
605 ieee80211_key_replace(key->sdata, key->sta,
606 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
607 key, NULL);
608 list_add_tail(&key->list, keys);
611 ieee80211_debugfs_key_update_default(sdata);
614 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
615 bool force_synchronize)
617 struct ieee80211_local *local = sdata->local;
618 struct ieee80211_sub_if_data *vlan;
619 struct ieee80211_key *key, *tmp;
620 LIST_HEAD(keys);
622 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
624 mutex_lock(&local->key_mtx);
626 ieee80211_free_keys_iface(sdata, &keys);
628 if (sdata->vif.type == NL80211_IFTYPE_AP) {
629 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
630 ieee80211_free_keys_iface(vlan, &keys);
633 if (!list_empty(&keys) || force_synchronize)
634 synchronize_net();
635 list_for_each_entry_safe(key, tmp, &keys, list)
636 __ieee80211_key_destroy(key, false);
638 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
639 sdata->crypto_tx_tailroom_pending_dec);
640 if (sdata->vif.type == NL80211_IFTYPE_AP) {
641 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
642 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
643 vlan->crypto_tx_tailroom_pending_dec);
646 mutex_unlock(&local->key_mtx);
649 void ieee80211_free_sta_keys(struct ieee80211_local *local,
650 struct sta_info *sta)
652 struct ieee80211_key *key;
653 int i;
655 mutex_lock(&local->key_mtx);
656 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
657 key = key_mtx_dereference(local, sta->gtk[i]);
658 if (!key)
659 continue;
660 ieee80211_key_replace(key->sdata, key->sta,
661 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
662 key, NULL);
663 __ieee80211_key_destroy(key, true);
666 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
667 key = key_mtx_dereference(local, sta->ptk[i]);
668 if (!key)
669 continue;
670 ieee80211_key_replace(key->sdata, key->sta,
671 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
672 key, NULL);
673 __ieee80211_key_destroy(key, true);
676 mutex_unlock(&local->key_mtx);
679 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
681 struct ieee80211_sub_if_data *sdata;
683 sdata = container_of(wk, struct ieee80211_sub_if_data,
684 dec_tailroom_needed_wk.work);
687 * The reason for the delayed tailroom needed decrementing is to
688 * make roaming faster: during roaming, all keys are first deleted
689 * and then new keys are installed. The first new key causes the
690 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
691 * the cost of synchronize_net() (which can be slow). Avoid this
692 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
693 * key removal for a while, so if we roam the value is larger than
694 * zero and no 0->1 transition happens.
696 * The cost is that if the AP switching was from an AP with keys
697 * to one without, we still allocate tailroom while it would no
698 * longer be needed. However, in the typical (fast) roaming case
699 * within an ESS this usually won't happen.
702 mutex_lock(&sdata->local->key_mtx);
703 sdata->crypto_tx_tailroom_needed_cnt -=
704 sdata->crypto_tx_tailroom_pending_dec;
705 sdata->crypto_tx_tailroom_pending_dec = 0;
706 mutex_unlock(&sdata->local->key_mtx);
709 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
710 const u8 *replay_ctr, gfp_t gfp)
712 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
714 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
716 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
718 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
720 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
721 struct ieee80211_key_seq *seq)
723 struct ieee80211_key *key;
724 u64 pn64;
726 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
727 return;
729 key = container_of(keyconf, struct ieee80211_key, conf);
731 switch (key->conf.cipher) {
732 case WLAN_CIPHER_SUITE_TKIP:
733 seq->tkip.iv32 = key->u.tkip.tx.iv32;
734 seq->tkip.iv16 = key->u.tkip.tx.iv16;
735 break;
736 case WLAN_CIPHER_SUITE_CCMP:
737 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
738 seq->ccmp.pn[5] = pn64;
739 seq->ccmp.pn[4] = pn64 >> 8;
740 seq->ccmp.pn[3] = pn64 >> 16;
741 seq->ccmp.pn[2] = pn64 >> 24;
742 seq->ccmp.pn[1] = pn64 >> 32;
743 seq->ccmp.pn[0] = pn64 >> 40;
744 break;
745 case WLAN_CIPHER_SUITE_AES_CMAC:
746 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
747 seq->ccmp.pn[5] = pn64;
748 seq->ccmp.pn[4] = pn64 >> 8;
749 seq->ccmp.pn[3] = pn64 >> 16;
750 seq->ccmp.pn[2] = pn64 >> 24;
751 seq->ccmp.pn[1] = pn64 >> 32;
752 seq->ccmp.pn[0] = pn64 >> 40;
753 break;
754 default:
755 WARN_ON(1);
758 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
760 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
761 int tid, struct ieee80211_key_seq *seq)
763 struct ieee80211_key *key;
764 const u8 *pn;
766 key = container_of(keyconf, struct ieee80211_key, conf);
768 switch (key->conf.cipher) {
769 case WLAN_CIPHER_SUITE_TKIP:
770 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
771 return;
772 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
773 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
774 break;
775 case WLAN_CIPHER_SUITE_CCMP:
776 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
777 return;
778 if (tid < 0)
779 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
780 else
781 pn = key->u.ccmp.rx_pn[tid];
782 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
783 break;
784 case WLAN_CIPHER_SUITE_AES_CMAC:
785 if (WARN_ON(tid != 0))
786 return;
787 pn = key->u.aes_cmac.rx_pn;
788 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
789 break;
792 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
794 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
795 struct ieee80211_key_seq *seq)
797 struct ieee80211_key *key;
798 u64 pn64;
800 key = container_of(keyconf, struct ieee80211_key, conf);
802 switch (key->conf.cipher) {
803 case WLAN_CIPHER_SUITE_TKIP:
804 key->u.tkip.tx.iv32 = seq->tkip.iv32;
805 key->u.tkip.tx.iv16 = seq->tkip.iv16;
806 break;
807 case WLAN_CIPHER_SUITE_CCMP:
808 pn64 = (u64)seq->ccmp.pn[5] |
809 ((u64)seq->ccmp.pn[4] << 8) |
810 ((u64)seq->ccmp.pn[3] << 16) |
811 ((u64)seq->ccmp.pn[2] << 24) |
812 ((u64)seq->ccmp.pn[1] << 32) |
813 ((u64)seq->ccmp.pn[0] << 40);
814 atomic64_set(&key->u.ccmp.tx_pn, pn64);
815 break;
816 case WLAN_CIPHER_SUITE_AES_CMAC:
817 pn64 = (u64)seq->aes_cmac.pn[5] |
818 ((u64)seq->aes_cmac.pn[4] << 8) |
819 ((u64)seq->aes_cmac.pn[3] << 16) |
820 ((u64)seq->aes_cmac.pn[2] << 24) |
821 ((u64)seq->aes_cmac.pn[1] << 32) |
822 ((u64)seq->aes_cmac.pn[0] << 40);
823 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
824 break;
825 default:
826 WARN_ON(1);
827 break;
830 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
832 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
833 int tid, struct ieee80211_key_seq *seq)
835 struct ieee80211_key *key;
836 u8 *pn;
838 key = container_of(keyconf, struct ieee80211_key, conf);
840 switch (key->conf.cipher) {
841 case WLAN_CIPHER_SUITE_TKIP:
842 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
843 return;
844 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
845 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
846 break;
847 case WLAN_CIPHER_SUITE_CCMP:
848 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
849 return;
850 if (tid < 0)
851 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
852 else
853 pn = key->u.ccmp.rx_pn[tid];
854 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
855 break;
856 case WLAN_CIPHER_SUITE_AES_CMAC:
857 if (WARN_ON(tid != 0))
858 return;
859 pn = key->u.aes_cmac.rx_pn;
860 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
861 break;
862 default:
863 WARN_ON(1);
864 break;
867 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
869 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
871 struct ieee80211_key *key;
873 key = container_of(keyconf, struct ieee80211_key, conf);
875 assert_key_lock(key->local);
878 * if key was uploaded, we assume the driver will/has remove(d)
879 * it, so adjust bookkeeping accordingly
881 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
882 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
884 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
885 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
886 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
887 increment_tailroom_need_count(key->sdata);
890 ieee80211_key_free(key, false);
892 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
894 struct ieee80211_key_conf *
895 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
896 struct ieee80211_key_conf *keyconf)
898 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
899 struct ieee80211_local *local = sdata->local;
900 struct ieee80211_key *key;
901 int err;
903 if (WARN_ON(!local->wowlan))
904 return ERR_PTR(-EINVAL);
906 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
907 return ERR_PTR(-EINVAL);
909 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
910 keyconf->keylen, keyconf->key,
911 0, NULL, NULL);
912 if (IS_ERR(key))
913 return ERR_CAST(key);
915 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
916 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
918 err = ieee80211_key_link(key, sdata, NULL);
919 if (err)
920 return ERR_PTR(err);
922 return &key->conf;
924 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);