Merge tag 'locks-v3.16-2' of git://git.samba.org/jlayton/linux
[linux/fpc-iii.git] / net / sched / cls_rsvp.h
blob1020e233a5d6c74092fb153133b1bfed7f4177a9
1 /*
2 * net/sched/cls_rsvp.h Template file for RSVPv[46] classifiers.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13 Comparing to general packet classification problem,
14 RSVP needs only sevaral relatively simple rules:
16 * (dst, protocol) are always specified,
17 so that we are able to hash them.
18 * src may be exact, or may be wildcard, so that
19 we can keep a hash table plus one wildcard entry.
20 * source port (or flow label) is important only if src is given.
22 IMPLEMENTATION.
24 We use a two level hash table: The top level is keyed by
25 destination address and protocol ID, every bucket contains a list
26 of "rsvp sessions", identified by destination address, protocol and
27 DPI(="Destination Port ID"): triple (key, mask, offset).
29 Every bucket has a smaller hash table keyed by source address
30 (cf. RSVP flowspec) and one wildcard entry for wildcard reservations.
31 Every bucket is again a list of "RSVP flows", selected by
32 source address and SPI(="Source Port ID" here rather than
33 "security parameter index"): triple (key, mask, offset).
36 NOTE 1. All the packets with IPv6 extension headers (but AH and ESP)
37 and all fragmented packets go to the best-effort traffic class.
40 NOTE 2. Two "port id"'s seems to be redundant, rfc2207 requires
41 only one "Generalized Port Identifier". So that for classic
42 ah, esp (and udp,tcp) both *pi should coincide or one of them
43 should be wildcard.
45 At first sight, this redundancy is just a waste of CPU
46 resources. But DPI and SPI add the possibility to assign different
47 priorities to GPIs. Look also at note 4 about tunnels below.
50 NOTE 3. One complication is the case of tunneled packets.
51 We implement it as following: if the first lookup
52 matches a special session with "tunnelhdr" value not zero,
53 flowid doesn't contain the true flow ID, but the tunnel ID (1...255).
54 In this case, we pull tunnelhdr bytes and restart lookup
55 with tunnel ID added to the list of keys. Simple and stupid 8)8)
56 It's enough for PIMREG and IPIP.
59 NOTE 4. Two GPIs make it possible to parse even GRE packets.
60 F.e. DPI can select ETH_P_IP (and necessary flags to make
61 tunnelhdr correct) in GRE protocol field and SPI matches
62 GRE key. Is it not nice? 8)8)
65 Well, as result, despite its simplicity, we get a pretty
66 powerful classification engine. */
69 struct rsvp_head {
70 u32 tmap[256/32];
71 u32 hgenerator;
72 u8 tgenerator;
73 struct rsvp_session *ht[256];
76 struct rsvp_session {
77 struct rsvp_session *next;
78 __be32 dst[RSVP_DST_LEN];
79 struct tc_rsvp_gpi dpi;
80 u8 protocol;
81 u8 tunnelid;
82 /* 16 (src,sport) hash slots, and one wildcard source slot */
83 struct rsvp_filter *ht[16 + 1];
87 struct rsvp_filter {
88 struct rsvp_filter *next;
89 __be32 src[RSVP_DST_LEN];
90 struct tc_rsvp_gpi spi;
91 u8 tunnelhdr;
93 struct tcf_result res;
94 struct tcf_exts exts;
96 u32 handle;
97 struct rsvp_session *sess;
100 static inline unsigned int hash_dst(__be32 *dst, u8 protocol, u8 tunnelid)
102 unsigned int h = (__force __u32)dst[RSVP_DST_LEN - 1];
104 h ^= h>>16;
105 h ^= h>>8;
106 return (h ^ protocol ^ tunnelid) & 0xFF;
109 static inline unsigned int hash_src(__be32 *src)
111 unsigned int h = (__force __u32)src[RSVP_DST_LEN-1];
113 h ^= h>>16;
114 h ^= h>>8;
115 h ^= h>>4;
116 return h & 0xF;
119 #define RSVP_APPLY_RESULT() \
121 int r = tcf_exts_exec(skb, &f->exts, res); \
122 if (r < 0) \
123 continue; \
124 else if (r > 0) \
125 return r; \
128 static int rsvp_classify(struct sk_buff *skb, const struct tcf_proto *tp,
129 struct tcf_result *res)
131 struct rsvp_session **sht = ((struct rsvp_head *)tp->root)->ht;
132 struct rsvp_session *s;
133 struct rsvp_filter *f;
134 unsigned int h1, h2;
135 __be32 *dst, *src;
136 u8 protocol;
137 u8 tunnelid = 0;
138 u8 *xprt;
139 #if RSVP_DST_LEN == 4
140 struct ipv6hdr *nhptr;
142 if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
143 return -1;
144 nhptr = ipv6_hdr(skb);
145 #else
146 struct iphdr *nhptr;
148 if (!pskb_network_may_pull(skb, sizeof(*nhptr)))
149 return -1;
150 nhptr = ip_hdr(skb);
151 #endif
153 restart:
155 #if RSVP_DST_LEN == 4
156 src = &nhptr->saddr.s6_addr32[0];
157 dst = &nhptr->daddr.s6_addr32[0];
158 protocol = nhptr->nexthdr;
159 xprt = ((u8 *)nhptr) + sizeof(struct ipv6hdr);
160 #else
161 src = &nhptr->saddr;
162 dst = &nhptr->daddr;
163 protocol = nhptr->protocol;
164 xprt = ((u8 *)nhptr) + (nhptr->ihl<<2);
165 if (ip_is_fragment(nhptr))
166 return -1;
167 #endif
169 h1 = hash_dst(dst, protocol, tunnelid);
170 h2 = hash_src(src);
172 for (s = sht[h1]; s; s = s->next) {
173 if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN - 1] &&
174 protocol == s->protocol &&
175 !(s->dpi.mask &
176 (*(u32 *)(xprt + s->dpi.offset) ^ s->dpi.key)) &&
177 #if RSVP_DST_LEN == 4
178 dst[0] == s->dst[0] &&
179 dst[1] == s->dst[1] &&
180 dst[2] == s->dst[2] &&
181 #endif
182 tunnelid == s->tunnelid) {
184 for (f = s->ht[h2]; f; f = f->next) {
185 if (src[RSVP_DST_LEN-1] == f->src[RSVP_DST_LEN - 1] &&
186 !(f->spi.mask & (*(u32 *)(xprt + f->spi.offset) ^ f->spi.key))
187 #if RSVP_DST_LEN == 4
189 src[0] == f->src[0] &&
190 src[1] == f->src[1] &&
191 src[2] == f->src[2]
192 #endif
194 *res = f->res;
195 RSVP_APPLY_RESULT();
197 matched:
198 if (f->tunnelhdr == 0)
199 return 0;
201 tunnelid = f->res.classid;
202 nhptr = (void *)(xprt + f->tunnelhdr - sizeof(*nhptr));
203 goto restart;
207 /* And wildcard bucket... */
208 for (f = s->ht[16]; f; f = f->next) {
209 *res = f->res;
210 RSVP_APPLY_RESULT();
211 goto matched;
213 return -1;
216 return -1;
219 static unsigned long rsvp_get(struct tcf_proto *tp, u32 handle)
221 struct rsvp_session **sht = ((struct rsvp_head *)tp->root)->ht;
222 struct rsvp_session *s;
223 struct rsvp_filter *f;
224 unsigned int h1 = handle & 0xFF;
225 unsigned int h2 = (handle >> 8) & 0xFF;
227 if (h2 > 16)
228 return 0;
230 for (s = sht[h1]; s; s = s->next) {
231 for (f = s->ht[h2]; f; f = f->next) {
232 if (f->handle == handle)
233 return (unsigned long)f;
236 return 0;
239 static void rsvp_put(struct tcf_proto *tp, unsigned long f)
243 static int rsvp_init(struct tcf_proto *tp)
245 struct rsvp_head *data;
247 data = kzalloc(sizeof(struct rsvp_head), GFP_KERNEL);
248 if (data) {
249 tp->root = data;
250 return 0;
252 return -ENOBUFS;
255 static void
256 rsvp_delete_filter(struct tcf_proto *tp, struct rsvp_filter *f)
258 tcf_unbind_filter(tp, &f->res);
259 tcf_exts_destroy(tp, &f->exts);
260 kfree(f);
263 static void rsvp_destroy(struct tcf_proto *tp)
265 struct rsvp_head *data = xchg(&tp->root, NULL);
266 struct rsvp_session **sht;
267 int h1, h2;
269 if (data == NULL)
270 return;
272 sht = data->ht;
274 for (h1 = 0; h1 < 256; h1++) {
275 struct rsvp_session *s;
277 while ((s = sht[h1]) != NULL) {
278 sht[h1] = s->next;
280 for (h2 = 0; h2 <= 16; h2++) {
281 struct rsvp_filter *f;
283 while ((f = s->ht[h2]) != NULL) {
284 s->ht[h2] = f->next;
285 rsvp_delete_filter(tp, f);
288 kfree(s);
291 kfree(data);
294 static int rsvp_delete(struct tcf_proto *tp, unsigned long arg)
296 struct rsvp_filter **fp, *f = (struct rsvp_filter *)arg;
297 unsigned int h = f->handle;
298 struct rsvp_session **sp;
299 struct rsvp_session *s = f->sess;
300 int i;
302 for (fp = &s->ht[(h >> 8) & 0xFF]; *fp; fp = &(*fp)->next) {
303 if (*fp == f) {
304 tcf_tree_lock(tp);
305 *fp = f->next;
306 tcf_tree_unlock(tp);
307 rsvp_delete_filter(tp, f);
309 /* Strip tree */
311 for (i = 0; i <= 16; i++)
312 if (s->ht[i])
313 return 0;
315 /* OK, session has no flows */
316 for (sp = &((struct rsvp_head *)tp->root)->ht[h & 0xFF];
317 *sp; sp = &(*sp)->next) {
318 if (*sp == s) {
319 tcf_tree_lock(tp);
320 *sp = s->next;
321 tcf_tree_unlock(tp);
323 kfree(s);
324 return 0;
328 return 0;
331 return 0;
334 static unsigned int gen_handle(struct tcf_proto *tp, unsigned salt)
336 struct rsvp_head *data = tp->root;
337 int i = 0xFFFF;
339 while (i-- > 0) {
340 u32 h;
342 if ((data->hgenerator += 0x10000) == 0)
343 data->hgenerator = 0x10000;
344 h = data->hgenerator|salt;
345 if (rsvp_get(tp, h) == 0)
346 return h;
348 return 0;
351 static int tunnel_bts(struct rsvp_head *data)
353 int n = data->tgenerator >> 5;
354 u32 b = 1 << (data->tgenerator & 0x1F);
356 if (data->tmap[n] & b)
357 return 0;
358 data->tmap[n] |= b;
359 return 1;
362 static void tunnel_recycle(struct rsvp_head *data)
364 struct rsvp_session **sht = data->ht;
365 u32 tmap[256/32];
366 int h1, h2;
368 memset(tmap, 0, sizeof(tmap));
370 for (h1 = 0; h1 < 256; h1++) {
371 struct rsvp_session *s;
372 for (s = sht[h1]; s; s = s->next) {
373 for (h2 = 0; h2 <= 16; h2++) {
374 struct rsvp_filter *f;
376 for (f = s->ht[h2]; f; f = f->next) {
377 if (f->tunnelhdr == 0)
378 continue;
379 data->tgenerator = f->res.classid;
380 tunnel_bts(data);
386 memcpy(data->tmap, tmap, sizeof(tmap));
389 static u32 gen_tunnel(struct rsvp_head *data)
391 int i, k;
393 for (k = 0; k < 2; k++) {
394 for (i = 255; i > 0; i--) {
395 if (++data->tgenerator == 0)
396 data->tgenerator = 1;
397 if (tunnel_bts(data))
398 return data->tgenerator;
400 tunnel_recycle(data);
402 return 0;
405 static const struct nla_policy rsvp_policy[TCA_RSVP_MAX + 1] = {
406 [TCA_RSVP_CLASSID] = { .type = NLA_U32 },
407 [TCA_RSVP_DST] = { .type = NLA_BINARY,
408 .len = RSVP_DST_LEN * sizeof(u32) },
409 [TCA_RSVP_SRC] = { .type = NLA_BINARY,
410 .len = RSVP_DST_LEN * sizeof(u32) },
411 [TCA_RSVP_PINFO] = { .len = sizeof(struct tc_rsvp_pinfo) },
414 static int rsvp_change(struct net *net, struct sk_buff *in_skb,
415 struct tcf_proto *tp, unsigned long base,
416 u32 handle,
417 struct nlattr **tca,
418 unsigned long *arg, bool ovr)
420 struct rsvp_head *data = tp->root;
421 struct rsvp_filter *f, **fp;
422 struct rsvp_session *s, **sp;
423 struct tc_rsvp_pinfo *pinfo = NULL;
424 struct nlattr *opt = tca[TCA_OPTIONS];
425 struct nlattr *tb[TCA_RSVP_MAX + 1];
426 struct tcf_exts e;
427 unsigned int h1, h2;
428 __be32 *dst;
429 int err;
431 if (opt == NULL)
432 return handle ? -EINVAL : 0;
434 err = nla_parse_nested(tb, TCA_RSVP_MAX, opt, rsvp_policy);
435 if (err < 0)
436 return err;
438 tcf_exts_init(&e, TCA_RSVP_ACT, TCA_RSVP_POLICE);
439 err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e, ovr);
440 if (err < 0)
441 return err;
443 f = (struct rsvp_filter *)*arg;
444 if (f) {
445 /* Node exists: adjust only classid */
447 if (f->handle != handle && handle)
448 goto errout2;
449 if (tb[TCA_RSVP_CLASSID]) {
450 f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID]);
451 tcf_bind_filter(tp, &f->res, base);
454 tcf_exts_change(tp, &f->exts, &e);
455 return 0;
458 /* Now more serious part... */
459 err = -EINVAL;
460 if (handle)
461 goto errout2;
462 if (tb[TCA_RSVP_DST] == NULL)
463 goto errout2;
465 err = -ENOBUFS;
466 f = kzalloc(sizeof(struct rsvp_filter), GFP_KERNEL);
467 if (f == NULL)
468 goto errout2;
470 tcf_exts_init(&f->exts, TCA_RSVP_ACT, TCA_RSVP_POLICE);
471 h2 = 16;
472 if (tb[TCA_RSVP_SRC]) {
473 memcpy(f->src, nla_data(tb[TCA_RSVP_SRC]), sizeof(f->src));
474 h2 = hash_src(f->src);
476 if (tb[TCA_RSVP_PINFO]) {
477 pinfo = nla_data(tb[TCA_RSVP_PINFO]);
478 f->spi = pinfo->spi;
479 f->tunnelhdr = pinfo->tunnelhdr;
481 if (tb[TCA_RSVP_CLASSID])
482 f->res.classid = nla_get_u32(tb[TCA_RSVP_CLASSID]);
484 dst = nla_data(tb[TCA_RSVP_DST]);
485 h1 = hash_dst(dst, pinfo ? pinfo->protocol : 0, pinfo ? pinfo->tunnelid : 0);
487 err = -ENOMEM;
488 if ((f->handle = gen_handle(tp, h1 | (h2<<8))) == 0)
489 goto errout;
491 if (f->tunnelhdr) {
492 err = -EINVAL;
493 if (f->res.classid > 255)
494 goto errout;
496 err = -ENOMEM;
497 if (f->res.classid == 0 &&
498 (f->res.classid = gen_tunnel(data)) == 0)
499 goto errout;
502 for (sp = &data->ht[h1]; (s = *sp) != NULL; sp = &s->next) {
503 if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
504 pinfo && pinfo->protocol == s->protocol &&
505 memcmp(&pinfo->dpi, &s->dpi, sizeof(s->dpi)) == 0 &&
506 #if RSVP_DST_LEN == 4
507 dst[0] == s->dst[0] &&
508 dst[1] == s->dst[1] &&
509 dst[2] == s->dst[2] &&
510 #endif
511 pinfo->tunnelid == s->tunnelid) {
513 insert:
514 /* OK, we found appropriate session */
516 fp = &s->ht[h2];
518 f->sess = s;
519 if (f->tunnelhdr == 0)
520 tcf_bind_filter(tp, &f->res, base);
522 tcf_exts_change(tp, &f->exts, &e);
524 for (fp = &s->ht[h2]; *fp; fp = &(*fp)->next)
525 if (((*fp)->spi.mask & f->spi.mask) != f->spi.mask)
526 break;
527 f->next = *fp;
528 wmb();
529 *fp = f;
531 *arg = (unsigned long)f;
532 return 0;
536 /* No session found. Create new one. */
538 err = -ENOBUFS;
539 s = kzalloc(sizeof(struct rsvp_session), GFP_KERNEL);
540 if (s == NULL)
541 goto errout;
542 memcpy(s->dst, dst, sizeof(s->dst));
544 if (pinfo) {
545 s->dpi = pinfo->dpi;
546 s->protocol = pinfo->protocol;
547 s->tunnelid = pinfo->tunnelid;
549 for (sp = &data->ht[h1]; *sp; sp = &(*sp)->next) {
550 if (((*sp)->dpi.mask&s->dpi.mask) != s->dpi.mask)
551 break;
553 s->next = *sp;
554 wmb();
555 *sp = s;
557 goto insert;
559 errout:
560 kfree(f);
561 errout2:
562 tcf_exts_destroy(tp, &e);
563 return err;
566 static void rsvp_walk(struct tcf_proto *tp, struct tcf_walker *arg)
568 struct rsvp_head *head = tp->root;
569 unsigned int h, h1;
571 if (arg->stop)
572 return;
574 for (h = 0; h < 256; h++) {
575 struct rsvp_session *s;
577 for (s = head->ht[h]; s; s = s->next) {
578 for (h1 = 0; h1 <= 16; h1++) {
579 struct rsvp_filter *f;
581 for (f = s->ht[h1]; f; f = f->next) {
582 if (arg->count < arg->skip) {
583 arg->count++;
584 continue;
586 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
587 arg->stop = 1;
588 return;
590 arg->count++;
597 static int rsvp_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
598 struct sk_buff *skb, struct tcmsg *t)
600 struct rsvp_filter *f = (struct rsvp_filter *)fh;
601 struct rsvp_session *s;
602 unsigned char *b = skb_tail_pointer(skb);
603 struct nlattr *nest;
604 struct tc_rsvp_pinfo pinfo;
606 if (f == NULL)
607 return skb->len;
608 s = f->sess;
610 t->tcm_handle = f->handle;
612 nest = nla_nest_start(skb, TCA_OPTIONS);
613 if (nest == NULL)
614 goto nla_put_failure;
616 if (nla_put(skb, TCA_RSVP_DST, sizeof(s->dst), &s->dst))
617 goto nla_put_failure;
618 pinfo.dpi = s->dpi;
619 pinfo.spi = f->spi;
620 pinfo.protocol = s->protocol;
621 pinfo.tunnelid = s->tunnelid;
622 pinfo.tunnelhdr = f->tunnelhdr;
623 pinfo.pad = 0;
624 if (nla_put(skb, TCA_RSVP_PINFO, sizeof(pinfo), &pinfo))
625 goto nla_put_failure;
626 if (f->res.classid &&
627 nla_put_u32(skb, TCA_RSVP_CLASSID, f->res.classid))
628 goto nla_put_failure;
629 if (((f->handle >> 8) & 0xFF) != 16 &&
630 nla_put(skb, TCA_RSVP_SRC, sizeof(f->src), f->src))
631 goto nla_put_failure;
633 if (tcf_exts_dump(skb, &f->exts) < 0)
634 goto nla_put_failure;
636 nla_nest_end(skb, nest);
638 if (tcf_exts_dump_stats(skb, &f->exts) < 0)
639 goto nla_put_failure;
640 return skb->len;
642 nla_put_failure:
643 nlmsg_trim(skb, b);
644 return -1;
647 static struct tcf_proto_ops RSVP_OPS __read_mostly = {
648 .kind = RSVP_ID,
649 .classify = rsvp_classify,
650 .init = rsvp_init,
651 .destroy = rsvp_destroy,
652 .get = rsvp_get,
653 .put = rsvp_put,
654 .change = rsvp_change,
655 .delete = rsvp_delete,
656 .walk = rsvp_walk,
657 .dump = rsvp_dump,
658 .owner = THIS_MODULE,
661 static int __init init_rsvp(void)
663 return register_tcf_proto_ops(&RSVP_OPS);
666 static void __exit exit_rsvp(void)
668 unregister_tcf_proto_ops(&RSVP_OPS);
671 module_init(init_rsvp)
672 module_exit(exit_rsvp)