Linux 3.7.4
[linux/fpc-iii.git] / mm / memblock.c
blob625905523c2a1592f539c46f6721723d62376648
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static __init_memblock const char *
45 memblock_type_name(struct memblock_type *type)
47 if (type == &memblock.memory)
48 return "memory";
49 else if (type == &memblock.reserved)
50 return "reserved";
51 else
52 return "unknown";
55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
56 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
58 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
62 * Address comparison utilities
64 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
65 phys_addr_t base2, phys_addr_t size2)
67 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
70 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
71 phys_addr_t base, phys_addr_t size)
73 unsigned long i;
75 for (i = 0; i < type->cnt; i++) {
76 phys_addr_t rgnbase = type->regions[i].base;
77 phys_addr_t rgnsize = type->regions[i].size;
78 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
79 break;
82 return (i < type->cnt) ? i : -1;
85 /**
86 * memblock_find_in_range_node - find free area in given range and node
87 * @start: start of candidate range
88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
89 * @size: size of free area to find
90 * @align: alignment of free area to find
91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
93 * Find @size free area aligned to @align in the specified range and node.
95 * RETURNS:
96 * Found address on success, %0 on failure.
98 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
99 phys_addr_t end, phys_addr_t size,
100 phys_addr_t align, int nid)
102 phys_addr_t this_start, this_end, cand;
103 u64 i;
105 /* pump up @end */
106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
107 end = memblock.current_limit;
109 /* avoid allocating the first page */
110 start = max_t(phys_addr_t, start, PAGE_SIZE);
111 end = max(start, end);
113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
114 this_start = clamp(this_start, start, end);
115 this_end = clamp(this_end, start, end);
117 if (this_end < size)
118 continue;
120 cand = round_down(this_end - size, align);
121 if (cand >= this_start)
122 return cand;
124 return 0;
128 * memblock_find_in_range - find free area in given range
129 * @start: start of candidate range
130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
131 * @size: size of free area to find
132 * @align: alignment of free area to find
134 * Find @size free area aligned to @align in the specified range.
136 * RETURNS:
137 * Found address on success, %0 on failure.
139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
140 phys_addr_t end, phys_addr_t size,
141 phys_addr_t align)
143 return memblock_find_in_range_node(start, end, size, align,
144 MAX_NUMNODES);
147 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
149 type->total_size -= type->regions[r].size;
150 memmove(&type->regions[r], &type->regions[r + 1],
151 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
152 type->cnt--;
154 /* Special case for empty arrays */
155 if (type->cnt == 0) {
156 WARN_ON(type->total_size != 0);
157 type->cnt = 1;
158 type->regions[0].base = 0;
159 type->regions[0].size = 0;
160 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
164 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
165 phys_addr_t *addr)
167 if (memblock.reserved.regions == memblock_reserved_init_regions)
168 return 0;
170 *addr = __pa(memblock.reserved.regions);
172 return PAGE_ALIGN(sizeof(struct memblock_region) *
173 memblock.reserved.max);
177 * memblock_double_array - double the size of the memblock regions array
178 * @type: memblock type of the regions array being doubled
179 * @new_area_start: starting address of memory range to avoid overlap with
180 * @new_area_size: size of memory range to avoid overlap with
182 * Double the size of the @type regions array. If memblock is being used to
183 * allocate memory for a new reserved regions array and there is a previously
184 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
185 * waiting to be reserved, ensure the memory used by the new array does
186 * not overlap.
188 * RETURNS:
189 * 0 on success, -1 on failure.
191 static int __init_memblock memblock_double_array(struct memblock_type *type,
192 phys_addr_t new_area_start,
193 phys_addr_t new_area_size)
195 struct memblock_region *new_array, *old_array;
196 phys_addr_t old_alloc_size, new_alloc_size;
197 phys_addr_t old_size, new_size, addr;
198 int use_slab = slab_is_available();
199 int *in_slab;
201 /* We don't allow resizing until we know about the reserved regions
202 * of memory that aren't suitable for allocation
204 if (!memblock_can_resize)
205 return -1;
207 /* Calculate new doubled size */
208 old_size = type->max * sizeof(struct memblock_region);
209 new_size = old_size << 1;
211 * We need to allocated new one align to PAGE_SIZE,
212 * so we can free them completely later.
214 old_alloc_size = PAGE_ALIGN(old_size);
215 new_alloc_size = PAGE_ALIGN(new_size);
217 /* Retrieve the slab flag */
218 if (type == &memblock.memory)
219 in_slab = &memblock_memory_in_slab;
220 else
221 in_slab = &memblock_reserved_in_slab;
223 /* Try to find some space for it.
225 * WARNING: We assume that either slab_is_available() and we use it or
226 * we use MEMBLOCK for allocations. That means that this is unsafe to
227 * use when bootmem is currently active (unless bootmem itself is
228 * implemented on top of MEMBLOCK which isn't the case yet)
230 * This should however not be an issue for now, as we currently only
231 * call into MEMBLOCK while it's still active, or much later when slab
232 * is active for memory hotplug operations
234 if (use_slab) {
235 new_array = kmalloc(new_size, GFP_KERNEL);
236 addr = new_array ? __pa(new_array) : 0;
237 } else {
238 /* only exclude range when trying to double reserved.regions */
239 if (type != &memblock.reserved)
240 new_area_start = new_area_size = 0;
242 addr = memblock_find_in_range(new_area_start + new_area_size,
243 memblock.current_limit,
244 new_alloc_size, PAGE_SIZE);
245 if (!addr && new_area_size)
246 addr = memblock_find_in_range(0,
247 min(new_area_start, memblock.current_limit),
248 new_alloc_size, PAGE_SIZE);
250 new_array = addr ? __va(addr) : NULL;
252 if (!addr) {
253 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
254 memblock_type_name(type), type->max, type->max * 2);
255 return -1;
258 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
259 memblock_type_name(type), type->max * 2, (u64)addr,
260 (u64)addr + new_size - 1);
263 * Found space, we now need to move the array over before we add the
264 * reserved region since it may be our reserved array itself that is
265 * full.
267 memcpy(new_array, type->regions, old_size);
268 memset(new_array + type->max, 0, old_size);
269 old_array = type->regions;
270 type->regions = new_array;
271 type->max <<= 1;
273 /* Free old array. We needn't free it if the array is the static one */
274 if (*in_slab)
275 kfree(old_array);
276 else if (old_array != memblock_memory_init_regions &&
277 old_array != memblock_reserved_init_regions)
278 memblock_free(__pa(old_array), old_alloc_size);
281 * Reserve the new array if that comes from the memblock. Otherwise, we
282 * needn't do it
284 if (!use_slab)
285 BUG_ON(memblock_reserve(addr, new_alloc_size));
287 /* Update slab flag */
288 *in_slab = use_slab;
290 return 0;
294 * memblock_merge_regions - merge neighboring compatible regions
295 * @type: memblock type to scan
297 * Scan @type and merge neighboring compatible regions.
299 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
301 int i = 0;
303 /* cnt never goes below 1 */
304 while (i < type->cnt - 1) {
305 struct memblock_region *this = &type->regions[i];
306 struct memblock_region *next = &type->regions[i + 1];
308 if (this->base + this->size != next->base ||
309 memblock_get_region_node(this) !=
310 memblock_get_region_node(next)) {
311 BUG_ON(this->base + this->size > next->base);
312 i++;
313 continue;
316 this->size += next->size;
317 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
318 type->cnt--;
323 * memblock_insert_region - insert new memblock region
324 * @type: memblock type to insert into
325 * @idx: index for the insertion point
326 * @base: base address of the new region
327 * @size: size of the new region
329 * Insert new memblock region [@base,@base+@size) into @type at @idx.
330 * @type must already have extra room to accomodate the new region.
332 static void __init_memblock memblock_insert_region(struct memblock_type *type,
333 int idx, phys_addr_t base,
334 phys_addr_t size, int nid)
336 struct memblock_region *rgn = &type->regions[idx];
338 BUG_ON(type->cnt >= type->max);
339 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
340 rgn->base = base;
341 rgn->size = size;
342 memblock_set_region_node(rgn, nid);
343 type->cnt++;
344 type->total_size += size;
348 * memblock_add_region - add new memblock region
349 * @type: memblock type to add new region into
350 * @base: base address of the new region
351 * @size: size of the new region
352 * @nid: nid of the new region
354 * Add new memblock region [@base,@base+@size) into @type. The new region
355 * is allowed to overlap with existing ones - overlaps don't affect already
356 * existing regions. @type is guaranteed to be minimal (all neighbouring
357 * compatible regions are merged) after the addition.
359 * RETURNS:
360 * 0 on success, -errno on failure.
362 static int __init_memblock memblock_add_region(struct memblock_type *type,
363 phys_addr_t base, phys_addr_t size, int nid)
365 bool insert = false;
366 phys_addr_t obase = base;
367 phys_addr_t end = base + memblock_cap_size(base, &size);
368 int i, nr_new;
370 if (!size)
371 return 0;
373 /* special case for empty array */
374 if (type->regions[0].size == 0) {
375 WARN_ON(type->cnt != 1 || type->total_size);
376 type->regions[0].base = base;
377 type->regions[0].size = size;
378 memblock_set_region_node(&type->regions[0], nid);
379 type->total_size = size;
380 return 0;
382 repeat:
384 * The following is executed twice. Once with %false @insert and
385 * then with %true. The first counts the number of regions needed
386 * to accomodate the new area. The second actually inserts them.
388 base = obase;
389 nr_new = 0;
391 for (i = 0; i < type->cnt; i++) {
392 struct memblock_region *rgn = &type->regions[i];
393 phys_addr_t rbase = rgn->base;
394 phys_addr_t rend = rbase + rgn->size;
396 if (rbase >= end)
397 break;
398 if (rend <= base)
399 continue;
401 * @rgn overlaps. If it separates the lower part of new
402 * area, insert that portion.
404 if (rbase > base) {
405 nr_new++;
406 if (insert)
407 memblock_insert_region(type, i++, base,
408 rbase - base, nid);
410 /* area below @rend is dealt with, forget about it */
411 base = min(rend, end);
414 /* insert the remaining portion */
415 if (base < end) {
416 nr_new++;
417 if (insert)
418 memblock_insert_region(type, i, base, end - base, nid);
422 * If this was the first round, resize array and repeat for actual
423 * insertions; otherwise, merge and return.
425 if (!insert) {
426 while (type->cnt + nr_new > type->max)
427 if (memblock_double_array(type, obase, size) < 0)
428 return -ENOMEM;
429 insert = true;
430 goto repeat;
431 } else {
432 memblock_merge_regions(type);
433 return 0;
437 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
438 int nid)
440 return memblock_add_region(&memblock.memory, base, size, nid);
443 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
445 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
449 * memblock_isolate_range - isolate given range into disjoint memblocks
450 * @type: memblock type to isolate range for
451 * @base: base of range to isolate
452 * @size: size of range to isolate
453 * @start_rgn: out parameter for the start of isolated region
454 * @end_rgn: out parameter for the end of isolated region
456 * Walk @type and ensure that regions don't cross the boundaries defined by
457 * [@base,@base+@size). Crossing regions are split at the boundaries,
458 * which may create at most two more regions. The index of the first
459 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
461 * RETURNS:
462 * 0 on success, -errno on failure.
464 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
465 phys_addr_t base, phys_addr_t size,
466 int *start_rgn, int *end_rgn)
468 phys_addr_t end = base + memblock_cap_size(base, &size);
469 int i;
471 *start_rgn = *end_rgn = 0;
473 if (!size)
474 return 0;
476 /* we'll create at most two more regions */
477 while (type->cnt + 2 > type->max)
478 if (memblock_double_array(type, base, size) < 0)
479 return -ENOMEM;
481 for (i = 0; i < type->cnt; i++) {
482 struct memblock_region *rgn = &type->regions[i];
483 phys_addr_t rbase = rgn->base;
484 phys_addr_t rend = rbase + rgn->size;
486 if (rbase >= end)
487 break;
488 if (rend <= base)
489 continue;
491 if (rbase < base) {
493 * @rgn intersects from below. Split and continue
494 * to process the next region - the new top half.
496 rgn->base = base;
497 rgn->size -= base - rbase;
498 type->total_size -= base - rbase;
499 memblock_insert_region(type, i, rbase, base - rbase,
500 memblock_get_region_node(rgn));
501 } else if (rend > end) {
503 * @rgn intersects from above. Split and redo the
504 * current region - the new bottom half.
506 rgn->base = end;
507 rgn->size -= end - rbase;
508 type->total_size -= end - rbase;
509 memblock_insert_region(type, i--, rbase, end - rbase,
510 memblock_get_region_node(rgn));
511 } else {
512 /* @rgn is fully contained, record it */
513 if (!*end_rgn)
514 *start_rgn = i;
515 *end_rgn = i + 1;
519 return 0;
522 static int __init_memblock __memblock_remove(struct memblock_type *type,
523 phys_addr_t base, phys_addr_t size)
525 int start_rgn, end_rgn;
526 int i, ret;
528 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
529 if (ret)
530 return ret;
532 for (i = end_rgn - 1; i >= start_rgn; i--)
533 memblock_remove_region(type, i);
534 return 0;
537 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
539 return __memblock_remove(&memblock.memory, base, size);
542 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
544 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
545 (unsigned long long)base,
546 (unsigned long long)base + size,
547 (void *)_RET_IP_);
549 return __memblock_remove(&memblock.reserved, base, size);
552 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
554 struct memblock_type *_rgn = &memblock.reserved;
556 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
557 (unsigned long long)base,
558 (unsigned long long)base + size,
559 (void *)_RET_IP_);
561 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
565 * __next_free_mem_range - next function for for_each_free_mem_range()
566 * @idx: pointer to u64 loop variable
567 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
568 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
569 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
570 * @out_nid: ptr to int for nid of the range, can be %NULL
572 * Find the first free area from *@idx which matches @nid, fill the out
573 * parameters, and update *@idx for the next iteration. The lower 32bit of
574 * *@idx contains index into memory region and the upper 32bit indexes the
575 * areas before each reserved region. For example, if reserved regions
576 * look like the following,
578 * 0:[0-16), 1:[32-48), 2:[128-130)
580 * The upper 32bit indexes the following regions.
582 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
584 * As both region arrays are sorted, the function advances the two indices
585 * in lockstep and returns each intersection.
587 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
588 phys_addr_t *out_start,
589 phys_addr_t *out_end, int *out_nid)
591 struct memblock_type *mem = &memblock.memory;
592 struct memblock_type *rsv = &memblock.reserved;
593 int mi = *idx & 0xffffffff;
594 int ri = *idx >> 32;
596 for ( ; mi < mem->cnt; mi++) {
597 struct memblock_region *m = &mem->regions[mi];
598 phys_addr_t m_start = m->base;
599 phys_addr_t m_end = m->base + m->size;
601 /* only memory regions are associated with nodes, check it */
602 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
603 continue;
605 /* scan areas before each reservation for intersection */
606 for ( ; ri < rsv->cnt + 1; ri++) {
607 struct memblock_region *r = &rsv->regions[ri];
608 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
609 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
611 /* if ri advanced past mi, break out to advance mi */
612 if (r_start >= m_end)
613 break;
614 /* if the two regions intersect, we're done */
615 if (m_start < r_end) {
616 if (out_start)
617 *out_start = max(m_start, r_start);
618 if (out_end)
619 *out_end = min(m_end, r_end);
620 if (out_nid)
621 *out_nid = memblock_get_region_node(m);
623 * The region which ends first is advanced
624 * for the next iteration.
626 if (m_end <= r_end)
627 mi++;
628 else
629 ri++;
630 *idx = (u32)mi | (u64)ri << 32;
631 return;
636 /* signal end of iteration */
637 *idx = ULLONG_MAX;
641 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
642 * @idx: pointer to u64 loop variable
643 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
644 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
645 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
646 * @out_nid: ptr to int for nid of the range, can be %NULL
648 * Reverse of __next_free_mem_range().
650 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
651 phys_addr_t *out_start,
652 phys_addr_t *out_end, int *out_nid)
654 struct memblock_type *mem = &memblock.memory;
655 struct memblock_type *rsv = &memblock.reserved;
656 int mi = *idx & 0xffffffff;
657 int ri = *idx >> 32;
659 if (*idx == (u64)ULLONG_MAX) {
660 mi = mem->cnt - 1;
661 ri = rsv->cnt;
664 for ( ; mi >= 0; mi--) {
665 struct memblock_region *m = &mem->regions[mi];
666 phys_addr_t m_start = m->base;
667 phys_addr_t m_end = m->base + m->size;
669 /* only memory regions are associated with nodes, check it */
670 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
671 continue;
673 /* scan areas before each reservation for intersection */
674 for ( ; ri >= 0; ri--) {
675 struct memblock_region *r = &rsv->regions[ri];
676 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
677 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
679 /* if ri advanced past mi, break out to advance mi */
680 if (r_end <= m_start)
681 break;
682 /* if the two regions intersect, we're done */
683 if (m_end > r_start) {
684 if (out_start)
685 *out_start = max(m_start, r_start);
686 if (out_end)
687 *out_end = min(m_end, r_end);
688 if (out_nid)
689 *out_nid = memblock_get_region_node(m);
691 if (m_start >= r_start)
692 mi--;
693 else
694 ri--;
695 *idx = (u32)mi | (u64)ri << 32;
696 return;
701 *idx = ULLONG_MAX;
704 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
706 * Common iterator interface used to define for_each_mem_range().
708 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
709 unsigned long *out_start_pfn,
710 unsigned long *out_end_pfn, int *out_nid)
712 struct memblock_type *type = &memblock.memory;
713 struct memblock_region *r;
715 while (++*idx < type->cnt) {
716 r = &type->regions[*idx];
718 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
719 continue;
720 if (nid == MAX_NUMNODES || nid == r->nid)
721 break;
723 if (*idx >= type->cnt) {
724 *idx = -1;
725 return;
728 if (out_start_pfn)
729 *out_start_pfn = PFN_UP(r->base);
730 if (out_end_pfn)
731 *out_end_pfn = PFN_DOWN(r->base + r->size);
732 if (out_nid)
733 *out_nid = r->nid;
737 * memblock_set_node - set node ID on memblock regions
738 * @base: base of area to set node ID for
739 * @size: size of area to set node ID for
740 * @nid: node ID to set
742 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
743 * Regions which cross the area boundaries are split as necessary.
745 * RETURNS:
746 * 0 on success, -errno on failure.
748 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
749 int nid)
751 struct memblock_type *type = &memblock.memory;
752 int start_rgn, end_rgn;
753 int i, ret;
755 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
756 if (ret)
757 return ret;
759 for (i = start_rgn; i < end_rgn; i++)
760 memblock_set_region_node(&type->regions[i], nid);
762 memblock_merge_regions(type);
763 return 0;
765 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
767 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
768 phys_addr_t align, phys_addr_t max_addr,
769 int nid)
771 phys_addr_t found;
773 /* align @size to avoid excessive fragmentation on reserved array */
774 size = round_up(size, align);
776 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
777 if (found && !memblock_reserve(found, size))
778 return found;
780 return 0;
783 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
785 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
788 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
790 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
793 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
795 phys_addr_t alloc;
797 alloc = __memblock_alloc_base(size, align, max_addr);
799 if (alloc == 0)
800 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
801 (unsigned long long) size, (unsigned long long) max_addr);
803 return alloc;
806 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
808 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
811 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
813 phys_addr_t res = memblock_alloc_nid(size, align, nid);
815 if (res)
816 return res;
817 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
822 * Remaining API functions
825 phys_addr_t __init memblock_phys_mem_size(void)
827 return memblock.memory.total_size;
830 /* lowest address */
831 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
833 return memblock.memory.regions[0].base;
836 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
838 int idx = memblock.memory.cnt - 1;
840 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
843 void __init memblock_enforce_memory_limit(phys_addr_t limit)
845 unsigned long i;
846 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
848 if (!limit)
849 return;
851 /* find out max address */
852 for (i = 0; i < memblock.memory.cnt; i++) {
853 struct memblock_region *r = &memblock.memory.regions[i];
855 if (limit <= r->size) {
856 max_addr = r->base + limit;
857 break;
859 limit -= r->size;
862 /* truncate both memory and reserved regions */
863 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
864 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
867 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
869 unsigned int left = 0, right = type->cnt;
871 do {
872 unsigned int mid = (right + left) / 2;
874 if (addr < type->regions[mid].base)
875 right = mid;
876 else if (addr >= (type->regions[mid].base +
877 type->regions[mid].size))
878 left = mid + 1;
879 else
880 return mid;
881 } while (left < right);
882 return -1;
885 int __init memblock_is_reserved(phys_addr_t addr)
887 return memblock_search(&memblock.reserved, addr) != -1;
890 int __init_memblock memblock_is_memory(phys_addr_t addr)
892 return memblock_search(&memblock.memory, addr) != -1;
896 * memblock_is_region_memory - check if a region is a subset of memory
897 * @base: base of region to check
898 * @size: size of region to check
900 * Check if the region [@base, @base+@size) is a subset of a memory block.
902 * RETURNS:
903 * 0 if false, non-zero if true
905 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
907 int idx = memblock_search(&memblock.memory, base);
908 phys_addr_t end = base + memblock_cap_size(base, &size);
910 if (idx == -1)
911 return 0;
912 return memblock.memory.regions[idx].base <= base &&
913 (memblock.memory.regions[idx].base +
914 memblock.memory.regions[idx].size) >= end;
918 * memblock_is_region_reserved - check if a region intersects reserved memory
919 * @base: base of region to check
920 * @size: size of region to check
922 * Check if the region [@base, @base+@size) intersects a reserved memory block.
924 * RETURNS:
925 * 0 if false, non-zero if true
927 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
929 memblock_cap_size(base, &size);
930 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
933 void __init_memblock memblock_trim_memory(phys_addr_t align)
935 int i;
936 phys_addr_t start, end, orig_start, orig_end;
937 struct memblock_type *mem = &memblock.memory;
939 for (i = 0; i < mem->cnt; i++) {
940 orig_start = mem->regions[i].base;
941 orig_end = mem->regions[i].base + mem->regions[i].size;
942 start = round_up(orig_start, align);
943 end = round_down(orig_end, align);
945 if (start == orig_start && end == orig_end)
946 continue;
948 if (start < end) {
949 mem->regions[i].base = start;
950 mem->regions[i].size = end - start;
951 } else {
952 memblock_remove_region(mem, i);
953 i--;
958 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
960 memblock.current_limit = limit;
963 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
965 unsigned long long base, size;
966 int i;
968 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
970 for (i = 0; i < type->cnt; i++) {
971 struct memblock_region *rgn = &type->regions[i];
972 char nid_buf[32] = "";
974 base = rgn->base;
975 size = rgn->size;
976 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
977 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
978 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
979 memblock_get_region_node(rgn));
980 #endif
981 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
982 name, i, base, base + size - 1, size, nid_buf);
986 void __init_memblock __memblock_dump_all(void)
988 pr_info("MEMBLOCK configuration:\n");
989 pr_info(" memory size = %#llx reserved size = %#llx\n",
990 (unsigned long long)memblock.memory.total_size,
991 (unsigned long long)memblock.reserved.total_size);
993 memblock_dump(&memblock.memory, "memory");
994 memblock_dump(&memblock.reserved, "reserved");
997 void __init memblock_allow_resize(void)
999 memblock_can_resize = 1;
1002 static int __init early_memblock(char *p)
1004 if (p && strstr(p, "debug"))
1005 memblock_debug = 1;
1006 return 0;
1008 early_param("memblock", early_memblock);
1010 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1012 static int memblock_debug_show(struct seq_file *m, void *private)
1014 struct memblock_type *type = m->private;
1015 struct memblock_region *reg;
1016 int i;
1018 for (i = 0; i < type->cnt; i++) {
1019 reg = &type->regions[i];
1020 seq_printf(m, "%4d: ", i);
1021 if (sizeof(phys_addr_t) == 4)
1022 seq_printf(m, "0x%08lx..0x%08lx\n",
1023 (unsigned long)reg->base,
1024 (unsigned long)(reg->base + reg->size - 1));
1025 else
1026 seq_printf(m, "0x%016llx..0x%016llx\n",
1027 (unsigned long long)reg->base,
1028 (unsigned long long)(reg->base + reg->size - 1));
1031 return 0;
1034 static int memblock_debug_open(struct inode *inode, struct file *file)
1036 return single_open(file, memblock_debug_show, inode->i_private);
1039 static const struct file_operations memblock_debug_fops = {
1040 .open = memblock_debug_open,
1041 .read = seq_read,
1042 .llseek = seq_lseek,
1043 .release = single_release,
1046 static int __init memblock_init_debugfs(void)
1048 struct dentry *root = debugfs_create_dir("memblock", NULL);
1049 if (!root)
1050 return -ENXIO;
1051 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1052 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1054 return 0;
1056 __initcall(memblock_init_debugfs);
1058 #endif /* CONFIG_DEBUG_FS */