4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr
;
83 EXPORT_SYMBOL(max_mapnr
);
84 EXPORT_SYMBOL(mem_map
);
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init
init_zero_pfn(void)
126 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
129 core_initcall(init_zero_pfn
);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct
*mm
)
138 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
139 if (current
->rss_stat
.count
[i
]) {
140 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
141 current
->rss_stat
.count
[i
] = 0;
144 current
->rss_stat
.events
= 0;
147 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
149 struct task_struct
*task
= current
;
151 if (likely(task
->mm
== mm
))
152 task
->rss_stat
.count
[member
] += val
;
154 add_mm_counter(mm
, member
, val
);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct
*task
)
163 if (unlikely(task
!= current
))
165 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
166 sync_mm_rss(task
->mm
);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct
*task
)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather
*tlb
)
183 struct mmu_gather_batch
*batch
;
187 tlb
->active
= batch
->next
;
191 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
194 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
201 batch
->max
= MAX_GATHER_BATCH
;
203 tlb
->active
->next
= batch
;
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
218 /* Is it from 0 to ~0? */
219 tlb
->fullmm
= !(start
| (end
+1));
220 tlb
->need_flush_all
= 0;
224 tlb
->local
.next
= NULL
;
226 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
227 tlb
->active
= &tlb
->local
;
228 tlb
->batch_count
= 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb
);
244 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
246 struct mmu_gather_batch
*batch
;
248 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
249 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
252 tlb
->active
= &tlb
->local
;
255 void tlb_flush_mmu(struct mmu_gather
*tlb
)
257 if (!tlb
->need_flush
)
259 tlb_flush_mmu_tlbonly(tlb
);
260 tlb_flush_mmu_free(tlb
);
264 * Called at the end of the shootdown operation to free up any resources
265 * that were required.
267 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
269 struct mmu_gather_batch
*batch
, *next
;
273 /* keep the page table cache within bounds */
276 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
278 free_pages((unsigned long)batch
, 0);
280 tlb
->local
.next
= NULL
;
284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285 * handling the additional races in SMP caused by other CPUs caching valid
286 * mappings in their TLBs. Returns the number of free page slots left.
287 * When out of page slots we must call tlb_flush_mmu().
289 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
291 struct mmu_gather_batch
*batch
;
293 VM_BUG_ON(!tlb
->need_flush
);
296 batch
->pages
[batch
->nr
++] = page
;
297 if (batch
->nr
== batch
->max
) {
298 if (!tlb_next_batch(tlb
))
302 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
304 return batch
->max
- batch
->nr
;
307 #endif /* HAVE_GENERIC_MMU_GATHER */
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 * See the comment near struct mmu_table_batch.
315 static void tlb_remove_table_smp_sync(void *arg
)
317 /* Simply deliver the interrupt */
320 static void tlb_remove_table_one(void *table
)
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
329 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
330 __tlb_remove_table(table
);
333 static void tlb_remove_table_rcu(struct rcu_head
*head
)
335 struct mmu_table_batch
*batch
;
338 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
340 for (i
= 0; i
< batch
->nr
; i
++)
341 __tlb_remove_table(batch
->tables
[i
]);
343 free_page((unsigned long)batch
);
346 void tlb_table_flush(struct mmu_gather
*tlb
)
348 struct mmu_table_batch
**batch
= &tlb
->batch
;
351 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
356 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
358 struct mmu_table_batch
**batch
= &tlb
->batch
;
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
366 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
367 __tlb_remove_table(table
);
371 if (*batch
== NULL
) {
372 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
373 if (*batch
== NULL
) {
374 tlb_remove_table_one(table
);
379 (*batch
)->tables
[(*batch
)->nr
++] = table
;
380 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
381 tlb_table_flush(tlb
);
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
390 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
393 pgtable_t token
= pmd_pgtable(*pmd
);
395 pte_free_tlb(tlb
, token
, addr
);
396 atomic_long_dec(&tlb
->mm
->nr_ptes
);
399 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
400 unsigned long addr
, unsigned long end
,
401 unsigned long floor
, unsigned long ceiling
)
408 pmd
= pmd_offset(pud
, addr
);
410 next
= pmd_addr_end(addr
, end
);
411 if (pmd_none_or_clear_bad(pmd
))
413 free_pte_range(tlb
, pmd
, addr
);
414 } while (pmd
++, addr
= next
, addr
!= end
);
424 if (end
- 1 > ceiling
- 1)
427 pmd
= pmd_offset(pud
, start
);
429 pmd_free_tlb(tlb
, pmd
, start
);
432 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
433 unsigned long addr
, unsigned long end
,
434 unsigned long floor
, unsigned long ceiling
)
441 pud
= pud_offset(pgd
, addr
);
443 next
= pud_addr_end(addr
, end
);
444 if (pud_none_or_clear_bad(pud
))
446 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
447 } while (pud
++, addr
= next
, addr
!= end
);
453 ceiling
&= PGDIR_MASK
;
457 if (end
- 1 > ceiling
- 1)
460 pud
= pud_offset(pgd
, start
);
462 pud_free_tlb(tlb
, pud
, start
);
466 * This function frees user-level page tables of a process.
468 void free_pgd_range(struct mmu_gather
*tlb
,
469 unsigned long addr
, unsigned long end
,
470 unsigned long floor
, unsigned long ceiling
)
476 * The next few lines have given us lots of grief...
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
512 if (end
- 1 > ceiling
- 1)
517 pgd
= pgd_offset(tlb
->mm
, addr
);
519 next
= pgd_addr_end(addr
, end
);
520 if (pgd_none_or_clear_bad(pgd
))
522 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
523 } while (pgd
++, addr
= next
, addr
!= end
);
526 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
527 unsigned long floor
, unsigned long ceiling
)
530 struct vm_area_struct
*next
= vma
->vm_next
;
531 unsigned long addr
= vma
->vm_start
;
534 * Hide vma from rmap and truncate_pagecache before freeing
537 unlink_anon_vmas(vma
);
538 unlink_file_vma(vma
);
540 if (is_vm_hugetlb_page(vma
)) {
541 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
542 floor
, next
? next
->vm_start
: ceiling
);
545 * Optimization: gather nearby vmas into one call down
547 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
548 && !is_vm_hugetlb_page(next
)) {
551 unlink_anon_vmas(vma
);
552 unlink_file_vma(vma
);
554 free_pgd_range(tlb
, addr
, vma
->vm_end
,
555 floor
, next
? next
->vm_start
: ceiling
);
561 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
562 pmd_t
*pmd
, unsigned long address
)
565 pgtable_t
new = pte_alloc_one(mm
, address
);
566 int wait_split_huge_page
;
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585 ptl
= pmd_lock(mm
, pmd
);
586 wait_split_huge_page
= 0;
587 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
588 atomic_long_inc(&mm
->nr_ptes
);
589 pmd_populate(mm
, pmd
, new);
591 } else if (unlikely(pmd_trans_splitting(*pmd
)))
592 wait_split_huge_page
= 1;
596 if (wait_split_huge_page
)
597 wait_split_huge_page(vma
->anon_vma
, pmd
);
601 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
603 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
607 smp_wmb(); /* See comment in __pte_alloc */
609 spin_lock(&init_mm
.page_table_lock
);
610 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm
, pmd
, new);
614 VM_BUG_ON(pmd_trans_splitting(*pmd
));
615 spin_unlock(&init_mm
.page_table_lock
);
617 pte_free_kernel(&init_mm
, new);
621 static inline void init_rss_vec(int *rss
)
623 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
626 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
630 if (current
->mm
== mm
)
632 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
634 add_mm_counter(mm
, i
, rss
[i
]);
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
642 * The calling function must still handle the error.
644 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
645 pte_t pte
, struct page
*page
)
647 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
648 pud_t
*pud
= pud_offset(pgd
, addr
);
649 pmd_t
*pmd
= pmd_offset(pud
, addr
);
650 struct address_space
*mapping
;
652 static unsigned long resume
;
653 static unsigned long nr_shown
;
654 static unsigned long nr_unshown
;
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
660 if (nr_shown
== 60) {
661 if (time_before(jiffies
, resume
)) {
667 "BUG: Bad page map: %lu messages suppressed\n",
674 resume
= jiffies
+ 60 * HZ
;
676 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
677 index
= linear_page_index(vma
, addr
);
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
682 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
684 dump_page(page
, "bad pte");
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
695 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
696 vma
->vm_file
->f_op
->mmap
);
698 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
702 * vm_normal_page -- This function gets the "struct page" associated with a pte.
704 * "Special" mappings do not wish to be associated with a "struct page" (either
705 * it doesn't exist, or it exists but they don't want to touch it). In this
706 * case, NULL is returned here. "Normal" mappings do have a struct page.
708 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709 * pte bit, in which case this function is trivial. Secondly, an architecture
710 * may not have a spare pte bit, which requires a more complicated scheme,
713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714 * special mapping (even if there are underlying and valid "struct pages").
715 * COWed pages of a VM_PFNMAP are always normal.
717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720 * mapping will always honor the rule
722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724 * And for normal mappings this is false.
726 * This restricts such mappings to be a linear translation from virtual address
727 * to pfn. To get around this restriction, we allow arbitrary mappings so long
728 * as the vma is not a COW mapping; in that case, we know that all ptes are
729 * special (because none can have been COWed).
732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735 * page" backing, however the difference is that _all_ pages with a struct
736 * page (that is, those where pfn_valid is true) are refcounted and considered
737 * normal pages by the VM. The disadvantage is that pages are refcounted
738 * (which can be slower and simply not an option for some PFNMAP users). The
739 * advantage is that we don't have to follow the strict linearity rule of
740 * PFNMAP mappings in order to support COWable mappings.
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
746 # define HAVE_PTE_SPECIAL 0
748 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
751 unsigned long pfn
= pte_pfn(pte
);
753 if (HAVE_PTE_SPECIAL
) {
754 if (likely(!pte_special(pte
) || pte_numa(pte
)))
756 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
758 if (!is_zero_pfn(pfn
))
759 print_bad_pte(vma
, addr
, pte
, NULL
);
763 /* !HAVE_PTE_SPECIAL case follows: */
765 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
766 if (vma
->vm_flags
& VM_MIXEDMAP
) {
772 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
773 if (pfn
== vma
->vm_pgoff
+ off
)
775 if (!is_cow_mapping(vma
->vm_flags
))
781 if (unlikely(pfn
> highest_memmap_pfn
)) {
782 print_bad_pte(vma
, addr
, pte
, NULL
);
786 if (is_zero_pfn(pfn
))
790 * NOTE! We still have PageReserved() pages in the page tables.
791 * eg. VDSO mappings can cause them to exist.
794 return pfn_to_page(pfn
);
798 * copy one vm_area from one task to the other. Assumes the page tables
799 * already present in the new task to be cleared in the whole range
800 * covered by this vma.
803 static inline unsigned long
804 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
805 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
806 unsigned long addr
, int *rss
)
808 unsigned long vm_flags
= vma
->vm_flags
;
809 pte_t pte
= *src_pte
;
812 /* pte contains position in swap or file, so copy. */
813 if (unlikely(!pte_present(pte
))) {
814 if (!pte_file(pte
)) {
815 swp_entry_t entry
= pte_to_swp_entry(pte
);
817 if (swap_duplicate(entry
) < 0)
820 /* make sure dst_mm is on swapoff's mmlist. */
821 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
822 spin_lock(&mmlist_lock
);
823 if (list_empty(&dst_mm
->mmlist
))
824 list_add(&dst_mm
->mmlist
,
826 spin_unlock(&mmlist_lock
);
828 if (likely(!non_swap_entry(entry
)))
830 else if (is_migration_entry(entry
)) {
831 page
= migration_entry_to_page(entry
);
838 if (is_write_migration_entry(entry
) &&
839 is_cow_mapping(vm_flags
)) {
841 * COW mappings require pages in both
842 * parent and child to be set to read.
844 make_migration_entry_read(&entry
);
845 pte
= swp_entry_to_pte(entry
);
846 if (pte_swp_soft_dirty(*src_pte
))
847 pte
= pte_swp_mksoft_dirty(pte
);
848 set_pte_at(src_mm
, addr
, src_pte
, pte
);
856 * If it's a COW mapping, write protect it both
857 * in the parent and the child
859 if (is_cow_mapping(vm_flags
)) {
860 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
861 pte
= pte_wrprotect(pte
);
865 * If it's a shared mapping, mark it clean in
868 if (vm_flags
& VM_SHARED
)
869 pte
= pte_mkclean(pte
);
870 pte
= pte_mkold(pte
);
872 page
= vm_normal_page(vma
, addr
, pte
);
883 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
887 int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
888 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
889 unsigned long addr
, unsigned long end
)
891 pte_t
*orig_src_pte
, *orig_dst_pte
;
892 pte_t
*src_pte
, *dst_pte
;
893 spinlock_t
*src_ptl
, *dst_ptl
;
895 int rss
[NR_MM_COUNTERS
];
896 swp_entry_t entry
= (swp_entry_t
){0};
901 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
904 src_pte
= pte_offset_map(src_pmd
, addr
);
905 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
906 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
907 orig_src_pte
= src_pte
;
908 orig_dst_pte
= dst_pte
;
909 arch_enter_lazy_mmu_mode();
913 * We are holding two locks at this point - either of them
914 * could generate latencies in another task on another CPU.
916 if (progress
>= 32) {
918 if (need_resched() ||
919 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
922 if (pte_none(*src_pte
)) {
926 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
931 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
933 arch_leave_lazy_mmu_mode();
934 spin_unlock(src_ptl
);
935 pte_unmap(orig_src_pte
);
936 add_mm_rss_vec(dst_mm
, rss
);
937 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
941 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
950 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
951 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
952 unsigned long addr
, unsigned long end
)
954 pmd_t
*src_pmd
, *dst_pmd
;
957 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
960 src_pmd
= pmd_offset(src_pud
, addr
);
962 next
= pmd_addr_end(addr
, end
);
963 if (pmd_trans_huge(*src_pmd
)) {
965 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
966 err
= copy_huge_pmd(dst_mm
, src_mm
,
967 dst_pmd
, src_pmd
, addr
, vma
);
974 if (pmd_none_or_clear_bad(src_pmd
))
976 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
979 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
983 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
984 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
985 unsigned long addr
, unsigned long end
)
987 pud_t
*src_pud
, *dst_pud
;
990 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
993 src_pud
= pud_offset(src_pgd
, addr
);
995 next
= pud_addr_end(addr
, end
);
996 if (pud_none_or_clear_bad(src_pud
))
998 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1001 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1005 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1006 struct vm_area_struct
*vma
)
1008 pgd_t
*src_pgd
, *dst_pgd
;
1010 unsigned long addr
= vma
->vm_start
;
1011 unsigned long end
= vma
->vm_end
;
1012 unsigned long mmun_start
; /* For mmu_notifiers */
1013 unsigned long mmun_end
; /* For mmu_notifiers */
1018 * Don't copy ptes where a page fault will fill them correctly.
1019 * Fork becomes much lighter when there are big shared or private
1020 * readonly mappings. The tradeoff is that copy_page_range is more
1021 * efficient than faulting.
1023 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1024 VM_PFNMAP
| VM_MIXEDMAP
))) {
1029 if (is_vm_hugetlb_page(vma
))
1030 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1032 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1034 * We do not free on error cases below as remove_vma
1035 * gets called on error from higher level routine
1037 ret
= track_pfn_copy(vma
);
1043 * We need to invalidate the secondary MMU mappings only when
1044 * there could be a permission downgrade on the ptes of the
1045 * parent mm. And a permission downgrade will only happen if
1046 * is_cow_mapping() returns true.
1048 is_cow
= is_cow_mapping(vma
->vm_flags
);
1052 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1056 dst_pgd
= pgd_offset(dst_mm
, addr
);
1057 src_pgd
= pgd_offset(src_mm
, addr
);
1059 next
= pgd_addr_end(addr
, end
);
1060 if (pgd_none_or_clear_bad(src_pgd
))
1062 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1063 vma
, addr
, next
))) {
1067 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1070 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1074 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1075 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1076 unsigned long addr
, unsigned long end
,
1077 struct zap_details
*details
)
1079 struct mm_struct
*mm
= tlb
->mm
;
1080 int force_flush
= 0;
1081 int rss
[NR_MM_COUNTERS
];
1088 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1090 arch_enter_lazy_mmu_mode();
1093 if (pte_none(ptent
)) {
1097 if (pte_present(ptent
)) {
1100 page
= vm_normal_page(vma
, addr
, ptent
);
1101 if (unlikely(details
) && page
) {
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1107 if (details
->check_mapping
&&
1108 details
->check_mapping
!= page
->mapping
)
1111 * Each page->index must be checked when
1112 * invalidating or truncating nonlinear.
1114 if (details
->nonlinear_vma
&&
1115 (page
->index
< details
->first_index
||
1116 page
->index
> details
->last_index
))
1119 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1121 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1122 if (unlikely(!page
))
1124 if (unlikely(details
) && details
->nonlinear_vma
1125 && linear_page_index(details
->nonlinear_vma
,
1126 addr
) != page
->index
) {
1127 pte_t ptfile
= pgoff_to_pte(page
->index
);
1128 if (pte_soft_dirty(ptent
))
1129 pte_file_mksoft_dirty(ptfile
);
1130 set_pte_at(mm
, addr
, pte
, ptfile
);
1133 rss
[MM_ANONPAGES
]--;
1135 if (pte_dirty(ptent
)) {
1137 set_page_dirty(page
);
1139 if (pte_young(ptent
) &&
1140 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1141 mark_page_accessed(page
);
1142 rss
[MM_FILEPAGES
]--;
1144 page_remove_rmap(page
);
1145 if (unlikely(page_mapcount(page
) < 0))
1146 print_bad_pte(vma
, addr
, ptent
, page
);
1147 if (unlikely(!__tlb_remove_page(tlb
, page
))) {
1154 * If details->check_mapping, we leave swap entries;
1155 * if details->nonlinear_vma, we leave file entries.
1157 if (unlikely(details
))
1159 if (pte_file(ptent
)) {
1160 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1161 print_bad_pte(vma
, addr
, ptent
, NULL
);
1163 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1165 if (!non_swap_entry(entry
))
1167 else if (is_migration_entry(entry
)) {
1170 page
= migration_entry_to_page(entry
);
1173 rss
[MM_ANONPAGES
]--;
1175 rss
[MM_FILEPAGES
]--;
1177 if (unlikely(!free_swap_and_cache(entry
)))
1178 print_bad_pte(vma
, addr
, ptent
, NULL
);
1180 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1181 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1183 add_mm_rss_vec(mm
, rss
);
1184 arch_leave_lazy_mmu_mode();
1186 /* Do the actual TLB flush before dropping ptl */
1188 unsigned long old_end
;
1191 * Flush the TLB just for the previous segment,
1192 * then update the range to be the remaining
1197 tlb_flush_mmu_tlbonly(tlb
);
1201 pte_unmap_unlock(start_pte
, ptl
);
1204 * If we forced a TLB flush (either due to running out of
1205 * batch buffers or because we needed to flush dirty TLB
1206 * entries before releasing the ptl), free the batched
1207 * memory too. Restart if we didn't do everything.
1211 tlb_flush_mmu_free(tlb
);
1220 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1221 struct vm_area_struct
*vma
, pud_t
*pud
,
1222 unsigned long addr
, unsigned long end
,
1223 struct zap_details
*details
)
1228 pmd
= pmd_offset(pud
, addr
);
1230 next
= pmd_addr_end(addr
, end
);
1231 if (pmd_trans_huge(*pmd
)) {
1232 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1233 #ifdef CONFIG_DEBUG_VM
1234 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1235 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1236 __func__
, addr
, end
,
1242 split_huge_page_pmd(vma
, addr
, pmd
);
1243 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1248 * Here there can be other concurrent MADV_DONTNEED or
1249 * trans huge page faults running, and if the pmd is
1250 * none or trans huge it can change under us. This is
1251 * because MADV_DONTNEED holds the mmap_sem in read
1254 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1256 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1259 } while (pmd
++, addr
= next
, addr
!= end
);
1264 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1265 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1266 unsigned long addr
, unsigned long end
,
1267 struct zap_details
*details
)
1272 pud
= pud_offset(pgd
, addr
);
1274 next
= pud_addr_end(addr
, end
);
1275 if (pud_none_or_clear_bad(pud
))
1277 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1278 } while (pud
++, addr
= next
, addr
!= end
);
1283 static void unmap_page_range(struct mmu_gather
*tlb
,
1284 struct vm_area_struct
*vma
,
1285 unsigned long addr
, unsigned long end
,
1286 struct zap_details
*details
)
1291 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1294 BUG_ON(addr
>= end
);
1295 mem_cgroup_uncharge_start();
1296 tlb_start_vma(tlb
, vma
);
1297 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1299 next
= pgd_addr_end(addr
, end
);
1300 if (pgd_none_or_clear_bad(pgd
))
1302 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1303 } while (pgd
++, addr
= next
, addr
!= end
);
1304 tlb_end_vma(tlb
, vma
);
1305 mem_cgroup_uncharge_end();
1309 static void unmap_single_vma(struct mmu_gather
*tlb
,
1310 struct vm_area_struct
*vma
, unsigned long start_addr
,
1311 unsigned long end_addr
,
1312 struct zap_details
*details
)
1314 unsigned long start
= max(vma
->vm_start
, start_addr
);
1317 if (start
>= vma
->vm_end
)
1319 end
= min(vma
->vm_end
, end_addr
);
1320 if (end
<= vma
->vm_start
)
1324 uprobe_munmap(vma
, start
, end
);
1326 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1327 untrack_pfn(vma
, 0, 0);
1330 if (unlikely(is_vm_hugetlb_page(vma
))) {
1332 * It is undesirable to test vma->vm_file as it
1333 * should be non-null for valid hugetlb area.
1334 * However, vm_file will be NULL in the error
1335 * cleanup path of mmap_region. When
1336 * hugetlbfs ->mmap method fails,
1337 * mmap_region() nullifies vma->vm_file
1338 * before calling this function to clean up.
1339 * Since no pte has actually been setup, it is
1340 * safe to do nothing in this case.
1343 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1344 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1345 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1348 unmap_page_range(tlb
, vma
, start
, end
, details
);
1353 * unmap_vmas - unmap a range of memory covered by a list of vma's
1354 * @tlb: address of the caller's struct mmu_gather
1355 * @vma: the starting vma
1356 * @start_addr: virtual address at which to start unmapping
1357 * @end_addr: virtual address at which to end unmapping
1359 * Unmap all pages in the vma list.
1361 * Only addresses between `start' and `end' will be unmapped.
1363 * The VMA list must be sorted in ascending virtual address order.
1365 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1366 * range after unmap_vmas() returns. So the only responsibility here is to
1367 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1368 * drops the lock and schedules.
1370 void unmap_vmas(struct mmu_gather
*tlb
,
1371 struct vm_area_struct
*vma
, unsigned long start_addr
,
1372 unsigned long end_addr
)
1374 struct mm_struct
*mm
= vma
->vm_mm
;
1376 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1377 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1378 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1379 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1383 * zap_page_range - remove user pages in a given range
1384 * @vma: vm_area_struct holding the applicable pages
1385 * @start: starting address of pages to zap
1386 * @size: number of bytes to zap
1387 * @details: details of nonlinear truncation or shared cache invalidation
1389 * Caller must protect the VMA list
1391 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1392 unsigned long size
, struct zap_details
*details
)
1394 struct mm_struct
*mm
= vma
->vm_mm
;
1395 struct mmu_gather tlb
;
1396 unsigned long end
= start
+ size
;
1399 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1400 update_hiwater_rss(mm
);
1401 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1402 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1403 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1404 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1405 tlb_finish_mmu(&tlb
, start
, end
);
1409 * zap_page_range_single - remove user pages in a given range
1410 * @vma: vm_area_struct holding the applicable pages
1411 * @address: starting address of pages to zap
1412 * @size: number of bytes to zap
1413 * @details: details of nonlinear truncation or shared cache invalidation
1415 * The range must fit into one VMA.
1417 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1418 unsigned long size
, struct zap_details
*details
)
1420 struct mm_struct
*mm
= vma
->vm_mm
;
1421 struct mmu_gather tlb
;
1422 unsigned long end
= address
+ size
;
1425 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1426 update_hiwater_rss(mm
);
1427 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1428 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1429 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1430 tlb_finish_mmu(&tlb
, address
, end
);
1434 * zap_vma_ptes - remove ptes mapping the vma
1435 * @vma: vm_area_struct holding ptes to be zapped
1436 * @address: starting address of pages to zap
1437 * @size: number of bytes to zap
1439 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1441 * The entire address range must be fully contained within the vma.
1443 * Returns 0 if successful.
1445 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1448 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1449 !(vma
->vm_flags
& VM_PFNMAP
))
1451 zap_page_range_single(vma
, address
, size
, NULL
);
1454 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1456 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1459 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1460 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1462 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1464 VM_BUG_ON(pmd_trans_huge(*pmd
));
1465 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1472 * This is the old fallback for page remapping.
1474 * For historical reasons, it only allows reserved pages. Only
1475 * old drivers should use this, and they needed to mark their
1476 * pages reserved for the old functions anyway.
1478 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1479 struct page
*page
, pgprot_t prot
)
1481 struct mm_struct
*mm
= vma
->vm_mm
;
1490 flush_dcache_page(page
);
1491 pte
= get_locked_pte(mm
, addr
, &ptl
);
1495 if (!pte_none(*pte
))
1498 /* Ok, finally just insert the thing.. */
1500 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
1501 page_add_file_rmap(page
);
1502 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1505 pte_unmap_unlock(pte
, ptl
);
1508 pte_unmap_unlock(pte
, ptl
);
1514 * vm_insert_page - insert single page into user vma
1515 * @vma: user vma to map to
1516 * @addr: target user address of this page
1517 * @page: source kernel page
1519 * This allows drivers to insert individual pages they've allocated
1522 * The page has to be a nice clean _individual_ kernel allocation.
1523 * If you allocate a compound page, you need to have marked it as
1524 * such (__GFP_COMP), or manually just split the page up yourself
1525 * (see split_page()).
1527 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1528 * took an arbitrary page protection parameter. This doesn't allow
1529 * that. Your vma protection will have to be set up correctly, which
1530 * means that if you want a shared writable mapping, you'd better
1531 * ask for a shared writable mapping!
1533 * The page does not need to be reserved.
1535 * Usually this function is called from f_op->mmap() handler
1536 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1537 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1538 * function from other places, for example from page-fault handler.
1540 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1543 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1545 if (!page_count(page
))
1547 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1548 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1549 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1550 vma
->vm_flags
|= VM_MIXEDMAP
;
1552 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1554 EXPORT_SYMBOL(vm_insert_page
);
1556 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1557 unsigned long pfn
, pgprot_t prot
)
1559 struct mm_struct
*mm
= vma
->vm_mm
;
1565 pte
= get_locked_pte(mm
, addr
, &ptl
);
1569 if (!pte_none(*pte
))
1572 /* Ok, finally just insert the thing.. */
1573 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1574 set_pte_at(mm
, addr
, pte
, entry
);
1575 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1579 pte_unmap_unlock(pte
, ptl
);
1585 * vm_insert_pfn - insert single pfn into user vma
1586 * @vma: user vma to map to
1587 * @addr: target user address of this page
1588 * @pfn: source kernel pfn
1590 * Similar to vm_insert_page, this allows drivers to insert individual pages
1591 * they've allocated into a user vma. Same comments apply.
1593 * This function should only be called from a vm_ops->fault handler, and
1594 * in that case the handler should return NULL.
1596 * vma cannot be a COW mapping.
1598 * As this is called only for pages that do not currently exist, we
1599 * do not need to flush old virtual caches or the TLB.
1601 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1605 pgprot_t pgprot
= vma
->vm_page_prot
;
1607 * Technically, architectures with pte_special can avoid all these
1608 * restrictions (same for remap_pfn_range). However we would like
1609 * consistency in testing and feature parity among all, so we should
1610 * try to keep these invariants in place for everybody.
1612 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1613 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1614 (VM_PFNMAP
|VM_MIXEDMAP
));
1615 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1616 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1618 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1620 if (track_pfn_insert(vma
, &pgprot
, pfn
))
1623 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
1627 EXPORT_SYMBOL(vm_insert_pfn
);
1629 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1632 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1634 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1638 * If we don't have pte special, then we have to use the pfn_valid()
1639 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1640 * refcount the page if pfn_valid is true (hence insert_page rather
1641 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1642 * without pte special, it would there be refcounted as a normal page.
1644 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1647 page
= pfn_to_page(pfn
);
1648 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1650 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1652 EXPORT_SYMBOL(vm_insert_mixed
);
1655 * maps a range of physical memory into the requested pages. the old
1656 * mappings are removed. any references to nonexistent pages results
1657 * in null mappings (currently treated as "copy-on-access")
1659 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1660 unsigned long addr
, unsigned long end
,
1661 unsigned long pfn
, pgprot_t prot
)
1666 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1669 arch_enter_lazy_mmu_mode();
1671 BUG_ON(!pte_none(*pte
));
1672 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1674 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1675 arch_leave_lazy_mmu_mode();
1676 pte_unmap_unlock(pte
- 1, ptl
);
1680 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1681 unsigned long addr
, unsigned long end
,
1682 unsigned long pfn
, pgprot_t prot
)
1687 pfn
-= addr
>> PAGE_SHIFT
;
1688 pmd
= pmd_alloc(mm
, pud
, addr
);
1691 VM_BUG_ON(pmd_trans_huge(*pmd
));
1693 next
= pmd_addr_end(addr
, end
);
1694 if (remap_pte_range(mm
, pmd
, addr
, next
,
1695 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1697 } while (pmd
++, addr
= next
, addr
!= end
);
1701 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1702 unsigned long addr
, unsigned long end
,
1703 unsigned long pfn
, pgprot_t prot
)
1708 pfn
-= addr
>> PAGE_SHIFT
;
1709 pud
= pud_alloc(mm
, pgd
, addr
);
1713 next
= pud_addr_end(addr
, end
);
1714 if (remap_pmd_range(mm
, pud
, addr
, next
,
1715 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1717 } while (pud
++, addr
= next
, addr
!= end
);
1722 * remap_pfn_range - remap kernel memory to userspace
1723 * @vma: user vma to map to
1724 * @addr: target user address to start at
1725 * @pfn: physical address of kernel memory
1726 * @size: size of map area
1727 * @prot: page protection flags for this mapping
1729 * Note: this is only safe if the mm semaphore is held when called.
1731 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1732 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1736 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1737 struct mm_struct
*mm
= vma
->vm_mm
;
1741 * Physically remapped pages are special. Tell the
1742 * rest of the world about it:
1743 * VM_IO tells people not to look at these pages
1744 * (accesses can have side effects).
1745 * VM_PFNMAP tells the core MM that the base pages are just
1746 * raw PFN mappings, and do not have a "struct page" associated
1749 * Disable vma merging and expanding with mremap().
1751 * Omit vma from core dump, even when VM_IO turned off.
1753 * There's a horrible special case to handle copy-on-write
1754 * behaviour that some programs depend on. We mark the "original"
1755 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1756 * See vm_normal_page() for details.
1758 if (is_cow_mapping(vma
->vm_flags
)) {
1759 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1761 vma
->vm_pgoff
= pfn
;
1764 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
1768 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1770 BUG_ON(addr
>= end
);
1771 pfn
-= addr
>> PAGE_SHIFT
;
1772 pgd
= pgd_offset(mm
, addr
);
1773 flush_cache_range(vma
, addr
, end
);
1775 next
= pgd_addr_end(addr
, end
);
1776 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1777 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1780 } while (pgd
++, addr
= next
, addr
!= end
);
1783 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
1787 EXPORT_SYMBOL(remap_pfn_range
);
1790 * vm_iomap_memory - remap memory to userspace
1791 * @vma: user vma to map to
1792 * @start: start of area
1793 * @len: size of area
1795 * This is a simplified io_remap_pfn_range() for common driver use. The
1796 * driver just needs to give us the physical memory range to be mapped,
1797 * we'll figure out the rest from the vma information.
1799 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1800 * whatever write-combining details or similar.
1802 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1804 unsigned long vm_len
, pfn
, pages
;
1806 /* Check that the physical memory area passed in looks valid */
1807 if (start
+ len
< start
)
1810 * You *really* shouldn't map things that aren't page-aligned,
1811 * but we've historically allowed it because IO memory might
1812 * just have smaller alignment.
1814 len
+= start
& ~PAGE_MASK
;
1815 pfn
= start
>> PAGE_SHIFT
;
1816 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1817 if (pfn
+ pages
< pfn
)
1820 /* We start the mapping 'vm_pgoff' pages into the area */
1821 if (vma
->vm_pgoff
> pages
)
1823 pfn
+= vma
->vm_pgoff
;
1824 pages
-= vma
->vm_pgoff
;
1826 /* Can we fit all of the mapping? */
1827 vm_len
= vma
->vm_end
- vma
->vm_start
;
1828 if (vm_len
>> PAGE_SHIFT
> pages
)
1831 /* Ok, let it rip */
1832 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1834 EXPORT_SYMBOL(vm_iomap_memory
);
1836 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1837 unsigned long addr
, unsigned long end
,
1838 pte_fn_t fn
, void *data
)
1843 spinlock_t
*uninitialized_var(ptl
);
1845 pte
= (mm
== &init_mm
) ?
1846 pte_alloc_kernel(pmd
, addr
) :
1847 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1851 BUG_ON(pmd_huge(*pmd
));
1853 arch_enter_lazy_mmu_mode();
1855 token
= pmd_pgtable(*pmd
);
1858 err
= fn(pte
++, token
, addr
, data
);
1861 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1863 arch_leave_lazy_mmu_mode();
1866 pte_unmap_unlock(pte
-1, ptl
);
1870 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1871 unsigned long addr
, unsigned long end
,
1872 pte_fn_t fn
, void *data
)
1878 BUG_ON(pud_huge(*pud
));
1880 pmd
= pmd_alloc(mm
, pud
, addr
);
1884 next
= pmd_addr_end(addr
, end
);
1885 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1888 } while (pmd
++, addr
= next
, addr
!= end
);
1892 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1893 unsigned long addr
, unsigned long end
,
1894 pte_fn_t fn
, void *data
)
1900 pud
= pud_alloc(mm
, pgd
, addr
);
1904 next
= pud_addr_end(addr
, end
);
1905 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1908 } while (pud
++, addr
= next
, addr
!= end
);
1913 * Scan a region of virtual memory, filling in page tables as necessary
1914 * and calling a provided function on each leaf page table.
1916 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1917 unsigned long size
, pte_fn_t fn
, void *data
)
1921 unsigned long end
= addr
+ size
;
1924 BUG_ON(addr
>= end
);
1925 pgd
= pgd_offset(mm
, addr
);
1927 next
= pgd_addr_end(addr
, end
);
1928 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1931 } while (pgd
++, addr
= next
, addr
!= end
);
1935 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1938 * handle_pte_fault chooses page fault handler according to an entry
1939 * which was read non-atomically. Before making any commitment, on
1940 * those architectures or configurations (e.g. i386 with PAE) which
1941 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1942 * must check under lock before unmapping the pte and proceeding
1943 * (but do_wp_page is only called after already making such a check;
1944 * and do_anonymous_page can safely check later on).
1946 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1947 pte_t
*page_table
, pte_t orig_pte
)
1950 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1951 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1952 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1954 same
= pte_same(*page_table
, orig_pte
);
1958 pte_unmap(page_table
);
1962 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1964 debug_dma_assert_idle(src
);
1967 * If the source page was a PFN mapping, we don't have
1968 * a "struct page" for it. We do a best-effort copy by
1969 * just copying from the original user address. If that
1970 * fails, we just zero-fill it. Live with it.
1972 if (unlikely(!src
)) {
1973 void *kaddr
= kmap_atomic(dst
);
1974 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1977 * This really shouldn't fail, because the page is there
1978 * in the page tables. But it might just be unreadable,
1979 * in which case we just give up and fill the result with
1982 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1984 kunmap_atomic(kaddr
);
1985 flush_dcache_page(dst
);
1987 copy_user_highpage(dst
, src
, va
, vma
);
1991 * Notify the address space that the page is about to become writable so that
1992 * it can prohibit this or wait for the page to get into an appropriate state.
1994 * We do this without the lock held, so that it can sleep if it needs to.
1996 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
1997 unsigned long address
)
1999 struct vm_fault vmf
;
2002 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2003 vmf
.pgoff
= page
->index
;
2004 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2007 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2008 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2010 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2012 if (!page
->mapping
) {
2014 return 0; /* retry */
2016 ret
|= VM_FAULT_LOCKED
;
2018 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2023 * This routine handles present pages, when users try to write
2024 * to a shared page. It is done by copying the page to a new address
2025 * and decrementing the shared-page counter for the old page.
2027 * Note that this routine assumes that the protection checks have been
2028 * done by the caller (the low-level page fault routine in most cases).
2029 * Thus we can safely just mark it writable once we've done any necessary
2032 * We also mark the page dirty at this point even though the page will
2033 * change only once the write actually happens. This avoids a few races,
2034 * and potentially makes it more efficient.
2036 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2037 * but allow concurrent faults), with pte both mapped and locked.
2038 * We return with mmap_sem still held, but pte unmapped and unlocked.
2040 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2041 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2042 spinlock_t
*ptl
, pte_t orig_pte
)
2045 struct page
*old_page
, *new_page
= NULL
;
2048 int page_mkwrite
= 0;
2049 struct page
*dirty_page
= NULL
;
2050 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2051 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2053 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2056 * VM_MIXEDMAP !pfn_valid() case
2058 * We should not cow pages in a shared writeable mapping.
2059 * Just mark the pages writable as we can't do any dirty
2060 * accounting on raw pfn maps.
2062 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2063 (VM_WRITE
|VM_SHARED
))
2069 * Take out anonymous pages first, anonymous shared vmas are
2070 * not dirty accountable.
2072 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2073 if (!trylock_page(old_page
)) {
2074 page_cache_get(old_page
);
2075 pte_unmap_unlock(page_table
, ptl
);
2076 lock_page(old_page
);
2077 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2079 if (!pte_same(*page_table
, orig_pte
)) {
2080 unlock_page(old_page
);
2083 page_cache_release(old_page
);
2085 if (reuse_swap_page(old_page
)) {
2087 * The page is all ours. Move it to our anon_vma so
2088 * the rmap code will not search our parent or siblings.
2089 * Protected against the rmap code by the page lock.
2091 page_move_anon_rmap(old_page
, vma
, address
);
2092 unlock_page(old_page
);
2095 unlock_page(old_page
);
2096 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2097 (VM_WRITE
|VM_SHARED
))) {
2099 * Only catch write-faults on shared writable pages,
2100 * read-only shared pages can get COWed by
2101 * get_user_pages(.write=1, .force=1).
2103 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2105 page_cache_get(old_page
);
2106 pte_unmap_unlock(page_table
, ptl
);
2107 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2108 if (unlikely(!tmp
|| (tmp
&
2109 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2110 page_cache_release(old_page
);
2114 * Since we dropped the lock we need to revalidate
2115 * the PTE as someone else may have changed it. If
2116 * they did, we just return, as we can count on the
2117 * MMU to tell us if they didn't also make it writable.
2119 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2121 if (!pte_same(*page_table
, orig_pte
)) {
2122 unlock_page(old_page
);
2128 dirty_page
= old_page
;
2129 get_page(dirty_page
);
2133 * Clear the pages cpupid information as the existing
2134 * information potentially belongs to a now completely
2135 * unrelated process.
2138 page_cpupid_xchg_last(old_page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2140 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2141 entry
= pte_mkyoung(orig_pte
);
2142 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2143 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2144 update_mmu_cache(vma
, address
, page_table
);
2145 pte_unmap_unlock(page_table
, ptl
);
2146 ret
|= VM_FAULT_WRITE
;
2152 * Yes, Virginia, this is actually required to prevent a race
2153 * with clear_page_dirty_for_io() from clearing the page dirty
2154 * bit after it clear all dirty ptes, but before a racing
2155 * do_wp_page installs a dirty pte.
2157 * do_shared_fault is protected similarly.
2159 if (!page_mkwrite
) {
2160 wait_on_page_locked(dirty_page
);
2161 set_page_dirty_balance(dirty_page
);
2162 /* file_update_time outside page_lock */
2164 file_update_time(vma
->vm_file
);
2166 put_page(dirty_page
);
2168 struct address_space
*mapping
= dirty_page
->mapping
;
2170 set_page_dirty(dirty_page
);
2171 unlock_page(dirty_page
);
2172 page_cache_release(dirty_page
);
2175 * Some device drivers do not set page.mapping
2176 * but still dirty their pages
2178 balance_dirty_pages_ratelimited(mapping
);
2186 * Ok, we need to copy. Oh, well..
2188 page_cache_get(old_page
);
2190 pte_unmap_unlock(page_table
, ptl
);
2192 if (unlikely(anon_vma_prepare(vma
)))
2195 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2196 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2200 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2203 cow_user_page(new_page
, old_page
, address
, vma
);
2205 __SetPageUptodate(new_page
);
2207 if (mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
))
2210 mmun_start
= address
& PAGE_MASK
;
2211 mmun_end
= mmun_start
+ PAGE_SIZE
;
2212 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2215 * Re-check the pte - we dropped the lock
2217 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2218 if (likely(pte_same(*page_table
, orig_pte
))) {
2220 if (!PageAnon(old_page
)) {
2221 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2222 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2225 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2226 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2227 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2228 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2230 * Clear the pte entry and flush it first, before updating the
2231 * pte with the new entry. This will avoid a race condition
2232 * seen in the presence of one thread doing SMC and another
2235 ptep_clear_flush(vma
, address
, page_table
);
2236 page_add_new_anon_rmap(new_page
, vma
, address
);
2238 * We call the notify macro here because, when using secondary
2239 * mmu page tables (such as kvm shadow page tables), we want the
2240 * new page to be mapped directly into the secondary page table.
2242 set_pte_at_notify(mm
, address
, page_table
, entry
);
2243 update_mmu_cache(vma
, address
, page_table
);
2246 * Only after switching the pte to the new page may
2247 * we remove the mapcount here. Otherwise another
2248 * process may come and find the rmap count decremented
2249 * before the pte is switched to the new page, and
2250 * "reuse" the old page writing into it while our pte
2251 * here still points into it and can be read by other
2254 * The critical issue is to order this
2255 * page_remove_rmap with the ptp_clear_flush above.
2256 * Those stores are ordered by (if nothing else,)
2257 * the barrier present in the atomic_add_negative
2258 * in page_remove_rmap.
2260 * Then the TLB flush in ptep_clear_flush ensures that
2261 * no process can access the old page before the
2262 * decremented mapcount is visible. And the old page
2263 * cannot be reused until after the decremented
2264 * mapcount is visible. So transitively, TLBs to
2265 * old page will be flushed before it can be reused.
2267 page_remove_rmap(old_page
);
2270 /* Free the old page.. */
2271 new_page
= old_page
;
2272 ret
|= VM_FAULT_WRITE
;
2274 mem_cgroup_uncharge_page(new_page
);
2277 page_cache_release(new_page
);
2279 pte_unmap_unlock(page_table
, ptl
);
2280 if (mmun_end
> mmun_start
)
2281 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2284 * Don't let another task, with possibly unlocked vma,
2285 * keep the mlocked page.
2287 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2288 lock_page(old_page
); /* LRU manipulation */
2289 munlock_vma_page(old_page
);
2290 unlock_page(old_page
);
2292 page_cache_release(old_page
);
2296 page_cache_release(new_page
);
2299 page_cache_release(old_page
);
2300 return VM_FAULT_OOM
;
2303 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2304 unsigned long start_addr
, unsigned long end_addr
,
2305 struct zap_details
*details
)
2307 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2310 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2311 struct zap_details
*details
)
2313 struct vm_area_struct
*vma
;
2314 pgoff_t vba
, vea
, zba
, zea
;
2316 vma_interval_tree_foreach(vma
, root
,
2317 details
->first_index
, details
->last_index
) {
2319 vba
= vma
->vm_pgoff
;
2320 vea
= vba
+ vma_pages(vma
) - 1;
2321 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2322 zba
= details
->first_index
;
2325 zea
= details
->last_index
;
2329 unmap_mapping_range_vma(vma
,
2330 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2331 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2336 static inline void unmap_mapping_range_list(struct list_head
*head
,
2337 struct zap_details
*details
)
2339 struct vm_area_struct
*vma
;
2342 * In nonlinear VMAs there is no correspondence between virtual address
2343 * offset and file offset. So we must perform an exhaustive search
2344 * across *all* the pages in each nonlinear VMA, not just the pages
2345 * whose virtual address lies outside the file truncation point.
2347 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2348 details
->nonlinear_vma
= vma
;
2349 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2354 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2355 * @mapping: the address space containing mmaps to be unmapped.
2356 * @holebegin: byte in first page to unmap, relative to the start of
2357 * the underlying file. This will be rounded down to a PAGE_SIZE
2358 * boundary. Note that this is different from truncate_pagecache(), which
2359 * must keep the partial page. In contrast, we must get rid of
2361 * @holelen: size of prospective hole in bytes. This will be rounded
2362 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2364 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2365 * but 0 when invalidating pagecache, don't throw away private data.
2367 void unmap_mapping_range(struct address_space
*mapping
,
2368 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2370 struct zap_details details
;
2371 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2372 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2374 /* Check for overflow. */
2375 if (sizeof(holelen
) > sizeof(hlen
)) {
2377 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2378 if (holeend
& ~(long long)ULONG_MAX
)
2379 hlen
= ULONG_MAX
- hba
+ 1;
2382 details
.check_mapping
= even_cows
? NULL
: mapping
;
2383 details
.nonlinear_vma
= NULL
;
2384 details
.first_index
= hba
;
2385 details
.last_index
= hba
+ hlen
- 1;
2386 if (details
.last_index
< details
.first_index
)
2387 details
.last_index
= ULONG_MAX
;
2390 mutex_lock(&mapping
->i_mmap_mutex
);
2391 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2392 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2393 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2394 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2395 mutex_unlock(&mapping
->i_mmap_mutex
);
2397 EXPORT_SYMBOL(unmap_mapping_range
);
2400 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401 * but allow concurrent faults), and pte mapped but not yet locked.
2402 * We return with mmap_sem still held, but pte unmapped and unlocked.
2404 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2405 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2406 unsigned int flags
, pte_t orig_pte
)
2409 struct page
*page
, *swapcache
;
2413 struct mem_cgroup
*ptr
;
2417 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2420 entry
= pte_to_swp_entry(orig_pte
);
2421 if (unlikely(non_swap_entry(entry
))) {
2422 if (is_migration_entry(entry
)) {
2423 migration_entry_wait(mm
, pmd
, address
);
2424 } else if (is_hwpoison_entry(entry
)) {
2425 ret
= VM_FAULT_HWPOISON
;
2427 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2428 ret
= VM_FAULT_SIGBUS
;
2432 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2433 page
= lookup_swap_cache(entry
);
2435 page
= swapin_readahead(entry
,
2436 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2439 * Back out if somebody else faulted in this pte
2440 * while we released the pte lock.
2442 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2443 if (likely(pte_same(*page_table
, orig_pte
)))
2445 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2449 /* Had to read the page from swap area: Major fault */
2450 ret
= VM_FAULT_MAJOR
;
2451 count_vm_event(PGMAJFAULT
);
2452 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2453 } else if (PageHWPoison(page
)) {
2455 * hwpoisoned dirty swapcache pages are kept for killing
2456 * owner processes (which may be unknown at hwpoison time)
2458 ret
= VM_FAULT_HWPOISON
;
2459 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2465 locked
= lock_page_or_retry(page
, mm
, flags
);
2467 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2469 ret
|= VM_FAULT_RETRY
;
2474 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2475 * release the swapcache from under us. The page pin, and pte_same
2476 * test below, are not enough to exclude that. Even if it is still
2477 * swapcache, we need to check that the page's swap has not changed.
2479 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2482 page
= ksm_might_need_to_copy(page
, vma
, address
);
2483 if (unlikely(!page
)) {
2489 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2495 * Back out if somebody else already faulted in this pte.
2497 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2498 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2501 if (unlikely(!PageUptodate(page
))) {
2502 ret
= VM_FAULT_SIGBUS
;
2507 * The page isn't present yet, go ahead with the fault.
2509 * Be careful about the sequence of operations here.
2510 * To get its accounting right, reuse_swap_page() must be called
2511 * while the page is counted on swap but not yet in mapcount i.e.
2512 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2513 * must be called after the swap_free(), or it will never succeed.
2514 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2515 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2516 * in page->private. In this case, a record in swap_cgroup is silently
2517 * discarded at swap_free().
2520 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2521 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
2522 pte
= mk_pte(page
, vma
->vm_page_prot
);
2523 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
2524 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2525 flags
&= ~FAULT_FLAG_WRITE
;
2526 ret
|= VM_FAULT_WRITE
;
2529 flush_icache_page(vma
, page
);
2530 if (pte_swp_soft_dirty(orig_pte
))
2531 pte
= pte_mksoft_dirty(pte
);
2532 set_pte_at(mm
, address
, page_table
, pte
);
2533 if (page
== swapcache
)
2534 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
2535 else /* ksm created a completely new copy */
2536 page_add_new_anon_rmap(page
, vma
, address
);
2537 /* It's better to call commit-charge after rmap is established */
2538 mem_cgroup_commit_charge_swapin(page
, ptr
);
2541 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2542 try_to_free_swap(page
);
2544 if (page
!= swapcache
) {
2546 * Hold the lock to avoid the swap entry to be reused
2547 * until we take the PT lock for the pte_same() check
2548 * (to avoid false positives from pte_same). For
2549 * further safety release the lock after the swap_free
2550 * so that the swap count won't change under a
2551 * parallel locked swapcache.
2553 unlock_page(swapcache
);
2554 page_cache_release(swapcache
);
2557 if (flags
& FAULT_FLAG_WRITE
) {
2558 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2559 if (ret
& VM_FAULT_ERROR
)
2560 ret
&= VM_FAULT_ERROR
;
2564 /* No need to invalidate - it was non-present before */
2565 update_mmu_cache(vma
, address
, page_table
);
2567 pte_unmap_unlock(page_table
, ptl
);
2571 mem_cgroup_cancel_charge_swapin(ptr
);
2572 pte_unmap_unlock(page_table
, ptl
);
2576 page_cache_release(page
);
2577 if (page
!= swapcache
) {
2578 unlock_page(swapcache
);
2579 page_cache_release(swapcache
);
2585 * This is like a special single-page "expand_{down|up}wards()",
2586 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2587 * doesn't hit another vma.
2589 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2591 address
&= PAGE_MASK
;
2592 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2593 struct vm_area_struct
*prev
= vma
->vm_prev
;
2596 * Is there a mapping abutting this one below?
2598 * That's only ok if it's the same stack mapping
2599 * that has gotten split..
2601 if (prev
&& prev
->vm_end
== address
)
2602 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2604 expand_downwards(vma
, address
- PAGE_SIZE
);
2606 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2607 struct vm_area_struct
*next
= vma
->vm_next
;
2609 /* As VM_GROWSDOWN but s/below/above/ */
2610 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2611 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2613 expand_upwards(vma
, address
+ PAGE_SIZE
);
2619 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2620 * but allow concurrent faults), and pte mapped but not yet locked.
2621 * We return with mmap_sem still held, but pte unmapped and unlocked.
2623 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2624 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2631 pte_unmap(page_table
);
2633 /* Check if we need to add a guard page to the stack */
2634 if (check_stack_guard_page(vma
, address
) < 0)
2635 return VM_FAULT_SIGBUS
;
2637 /* Use the zero-page for reads */
2638 if (!(flags
& FAULT_FLAG_WRITE
)) {
2639 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
2640 vma
->vm_page_prot
));
2641 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2642 if (!pte_none(*page_table
))
2647 /* Allocate our own private page. */
2648 if (unlikely(anon_vma_prepare(vma
)))
2650 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2654 * The memory barrier inside __SetPageUptodate makes sure that
2655 * preceeding stores to the page contents become visible before
2656 * the set_pte_at() write.
2658 __SetPageUptodate(page
);
2660 if (mem_cgroup_charge_anon(page
, mm
, GFP_KERNEL
))
2663 entry
= mk_pte(page
, vma
->vm_page_prot
);
2664 if (vma
->vm_flags
& VM_WRITE
)
2665 entry
= pte_mkwrite(pte_mkdirty(entry
));
2667 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2668 if (!pte_none(*page_table
))
2671 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2672 page_add_new_anon_rmap(page
, vma
, address
);
2674 set_pte_at(mm
, address
, page_table
, entry
);
2676 /* No need to invalidate - it was non-present before */
2677 update_mmu_cache(vma
, address
, page_table
);
2679 pte_unmap_unlock(page_table
, ptl
);
2682 mem_cgroup_uncharge_page(page
);
2683 page_cache_release(page
);
2686 page_cache_release(page
);
2688 return VM_FAULT_OOM
;
2691 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
2692 pgoff_t pgoff
, unsigned int flags
, struct page
**page
)
2694 struct vm_fault vmf
;
2697 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2702 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2703 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2706 if (unlikely(PageHWPoison(vmf
.page
))) {
2707 if (ret
& VM_FAULT_LOCKED
)
2708 unlock_page(vmf
.page
);
2709 page_cache_release(vmf
.page
);
2710 return VM_FAULT_HWPOISON
;
2713 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2714 lock_page(vmf
.page
);
2716 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
2723 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2725 * @vma: virtual memory area
2726 * @address: user virtual address
2727 * @page: page to map
2728 * @pte: pointer to target page table entry
2729 * @write: true, if new entry is writable
2730 * @anon: true, if it's anonymous page
2732 * Caller must hold page table lock relevant for @pte.
2734 * Target users are page handler itself and implementations of
2735 * vm_ops->map_pages.
2737 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
2738 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
2742 flush_icache_page(vma
, page
);
2743 entry
= mk_pte(page
, vma
->vm_page_prot
);
2745 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2746 else if (pte_file(*pte
) && pte_file_soft_dirty(*pte
))
2747 pte_mksoft_dirty(entry
);
2749 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2750 page_add_new_anon_rmap(page
, vma
, address
);
2752 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
2753 page_add_file_rmap(page
);
2755 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
2757 /* no need to invalidate: a not-present page won't be cached */
2758 update_mmu_cache(vma
, address
, pte
);
2761 static unsigned long fault_around_bytes
= 65536;
2764 * fault_around_pages() and fault_around_mask() round down fault_around_bytes
2765 * to nearest page order. It's what do_fault_around() expects to see.
2767 static inline unsigned long fault_around_pages(void)
2769 return rounddown_pow_of_two(fault_around_bytes
) / PAGE_SIZE
;
2772 static inline unsigned long fault_around_mask(void)
2774 return ~(rounddown_pow_of_two(fault_around_bytes
) - 1) & PAGE_MASK
;
2778 #ifdef CONFIG_DEBUG_FS
2779 static int fault_around_bytes_get(void *data
, u64
*val
)
2781 *val
= fault_around_bytes
;
2785 static int fault_around_bytes_set(void *data
, u64 val
)
2787 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
2789 fault_around_bytes
= val
;
2792 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
2793 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
2795 static int __init
fault_around_debugfs(void)
2799 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
2800 &fault_around_bytes_fops
);
2802 pr_warn("Failed to create fault_around_bytes in debugfs");
2805 late_initcall(fault_around_debugfs
);
2809 * do_fault_around() tries to map few pages around the fault address. The hope
2810 * is that the pages will be needed soon and this will lower the number of
2813 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2814 * not ready to be mapped: not up-to-date, locked, etc.
2816 * This function is called with the page table lock taken. In the split ptlock
2817 * case the page table lock only protects only those entries which belong to
2818 * the page table corresponding to the fault address.
2820 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2823 * fault_around_pages() defines how many pages we'll try to map.
2824 * do_fault_around() expects it to return a power of two less than or equal to
2827 * The virtual address of the area that we map is naturally aligned to the
2828 * fault_around_pages() value (and therefore to page order). This way it's
2829 * easier to guarantee that we don't cross page table boundaries.
2831 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
2832 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
2834 unsigned long start_addr
;
2836 struct vm_fault vmf
;
2839 start_addr
= max(address
& fault_around_mask(), vma
->vm_start
);
2840 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
2845 * max_pgoff is either end of page table or end of vma
2846 * or fault_around_pages() from pgoff, depending what is nearest.
2848 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
2850 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
2851 pgoff
+ fault_around_pages() - 1);
2853 /* Check if it makes any sense to call ->map_pages */
2854 while (!pte_none(*pte
)) {
2855 if (++pgoff
> max_pgoff
)
2857 start_addr
+= PAGE_SIZE
;
2858 if (start_addr
>= vma
->vm_end
)
2863 vmf
.virtual_address
= (void __user
*) start_addr
;
2866 vmf
.max_pgoff
= max_pgoff
;
2868 vma
->vm_ops
->map_pages(vma
, &vmf
);
2871 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2872 unsigned long address
, pmd_t
*pmd
,
2873 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2875 struct page
*fault_page
;
2881 * Let's call ->map_pages() first and use ->fault() as fallback
2882 * if page by the offset is not ready to be mapped (cold cache or
2885 if (vma
->vm_ops
->map_pages
&& fault_around_pages() > 1) {
2886 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2887 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
2888 if (!pte_same(*pte
, orig_pte
))
2890 pte_unmap_unlock(pte
, ptl
);
2893 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2894 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2897 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2898 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2899 pte_unmap_unlock(pte
, ptl
);
2900 unlock_page(fault_page
);
2901 page_cache_release(fault_page
);
2904 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
2905 unlock_page(fault_page
);
2907 pte_unmap_unlock(pte
, ptl
);
2911 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2912 unsigned long address
, pmd_t
*pmd
,
2913 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2915 struct page
*fault_page
, *new_page
;
2920 if (unlikely(anon_vma_prepare(vma
)))
2921 return VM_FAULT_OOM
;
2923 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2925 return VM_FAULT_OOM
;
2927 if (mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
)) {
2928 page_cache_release(new_page
);
2929 return VM_FAULT_OOM
;
2932 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2933 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2936 copy_user_highpage(new_page
, fault_page
, address
, vma
);
2937 __SetPageUptodate(new_page
);
2939 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2940 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2941 pte_unmap_unlock(pte
, ptl
);
2942 unlock_page(fault_page
);
2943 page_cache_release(fault_page
);
2946 do_set_pte(vma
, address
, new_page
, pte
, true, true);
2947 pte_unmap_unlock(pte
, ptl
);
2948 unlock_page(fault_page
);
2949 page_cache_release(fault_page
);
2952 mem_cgroup_uncharge_page(new_page
);
2953 page_cache_release(new_page
);
2957 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2958 unsigned long address
, pmd_t
*pmd
,
2959 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2961 struct page
*fault_page
;
2962 struct address_space
*mapping
;
2968 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
2969 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
2973 * Check if the backing address space wants to know that the page is
2974 * about to become writable
2976 if (vma
->vm_ops
->page_mkwrite
) {
2977 unlock_page(fault_page
);
2978 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
2979 if (unlikely(!tmp
||
2980 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2981 page_cache_release(fault_page
);
2986 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2987 if (unlikely(!pte_same(*pte
, orig_pte
))) {
2988 pte_unmap_unlock(pte
, ptl
);
2989 unlock_page(fault_page
);
2990 page_cache_release(fault_page
);
2993 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
2994 pte_unmap_unlock(pte
, ptl
);
2996 if (set_page_dirty(fault_page
))
2998 mapping
= fault_page
->mapping
;
2999 unlock_page(fault_page
);
3000 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3002 * Some device drivers do not set page.mapping but still
3005 balance_dirty_pages_ratelimited(mapping
);
3008 /* file_update_time outside page_lock */
3009 if (vma
->vm_file
&& !vma
->vm_ops
->page_mkwrite
)
3010 file_update_time(vma
->vm_file
);
3015 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3016 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3017 unsigned int flags
, pte_t orig_pte
)
3019 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3020 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3022 pte_unmap(page_table
);
3023 if (!(flags
& FAULT_FLAG_WRITE
))
3024 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3026 if (!(vma
->vm_flags
& VM_SHARED
))
3027 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3029 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3033 * Fault of a previously existing named mapping. Repopulate the pte
3034 * from the encoded file_pte if possible. This enables swappable
3037 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3038 * but allow concurrent faults), and pte mapped but not yet locked.
3039 * We return with mmap_sem still held, but pte unmapped and unlocked.
3041 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3042 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3043 unsigned int flags
, pte_t orig_pte
)
3047 flags
|= FAULT_FLAG_NONLINEAR
;
3049 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3052 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3054 * Page table corrupted: show pte and kill process.
3056 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3057 return VM_FAULT_SIGBUS
;
3060 pgoff
= pte_to_pgoff(orig_pte
);
3061 if (!(flags
& FAULT_FLAG_WRITE
))
3062 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3064 if (!(vma
->vm_flags
& VM_SHARED
))
3065 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3067 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3070 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3071 unsigned long addr
, int page_nid
,
3076 count_vm_numa_event(NUMA_HINT_FAULTS
);
3077 if (page_nid
== numa_node_id()) {
3078 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3079 *flags
|= TNF_FAULT_LOCAL
;
3082 return mpol_misplaced(page
, vma
, addr
);
3085 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3086 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3088 struct page
*page
= NULL
;
3093 bool migrated
= false;
3097 * The "pte" at this point cannot be used safely without
3098 * validation through pte_unmap_same(). It's of NUMA type but
3099 * the pfn may be screwed if the read is non atomic.
3101 * ptep_modify_prot_start is not called as this is clearing
3102 * the _PAGE_NUMA bit and it is not really expected that there
3103 * would be concurrent hardware modifications to the PTE.
3105 ptl
= pte_lockptr(mm
, pmd
);
3107 if (unlikely(!pte_same(*ptep
, pte
))) {
3108 pte_unmap_unlock(ptep
, ptl
);
3112 pte
= pte_mknonnuma(pte
);
3113 set_pte_at(mm
, addr
, ptep
, pte
);
3114 update_mmu_cache(vma
, addr
, ptep
);
3116 page
= vm_normal_page(vma
, addr
, pte
);
3118 pte_unmap_unlock(ptep
, ptl
);
3121 BUG_ON(is_zero_pfn(page_to_pfn(page
)));
3124 * Avoid grouping on DSO/COW pages in specific and RO pages
3125 * in general, RO pages shouldn't hurt as much anyway since
3126 * they can be in shared cache state.
3128 if (!pte_write(pte
))
3129 flags
|= TNF_NO_GROUP
;
3132 * Flag if the page is shared between multiple address spaces. This
3133 * is later used when determining whether to group tasks together
3135 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3136 flags
|= TNF_SHARED
;
3138 last_cpupid
= page_cpupid_last(page
);
3139 page_nid
= page_to_nid(page
);
3140 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3141 pte_unmap_unlock(ptep
, ptl
);
3142 if (target_nid
== -1) {
3147 /* Migrate to the requested node */
3148 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3150 page_nid
= target_nid
;
3151 flags
|= TNF_MIGRATED
;
3156 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3161 * These routines also need to handle stuff like marking pages dirty
3162 * and/or accessed for architectures that don't do it in hardware (most
3163 * RISC architectures). The early dirtying is also good on the i386.
3165 * There is also a hook called "update_mmu_cache()" that architectures
3166 * with external mmu caches can use to update those (ie the Sparc or
3167 * PowerPC hashed page tables that act as extended TLBs).
3169 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3170 * but allow concurrent faults), and pte mapped but not yet locked.
3171 * We return with mmap_sem still held, but pte unmapped and unlocked.
3173 static int handle_pte_fault(struct mm_struct
*mm
,
3174 struct vm_area_struct
*vma
, unsigned long address
,
3175 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3181 if (!pte_present(entry
)) {
3182 if (pte_none(entry
)) {
3184 if (likely(vma
->vm_ops
->fault
))
3185 return do_linear_fault(mm
, vma
, address
,
3186 pte
, pmd
, flags
, entry
);
3188 return do_anonymous_page(mm
, vma
, address
,
3191 if (pte_file(entry
))
3192 return do_nonlinear_fault(mm
, vma
, address
,
3193 pte
, pmd
, flags
, entry
);
3194 return do_swap_page(mm
, vma
, address
,
3195 pte
, pmd
, flags
, entry
);
3198 if (pte_numa(entry
))
3199 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3201 ptl
= pte_lockptr(mm
, pmd
);
3203 if (unlikely(!pte_same(*pte
, entry
)))
3205 if (flags
& FAULT_FLAG_WRITE
) {
3206 if (!pte_write(entry
))
3207 return do_wp_page(mm
, vma
, address
,
3208 pte
, pmd
, ptl
, entry
);
3209 entry
= pte_mkdirty(entry
);
3211 entry
= pte_mkyoung(entry
);
3212 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3213 update_mmu_cache(vma
, address
, pte
);
3216 * This is needed only for protection faults but the arch code
3217 * is not yet telling us if this is a protection fault or not.
3218 * This still avoids useless tlb flushes for .text page faults
3221 if (flags
& FAULT_FLAG_WRITE
)
3222 flush_tlb_fix_spurious_fault(vma
, address
);
3225 pte_unmap_unlock(pte
, ptl
);
3230 * By the time we get here, we already hold the mm semaphore
3232 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3233 unsigned long address
, unsigned int flags
)
3240 if (unlikely(is_vm_hugetlb_page(vma
)))
3241 return hugetlb_fault(mm
, vma
, address
, flags
);
3243 pgd
= pgd_offset(mm
, address
);
3244 pud
= pud_alloc(mm
, pgd
, address
);
3246 return VM_FAULT_OOM
;
3247 pmd
= pmd_alloc(mm
, pud
, address
);
3249 return VM_FAULT_OOM
;
3250 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3251 int ret
= VM_FAULT_FALLBACK
;
3253 ret
= do_huge_pmd_anonymous_page(mm
, vma
, address
,
3255 if (!(ret
& VM_FAULT_FALLBACK
))
3258 pmd_t orig_pmd
= *pmd
;
3262 if (pmd_trans_huge(orig_pmd
)) {
3263 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3266 * If the pmd is splitting, return and retry the
3267 * the fault. Alternative: wait until the split
3268 * is done, and goto retry.
3270 if (pmd_trans_splitting(orig_pmd
))
3273 if (pmd_numa(orig_pmd
))
3274 return do_huge_pmd_numa_page(mm
, vma
, address
,
3277 if (dirty
&& !pmd_write(orig_pmd
)) {
3278 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3280 if (!(ret
& VM_FAULT_FALLBACK
))
3283 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3291 * Use __pte_alloc instead of pte_alloc_map, because we can't
3292 * run pte_offset_map on the pmd, if an huge pmd could
3293 * materialize from under us from a different thread.
3295 if (unlikely(pmd_none(*pmd
)) &&
3296 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3297 return VM_FAULT_OOM
;
3298 /* if an huge pmd materialized from under us just retry later */
3299 if (unlikely(pmd_trans_huge(*pmd
)))
3302 * A regular pmd is established and it can't morph into a huge pmd
3303 * from under us anymore at this point because we hold the mmap_sem
3304 * read mode and khugepaged takes it in write mode. So now it's
3305 * safe to run pte_offset_map().
3307 pte
= pte_offset_map(pmd
, address
);
3309 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3312 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3313 unsigned long address
, unsigned int flags
)
3317 __set_current_state(TASK_RUNNING
);
3319 count_vm_event(PGFAULT
);
3320 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3322 /* do counter updates before entering really critical section. */
3323 check_sync_rss_stat(current
);
3326 * Enable the memcg OOM handling for faults triggered in user
3327 * space. Kernel faults are handled more gracefully.
3329 if (flags
& FAULT_FLAG_USER
)
3330 mem_cgroup_oom_enable();
3332 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3334 if (flags
& FAULT_FLAG_USER
) {
3335 mem_cgroup_oom_disable();
3337 * The task may have entered a memcg OOM situation but
3338 * if the allocation error was handled gracefully (no
3339 * VM_FAULT_OOM), there is no need to kill anything.
3340 * Just clean up the OOM state peacefully.
3342 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3343 mem_cgroup_oom_synchronize(false);
3349 #ifndef __PAGETABLE_PUD_FOLDED
3351 * Allocate page upper directory.
3352 * We've already handled the fast-path in-line.
3354 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3356 pud_t
*new = pud_alloc_one(mm
, address
);
3360 smp_wmb(); /* See comment in __pte_alloc */
3362 spin_lock(&mm
->page_table_lock
);
3363 if (pgd_present(*pgd
)) /* Another has populated it */
3366 pgd_populate(mm
, pgd
, new);
3367 spin_unlock(&mm
->page_table_lock
);
3370 #endif /* __PAGETABLE_PUD_FOLDED */
3372 #ifndef __PAGETABLE_PMD_FOLDED
3374 * Allocate page middle directory.
3375 * We've already handled the fast-path in-line.
3377 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3379 pmd_t
*new = pmd_alloc_one(mm
, address
);
3383 smp_wmb(); /* See comment in __pte_alloc */
3385 spin_lock(&mm
->page_table_lock
);
3386 #ifndef __ARCH_HAS_4LEVEL_HACK
3387 if (pud_present(*pud
)) /* Another has populated it */
3390 pud_populate(mm
, pud
, new);
3392 if (pgd_present(*pud
)) /* Another has populated it */
3395 pgd_populate(mm
, pud
, new);
3396 #endif /* __ARCH_HAS_4LEVEL_HACK */
3397 spin_unlock(&mm
->page_table_lock
);
3400 #endif /* __PAGETABLE_PMD_FOLDED */
3402 #if !defined(__HAVE_ARCH_GATE_AREA)
3404 #if defined(AT_SYSINFO_EHDR)
3405 static struct vm_area_struct gate_vma
;
3407 static int __init
gate_vma_init(void)
3409 gate_vma
.vm_mm
= NULL
;
3410 gate_vma
.vm_start
= FIXADDR_USER_START
;
3411 gate_vma
.vm_end
= FIXADDR_USER_END
;
3412 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3413 gate_vma
.vm_page_prot
= __P101
;
3417 __initcall(gate_vma_init
);
3420 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
3422 #ifdef AT_SYSINFO_EHDR
3429 int in_gate_area_no_mm(unsigned long addr
)
3431 #ifdef AT_SYSINFO_EHDR
3432 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3438 #endif /* __HAVE_ARCH_GATE_AREA */
3440 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3441 pte_t
**ptepp
, spinlock_t
**ptlp
)
3448 pgd
= pgd_offset(mm
, address
);
3449 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3452 pud
= pud_offset(pgd
, address
);
3453 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3456 pmd
= pmd_offset(pud
, address
);
3457 VM_BUG_ON(pmd_trans_huge(*pmd
));
3458 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3461 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3465 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3468 if (!pte_present(*ptep
))
3473 pte_unmap_unlock(ptep
, *ptlp
);
3478 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3479 pte_t
**ptepp
, spinlock_t
**ptlp
)
3483 /* (void) is needed to make gcc happy */
3484 (void) __cond_lock(*ptlp
,
3485 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3490 * follow_pfn - look up PFN at a user virtual address
3491 * @vma: memory mapping
3492 * @address: user virtual address
3493 * @pfn: location to store found PFN
3495 * Only IO mappings and raw PFN mappings are allowed.
3497 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3499 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3506 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3509 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3512 *pfn
= pte_pfn(*ptep
);
3513 pte_unmap_unlock(ptep
, ptl
);
3516 EXPORT_SYMBOL(follow_pfn
);
3518 #ifdef CONFIG_HAVE_IOREMAP_PROT
3519 int follow_phys(struct vm_area_struct
*vma
,
3520 unsigned long address
, unsigned int flags
,
3521 unsigned long *prot
, resource_size_t
*phys
)
3527 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3530 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3534 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3537 *prot
= pgprot_val(pte_pgprot(pte
));
3538 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3542 pte_unmap_unlock(ptep
, ptl
);
3547 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3548 void *buf
, int len
, int write
)
3550 resource_size_t phys_addr
;
3551 unsigned long prot
= 0;
3552 void __iomem
*maddr
;
3553 int offset
= addr
& (PAGE_SIZE
-1);
3555 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3558 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3560 memcpy_toio(maddr
+ offset
, buf
, len
);
3562 memcpy_fromio(buf
, maddr
+ offset
, len
);
3567 EXPORT_SYMBOL_GPL(generic_access_phys
);
3571 * Access another process' address space as given in mm. If non-NULL, use the
3572 * given task for page fault accounting.
3574 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3575 unsigned long addr
, void *buf
, int len
, int write
)
3577 struct vm_area_struct
*vma
;
3578 void *old_buf
= buf
;
3580 down_read(&mm
->mmap_sem
);
3581 /* ignore errors, just check how much was successfully transferred */
3583 int bytes
, ret
, offset
;
3585 struct page
*page
= NULL
;
3587 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3588 write
, 1, &page
, &vma
);
3591 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3592 * we can access using slightly different code.
3594 #ifdef CONFIG_HAVE_IOREMAP_PROT
3595 vma
= find_vma(mm
, addr
);
3596 if (!vma
|| vma
->vm_start
> addr
)
3598 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3599 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3607 offset
= addr
& (PAGE_SIZE
-1);
3608 if (bytes
> PAGE_SIZE
-offset
)
3609 bytes
= PAGE_SIZE
-offset
;
3613 copy_to_user_page(vma
, page
, addr
,
3614 maddr
+ offset
, buf
, bytes
);
3615 set_page_dirty_lock(page
);
3617 copy_from_user_page(vma
, page
, addr
,
3618 buf
, maddr
+ offset
, bytes
);
3621 page_cache_release(page
);
3627 up_read(&mm
->mmap_sem
);
3629 return buf
- old_buf
;
3633 * access_remote_vm - access another process' address space
3634 * @mm: the mm_struct of the target address space
3635 * @addr: start address to access
3636 * @buf: source or destination buffer
3637 * @len: number of bytes to transfer
3638 * @write: whether the access is a write
3640 * The caller must hold a reference on @mm.
3642 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3643 void *buf
, int len
, int write
)
3645 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3649 * Access another process' address space.
3650 * Source/target buffer must be kernel space,
3651 * Do not walk the page table directly, use get_user_pages
3653 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3654 void *buf
, int len
, int write
)
3656 struct mm_struct
*mm
;
3659 mm
= get_task_mm(tsk
);
3663 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3670 * Print the name of a VMA.
3672 void print_vma_addr(char *prefix
, unsigned long ip
)
3674 struct mm_struct
*mm
= current
->mm
;
3675 struct vm_area_struct
*vma
;
3678 * Do not print if we are in atomic
3679 * contexts (in exception stacks, etc.):
3681 if (preempt_count())
3684 down_read(&mm
->mmap_sem
);
3685 vma
= find_vma(mm
, ip
);
3686 if (vma
&& vma
->vm_file
) {
3687 struct file
*f
= vma
->vm_file
;
3688 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3692 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3695 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
3697 vma
->vm_end
- vma
->vm_start
);
3698 free_page((unsigned long)buf
);
3701 up_read(&mm
->mmap_sem
);
3704 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3705 void might_fault(void)
3708 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3709 * holding the mmap_sem, this is safe because kernel memory doesn't
3710 * get paged out, therefore we'll never actually fault, and the
3711 * below annotations will generate false positives.
3713 if (segment_eq(get_fs(), KERNEL_DS
))
3717 * it would be nicer only to annotate paths which are not under
3718 * pagefault_disable, however that requires a larger audit and
3719 * providing helpers like get_user_atomic.
3724 __might_sleep(__FILE__
, __LINE__
, 0);
3727 might_lock_read(¤t
->mm
->mmap_sem
);
3729 EXPORT_SYMBOL(might_fault
);
3732 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3733 static void clear_gigantic_page(struct page
*page
,
3735 unsigned int pages_per_huge_page
)
3738 struct page
*p
= page
;
3741 for (i
= 0; i
< pages_per_huge_page
;
3742 i
++, p
= mem_map_next(p
, page
, i
)) {
3744 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3747 void clear_huge_page(struct page
*page
,
3748 unsigned long addr
, unsigned int pages_per_huge_page
)
3752 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3753 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3758 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3760 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3764 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3766 struct vm_area_struct
*vma
,
3767 unsigned int pages_per_huge_page
)
3770 struct page
*dst_base
= dst
;
3771 struct page
*src_base
= src
;
3773 for (i
= 0; i
< pages_per_huge_page
; ) {
3775 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3778 dst
= mem_map_next(dst
, dst_base
, i
);
3779 src
= mem_map_next(src
, src_base
, i
);
3783 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3784 unsigned long addr
, struct vm_area_struct
*vma
,
3785 unsigned int pages_per_huge_page
)
3789 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3790 copy_user_gigantic_page(dst
, src
, addr
, vma
,
3791 pages_per_huge_page
);
3796 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3798 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
3801 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3803 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3805 static struct kmem_cache
*page_ptl_cachep
;
3807 void __init
ptlock_cache_init(void)
3809 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
3813 bool ptlock_alloc(struct page
*page
)
3817 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
3824 void ptlock_free(struct page
*page
)
3826 kmem_cache_free(page_ptl_cachep
, page
->ptl
);