4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
67 * dentry->d_inode->i_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
76 * dentry->d_parent->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
84 int sysctl_vfs_cache_pressure __read_mostly
= 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
87 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
89 EXPORT_SYMBOL(rename_lock
);
91 static struct kmem_cache
*dentry_cache __read_mostly
;
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
102 static unsigned int d_hash_mask __read_mostly
;
103 static unsigned int d_hash_shift __read_mostly
;
105 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
107 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
109 return dentry_hashtable
+ (hash
>> (32 - d_hash_shift
));
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
115 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
118 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
119 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat
= {
128 static DEFINE_PER_CPU(long, nr_dentry
);
129 static DEFINE_PER_CPU(long, nr_dentry_unused
);
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
145 static long get_nr_dentry(void)
149 for_each_possible_cpu(i
)
150 sum
+= per_cpu(nr_dentry
, i
);
151 return sum
< 0 ? 0 : sum
;
154 static long get_nr_dentry_unused(void)
158 for_each_possible_cpu(i
)
159 sum
+= per_cpu(nr_dentry_unused
, i
);
160 return sum
< 0 ? 0 : sum
;
163 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
164 size_t *lenp
, loff_t
*ppos
)
166 dentry_stat
.nr_dentry
= get_nr_dentry();
167 dentry_stat
.nr_unused
= get_nr_dentry_unused();
168 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
178 #include <asm/word-at-a-time.h>
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
188 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
190 unsigned long a
,b
,mask
;
193 a
= *(unsigned long *)cs
;
194 b
= load_unaligned_zeropad(ct
);
195 if (tcount
< sizeof(unsigned long))
197 if (unlikely(a
!= b
))
199 cs
+= sizeof(unsigned long);
200 ct
+= sizeof(unsigned long);
201 tcount
-= sizeof(unsigned long);
205 mask
= bytemask_from_count(tcount
);
206 return unlikely(!!((a
^ b
) & mask
));
211 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
225 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
228 * Be careful about RCU walk racing with rename:
229 * use 'lockless_dereference' to fetch the name pointer.
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
243 const unsigned char *cs
= lockless_dereference(dentry
->d_name
.name
);
245 return dentry_string_cmp(cs
, ct
, tcount
);
248 struct external_name
{
251 struct rcu_head head
;
253 unsigned char name
[];
256 static inline struct external_name
*external_name(struct dentry
*dentry
)
258 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
261 static void __d_free(struct rcu_head
*head
)
263 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
265 kmem_cache_free(dentry_cache
, dentry
);
268 static void __d_free_external(struct rcu_head
*head
)
270 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
271 kfree(external_name(dentry
));
272 kmem_cache_free(dentry_cache
, dentry
);
275 static inline int dname_external(const struct dentry
*dentry
)
277 return dentry
->d_name
.name
!= dentry
->d_iname
;
280 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
282 spin_lock(&dentry
->d_lock
);
283 if (unlikely(dname_external(dentry
))) {
284 struct external_name
*p
= external_name(dentry
);
285 atomic_inc(&p
->u
.count
);
286 spin_unlock(&dentry
->d_lock
);
287 name
->name
= p
->name
;
289 memcpy(name
->inline_name
, dentry
->d_iname
,
290 dentry
->d_name
.len
+ 1);
291 spin_unlock(&dentry
->d_lock
);
292 name
->name
= name
->inline_name
;
295 EXPORT_SYMBOL(take_dentry_name_snapshot
);
297 void release_dentry_name_snapshot(struct name_snapshot
*name
)
299 if (unlikely(name
->name
!= name
->inline_name
)) {
300 struct external_name
*p
;
301 p
= container_of(name
->name
, struct external_name
, name
[0]);
302 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
303 kfree_rcu(p
, u
.head
);
306 EXPORT_SYMBOL(release_dentry_name_snapshot
);
308 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
314 dentry
->d_inode
= inode
;
315 flags
= READ_ONCE(dentry
->d_flags
);
316 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
318 WRITE_ONCE(dentry
->d_flags
, flags
);
321 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
323 unsigned flags
= READ_ONCE(dentry
->d_flags
);
325 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
326 WRITE_ONCE(dentry
->d_flags
, flags
);
327 dentry
->d_inode
= NULL
;
330 static void dentry_free(struct dentry
*dentry
)
332 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
333 if (unlikely(dname_external(dentry
))) {
334 struct external_name
*p
= external_name(dentry
);
335 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
336 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
342 __d_free(&dentry
->d_u
.d_rcu
);
344 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
348 * Release the dentry's inode, using the filesystem
349 * d_iput() operation if defined.
351 static void dentry_unlink_inode(struct dentry
* dentry
)
352 __releases(dentry
->d_lock
)
353 __releases(dentry
->d_inode
->i_lock
)
355 struct inode
*inode
= dentry
->d_inode
;
357 raw_write_seqcount_begin(&dentry
->d_seq
);
358 __d_clear_type_and_inode(dentry
);
359 hlist_del_init(&dentry
->d_u
.d_alias
);
360 raw_write_seqcount_end(&dentry
->d_seq
);
361 spin_unlock(&dentry
->d_lock
);
362 spin_unlock(&inode
->i_lock
);
364 fsnotify_inoderemove(inode
);
365 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
366 dentry
->d_op
->d_iput(dentry
, inode
);
372 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
373 * is in use - which includes both the "real" per-superblock
374 * LRU list _and_ the DCACHE_SHRINK_LIST use.
376 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
377 * on the shrink list (ie not on the superblock LRU list).
379 * The per-cpu "nr_dentry_unused" counters are updated with
380 * the DCACHE_LRU_LIST bit.
382 * These helper functions make sure we always follow the
383 * rules. d_lock must be held by the caller.
385 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
386 static void d_lru_add(struct dentry
*dentry
)
388 D_FLAG_VERIFY(dentry
, 0);
389 dentry
->d_flags
|= DCACHE_LRU_LIST
;
390 this_cpu_inc(nr_dentry_unused
);
391 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
394 static void d_lru_del(struct dentry
*dentry
)
396 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
397 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
398 this_cpu_dec(nr_dentry_unused
);
399 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
402 static void d_shrink_del(struct dentry
*dentry
)
404 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
405 list_del_init(&dentry
->d_lru
);
406 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
407 this_cpu_dec(nr_dentry_unused
);
410 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
412 D_FLAG_VERIFY(dentry
, 0);
413 list_add(&dentry
->d_lru
, list
);
414 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
415 this_cpu_inc(nr_dentry_unused
);
419 * These can only be called under the global LRU lock, ie during the
420 * callback for freeing the LRU list. "isolate" removes it from the
421 * LRU lists entirely, while shrink_move moves it to the indicated
424 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
426 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
427 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
428 this_cpu_dec(nr_dentry_unused
);
429 list_lru_isolate(lru
, &dentry
->d_lru
);
432 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
433 struct list_head
*list
)
435 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
436 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
437 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
441 * dentry_lru_(add|del)_list) must be called with d_lock held.
443 static void dentry_lru_add(struct dentry
*dentry
)
445 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
450 * d_drop - drop a dentry
451 * @dentry: dentry to drop
453 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
454 * be found through a VFS lookup any more. Note that this is different from
455 * deleting the dentry - d_delete will try to mark the dentry negative if
456 * possible, giving a successful _negative_ lookup, while d_drop will
457 * just make the cache lookup fail.
459 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
460 * reason (NFS timeouts or autofs deletes).
462 * __d_drop requires dentry->d_lock
463 * ___d_drop doesn't mark dentry as "unhashed"
464 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
466 static void ___d_drop(struct dentry
*dentry
)
468 if (!d_unhashed(dentry
)) {
469 struct hlist_bl_head
*b
;
471 * Hashed dentries are normally on the dentry hashtable,
472 * with the exception of those newly allocated by
473 * d_obtain_alias, which are always IS_ROOT:
475 if (unlikely(IS_ROOT(dentry
)))
476 b
= &dentry
->d_sb
->s_anon
;
478 b
= d_hash(dentry
->d_name
.hash
);
481 __hlist_bl_del(&dentry
->d_hash
);
483 /* After this call, in-progress rcu-walk path lookup will fail. */
484 write_seqcount_invalidate(&dentry
->d_seq
);
488 void __d_drop(struct dentry
*dentry
)
491 dentry
->d_hash
.pprev
= NULL
;
493 EXPORT_SYMBOL(__d_drop
);
495 void d_drop(struct dentry
*dentry
)
497 spin_lock(&dentry
->d_lock
);
499 spin_unlock(&dentry
->d_lock
);
501 EXPORT_SYMBOL(d_drop
);
503 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
507 * Inform d_walk() and shrink_dentry_list() that we are no longer
508 * attached to the dentry tree
510 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
511 if (unlikely(list_empty(&dentry
->d_child
)))
513 __list_del_entry(&dentry
->d_child
);
515 * Cursors can move around the list of children. While we'd been
516 * a normal list member, it didn't matter - ->d_child.next would've
517 * been updated. However, from now on it won't be and for the
518 * things like d_walk() it might end up with a nasty surprise.
519 * Normally d_walk() doesn't care about cursors moving around -
520 * ->d_lock on parent prevents that and since a cursor has no children
521 * of its own, we get through it without ever unlocking the parent.
522 * There is one exception, though - if we ascend from a child that
523 * gets killed as soon as we unlock it, the next sibling is found
524 * using the value left in its ->d_child.next. And if _that_
525 * pointed to a cursor, and cursor got moved (e.g. by lseek())
526 * before d_walk() regains parent->d_lock, we'll end up skipping
527 * everything the cursor had been moved past.
529 * Solution: make sure that the pointer left behind in ->d_child.next
530 * points to something that won't be moving around. I.e. skip the
533 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
534 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
535 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
537 dentry
->d_child
.next
= next
->d_child
.next
;
541 static void __dentry_kill(struct dentry
*dentry
)
543 struct dentry
*parent
= NULL
;
544 bool can_free
= true;
545 if (!IS_ROOT(dentry
))
546 parent
= dentry
->d_parent
;
549 * The dentry is now unrecoverably dead to the world.
551 lockref_mark_dead(&dentry
->d_lockref
);
554 * inform the fs via d_prune that this dentry is about to be
555 * unhashed and destroyed.
557 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
558 dentry
->d_op
->d_prune(dentry
);
560 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
561 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
564 /* if it was on the hash then remove it */
566 dentry_unlist(dentry
, parent
);
568 spin_unlock(&parent
->d_lock
);
570 dentry_unlink_inode(dentry
);
572 spin_unlock(&dentry
->d_lock
);
573 this_cpu_dec(nr_dentry
);
574 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
575 dentry
->d_op
->d_release(dentry
);
577 spin_lock(&dentry
->d_lock
);
578 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
579 dentry
->d_flags
|= DCACHE_MAY_FREE
;
582 spin_unlock(&dentry
->d_lock
);
583 if (likely(can_free
))
588 * Finish off a dentry we've decided to kill.
589 * dentry->d_lock must be held, returns with it unlocked.
590 * If ref is non-zero, then decrement the refcount too.
591 * Returns dentry requiring refcount drop, or NULL if we're done.
593 static struct dentry
*dentry_kill(struct dentry
*dentry
)
594 __releases(dentry
->d_lock
)
596 struct inode
*inode
= dentry
->d_inode
;
597 struct dentry
*parent
= NULL
;
599 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
602 if (!IS_ROOT(dentry
)) {
603 parent
= dentry
->d_parent
;
604 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
606 spin_unlock(&inode
->i_lock
);
611 __dentry_kill(dentry
);
615 spin_unlock(&dentry
->d_lock
);
616 return dentry
; /* try again with same dentry */
619 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
621 struct dentry
*parent
= dentry
->d_parent
;
624 if (unlikely(dentry
->d_lockref
.count
< 0))
626 if (likely(spin_trylock(&parent
->d_lock
)))
629 spin_unlock(&dentry
->d_lock
);
631 parent
= ACCESS_ONCE(dentry
->d_parent
);
632 spin_lock(&parent
->d_lock
);
634 * We can't blindly lock dentry until we are sure
635 * that we won't violate the locking order.
636 * Any changes of dentry->d_parent must have
637 * been done with parent->d_lock held, so
638 * spin_lock() above is enough of a barrier
639 * for checking if it's still our child.
641 if (unlikely(parent
!= dentry
->d_parent
)) {
642 spin_unlock(&parent
->d_lock
);
645 if (parent
!= dentry
) {
646 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
647 if (unlikely(dentry
->d_lockref
.count
< 0)) {
648 spin_unlock(&parent
->d_lock
);
659 * Try to do a lockless dput(), and return whether that was successful.
661 * If unsuccessful, we return false, having already taken the dentry lock.
663 * The caller needs to hold the RCU read lock, so that the dentry is
664 * guaranteed to stay around even if the refcount goes down to zero!
666 static inline bool fast_dput(struct dentry
*dentry
)
669 unsigned int d_flags
;
672 * If we have a d_op->d_delete() operation, we sould not
673 * let the dentry count go to zero, so use "put_or_lock".
675 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
676 return lockref_put_or_lock(&dentry
->d_lockref
);
679 * .. otherwise, we can try to just decrement the
680 * lockref optimistically.
682 ret
= lockref_put_return(&dentry
->d_lockref
);
685 * If the lockref_put_return() failed due to the lock being held
686 * by somebody else, the fast path has failed. We will need to
687 * get the lock, and then check the count again.
689 if (unlikely(ret
< 0)) {
690 spin_lock(&dentry
->d_lock
);
691 if (dentry
->d_lockref
.count
> 1) {
692 dentry
->d_lockref
.count
--;
693 spin_unlock(&dentry
->d_lock
);
700 * If we weren't the last ref, we're done.
706 * Careful, careful. The reference count went down
707 * to zero, but we don't hold the dentry lock, so
708 * somebody else could get it again, and do another
709 * dput(), and we need to not race with that.
711 * However, there is a very special and common case
712 * where we don't care, because there is nothing to
713 * do: the dentry is still hashed, it does not have
714 * a 'delete' op, and it's referenced and already on
717 * NOTE! Since we aren't locked, these values are
718 * not "stable". However, it is sufficient that at
719 * some point after we dropped the reference the
720 * dentry was hashed and the flags had the proper
721 * value. Other dentry users may have re-gotten
722 * a reference to the dentry and change that, but
723 * our work is done - we can leave the dentry
724 * around with a zero refcount.
727 d_flags
= ACCESS_ONCE(dentry
->d_flags
);
728 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
730 /* Nothing to do? Dropping the reference was all we needed? */
731 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
735 * Not the fast normal case? Get the lock. We've already decremented
736 * the refcount, but we'll need to re-check the situation after
739 spin_lock(&dentry
->d_lock
);
742 * Did somebody else grab a reference to it in the meantime, and
743 * we're no longer the last user after all? Alternatively, somebody
744 * else could have killed it and marked it dead. Either way, we
745 * don't need to do anything else.
747 if (dentry
->d_lockref
.count
) {
748 spin_unlock(&dentry
->d_lock
);
753 * Re-get the reference we optimistically dropped. We hold the
754 * lock, and we just tested that it was zero, so we can just
757 dentry
->d_lockref
.count
= 1;
765 * This is complicated by the fact that we do not want to put
766 * dentries that are no longer on any hash chain on the unused
767 * list: we'd much rather just get rid of them immediately.
769 * However, that implies that we have to traverse the dentry
770 * tree upwards to the parents which might _also_ now be
771 * scheduled for deletion (it may have been only waiting for
772 * its last child to go away).
774 * This tail recursion is done by hand as we don't want to depend
775 * on the compiler to always get this right (gcc generally doesn't).
776 * Real recursion would eat up our stack space.
780 * dput - release a dentry
781 * @dentry: dentry to release
783 * Release a dentry. This will drop the usage count and if appropriate
784 * call the dentry unlink method as well as removing it from the queues and
785 * releasing its resources. If the parent dentries were scheduled for release
786 * they too may now get deleted.
788 void dput(struct dentry
*dentry
)
790 if (unlikely(!dentry
))
797 if (likely(fast_dput(dentry
))) {
802 /* Slow case: now with the dentry lock held */
805 WARN_ON(d_in_lookup(dentry
));
807 /* Unreachable? Get rid of it */
808 if (unlikely(d_unhashed(dentry
)))
811 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
814 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
815 if (dentry
->d_op
->d_delete(dentry
))
819 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
820 dentry
->d_flags
|= DCACHE_REFERENCED
;
821 dentry_lru_add(dentry
);
823 dentry
->d_lockref
.count
--;
824 spin_unlock(&dentry
->d_lock
);
828 dentry
= dentry_kill(dentry
);
837 /* This must be called with d_lock held */
838 static inline void __dget_dlock(struct dentry
*dentry
)
840 dentry
->d_lockref
.count
++;
843 static inline void __dget(struct dentry
*dentry
)
845 lockref_get(&dentry
->d_lockref
);
848 struct dentry
*dget_parent(struct dentry
*dentry
)
854 * Do optimistic parent lookup without any
858 ret
= ACCESS_ONCE(dentry
->d_parent
);
859 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
861 if (likely(gotref
)) {
862 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
869 * Don't need rcu_dereference because we re-check it was correct under
873 ret
= dentry
->d_parent
;
874 spin_lock(&ret
->d_lock
);
875 if (unlikely(ret
!= dentry
->d_parent
)) {
876 spin_unlock(&ret
->d_lock
);
881 BUG_ON(!ret
->d_lockref
.count
);
882 ret
->d_lockref
.count
++;
883 spin_unlock(&ret
->d_lock
);
886 EXPORT_SYMBOL(dget_parent
);
889 * d_find_alias - grab a hashed alias of inode
890 * @inode: inode in question
892 * If inode has a hashed alias, or is a directory and has any alias,
893 * acquire the reference to alias and return it. Otherwise return NULL.
894 * Notice that if inode is a directory there can be only one alias and
895 * it can be unhashed only if it has no children, or if it is the root
896 * of a filesystem, or if the directory was renamed and d_revalidate
897 * was the first vfs operation to notice.
899 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
900 * any other hashed alias over that one.
902 static struct dentry
*__d_find_alias(struct inode
*inode
)
904 struct dentry
*alias
, *discon_alias
;
908 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
909 spin_lock(&alias
->d_lock
);
910 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
911 if (IS_ROOT(alias
) &&
912 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
913 discon_alias
= alias
;
916 spin_unlock(&alias
->d_lock
);
920 spin_unlock(&alias
->d_lock
);
923 alias
= discon_alias
;
924 spin_lock(&alias
->d_lock
);
925 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
927 spin_unlock(&alias
->d_lock
);
930 spin_unlock(&alias
->d_lock
);
936 struct dentry
*d_find_alias(struct inode
*inode
)
938 struct dentry
*de
= NULL
;
940 if (!hlist_empty(&inode
->i_dentry
)) {
941 spin_lock(&inode
->i_lock
);
942 de
= __d_find_alias(inode
);
943 spin_unlock(&inode
->i_lock
);
947 EXPORT_SYMBOL(d_find_alias
);
950 * Try to kill dentries associated with this inode.
951 * WARNING: you must own a reference to inode.
953 void d_prune_aliases(struct inode
*inode
)
955 struct dentry
*dentry
;
957 spin_lock(&inode
->i_lock
);
958 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
959 spin_lock(&dentry
->d_lock
);
960 if (!dentry
->d_lockref
.count
) {
961 struct dentry
*parent
= lock_parent(dentry
);
962 if (likely(!dentry
->d_lockref
.count
)) {
963 __dentry_kill(dentry
);
968 spin_unlock(&parent
->d_lock
);
970 spin_unlock(&dentry
->d_lock
);
972 spin_unlock(&inode
->i_lock
);
974 EXPORT_SYMBOL(d_prune_aliases
);
976 static void shrink_dentry_list(struct list_head
*list
)
978 struct dentry
*dentry
, *parent
;
980 while (!list_empty(list
)) {
982 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
983 spin_lock(&dentry
->d_lock
);
984 parent
= lock_parent(dentry
);
987 * The dispose list is isolated and dentries are not accounted
988 * to the LRU here, so we can simply remove it from the list
989 * here regardless of whether it is referenced or not.
991 d_shrink_del(dentry
);
994 * We found an inuse dentry which was not removed from
995 * the LRU because of laziness during lookup. Do not free it.
997 if (dentry
->d_lockref
.count
> 0) {
998 spin_unlock(&dentry
->d_lock
);
1000 spin_unlock(&parent
->d_lock
);
1005 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
1006 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
1007 spin_unlock(&dentry
->d_lock
);
1009 spin_unlock(&parent
->d_lock
);
1011 dentry_free(dentry
);
1015 inode
= dentry
->d_inode
;
1016 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
1017 d_shrink_add(dentry
, list
);
1018 spin_unlock(&dentry
->d_lock
);
1020 spin_unlock(&parent
->d_lock
);
1024 __dentry_kill(dentry
);
1027 * We need to prune ancestors too. This is necessary to prevent
1028 * quadratic behavior of shrink_dcache_parent(), but is also
1029 * expected to be beneficial in reducing dentry cache
1033 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
1034 parent
= lock_parent(dentry
);
1035 if (dentry
->d_lockref
.count
!= 1) {
1036 dentry
->d_lockref
.count
--;
1037 spin_unlock(&dentry
->d_lock
);
1039 spin_unlock(&parent
->d_lock
);
1042 inode
= dentry
->d_inode
; /* can't be NULL */
1043 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
1044 spin_unlock(&dentry
->d_lock
);
1046 spin_unlock(&parent
->d_lock
);
1050 __dentry_kill(dentry
);
1056 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1057 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1059 struct list_head
*freeable
= arg
;
1060 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1064 * we are inverting the lru lock/dentry->d_lock here,
1065 * so use a trylock. If we fail to get the lock, just skip
1068 if (!spin_trylock(&dentry
->d_lock
))
1072 * Referenced dentries are still in use. If they have active
1073 * counts, just remove them from the LRU. Otherwise give them
1074 * another pass through the LRU.
1076 if (dentry
->d_lockref
.count
) {
1077 d_lru_isolate(lru
, dentry
);
1078 spin_unlock(&dentry
->d_lock
);
1082 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1083 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1084 spin_unlock(&dentry
->d_lock
);
1087 * The list move itself will be made by the common LRU code. At
1088 * this point, we've dropped the dentry->d_lock but keep the
1089 * lru lock. This is safe to do, since every list movement is
1090 * protected by the lru lock even if both locks are held.
1092 * This is guaranteed by the fact that all LRU management
1093 * functions are intermediated by the LRU API calls like
1094 * list_lru_add and list_lru_del. List movement in this file
1095 * only ever occur through this functions or through callbacks
1096 * like this one, that are called from the LRU API.
1098 * The only exceptions to this are functions like
1099 * shrink_dentry_list, and code that first checks for the
1100 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1101 * operating only with stack provided lists after they are
1102 * properly isolated from the main list. It is thus, always a
1108 d_lru_shrink_move(lru
, dentry
, freeable
);
1109 spin_unlock(&dentry
->d_lock
);
1115 * prune_dcache_sb - shrink the dcache
1117 * @sc: shrink control, passed to list_lru_shrink_walk()
1119 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1120 * is done when we need more memory and called from the superblock shrinker
1123 * This function may fail to free any resources if all the dentries are in
1126 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1131 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1132 dentry_lru_isolate
, &dispose
);
1133 shrink_dentry_list(&dispose
);
1137 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1138 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1140 struct list_head
*freeable
= arg
;
1141 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1144 * we are inverting the lru lock/dentry->d_lock here,
1145 * so use a trylock. If we fail to get the lock, just skip
1148 if (!spin_trylock(&dentry
->d_lock
))
1151 d_lru_shrink_move(lru
, dentry
, freeable
);
1152 spin_unlock(&dentry
->d_lock
);
1159 * shrink_dcache_sb - shrink dcache for a superblock
1162 * Shrink the dcache for the specified super block. This is used to free
1163 * the dcache before unmounting a file system.
1165 void shrink_dcache_sb(struct super_block
*sb
)
1172 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1173 dentry_lru_isolate_shrink
, &dispose
, 1024);
1175 this_cpu_sub(nr_dentry_unused
, freed
);
1176 shrink_dentry_list(&dispose
);
1178 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1180 EXPORT_SYMBOL(shrink_dcache_sb
);
1183 * enum d_walk_ret - action to talke during tree walk
1184 * @D_WALK_CONTINUE: contrinue walk
1185 * @D_WALK_QUIT: quit walk
1186 * @D_WALK_NORETRY: quit when retry is needed
1187 * @D_WALK_SKIP: skip this dentry and its children
1197 * d_walk - walk the dentry tree
1198 * @parent: start of walk
1199 * @data: data passed to @enter() and @finish()
1200 * @enter: callback when first entering the dentry
1201 * @finish: callback when successfully finished the walk
1203 * The @enter() and @finish() callbacks are called with d_lock held.
1205 static void d_walk(struct dentry
*parent
, void *data
,
1206 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1207 void (*finish
)(void *))
1209 struct dentry
*this_parent
;
1210 struct list_head
*next
;
1212 enum d_walk_ret ret
;
1216 read_seqbegin_or_lock(&rename_lock
, &seq
);
1217 this_parent
= parent
;
1218 spin_lock(&this_parent
->d_lock
);
1220 ret
= enter(data
, this_parent
);
1222 case D_WALK_CONTINUE
:
1227 case D_WALK_NORETRY
:
1232 next
= this_parent
->d_subdirs
.next
;
1234 while (next
!= &this_parent
->d_subdirs
) {
1235 struct list_head
*tmp
= next
;
1236 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1239 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1242 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1244 ret
= enter(data
, dentry
);
1246 case D_WALK_CONTINUE
:
1249 spin_unlock(&dentry
->d_lock
);
1251 case D_WALK_NORETRY
:
1255 spin_unlock(&dentry
->d_lock
);
1259 if (!list_empty(&dentry
->d_subdirs
)) {
1260 spin_unlock(&this_parent
->d_lock
);
1261 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1262 this_parent
= dentry
;
1263 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1266 spin_unlock(&dentry
->d_lock
);
1269 * All done at this level ... ascend and resume the search.
1273 if (this_parent
!= parent
) {
1274 struct dentry
*child
= this_parent
;
1275 this_parent
= child
->d_parent
;
1277 spin_unlock(&child
->d_lock
);
1278 spin_lock(&this_parent
->d_lock
);
1280 /* might go back up the wrong parent if we have had a rename. */
1281 if (need_seqretry(&rename_lock
, seq
))
1283 /* go into the first sibling still alive */
1285 next
= child
->d_child
.next
;
1286 if (next
== &this_parent
->d_subdirs
)
1288 child
= list_entry(next
, struct dentry
, d_child
);
1289 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1293 if (need_seqretry(&rename_lock
, seq
))
1300 spin_unlock(&this_parent
->d_lock
);
1301 done_seqretry(&rename_lock
, seq
);
1305 spin_unlock(&this_parent
->d_lock
);
1315 * Search for at least 1 mount point in the dentry's subdirs.
1316 * We descend to the next level whenever the d_subdirs
1317 * list is non-empty and continue searching.
1320 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1323 if (d_mountpoint(dentry
)) {
1327 return D_WALK_CONTINUE
;
1331 * have_submounts - check for mounts over a dentry
1332 * @parent: dentry to check.
1334 * Return true if the parent or its subdirectories contain
1337 int have_submounts(struct dentry
*parent
)
1341 d_walk(parent
, &ret
, check_mount
, NULL
);
1345 EXPORT_SYMBOL(have_submounts
);
1348 * Called by mount code to set a mountpoint and check if the mountpoint is
1349 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1350 * subtree can become unreachable).
1352 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1353 * this reason take rename_lock and d_lock on dentry and ancestors.
1355 int d_set_mounted(struct dentry
*dentry
)
1359 write_seqlock(&rename_lock
);
1360 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1361 /* Need exclusion wrt. d_invalidate() */
1362 spin_lock(&p
->d_lock
);
1363 if (unlikely(d_unhashed(p
))) {
1364 spin_unlock(&p
->d_lock
);
1367 spin_unlock(&p
->d_lock
);
1369 spin_lock(&dentry
->d_lock
);
1370 if (!d_unlinked(dentry
)) {
1372 if (!d_mountpoint(dentry
)) {
1373 dentry
->d_flags
|= DCACHE_MOUNTED
;
1377 spin_unlock(&dentry
->d_lock
);
1379 write_sequnlock(&rename_lock
);
1384 * Search the dentry child list of the specified parent,
1385 * and move any unused dentries to the end of the unused
1386 * list for prune_dcache(). We descend to the next level
1387 * whenever the d_subdirs list is non-empty and continue
1390 * It returns zero iff there are no unused children,
1391 * otherwise it returns the number of children moved to
1392 * the end of the unused list. This may not be the total
1393 * number of unused children, because select_parent can
1394 * drop the lock and return early due to latency
1398 struct select_data
{
1399 struct dentry
*start
;
1400 struct list_head dispose
;
1404 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1406 struct select_data
*data
= _data
;
1407 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1409 if (data
->start
== dentry
)
1412 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1415 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1417 if (!dentry
->d_lockref
.count
) {
1418 d_shrink_add(dentry
, &data
->dispose
);
1423 * We can return to the caller if we have found some (this
1424 * ensures forward progress). We'll be coming back to find
1427 if (!list_empty(&data
->dispose
))
1428 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1434 * shrink_dcache_parent - prune dcache
1435 * @parent: parent of entries to prune
1437 * Prune the dcache to remove unused children of the parent dentry.
1439 void shrink_dcache_parent(struct dentry
*parent
)
1442 struct select_data data
;
1444 INIT_LIST_HEAD(&data
.dispose
);
1445 data
.start
= parent
;
1448 d_walk(parent
, &data
, select_collect
, NULL
);
1452 shrink_dentry_list(&data
.dispose
);
1456 EXPORT_SYMBOL(shrink_dcache_parent
);
1458 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1460 /* it has busy descendents; complain about those instead */
1461 if (!list_empty(&dentry
->d_subdirs
))
1462 return D_WALK_CONTINUE
;
1464 /* root with refcount 1 is fine */
1465 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1466 return D_WALK_CONTINUE
;
1468 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1469 " still in use (%d) [unmount of %s %s]\n",
1472 dentry
->d_inode
->i_ino
: 0UL,
1474 dentry
->d_lockref
.count
,
1475 dentry
->d_sb
->s_type
->name
,
1476 dentry
->d_sb
->s_id
);
1478 return D_WALK_CONTINUE
;
1481 static void do_one_tree(struct dentry
*dentry
)
1483 shrink_dcache_parent(dentry
);
1484 d_walk(dentry
, dentry
, umount_check
, NULL
);
1490 * destroy the dentries attached to a superblock on unmounting
1492 void shrink_dcache_for_umount(struct super_block
*sb
)
1494 struct dentry
*dentry
;
1496 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1498 dentry
= sb
->s_root
;
1500 do_one_tree(dentry
);
1502 while (!hlist_bl_empty(&sb
->s_anon
)) {
1503 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1504 do_one_tree(dentry
);
1508 struct detach_data
{
1509 struct select_data select
;
1510 struct dentry
*mountpoint
;
1512 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1514 struct detach_data
*data
= _data
;
1516 if (d_mountpoint(dentry
)) {
1517 __dget_dlock(dentry
);
1518 data
->mountpoint
= dentry
;
1522 return select_collect(&data
->select
, dentry
);
1525 static void check_and_drop(void *_data
)
1527 struct detach_data
*data
= _data
;
1529 if (!data
->mountpoint
&& !data
->select
.found
)
1530 __d_drop(data
->select
.start
);
1534 * d_invalidate - detach submounts, prune dcache, and drop
1535 * @dentry: dentry to invalidate (aka detach, prune and drop)
1539 * The final d_drop is done as an atomic operation relative to
1540 * rename_lock ensuring there are no races with d_set_mounted. This
1541 * ensures there are no unhashed dentries on the path to a mountpoint.
1543 void d_invalidate(struct dentry
*dentry
)
1546 * If it's already been dropped, return OK.
1548 spin_lock(&dentry
->d_lock
);
1549 if (d_unhashed(dentry
)) {
1550 spin_unlock(&dentry
->d_lock
);
1553 spin_unlock(&dentry
->d_lock
);
1555 /* Negative dentries can be dropped without further checks */
1556 if (!dentry
->d_inode
) {
1562 struct detach_data data
;
1564 data
.mountpoint
= NULL
;
1565 INIT_LIST_HEAD(&data
.select
.dispose
);
1566 data
.select
.start
= dentry
;
1567 data
.select
.found
= 0;
1569 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1571 if (data
.select
.found
)
1572 shrink_dentry_list(&data
.select
.dispose
);
1574 if (data
.mountpoint
) {
1575 detach_mounts(data
.mountpoint
);
1576 dput(data
.mountpoint
);
1579 if (!data
.mountpoint
&& !data
.select
.found
)
1585 EXPORT_SYMBOL(d_invalidate
);
1588 * __d_alloc - allocate a dcache entry
1589 * @sb: filesystem it will belong to
1590 * @name: qstr of the name
1592 * Allocates a dentry. It returns %NULL if there is insufficient memory
1593 * available. On a success the dentry is returned. The name passed in is
1594 * copied and the copy passed in may be reused after this call.
1597 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1599 struct dentry
*dentry
;
1603 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1608 * We guarantee that the inline name is always NUL-terminated.
1609 * This way the memcpy() done by the name switching in rename
1610 * will still always have a NUL at the end, even if we might
1611 * be overwriting an internal NUL character
1613 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1614 if (unlikely(!name
)) {
1615 static const struct qstr anon
= QSTR_INIT("/", 1);
1617 dname
= dentry
->d_iname
;
1618 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1619 size_t size
= offsetof(struct external_name
, name
[1]);
1620 struct external_name
*p
= kmalloc(size
+ name
->len
,
1621 GFP_KERNEL_ACCOUNT
);
1623 kmem_cache_free(dentry_cache
, dentry
);
1626 atomic_set(&p
->u
.count
, 1);
1628 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS
))
1629 kasan_unpoison_shadow(dname
,
1630 round_up(name
->len
+ 1, sizeof(unsigned long)));
1632 dname
= dentry
->d_iname
;
1635 dentry
->d_name
.len
= name
->len
;
1636 dentry
->d_name
.hash
= name
->hash
;
1637 memcpy(dname
, name
->name
, name
->len
);
1638 dname
[name
->len
] = 0;
1640 /* Make sure we always see the terminating NUL character */
1642 dentry
->d_name
.name
= dname
;
1644 dentry
->d_lockref
.count
= 1;
1645 dentry
->d_flags
= 0;
1646 spin_lock_init(&dentry
->d_lock
);
1647 seqcount_init(&dentry
->d_seq
);
1648 dentry
->d_inode
= NULL
;
1649 dentry
->d_parent
= dentry
;
1651 dentry
->d_op
= NULL
;
1652 dentry
->d_fsdata
= NULL
;
1653 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1654 INIT_LIST_HEAD(&dentry
->d_lru
);
1655 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1656 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1657 INIT_LIST_HEAD(&dentry
->d_child
);
1658 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1660 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1661 err
= dentry
->d_op
->d_init(dentry
);
1663 if (dname_external(dentry
))
1664 kfree(external_name(dentry
));
1665 kmem_cache_free(dentry_cache
, dentry
);
1670 this_cpu_inc(nr_dentry
);
1676 * d_alloc - allocate a dcache entry
1677 * @parent: parent of entry to allocate
1678 * @name: qstr of the name
1680 * Allocates a dentry. It returns %NULL if there is insufficient memory
1681 * available. On a success the dentry is returned. The name passed in is
1682 * copied and the copy passed in may be reused after this call.
1684 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1686 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1689 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1690 spin_lock(&parent
->d_lock
);
1692 * don't need child lock because it is not subject
1693 * to concurrency here
1695 __dget_dlock(parent
);
1696 dentry
->d_parent
= parent
;
1697 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1698 spin_unlock(&parent
->d_lock
);
1702 EXPORT_SYMBOL(d_alloc
);
1704 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1706 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, NULL
);
1708 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1709 dentry
->d_parent
= dget(parent
);
1715 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1716 * @sb: the superblock
1717 * @name: qstr of the name
1719 * For a filesystem that just pins its dentries in memory and never
1720 * performs lookups at all, return an unhashed IS_ROOT dentry.
1722 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1724 return __d_alloc(sb
, name
);
1726 EXPORT_SYMBOL(d_alloc_pseudo
);
1728 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1733 q
.hash_len
= hashlen_string(parent
, name
);
1734 return d_alloc(parent
, &q
);
1736 EXPORT_SYMBOL(d_alloc_name
);
1738 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1740 WARN_ON_ONCE(dentry
->d_op
);
1741 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1743 DCACHE_OP_REVALIDATE
|
1744 DCACHE_OP_WEAK_REVALIDATE
|
1751 dentry
->d_flags
|= DCACHE_OP_HASH
;
1753 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1754 if (op
->d_revalidate
)
1755 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1756 if (op
->d_weak_revalidate
)
1757 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1759 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1761 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1763 dentry
->d_flags
|= DCACHE_OP_REAL
;
1766 EXPORT_SYMBOL(d_set_d_op
);
1770 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1771 * @dentry - The dentry to mark
1773 * Mark a dentry as falling through to the lower layer (as set with
1774 * d_pin_lower()). This flag may be recorded on the medium.
1776 void d_set_fallthru(struct dentry
*dentry
)
1778 spin_lock(&dentry
->d_lock
);
1779 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1780 spin_unlock(&dentry
->d_lock
);
1782 EXPORT_SYMBOL(d_set_fallthru
);
1784 static unsigned d_flags_for_inode(struct inode
*inode
)
1786 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1789 return DCACHE_MISS_TYPE
;
1791 if (S_ISDIR(inode
->i_mode
)) {
1792 add_flags
= DCACHE_DIRECTORY_TYPE
;
1793 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1794 if (unlikely(!inode
->i_op
->lookup
))
1795 add_flags
= DCACHE_AUTODIR_TYPE
;
1797 inode
->i_opflags
|= IOP_LOOKUP
;
1799 goto type_determined
;
1802 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1803 if (unlikely(inode
->i_op
->get_link
)) {
1804 add_flags
= DCACHE_SYMLINK_TYPE
;
1805 goto type_determined
;
1807 inode
->i_opflags
|= IOP_NOFOLLOW
;
1810 if (unlikely(!S_ISREG(inode
->i_mode
)))
1811 add_flags
= DCACHE_SPECIAL_TYPE
;
1814 if (unlikely(IS_AUTOMOUNT(inode
)))
1815 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1819 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1821 unsigned add_flags
= d_flags_for_inode(inode
);
1822 WARN_ON(d_in_lookup(dentry
));
1824 spin_lock(&dentry
->d_lock
);
1825 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1826 raw_write_seqcount_begin(&dentry
->d_seq
);
1827 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1828 raw_write_seqcount_end(&dentry
->d_seq
);
1829 fsnotify_update_flags(dentry
);
1830 spin_unlock(&dentry
->d_lock
);
1834 * d_instantiate - fill in inode information for a dentry
1835 * @entry: dentry to complete
1836 * @inode: inode to attach to this dentry
1838 * Fill in inode information in the entry.
1840 * This turns negative dentries into productive full members
1843 * NOTE! This assumes that the inode count has been incremented
1844 * (or otherwise set) by the caller to indicate that it is now
1845 * in use by the dcache.
1848 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1850 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1852 security_d_instantiate(entry
, inode
);
1853 spin_lock(&inode
->i_lock
);
1854 __d_instantiate(entry
, inode
);
1855 spin_unlock(&inode
->i_lock
);
1858 EXPORT_SYMBOL(d_instantiate
);
1861 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1862 * with lockdep-related part of unlock_new_inode() done before
1863 * anything else. Use that instead of open-coding d_instantiate()/
1864 * unlock_new_inode() combinations.
1866 void d_instantiate_new(struct dentry
*entry
, struct inode
*inode
)
1868 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1870 lockdep_annotate_inode_mutex_key(inode
);
1871 security_d_instantiate(entry
, inode
);
1872 spin_lock(&inode
->i_lock
);
1873 __d_instantiate(entry
, inode
);
1874 WARN_ON(!(inode
->i_state
& I_NEW
));
1875 inode
->i_state
&= ~I_NEW
;
1877 wake_up_bit(&inode
->i_state
, __I_NEW
);
1878 spin_unlock(&inode
->i_lock
);
1880 EXPORT_SYMBOL(d_instantiate_new
);
1883 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1884 * @entry: dentry to complete
1885 * @inode: inode to attach to this dentry
1887 * Fill in inode information in the entry. If a directory alias is found, then
1888 * return an error (and drop inode). Together with d_materialise_unique() this
1889 * guarantees that a directory inode may never have more than one alias.
1891 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1893 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1895 security_d_instantiate(entry
, inode
);
1896 spin_lock(&inode
->i_lock
);
1897 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1898 spin_unlock(&inode
->i_lock
);
1902 __d_instantiate(entry
, inode
);
1903 spin_unlock(&inode
->i_lock
);
1907 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1909 struct dentry
*d_make_root(struct inode
*root_inode
)
1911 struct dentry
*res
= NULL
;
1914 res
= __d_alloc(root_inode
->i_sb
, NULL
);
1916 res
->d_flags
|= DCACHE_RCUACCESS
;
1917 d_instantiate(res
, root_inode
);
1924 EXPORT_SYMBOL(d_make_root
);
1926 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1928 struct dentry
*alias
;
1930 if (hlist_empty(&inode
->i_dentry
))
1932 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1938 * d_find_any_alias - find any alias for a given inode
1939 * @inode: inode to find an alias for
1941 * If any aliases exist for the given inode, take and return a
1942 * reference for one of them. If no aliases exist, return %NULL.
1944 struct dentry
*d_find_any_alias(struct inode
*inode
)
1948 spin_lock(&inode
->i_lock
);
1949 de
= __d_find_any_alias(inode
);
1950 spin_unlock(&inode
->i_lock
);
1953 EXPORT_SYMBOL(d_find_any_alias
);
1955 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1962 return ERR_PTR(-ESTALE
);
1964 return ERR_CAST(inode
);
1966 res
= d_find_any_alias(inode
);
1970 tmp
= __d_alloc(inode
->i_sb
, NULL
);
1972 res
= ERR_PTR(-ENOMEM
);
1976 security_d_instantiate(tmp
, inode
);
1977 spin_lock(&inode
->i_lock
);
1978 res
= __d_find_any_alias(inode
);
1980 spin_unlock(&inode
->i_lock
);
1985 /* attach a disconnected dentry */
1986 add_flags
= d_flags_for_inode(inode
);
1989 add_flags
|= DCACHE_DISCONNECTED
;
1991 spin_lock(&tmp
->d_lock
);
1992 __d_set_inode_and_type(tmp
, inode
, add_flags
);
1993 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1994 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1995 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1996 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1997 spin_unlock(&tmp
->d_lock
);
1998 spin_unlock(&inode
->i_lock
);
2008 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2009 * @inode: inode to allocate the dentry for
2011 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2012 * similar open by handle operations. The returned dentry may be anonymous,
2013 * or may have a full name (if the inode was already in the cache).
2015 * When called on a directory inode, we must ensure that the inode only ever
2016 * has one dentry. If a dentry is found, that is returned instead of
2017 * allocating a new one.
2019 * On successful return, the reference to the inode has been transferred
2020 * to the dentry. In case of an error the reference on the inode is released.
2021 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2022 * be passed in and the error will be propagated to the return value,
2023 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2025 struct dentry
*d_obtain_alias(struct inode
*inode
)
2027 return __d_obtain_alias(inode
, 1);
2029 EXPORT_SYMBOL(d_obtain_alias
);
2032 * d_obtain_root - find or allocate a dentry for a given inode
2033 * @inode: inode to allocate the dentry for
2035 * Obtain an IS_ROOT dentry for the root of a filesystem.
2037 * We must ensure that directory inodes only ever have one dentry. If a
2038 * dentry is found, that is returned instead of allocating a new one.
2040 * On successful return, the reference to the inode has been transferred
2041 * to the dentry. In case of an error the reference on the inode is
2042 * released. A %NULL or IS_ERR inode may be passed in and will be the
2043 * error will be propagate to the return value, with a %NULL @inode
2044 * replaced by ERR_PTR(-ESTALE).
2046 struct dentry
*d_obtain_root(struct inode
*inode
)
2048 return __d_obtain_alias(inode
, 0);
2050 EXPORT_SYMBOL(d_obtain_root
);
2053 * d_add_ci - lookup or allocate new dentry with case-exact name
2054 * @inode: the inode case-insensitive lookup has found
2055 * @dentry: the negative dentry that was passed to the parent's lookup func
2056 * @name: the case-exact name to be associated with the returned dentry
2058 * This is to avoid filling the dcache with case-insensitive names to the
2059 * same inode, only the actual correct case is stored in the dcache for
2060 * case-insensitive filesystems.
2062 * For a case-insensitive lookup match and if the the case-exact dentry
2063 * already exists in in the dcache, use it and return it.
2065 * If no entry exists with the exact case name, allocate new dentry with
2066 * the exact case, and return the spliced entry.
2068 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2071 struct dentry
*found
, *res
;
2074 * First check if a dentry matching the name already exists,
2075 * if not go ahead and create it now.
2077 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2082 if (d_in_lookup(dentry
)) {
2083 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2085 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2090 found
= d_alloc(dentry
->d_parent
, name
);
2093 return ERR_PTR(-ENOMEM
);
2096 res
= d_splice_alias(inode
, found
);
2103 EXPORT_SYMBOL(d_add_ci
);
2106 static inline bool d_same_name(const struct dentry
*dentry
,
2107 const struct dentry
*parent
,
2108 const struct qstr
*name
)
2110 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2111 if (dentry
->d_name
.len
!= name
->len
)
2113 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2115 return parent
->d_op
->d_compare(dentry
,
2116 dentry
->d_name
.len
, dentry
->d_name
.name
,
2121 * __d_lookup_rcu - search for a dentry (racy, store-free)
2122 * @parent: parent dentry
2123 * @name: qstr of name we wish to find
2124 * @seqp: returns d_seq value at the point where the dentry was found
2125 * Returns: dentry, or NULL
2127 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2128 * resolution (store-free path walking) design described in
2129 * Documentation/filesystems/path-lookup.txt.
2131 * This is not to be used outside core vfs.
2133 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2134 * held, and rcu_read_lock held. The returned dentry must not be stored into
2135 * without taking d_lock and checking d_seq sequence count against @seq
2138 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2141 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2142 * the returned dentry, so long as its parent's seqlock is checked after the
2143 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2144 * is formed, giving integrity down the path walk.
2146 * NOTE! The caller *has* to check the resulting dentry against the sequence
2147 * number we've returned before using any of the resulting dentry state!
2149 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2150 const struct qstr
*name
,
2153 u64 hashlen
= name
->hash_len
;
2154 const unsigned char *str
= name
->name
;
2155 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2156 struct hlist_bl_node
*node
;
2157 struct dentry
*dentry
;
2160 * Note: There is significant duplication with __d_lookup_rcu which is
2161 * required to prevent single threaded performance regressions
2162 * especially on architectures where smp_rmb (in seqcounts) are costly.
2163 * Keep the two functions in sync.
2167 * The hash list is protected using RCU.
2169 * Carefully use d_seq when comparing a candidate dentry, to avoid
2170 * races with d_move().
2172 * It is possible that concurrent renames can mess up our list
2173 * walk here and result in missing our dentry, resulting in the
2174 * false-negative result. d_lookup() protects against concurrent
2175 * renames using rename_lock seqlock.
2177 * See Documentation/filesystems/path-lookup.txt for more details.
2179 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2184 * The dentry sequence count protects us from concurrent
2185 * renames, and thus protects parent and name fields.
2187 * The caller must perform a seqcount check in order
2188 * to do anything useful with the returned dentry.
2190 * NOTE! We do a "raw" seqcount_begin here. That means that
2191 * we don't wait for the sequence count to stabilize if it
2192 * is in the middle of a sequence change. If we do the slow
2193 * dentry compare, we will do seqretries until it is stable,
2194 * and if we end up with a successful lookup, we actually
2195 * want to exit RCU lookup anyway.
2197 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2198 * we are still guaranteed NUL-termination of ->d_name.name.
2200 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2201 if (dentry
->d_parent
!= parent
)
2203 if (d_unhashed(dentry
))
2206 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2209 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2211 tlen
= dentry
->d_name
.len
;
2212 tname
= dentry
->d_name
.name
;
2213 /* we want a consistent (name,len) pair */
2214 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2218 if (parent
->d_op
->d_compare(dentry
,
2219 tlen
, tname
, name
) != 0)
2222 if (dentry
->d_name
.hash_len
!= hashlen
)
2224 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2234 * d_lookup - search for a dentry
2235 * @parent: parent dentry
2236 * @name: qstr of name we wish to find
2237 * Returns: dentry, or NULL
2239 * d_lookup searches the children of the parent dentry for the name in
2240 * question. If the dentry is found its reference count is incremented and the
2241 * dentry is returned. The caller must use dput to free the entry when it has
2242 * finished using it. %NULL is returned if the dentry does not exist.
2244 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2246 struct dentry
*dentry
;
2250 seq
= read_seqbegin(&rename_lock
);
2251 dentry
= __d_lookup(parent
, name
);
2254 } while (read_seqretry(&rename_lock
, seq
));
2257 EXPORT_SYMBOL(d_lookup
);
2260 * __d_lookup - search for a dentry (racy)
2261 * @parent: parent dentry
2262 * @name: qstr of name we wish to find
2263 * Returns: dentry, or NULL
2265 * __d_lookup is like d_lookup, however it may (rarely) return a
2266 * false-negative result due to unrelated rename activity.
2268 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2269 * however it must be used carefully, eg. with a following d_lookup in
2270 * the case of failure.
2272 * __d_lookup callers must be commented.
2274 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2276 unsigned int hash
= name
->hash
;
2277 struct hlist_bl_head
*b
= d_hash(hash
);
2278 struct hlist_bl_node
*node
;
2279 struct dentry
*found
= NULL
;
2280 struct dentry
*dentry
;
2283 * Note: There is significant duplication with __d_lookup_rcu which is
2284 * required to prevent single threaded performance regressions
2285 * especially on architectures where smp_rmb (in seqcounts) are costly.
2286 * Keep the two functions in sync.
2290 * The hash list is protected using RCU.
2292 * Take d_lock when comparing a candidate dentry, to avoid races
2295 * It is possible that concurrent renames can mess up our list
2296 * walk here and result in missing our dentry, resulting in the
2297 * false-negative result. d_lookup() protects against concurrent
2298 * renames using rename_lock seqlock.
2300 * See Documentation/filesystems/path-lookup.txt for more details.
2304 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2306 if (dentry
->d_name
.hash
!= hash
)
2309 spin_lock(&dentry
->d_lock
);
2310 if (dentry
->d_parent
!= parent
)
2312 if (d_unhashed(dentry
))
2315 if (!d_same_name(dentry
, parent
, name
))
2318 dentry
->d_lockref
.count
++;
2320 spin_unlock(&dentry
->d_lock
);
2323 spin_unlock(&dentry
->d_lock
);
2331 * d_hash_and_lookup - hash the qstr then search for a dentry
2332 * @dir: Directory to search in
2333 * @name: qstr of name we wish to find
2335 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2337 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2340 * Check for a fs-specific hash function. Note that we must
2341 * calculate the standard hash first, as the d_op->d_hash()
2342 * routine may choose to leave the hash value unchanged.
2344 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2345 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2346 int err
= dir
->d_op
->d_hash(dir
, name
);
2347 if (unlikely(err
< 0))
2348 return ERR_PTR(err
);
2350 return d_lookup(dir
, name
);
2352 EXPORT_SYMBOL(d_hash_and_lookup
);
2355 * When a file is deleted, we have two options:
2356 * - turn this dentry into a negative dentry
2357 * - unhash this dentry and free it.
2359 * Usually, we want to just turn this into
2360 * a negative dentry, but if anybody else is
2361 * currently using the dentry or the inode
2362 * we can't do that and we fall back on removing
2363 * it from the hash queues and waiting for
2364 * it to be deleted later when it has no users
2368 * d_delete - delete a dentry
2369 * @dentry: The dentry to delete
2371 * Turn the dentry into a negative dentry if possible, otherwise
2372 * remove it from the hash queues so it can be deleted later
2375 void d_delete(struct dentry
* dentry
)
2377 struct inode
*inode
;
2380 * Are we the only user?
2383 spin_lock(&dentry
->d_lock
);
2384 inode
= dentry
->d_inode
;
2385 isdir
= S_ISDIR(inode
->i_mode
);
2386 if (dentry
->d_lockref
.count
== 1) {
2387 if (!spin_trylock(&inode
->i_lock
)) {
2388 spin_unlock(&dentry
->d_lock
);
2392 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2393 dentry_unlink_inode(dentry
);
2394 fsnotify_nameremove(dentry
, isdir
);
2398 if (!d_unhashed(dentry
))
2401 spin_unlock(&dentry
->d_lock
);
2403 fsnotify_nameremove(dentry
, isdir
);
2405 EXPORT_SYMBOL(d_delete
);
2407 static void __d_rehash(struct dentry
*entry
)
2409 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2412 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2417 * d_rehash - add an entry back to the hash
2418 * @entry: dentry to add to the hash
2420 * Adds a dentry to the hash according to its name.
2423 void d_rehash(struct dentry
* entry
)
2425 spin_lock(&entry
->d_lock
);
2427 spin_unlock(&entry
->d_lock
);
2429 EXPORT_SYMBOL(d_rehash
);
2431 static inline unsigned start_dir_add(struct inode
*dir
)
2435 unsigned n
= dir
->i_dir_seq
;
2436 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2442 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2444 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2447 static void d_wait_lookup(struct dentry
*dentry
)
2449 if (d_in_lookup(dentry
)) {
2450 DECLARE_WAITQUEUE(wait
, current
);
2451 add_wait_queue(dentry
->d_wait
, &wait
);
2453 set_current_state(TASK_UNINTERRUPTIBLE
);
2454 spin_unlock(&dentry
->d_lock
);
2456 spin_lock(&dentry
->d_lock
);
2457 } while (d_in_lookup(dentry
));
2461 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2462 const struct qstr
*name
,
2463 wait_queue_head_t
*wq
)
2465 unsigned int hash
= name
->hash
;
2466 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2467 struct hlist_bl_node
*node
;
2468 struct dentry
*new = d_alloc(parent
, name
);
2469 struct dentry
*dentry
;
2470 unsigned seq
, r_seq
, d_seq
;
2473 return ERR_PTR(-ENOMEM
);
2477 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
);
2478 r_seq
= read_seqbegin(&rename_lock
);
2479 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2480 if (unlikely(dentry
)) {
2481 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2485 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2494 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2499 if (unlikely(seq
& 1)) {
2505 if (unlikely(READ_ONCE(parent
->d_inode
->i_dir_seq
) != seq
)) {
2511 * No changes for the parent since the beginning of d_lookup().
2512 * Since all removals from the chain happen with hlist_bl_lock(),
2513 * any potential in-lookup matches are going to stay here until
2514 * we unlock the chain. All fields are stable in everything
2517 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2518 if (dentry
->d_name
.hash
!= hash
)
2520 if (dentry
->d_parent
!= parent
)
2522 if (!d_same_name(dentry
, parent
, name
))
2525 /* now we can try to grab a reference */
2526 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2533 * somebody is likely to be still doing lookup for it;
2534 * wait for them to finish
2536 spin_lock(&dentry
->d_lock
);
2537 d_wait_lookup(dentry
);
2539 * it's not in-lookup anymore; in principle we should repeat
2540 * everything from dcache lookup, but it's likely to be what
2541 * d_lookup() would've found anyway. If it is, just return it;
2542 * otherwise we really have to repeat the whole thing.
2544 if (unlikely(dentry
->d_name
.hash
!= hash
))
2546 if (unlikely(dentry
->d_parent
!= parent
))
2548 if (unlikely(d_unhashed(dentry
)))
2550 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2552 /* OK, it *is* a hashed match; return it */
2553 spin_unlock(&dentry
->d_lock
);
2558 /* we can't take ->d_lock here; it's OK, though. */
2559 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2561 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2565 spin_unlock(&dentry
->d_lock
);
2569 EXPORT_SYMBOL(d_alloc_parallel
);
2571 void __d_lookup_done(struct dentry
*dentry
)
2573 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2574 dentry
->d_name
.hash
);
2576 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2577 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2578 wake_up_all(dentry
->d_wait
);
2579 dentry
->d_wait
= NULL
;
2581 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2582 INIT_LIST_HEAD(&dentry
->d_lru
);
2584 EXPORT_SYMBOL(__d_lookup_done
);
2586 /* inode->i_lock held if inode is non-NULL */
2588 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2590 struct inode
*dir
= NULL
;
2592 spin_lock(&dentry
->d_lock
);
2593 if (unlikely(d_in_lookup(dentry
))) {
2594 dir
= dentry
->d_parent
->d_inode
;
2595 n
= start_dir_add(dir
);
2596 __d_lookup_done(dentry
);
2599 unsigned add_flags
= d_flags_for_inode(inode
);
2600 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2601 raw_write_seqcount_begin(&dentry
->d_seq
);
2602 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2603 raw_write_seqcount_end(&dentry
->d_seq
);
2604 fsnotify_update_flags(dentry
);
2608 end_dir_add(dir
, n
);
2609 spin_unlock(&dentry
->d_lock
);
2611 spin_unlock(&inode
->i_lock
);
2615 * d_add - add dentry to hash queues
2616 * @entry: dentry to add
2617 * @inode: The inode to attach to this dentry
2619 * This adds the entry to the hash queues and initializes @inode.
2620 * The entry was actually filled in earlier during d_alloc().
2623 void d_add(struct dentry
*entry
, struct inode
*inode
)
2626 security_d_instantiate(entry
, inode
);
2627 spin_lock(&inode
->i_lock
);
2629 __d_add(entry
, inode
);
2631 EXPORT_SYMBOL(d_add
);
2634 * d_exact_alias - find and hash an exact unhashed alias
2635 * @entry: dentry to add
2636 * @inode: The inode to go with this dentry
2638 * If an unhashed dentry with the same name/parent and desired
2639 * inode already exists, hash and return it. Otherwise, return
2642 * Parent directory should be locked.
2644 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2646 struct dentry
*alias
;
2647 unsigned int hash
= entry
->d_name
.hash
;
2649 spin_lock(&inode
->i_lock
);
2650 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2652 * Don't need alias->d_lock here, because aliases with
2653 * d_parent == entry->d_parent are not subject to name or
2654 * parent changes, because the parent inode i_mutex is held.
2656 if (alias
->d_name
.hash
!= hash
)
2658 if (alias
->d_parent
!= entry
->d_parent
)
2660 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2662 spin_lock(&alias
->d_lock
);
2663 if (!d_unhashed(alias
)) {
2664 spin_unlock(&alias
->d_lock
);
2667 __dget_dlock(alias
);
2669 spin_unlock(&alias
->d_lock
);
2671 spin_unlock(&inode
->i_lock
);
2674 spin_unlock(&inode
->i_lock
);
2677 EXPORT_SYMBOL(d_exact_alias
);
2680 * dentry_update_name_case - update case insensitive dentry with a new name
2681 * @dentry: dentry to be updated
2684 * Update a case insensitive dentry with new case of name.
2686 * dentry must have been returned by d_lookup with name @name. Old and new
2687 * name lengths must match (ie. no d_compare which allows mismatched name
2690 * Parent inode i_mutex must be held over d_lookup and into this call (to
2691 * keep renames and concurrent inserts, and readdir(2) away).
2693 void dentry_update_name_case(struct dentry
*dentry
, const struct qstr
*name
)
2695 BUG_ON(!inode_is_locked(dentry
->d_parent
->d_inode
));
2696 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2698 spin_lock(&dentry
->d_lock
);
2699 write_seqcount_begin(&dentry
->d_seq
);
2700 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2701 write_seqcount_end(&dentry
->d_seq
);
2702 spin_unlock(&dentry
->d_lock
);
2704 EXPORT_SYMBOL(dentry_update_name_case
);
2706 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2708 if (unlikely(dname_external(target
))) {
2709 if (unlikely(dname_external(dentry
))) {
2711 * Both external: swap the pointers
2713 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2716 * dentry:internal, target:external. Steal target's
2717 * storage and make target internal.
2719 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2720 dentry
->d_name
.len
+ 1);
2721 dentry
->d_name
.name
= target
->d_name
.name
;
2722 target
->d_name
.name
= target
->d_iname
;
2725 if (unlikely(dname_external(dentry
))) {
2727 * dentry:external, target:internal. Give dentry's
2728 * storage to target and make dentry internal
2730 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2731 target
->d_name
.len
+ 1);
2732 target
->d_name
.name
= dentry
->d_name
.name
;
2733 dentry
->d_name
.name
= dentry
->d_iname
;
2736 * Both are internal.
2739 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2740 kmemcheck_mark_initialized(dentry
->d_iname
, DNAME_INLINE_LEN
);
2741 kmemcheck_mark_initialized(target
->d_iname
, DNAME_INLINE_LEN
);
2742 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2743 swap(((long *) &dentry
->d_iname
)[i
],
2744 ((long *) &target
->d_iname
)[i
]);
2748 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2751 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2753 struct external_name
*old_name
= NULL
;
2754 if (unlikely(dname_external(dentry
)))
2755 old_name
= external_name(dentry
);
2756 if (unlikely(dname_external(target
))) {
2757 atomic_inc(&external_name(target
)->u
.count
);
2758 dentry
->d_name
= target
->d_name
;
2760 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2761 target
->d_name
.len
+ 1);
2762 dentry
->d_name
.name
= dentry
->d_iname
;
2763 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2765 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2766 kfree_rcu(old_name
, u
.head
);
2769 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2772 * XXXX: do we really need to take target->d_lock?
2774 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2775 spin_lock(&target
->d_parent
->d_lock
);
2777 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2778 spin_lock(&dentry
->d_parent
->d_lock
);
2779 spin_lock_nested(&target
->d_parent
->d_lock
,
2780 DENTRY_D_LOCK_NESTED
);
2782 spin_lock(&target
->d_parent
->d_lock
);
2783 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2784 DENTRY_D_LOCK_NESTED
);
2787 if (target
< dentry
) {
2788 spin_lock_nested(&target
->d_lock
, 2);
2789 spin_lock_nested(&dentry
->d_lock
, 3);
2791 spin_lock_nested(&dentry
->d_lock
, 2);
2792 spin_lock_nested(&target
->d_lock
, 3);
2796 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2798 if (target
->d_parent
!= dentry
->d_parent
)
2799 spin_unlock(&dentry
->d_parent
->d_lock
);
2800 if (target
->d_parent
!= target
)
2801 spin_unlock(&target
->d_parent
->d_lock
);
2802 spin_unlock(&target
->d_lock
);
2803 spin_unlock(&dentry
->d_lock
);
2807 * When switching names, the actual string doesn't strictly have to
2808 * be preserved in the target - because we're dropping the target
2809 * anyway. As such, we can just do a simple memcpy() to copy over
2810 * the new name before we switch, unless we are going to rehash
2811 * it. Note that if we *do* unhash the target, we are not allowed
2812 * to rehash it without giving it a new name/hash key - whether
2813 * we swap or overwrite the names here, resulting name won't match
2814 * the reality in filesystem; it's only there for d_path() purposes.
2815 * Note that all of this is happening under rename_lock, so the
2816 * any hash lookup seeing it in the middle of manipulations will
2817 * be discarded anyway. So we do not care what happens to the hash
2821 * __d_move - move a dentry
2822 * @dentry: entry to move
2823 * @target: new dentry
2824 * @exchange: exchange the two dentries
2826 * Update the dcache to reflect the move of a file name. Negative
2827 * dcache entries should not be moved in this way. Caller must hold
2828 * rename_lock, the i_mutex of the source and target directories,
2829 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2831 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2834 struct inode
*dir
= NULL
;
2836 if (!dentry
->d_inode
)
2837 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2839 BUG_ON(d_ancestor(dentry
, target
));
2840 BUG_ON(d_ancestor(target
, dentry
));
2842 dentry_lock_for_move(dentry
, target
);
2843 if (unlikely(d_in_lookup(target
))) {
2844 dir
= target
->d_parent
->d_inode
;
2845 n
= start_dir_add(dir
);
2846 __d_lookup_done(target
);
2849 write_seqcount_begin(&dentry
->d_seq
);
2850 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2853 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2857 /* Switch the names.. */
2859 swap_names(dentry
, target
);
2861 copy_name(dentry
, target
);
2863 /* rehash in new place(s) */
2868 target
->d_hash
.pprev
= NULL
;
2870 /* ... and switch them in the tree */
2871 if (IS_ROOT(dentry
)) {
2872 /* splicing a tree */
2873 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2874 dentry
->d_parent
= target
->d_parent
;
2875 target
->d_parent
= target
;
2876 list_del_init(&target
->d_child
);
2877 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2879 /* swapping two dentries */
2880 swap(dentry
->d_parent
, target
->d_parent
);
2881 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2882 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2884 fsnotify_update_flags(target
);
2885 fsnotify_update_flags(dentry
);
2888 write_seqcount_end(&target
->d_seq
);
2889 write_seqcount_end(&dentry
->d_seq
);
2892 end_dir_add(dir
, n
);
2893 dentry_unlock_for_move(dentry
, target
);
2897 * d_move - move a dentry
2898 * @dentry: entry to move
2899 * @target: new dentry
2901 * Update the dcache to reflect the move of a file name. Negative
2902 * dcache entries should not be moved in this way. See the locking
2903 * requirements for __d_move.
2905 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2907 write_seqlock(&rename_lock
);
2908 __d_move(dentry
, target
, false);
2909 write_sequnlock(&rename_lock
);
2911 EXPORT_SYMBOL(d_move
);
2914 * d_exchange - exchange two dentries
2915 * @dentry1: first dentry
2916 * @dentry2: second dentry
2918 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2920 write_seqlock(&rename_lock
);
2922 WARN_ON(!dentry1
->d_inode
);
2923 WARN_ON(!dentry2
->d_inode
);
2924 WARN_ON(IS_ROOT(dentry1
));
2925 WARN_ON(IS_ROOT(dentry2
));
2927 __d_move(dentry1
, dentry2
, true);
2929 write_sequnlock(&rename_lock
);
2933 * d_ancestor - search for an ancestor
2934 * @p1: ancestor dentry
2937 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2938 * an ancestor of p2, else NULL.
2940 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2944 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2945 if (p
->d_parent
== p1
)
2952 * This helper attempts to cope with remotely renamed directories
2954 * It assumes that the caller is already holding
2955 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2957 * Note: If ever the locking in lock_rename() changes, then please
2958 * remember to update this too...
2960 static int __d_unalias(struct inode
*inode
,
2961 struct dentry
*dentry
, struct dentry
*alias
)
2963 struct mutex
*m1
= NULL
;
2964 struct rw_semaphore
*m2
= NULL
;
2967 /* If alias and dentry share a parent, then no extra locks required */
2968 if (alias
->d_parent
== dentry
->d_parent
)
2971 /* See lock_rename() */
2972 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2974 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2975 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2977 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2979 __d_move(alias
, dentry
, false);
2990 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2991 * @inode: the inode which may have a disconnected dentry
2992 * @dentry: a negative dentry which we want to point to the inode.
2994 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2995 * place of the given dentry and return it, else simply d_add the inode
2996 * to the dentry and return NULL.
2998 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2999 * we should error out: directories can't have multiple aliases.
3001 * This is needed in the lookup routine of any filesystem that is exportable
3002 * (via knfsd) so that we can build dcache paths to directories effectively.
3004 * If a dentry was found and moved, then it is returned. Otherwise NULL
3005 * is returned. This matches the expected return value of ->lookup.
3007 * Cluster filesystems may call this function with a negative, hashed dentry.
3008 * In that case, we know that the inode will be a regular file, and also this
3009 * will only occur during atomic_open. So we need to check for the dentry
3010 * being already hashed only in the final case.
3012 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
3015 return ERR_CAST(inode
);
3017 BUG_ON(!d_unhashed(dentry
));
3022 security_d_instantiate(dentry
, inode
);
3023 spin_lock(&inode
->i_lock
);
3024 if (S_ISDIR(inode
->i_mode
)) {
3025 struct dentry
*new = __d_find_any_alias(inode
);
3026 if (unlikely(new)) {
3027 /* The reference to new ensures it remains an alias */
3028 spin_unlock(&inode
->i_lock
);
3029 write_seqlock(&rename_lock
);
3030 if (unlikely(d_ancestor(new, dentry
))) {
3031 write_sequnlock(&rename_lock
);
3033 new = ERR_PTR(-ELOOP
);
3034 pr_warn_ratelimited(
3035 "VFS: Lookup of '%s' in %s %s"
3036 " would have caused loop\n",
3037 dentry
->d_name
.name
,
3038 inode
->i_sb
->s_type
->name
,
3040 } else if (!IS_ROOT(new)) {
3041 int err
= __d_unalias(inode
, dentry
, new);
3042 write_sequnlock(&rename_lock
);
3048 __d_move(new, dentry
, false);
3049 write_sequnlock(&rename_lock
);
3056 __d_add(dentry
, inode
);
3059 EXPORT_SYMBOL(d_splice_alias
);
3061 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
3065 return -ENAMETOOLONG
;
3067 memcpy(*buffer
, str
, namelen
);
3072 * prepend_name - prepend a pathname in front of current buffer pointer
3073 * @buffer: buffer pointer
3074 * @buflen: allocated length of the buffer
3075 * @name: name string and length qstr structure
3077 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3078 * make sure that either the old or the new name pointer and length are
3079 * fetched. However, there may be mismatch between length and pointer.
3080 * The length cannot be trusted, we need to copy it byte-by-byte until
3081 * the length is reached or a null byte is found. It also prepends "/" at
3082 * the beginning of the name. The sequence number check at the caller will
3083 * retry it again when a d_move() does happen. So any garbage in the buffer
3084 * due to mismatched pointer and length will be discarded.
3086 * Data dependency barrier is needed to make sure that we see that terminating
3087 * NUL. Alpha strikes again, film at 11...
3089 static int prepend_name(char **buffer
, int *buflen
, const struct qstr
*name
)
3091 const char *dname
= ACCESS_ONCE(name
->name
);
3092 u32 dlen
= ACCESS_ONCE(name
->len
);
3095 smp_read_barrier_depends();
3097 *buflen
-= dlen
+ 1;
3099 return -ENAMETOOLONG
;
3100 p
= *buffer
-= dlen
+ 1;
3112 * prepend_path - Prepend path string to a buffer
3113 * @path: the dentry/vfsmount to report
3114 * @root: root vfsmnt/dentry
3115 * @buffer: pointer to the end of the buffer
3116 * @buflen: pointer to buffer length
3118 * The function will first try to write out the pathname without taking any
3119 * lock other than the RCU read lock to make sure that dentries won't go away.
3120 * It only checks the sequence number of the global rename_lock as any change
3121 * in the dentry's d_seq will be preceded by changes in the rename_lock
3122 * sequence number. If the sequence number had been changed, it will restart
3123 * the whole pathname back-tracing sequence again by taking the rename_lock.
3124 * In this case, there is no need to take the RCU read lock as the recursive
3125 * parent pointer references will keep the dentry chain alive as long as no
3126 * rename operation is performed.
3128 static int prepend_path(const struct path
*path
,
3129 const struct path
*root
,
3130 char **buffer
, int *buflen
)
3132 struct dentry
*dentry
;
3133 struct vfsmount
*vfsmnt
;
3136 unsigned seq
, m_seq
= 0;
3142 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
3149 dentry
= path
->dentry
;
3151 mnt
= real_mount(vfsmnt
);
3152 read_seqbegin_or_lock(&rename_lock
, &seq
);
3153 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
3154 struct dentry
* parent
;
3156 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
3157 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
3159 if (dentry
!= vfsmnt
->mnt_root
) {
3166 if (mnt
!= parent
) {
3167 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
3173 error
= is_mounted(vfsmnt
) ? 1 : 2;
3176 parent
= dentry
->d_parent
;
3178 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
3186 if (need_seqretry(&rename_lock
, seq
)) {
3190 done_seqretry(&rename_lock
, seq
);
3194 if (need_seqretry(&mount_lock
, m_seq
)) {
3198 done_seqretry(&mount_lock
, m_seq
);
3200 if (error
>= 0 && bptr
== *buffer
) {
3202 error
= -ENAMETOOLONG
;
3212 * __d_path - return the path of a dentry
3213 * @path: the dentry/vfsmount to report
3214 * @root: root vfsmnt/dentry
3215 * @buf: buffer to return value in
3216 * @buflen: buffer length
3218 * Convert a dentry into an ASCII path name.
3220 * Returns a pointer into the buffer or an error code if the
3221 * path was too long.
3223 * "buflen" should be positive.
3225 * If the path is not reachable from the supplied root, return %NULL.
3227 char *__d_path(const struct path
*path
,
3228 const struct path
*root
,
3229 char *buf
, int buflen
)
3231 char *res
= buf
+ buflen
;
3234 prepend(&res
, &buflen
, "\0", 1);
3235 error
= prepend_path(path
, root
, &res
, &buflen
);
3238 return ERR_PTR(error
);
3244 char *d_absolute_path(const struct path
*path
,
3245 char *buf
, int buflen
)
3247 struct path root
= {};
3248 char *res
= buf
+ buflen
;
3251 prepend(&res
, &buflen
, "\0", 1);
3252 error
= prepend_path(path
, &root
, &res
, &buflen
);
3257 return ERR_PTR(error
);
3262 * same as __d_path but appends "(deleted)" for unlinked files.
3264 static int path_with_deleted(const struct path
*path
,
3265 const struct path
*root
,
3266 char **buf
, int *buflen
)
3268 prepend(buf
, buflen
, "\0", 1);
3269 if (d_unlinked(path
->dentry
)) {
3270 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3275 return prepend_path(path
, root
, buf
, buflen
);
3278 static int prepend_unreachable(char **buffer
, int *buflen
)
3280 return prepend(buffer
, buflen
, "(unreachable)", 13);
3283 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3288 seq
= read_seqcount_begin(&fs
->seq
);
3290 } while (read_seqcount_retry(&fs
->seq
, seq
));
3294 * d_path - return the path of a dentry
3295 * @path: path to report
3296 * @buf: buffer to return value in
3297 * @buflen: buffer length
3299 * Convert a dentry into an ASCII path name. If the entry has been deleted
3300 * the string " (deleted)" is appended. Note that this is ambiguous.
3302 * Returns a pointer into the buffer or an error code if the path was
3303 * too long. Note: Callers should use the returned pointer, not the passed
3304 * in buffer, to use the name! The implementation often starts at an offset
3305 * into the buffer, and may leave 0 bytes at the start.
3307 * "buflen" should be positive.
3309 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3311 char *res
= buf
+ buflen
;
3316 * We have various synthetic filesystems that never get mounted. On
3317 * these filesystems dentries are never used for lookup purposes, and
3318 * thus don't need to be hashed. They also don't need a name until a
3319 * user wants to identify the object in /proc/pid/fd/. The little hack
3320 * below allows us to generate a name for these objects on demand:
3322 * Some pseudo inodes are mountable. When they are mounted
3323 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3324 * and instead have d_path return the mounted path.
3326 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3327 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3328 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3331 get_fs_root_rcu(current
->fs
, &root
);
3332 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3336 res
= ERR_PTR(error
);
3339 EXPORT_SYMBOL(d_path
);
3342 * Helper function for dentry_operations.d_dname() members
3344 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3345 const char *fmt
, ...)
3351 va_start(args
, fmt
);
3352 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3355 if (sz
> sizeof(temp
) || sz
> buflen
)
3356 return ERR_PTR(-ENAMETOOLONG
);
3358 buffer
+= buflen
- sz
;
3359 return memcpy(buffer
, temp
, sz
);
3362 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3364 char *end
= buffer
+ buflen
;
3365 /* these dentries are never renamed, so d_lock is not needed */
3366 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3367 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3368 prepend(&end
, &buflen
, "/", 1))
3369 end
= ERR_PTR(-ENAMETOOLONG
);
3372 EXPORT_SYMBOL(simple_dname
);
3375 * Write full pathname from the root of the filesystem into the buffer.
3377 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3379 struct dentry
*dentry
;
3392 prepend(&end
, &len
, "\0", 1);
3396 read_seqbegin_or_lock(&rename_lock
, &seq
);
3397 while (!IS_ROOT(dentry
)) {
3398 struct dentry
*parent
= dentry
->d_parent
;
3401 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3410 if (need_seqretry(&rename_lock
, seq
)) {
3414 done_seqretry(&rename_lock
, seq
);
3419 return ERR_PTR(-ENAMETOOLONG
);
3422 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3424 return __dentry_path(dentry
, buf
, buflen
);
3426 EXPORT_SYMBOL(dentry_path_raw
);
3428 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3433 if (d_unlinked(dentry
)) {
3435 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3439 retval
= __dentry_path(dentry
, buf
, buflen
);
3440 if (!IS_ERR(retval
) && p
)
3441 *p
= '/'; /* restore '/' overriden with '\0' */
3444 return ERR_PTR(-ENAMETOOLONG
);
3447 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3453 seq
= read_seqcount_begin(&fs
->seq
);
3456 } while (read_seqcount_retry(&fs
->seq
, seq
));
3460 * NOTE! The user-level library version returns a
3461 * character pointer. The kernel system call just
3462 * returns the length of the buffer filled (which
3463 * includes the ending '\0' character), or a negative
3464 * error value. So libc would do something like
3466 * char *getcwd(char * buf, size_t size)
3470 * retval = sys_getcwd(buf, size);
3477 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3480 struct path pwd
, root
;
3481 char *page
= __getname();
3487 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3490 if (!d_unlinked(pwd
.dentry
)) {
3492 char *cwd
= page
+ PATH_MAX
;
3493 int buflen
= PATH_MAX
;
3495 prepend(&cwd
, &buflen
, "\0", 1);
3496 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3502 /* Unreachable from current root */
3504 error
= prepend_unreachable(&cwd
, &buflen
);
3510 len
= PATH_MAX
+ page
- cwd
;
3513 if (copy_to_user(buf
, cwd
, len
))
3526 * Test whether new_dentry is a subdirectory of old_dentry.
3528 * Trivially implemented using the dcache structure
3532 * is_subdir - is new dentry a subdirectory of old_dentry
3533 * @new_dentry: new dentry
3534 * @old_dentry: old dentry
3536 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3537 * Returns false otherwise.
3538 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3541 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3546 if (new_dentry
== old_dentry
)
3550 /* for restarting inner loop in case of seq retry */
3551 seq
= read_seqbegin(&rename_lock
);
3553 * Need rcu_readlock to protect against the d_parent trashing
3557 if (d_ancestor(old_dentry
, new_dentry
))
3562 } while (read_seqretry(&rename_lock
, seq
));
3567 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3569 struct dentry
*root
= data
;
3570 if (dentry
!= root
) {
3571 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3574 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3575 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3576 dentry
->d_lockref
.count
--;
3579 return D_WALK_CONTINUE
;
3582 void d_genocide(struct dentry
*parent
)
3584 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3587 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3589 inode_dec_link_count(inode
);
3590 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3591 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3592 !d_unlinked(dentry
));
3593 spin_lock(&dentry
->d_parent
->d_lock
);
3594 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3595 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3596 (unsigned long long)inode
->i_ino
);
3597 spin_unlock(&dentry
->d_lock
);
3598 spin_unlock(&dentry
->d_parent
->d_lock
);
3599 d_instantiate(dentry
, inode
);
3601 EXPORT_SYMBOL(d_tmpfile
);
3603 static __initdata
unsigned long dhash_entries
;
3604 static int __init
set_dhash_entries(char *str
)
3608 dhash_entries
= simple_strtoul(str
, &str
, 0);
3611 __setup("dhash_entries=", set_dhash_entries
);
3613 static void __init
dcache_init_early(void)
3617 /* If hashes are distributed across NUMA nodes, defer
3618 * hash allocation until vmalloc space is available.
3624 alloc_large_system_hash("Dentry cache",
3625 sizeof(struct hlist_bl_head
),
3634 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3635 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3638 static void __init
dcache_init(void)
3643 * A constructor could be added for stable state like the lists,
3644 * but it is probably not worth it because of the cache nature
3647 dentry_cache
= KMEM_CACHE(dentry
,
3648 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
);
3650 /* Hash may have been set up in dcache_init_early */
3655 alloc_large_system_hash("Dentry cache",
3656 sizeof(struct hlist_bl_head
),
3665 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3666 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3669 /* SLAB cache for __getname() consumers */
3670 struct kmem_cache
*names_cachep __read_mostly
;
3671 EXPORT_SYMBOL(names_cachep
);
3673 EXPORT_SYMBOL(d_genocide
);
3675 void __init
vfs_caches_init_early(void)
3677 dcache_init_early();
3681 void __init
vfs_caches_init(void)
3683 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3684 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3689 files_maxfiles_init();