2 * Based upon linux/arch/m68k/mm/sun3mmu.c
3 * Based upon linux/arch/ppc/mm/mmu_context.c
5 * Implementations of mm routines specific to the Coldfire MMU.
7 * Copyright (c) 2008 Freescale Semiconductor, Inc.
10 #include <linux/kernel.h>
11 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/bootmem.h>
17 #include <asm/setup.h>
19 #include <asm/pgtable.h>
20 #include <asm/mmu_context.h>
21 #include <asm/mcf_pgalloc.h>
22 #include <asm/tlbflush.h>
24 #define KMAPAREA(x) ((x >= VMALLOC_START) && (x < KMAP_END))
26 mm_context_t next_mmu_context
;
27 unsigned long context_map
[LAST_CONTEXT
/ BITS_PER_LONG
+ 1];
28 atomic_t nr_free_contexts
;
29 struct mm_struct
*context_mm
[LAST_CONTEXT
+1];
30 unsigned long num_pages
;
33 * ColdFire paging_init derived from sun3.
35 void __init
paging_init(void)
39 unsigned long address
, size
;
40 unsigned long next_pgtable
, bootmem_end
;
41 unsigned long zones_size
[MAX_NR_ZONES
];
45 empty_zero_page
= (void *) alloc_bootmem_pages(PAGE_SIZE
);
46 memset((void *) empty_zero_page
, 0, PAGE_SIZE
);
48 pg_dir
= swapper_pg_dir
;
49 memset(swapper_pg_dir
, 0, sizeof(swapper_pg_dir
));
51 size
= num_pages
* sizeof(pte_t
);
52 size
= (size
+ PAGE_SIZE
) & ~(PAGE_SIZE
-1);
53 next_pgtable
= (unsigned long) alloc_bootmem_pages(size
);
55 bootmem_end
= (next_pgtable
+ size
+ PAGE_SIZE
) & PAGE_MASK
;
56 pg_dir
+= PAGE_OFFSET
>> PGDIR_SHIFT
;
58 address
= PAGE_OFFSET
;
59 while (address
< (unsigned long)high_memory
) {
60 pg_table
= (pte_t
*) next_pgtable
;
61 next_pgtable
+= PTRS_PER_PTE
* sizeof(pte_t
);
62 pgd_val(*pg_dir
) = (unsigned long) pg_table
;
65 /* now change pg_table to kernel virtual addresses */
66 for (i
= 0; i
< PTRS_PER_PTE
; ++i
, ++pg_table
) {
67 pte_t pte
= pfn_pte(virt_to_pfn(address
), PAGE_INIT
);
68 if (address
>= (unsigned long) high_memory
)
71 set_pte(pg_table
, pte
);
78 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++)
79 zones_size
[zone
] = 0x0;
80 zones_size
[ZONE_DMA
] = num_pages
;
81 free_area_init(zones_size
);
84 int cf_tlb_miss(struct pt_regs
*regs
, int write
, int dtlb
, int extension_word
)
86 unsigned long flags
, mmuar
, mmutr
;
93 local_irq_save(flags
);
95 mmuar
= (dtlb
) ? mmu_read(MMUAR
) :
96 regs
->pc
+ (extension_word
* sizeof(long));
98 mm
= (!user_mode(regs
) && KMAPAREA(mmuar
)) ? &init_mm
: current
->mm
;
100 local_irq_restore(flags
);
104 pgd
= pgd_offset(mm
, mmuar
);
105 if (pgd_none(*pgd
)) {
106 local_irq_restore(flags
);
110 pmd
= pmd_offset(pgd
, mmuar
);
111 if (pmd_none(*pmd
)) {
112 local_irq_restore(flags
);
116 pte
= (KMAPAREA(mmuar
)) ? pte_offset_kernel(pmd
, mmuar
)
117 : pte_offset_map(pmd
, mmuar
);
118 if (pte_none(*pte
) || !pte_present(*pte
)) {
119 local_irq_restore(flags
);
124 if (!pte_write(*pte
)) {
125 local_irq_restore(flags
);
128 set_pte(pte
, pte_mkdirty(*pte
));
131 set_pte(pte
, pte_mkyoung(*pte
));
132 asid
= mm
->context
& 0xff;
133 if (!pte_dirty(*pte
) && !KMAPAREA(mmuar
))
134 set_pte(pte
, pte_wrprotect(*pte
));
136 mmutr
= (mmuar
& PAGE_MASK
) | (asid
<< MMUTR_IDN
) | MMUTR_V
;
137 if ((mmuar
< TASK_UNMAPPED_BASE
) || (mmuar
>= TASK_SIZE
))
138 mmutr
|= (pte
->pte
& CF_PAGE_MMUTR_MASK
) >> CF_PAGE_MMUTR_SHIFT
;
139 mmu_write(MMUTR
, mmutr
);
141 mmu_write(MMUDR
, (pte_val(*pte
) & PAGE_MASK
) |
142 ((pte
->pte
) & CF_PAGE_MMUDR_MASK
) | MMUDR_SZ_8KB
| MMUDR_X
);
145 mmu_write(MMUOR
, MMUOR_ACC
| MMUOR_UAA
);
147 mmu_write(MMUOR
, MMUOR_ITLB
| MMUOR_ACC
| MMUOR_UAA
);
149 local_irq_restore(flags
);
153 void __init
cf_bootmem_alloc(void)
155 unsigned long start_pfn
;
156 unsigned long memstart
;
158 /* _rambase and _ramend will be naturally page aligned */
159 m68k_memory
[0].addr
= _rambase
;
160 m68k_memory
[0].size
= _ramend
- _rambase
;
162 /* compute total pages in system */
163 num_pages
= PFN_DOWN(_ramend
- _rambase
);
166 memstart
= PAGE_ALIGN(_ramstart
);
167 min_low_pfn
= PFN_DOWN(_rambase
);
168 start_pfn
= PFN_DOWN(memstart
);
169 max_pfn
= max_low_pfn
= PFN_DOWN(_ramend
);
170 high_memory
= (void *)_ramend
;
172 m68k_virt_to_node_shift
= fls(_ramend
- _rambase
- 1) - 6;
173 module_fixup(NULL
, __start_fixup
, __stop_fixup
);
175 /* setup bootmem data */
177 memstart
+= init_bootmem_node(NODE_DATA(0), start_pfn
,
178 min_low_pfn
, max_low_pfn
);
179 free_bootmem_node(NODE_DATA(0), memstart
, _ramend
- memstart
);
183 * Initialize the context management stuff.
184 * The following was taken from arch/ppc/mmu_context.c
186 void __init
mmu_context_init(void)
189 * Some processors have too few contexts to reserve one for
190 * init_mm, and require using context 0 for a normal task.
191 * Other processors reserve the use of context zero for the kernel.
192 * This code assumes FIRST_CONTEXT < 32.
194 context_map
[0] = (1 << FIRST_CONTEXT
) - 1;
195 next_mmu_context
= FIRST_CONTEXT
;
196 atomic_set(&nr_free_contexts
, LAST_CONTEXT
- FIRST_CONTEXT
+ 1);
200 * Steal a context from a task that has one at the moment.
201 * This is only used on 8xx and 4xx and we presently assume that
202 * they don't do SMP. If they do then thicfpgalloc.hs will have to check
203 * whether the MM we steal is in use.
204 * We also assume that this is only used on systems that don't
205 * use an MMU hash table - this is true for 8xx and 4xx.
206 * This isn't an LRU system, it just frees up each context in
207 * turn (sort-of pseudo-random replacement :). This would be the
208 * place to implement an LRU scheme if anyone was motivated to do it.
211 void steal_context(void)
213 struct mm_struct
*mm
;
215 * free up context `next_mmu_context'
216 * if we shouldn't free context 0, don't...
218 if (next_mmu_context
< FIRST_CONTEXT
)
219 next_mmu_context
= FIRST_CONTEXT
;
220 mm
= context_mm
[next_mmu_context
];