1 // SPDX-License-Identifier: GPL-2.0
3 * SuperH Timer Support - CMT
5 * Copyright (C) 2008 Magnus Damm
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
31 * The CMT comes in 5 different identified flavours, depending not only on the
32 * SoC but also on the particular instance. The following table lists the main
33 * characteristics of those flavours.
35 * 16B 32B 32B-F 48B R-Car Gen2
36 * -----------------------------------------------------------------------------
37 * Channels 2 1/4 1 6 2/8
38 * Control Width 16 16 16 16 32
39 * Counter Width 16 32 32 32/48 32/48
40 * Shared Start/Stop Y Y Y Y N
42 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
43 * located in the channel registers block. All other versions have a shared
44 * start/stop register located in the global space.
46 * Channels are indexed from 0 to N-1 in the documentation. The channel index
47 * infers the start/stop bit position in the control register and the channel
48 * registers block address. Some CMT instances have a subset of channels
49 * available, in which case the index in the documentation doesn't match the
50 * "real" index as implemented in hardware. This is for instance the case with
51 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
52 * in the documentation but using start/stop bit 5 and having its registers
55 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
56 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
68 enum sh_cmt_model model
;
70 unsigned int channels_mask
;
72 unsigned long width
; /* 16 or 32 bit version of hardware block */
76 /* callbacks for CMSTR and CMCSR access */
77 u32 (*read_control
)(void __iomem
*base
, unsigned long offs
);
78 void (*write_control
)(void __iomem
*base
, unsigned long offs
,
81 /* callbacks for CMCNT and CMCOR access */
82 u32 (*read_count
)(void __iomem
*base
, unsigned long offs
);
83 void (*write_count
)(void __iomem
*base
, unsigned long offs
, u32 value
);
86 struct sh_cmt_channel
{
87 struct sh_cmt_device
*cmt
;
89 unsigned int index
; /* Index in the documentation */
90 unsigned int hwidx
; /* Real hardware index */
92 void __iomem
*iostart
;
95 unsigned int timer_bit
;
101 struct clock_event_device ced
;
102 struct clocksource cs
;
107 struct sh_cmt_device
{
108 struct platform_device
*pdev
;
110 const struct sh_cmt_info
*info
;
112 void __iomem
*mapbase
;
116 raw_spinlock_t lock
; /* Protect the shared start/stop register */
118 struct sh_cmt_channel
*channels
;
119 unsigned int num_channels
;
120 unsigned int hw_channels
;
123 bool has_clocksource
;
126 #define SH_CMT16_CMCSR_CMF (1 << 7)
127 #define SH_CMT16_CMCSR_CMIE (1 << 6)
128 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
129 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
130 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
131 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
132 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
134 #define SH_CMT32_CMCSR_CMF (1 << 15)
135 #define SH_CMT32_CMCSR_OVF (1 << 14)
136 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
137 #define SH_CMT32_CMCSR_STTF (1 << 12)
138 #define SH_CMT32_CMCSR_STPF (1 << 11)
139 #define SH_CMT32_CMCSR_SSIE (1 << 10)
140 #define SH_CMT32_CMCSR_CMS (1 << 9)
141 #define SH_CMT32_CMCSR_CMM (1 << 8)
142 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
143 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
144 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
145 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
146 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
147 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
148 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
149 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
150 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
151 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
152 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
154 static u32
sh_cmt_read16(void __iomem
*base
, unsigned long offs
)
156 return ioread16(base
+ (offs
<< 1));
159 static u32
sh_cmt_read32(void __iomem
*base
, unsigned long offs
)
161 return ioread32(base
+ (offs
<< 2));
164 static void sh_cmt_write16(void __iomem
*base
, unsigned long offs
, u32 value
)
166 iowrite16(value
, base
+ (offs
<< 1));
169 static void sh_cmt_write32(void __iomem
*base
, unsigned long offs
, u32 value
)
171 iowrite32(value
, base
+ (offs
<< 2));
174 static const struct sh_cmt_info sh_cmt_info
[] = {
176 .model
= SH_CMT_16BIT
,
178 .overflow_bit
= SH_CMT16_CMCSR_CMF
,
179 .clear_bits
= ~SH_CMT16_CMCSR_CMF
,
180 .read_control
= sh_cmt_read16
,
181 .write_control
= sh_cmt_write16
,
182 .read_count
= sh_cmt_read16
,
183 .write_count
= sh_cmt_write16
,
186 .model
= SH_CMT_32BIT
,
188 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
189 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
190 .read_control
= sh_cmt_read16
,
191 .write_control
= sh_cmt_write16
,
192 .read_count
= sh_cmt_read32
,
193 .write_count
= sh_cmt_write32
,
196 .model
= SH_CMT_48BIT
,
197 .channels_mask
= 0x3f,
199 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
200 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
201 .read_control
= sh_cmt_read32
,
202 .write_control
= sh_cmt_write32
,
203 .read_count
= sh_cmt_read32
,
204 .write_count
= sh_cmt_write32
,
206 [SH_CMT0_RCAR_GEN2
] = {
207 .model
= SH_CMT0_RCAR_GEN2
,
208 .channels_mask
= 0x60,
210 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
211 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
212 .read_control
= sh_cmt_read32
,
213 .write_control
= sh_cmt_write32
,
214 .read_count
= sh_cmt_read32
,
215 .write_count
= sh_cmt_write32
,
217 [SH_CMT1_RCAR_GEN2
] = {
218 .model
= SH_CMT1_RCAR_GEN2
,
219 .channels_mask
= 0xff,
221 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
222 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
223 .read_control
= sh_cmt_read32
,
224 .write_control
= sh_cmt_write32
,
225 .read_count
= sh_cmt_read32
,
226 .write_count
= sh_cmt_write32
,
230 #define CMCSR 0 /* channel register */
231 #define CMCNT 1 /* channel register */
232 #define CMCOR 2 /* channel register */
234 static inline u32
sh_cmt_read_cmstr(struct sh_cmt_channel
*ch
)
237 return ch
->cmt
->info
->read_control(ch
->iostart
, 0);
239 return ch
->cmt
->info
->read_control(ch
->cmt
->mapbase
, 0);
242 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel
*ch
, u32 value
)
245 ch
->cmt
->info
->write_control(ch
->iostart
, 0, value
);
247 ch
->cmt
->info
->write_control(ch
->cmt
->mapbase
, 0, value
);
250 static inline u32
sh_cmt_read_cmcsr(struct sh_cmt_channel
*ch
)
252 return ch
->cmt
->info
->read_control(ch
->ioctrl
, CMCSR
);
255 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel
*ch
, u32 value
)
257 ch
->cmt
->info
->write_control(ch
->ioctrl
, CMCSR
, value
);
260 static inline u32
sh_cmt_read_cmcnt(struct sh_cmt_channel
*ch
)
262 return ch
->cmt
->info
->read_count(ch
->ioctrl
, CMCNT
);
265 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel
*ch
, u32 value
)
267 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCNT
, value
);
270 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel
*ch
, u32 value
)
272 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCOR
, value
);
275 static u32
sh_cmt_get_counter(struct sh_cmt_channel
*ch
, u32
*has_wrapped
)
280 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
282 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
285 v1
= sh_cmt_read_cmcnt(ch
);
286 v2
= sh_cmt_read_cmcnt(ch
);
287 v3
= sh_cmt_read_cmcnt(ch
);
288 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
289 } while (unlikely((o1
!= o2
) || (v1
> v2
&& v1
< v3
)
290 || (v2
> v3
&& v2
< v1
) || (v3
> v1
&& v3
< v2
)));
296 static void sh_cmt_start_stop_ch(struct sh_cmt_channel
*ch
, int start
)
301 /* start stop register shared by multiple timer channels */
302 raw_spin_lock_irqsave(&ch
->cmt
->lock
, flags
);
303 value
= sh_cmt_read_cmstr(ch
);
306 value
|= 1 << ch
->timer_bit
;
308 value
&= ~(1 << ch
->timer_bit
);
310 sh_cmt_write_cmstr(ch
, value
);
311 raw_spin_unlock_irqrestore(&ch
->cmt
->lock
, flags
);
314 static int sh_cmt_enable(struct sh_cmt_channel
*ch
)
318 pm_runtime_get_sync(&ch
->cmt
->pdev
->dev
);
319 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, true);
322 ret
= clk_enable(ch
->cmt
->clk
);
324 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot enable clock\n",
329 /* make sure channel is disabled */
330 sh_cmt_start_stop_ch(ch
, 0);
332 /* configure channel, periodic mode and maximum timeout */
333 if (ch
->cmt
->info
->width
== 16) {
334 sh_cmt_write_cmcsr(ch
, SH_CMT16_CMCSR_CMIE
|
335 SH_CMT16_CMCSR_CKS512
);
337 sh_cmt_write_cmcsr(ch
, SH_CMT32_CMCSR_CMM
|
338 SH_CMT32_CMCSR_CMTOUT_IE
|
339 SH_CMT32_CMCSR_CMR_IRQ
|
340 SH_CMT32_CMCSR_CKS_RCLK8
);
343 sh_cmt_write_cmcor(ch
, 0xffffffff);
344 sh_cmt_write_cmcnt(ch
, 0);
347 * According to the sh73a0 user's manual, as CMCNT can be operated
348 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
349 * modifying CMCNT register; two RCLK cycles are necessary before
350 * this register is either read or any modification of the value
351 * it holds is reflected in the LSI's actual operation.
353 * While at it, we're supposed to clear out the CMCNT as of this
354 * moment, so make sure it's processed properly here. This will
355 * take RCLKx2 at maximum.
357 for (k
= 0; k
< 100; k
++) {
358 if (!sh_cmt_read_cmcnt(ch
))
363 if (sh_cmt_read_cmcnt(ch
)) {
364 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot clear CMCNT\n",
371 sh_cmt_start_stop_ch(ch
, 1);
375 clk_disable(ch
->cmt
->clk
);
381 static void sh_cmt_disable(struct sh_cmt_channel
*ch
)
383 /* disable channel */
384 sh_cmt_start_stop_ch(ch
, 0);
386 /* disable interrupts in CMT block */
387 sh_cmt_write_cmcsr(ch
, 0);
390 clk_disable(ch
->cmt
->clk
);
392 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, false);
393 pm_runtime_put(&ch
->cmt
->pdev
->dev
);
397 #define FLAG_CLOCKEVENT (1 << 0)
398 #define FLAG_CLOCKSOURCE (1 << 1)
399 #define FLAG_REPROGRAM (1 << 2)
400 #define FLAG_SKIPEVENT (1 << 3)
401 #define FLAG_IRQCONTEXT (1 << 4)
403 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel
*ch
,
406 u32 value
= ch
->next_match_value
;
412 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
413 ch
->flags
|= FLAG_REPROGRAM
; /* force reprogram */
416 /* we're competing with the interrupt handler.
417 * -> let the interrupt handler reprogram the timer.
418 * -> interrupt number two handles the event.
420 ch
->flags
|= FLAG_SKIPEVENT
;
428 /* reprogram the timer hardware,
429 * but don't save the new match value yet.
431 new_match
= now
+ value
+ delay
;
432 if (new_match
> ch
->max_match_value
)
433 new_match
= ch
->max_match_value
;
435 sh_cmt_write_cmcor(ch
, new_match
);
437 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
438 if (has_wrapped
&& (new_match
> ch
->match_value
)) {
439 /* we are changing to a greater match value,
440 * so this wrap must be caused by the counter
441 * matching the old value.
442 * -> first interrupt reprograms the timer.
443 * -> interrupt number two handles the event.
445 ch
->flags
|= FLAG_SKIPEVENT
;
450 /* we are changing to a smaller match value,
451 * so the wrap must be caused by the counter
452 * matching the new value.
453 * -> save programmed match value.
454 * -> let isr handle the event.
456 ch
->match_value
= new_match
;
460 /* be safe: verify hardware settings */
461 if (now
< new_match
) {
462 /* timer value is below match value, all good.
463 * this makes sure we won't miss any match events.
464 * -> save programmed match value.
465 * -> let isr handle the event.
467 ch
->match_value
= new_match
;
471 /* the counter has reached a value greater
472 * than our new match value. and since the
473 * has_wrapped flag isn't set we must have
474 * programmed a too close event.
475 * -> increase delay and retry.
483 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: too long delay\n",
489 static void __sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
491 if (delta
> ch
->max_match_value
)
492 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: delta out of range\n",
495 ch
->next_match_value
= delta
;
496 sh_cmt_clock_event_program_verify(ch
, 0);
499 static void sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
503 raw_spin_lock_irqsave(&ch
->lock
, flags
);
504 __sh_cmt_set_next(ch
, delta
);
505 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
508 static irqreturn_t
sh_cmt_interrupt(int irq
, void *dev_id
)
510 struct sh_cmt_channel
*ch
= dev_id
;
513 sh_cmt_write_cmcsr(ch
, sh_cmt_read_cmcsr(ch
) &
514 ch
->cmt
->info
->clear_bits
);
516 /* update clock source counter to begin with if enabled
517 * the wrap flag should be cleared by the timer specific
518 * isr before we end up here.
520 if (ch
->flags
& FLAG_CLOCKSOURCE
)
521 ch
->total_cycles
+= ch
->match_value
+ 1;
523 if (!(ch
->flags
& FLAG_REPROGRAM
))
524 ch
->next_match_value
= ch
->max_match_value
;
526 ch
->flags
|= FLAG_IRQCONTEXT
;
528 if (ch
->flags
& FLAG_CLOCKEVENT
) {
529 if (!(ch
->flags
& FLAG_SKIPEVENT
)) {
530 if (clockevent_state_oneshot(&ch
->ced
)) {
531 ch
->next_match_value
= ch
->max_match_value
;
532 ch
->flags
|= FLAG_REPROGRAM
;
535 ch
->ced
.event_handler(&ch
->ced
);
539 ch
->flags
&= ~FLAG_SKIPEVENT
;
541 if (ch
->flags
& FLAG_REPROGRAM
) {
542 ch
->flags
&= ~FLAG_REPROGRAM
;
543 sh_cmt_clock_event_program_verify(ch
, 1);
545 if (ch
->flags
& FLAG_CLOCKEVENT
)
546 if ((clockevent_state_shutdown(&ch
->ced
))
547 || (ch
->match_value
== ch
->next_match_value
))
548 ch
->flags
&= ~FLAG_REPROGRAM
;
551 ch
->flags
&= ~FLAG_IRQCONTEXT
;
556 static int sh_cmt_start(struct sh_cmt_channel
*ch
, unsigned long flag
)
561 raw_spin_lock_irqsave(&ch
->lock
, flags
);
563 if (!(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
)))
564 ret
= sh_cmt_enable(ch
);
570 /* setup timeout if no clockevent */
571 if ((flag
== FLAG_CLOCKSOURCE
) && (!(ch
->flags
& FLAG_CLOCKEVENT
)))
572 __sh_cmt_set_next(ch
, ch
->max_match_value
);
574 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
579 static void sh_cmt_stop(struct sh_cmt_channel
*ch
, unsigned long flag
)
584 raw_spin_lock_irqsave(&ch
->lock
, flags
);
586 f
= ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
);
589 if (f
&& !(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
)))
592 /* adjust the timeout to maximum if only clocksource left */
593 if ((flag
== FLAG_CLOCKEVENT
) && (ch
->flags
& FLAG_CLOCKSOURCE
))
594 __sh_cmt_set_next(ch
, ch
->max_match_value
);
596 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
599 static struct sh_cmt_channel
*cs_to_sh_cmt(struct clocksource
*cs
)
601 return container_of(cs
, struct sh_cmt_channel
, cs
);
604 static u64
sh_cmt_clocksource_read(struct clocksource
*cs
)
606 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
612 raw_spin_lock_irqsave(&ch
->lock
, flags
);
613 value
= ch
->total_cycles
;
614 raw
= sh_cmt_get_counter(ch
, &has_wrapped
);
616 if (unlikely(has_wrapped
))
617 raw
+= ch
->match_value
+ 1;
618 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
623 static int sh_cmt_clocksource_enable(struct clocksource
*cs
)
626 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
628 WARN_ON(ch
->cs_enabled
);
630 ch
->total_cycles
= 0;
632 ret
= sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
634 ch
->cs_enabled
= true;
639 static void sh_cmt_clocksource_disable(struct clocksource
*cs
)
641 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
643 WARN_ON(!ch
->cs_enabled
);
645 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
646 ch
->cs_enabled
= false;
649 static void sh_cmt_clocksource_suspend(struct clocksource
*cs
)
651 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
656 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
657 pm_genpd_syscore_poweroff(&ch
->cmt
->pdev
->dev
);
660 static void sh_cmt_clocksource_resume(struct clocksource
*cs
)
662 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
667 pm_genpd_syscore_poweron(&ch
->cmt
->pdev
->dev
);
668 sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
671 static int sh_cmt_register_clocksource(struct sh_cmt_channel
*ch
,
674 struct clocksource
*cs
= &ch
->cs
;
678 cs
->read
= sh_cmt_clocksource_read
;
679 cs
->enable
= sh_cmt_clocksource_enable
;
680 cs
->disable
= sh_cmt_clocksource_disable
;
681 cs
->suspend
= sh_cmt_clocksource_suspend
;
682 cs
->resume
= sh_cmt_clocksource_resume
;
683 cs
->mask
= CLOCKSOURCE_MASK(sizeof(u64
) * 8);
684 cs
->flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
686 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used as clock source\n",
689 clocksource_register_hz(cs
, ch
->cmt
->rate
);
693 static struct sh_cmt_channel
*ced_to_sh_cmt(struct clock_event_device
*ced
)
695 return container_of(ced
, struct sh_cmt_channel
, ced
);
698 static void sh_cmt_clock_event_start(struct sh_cmt_channel
*ch
, int periodic
)
700 sh_cmt_start(ch
, FLAG_CLOCKEVENT
);
703 sh_cmt_set_next(ch
, ((ch
->cmt
->rate
+ HZ
/2) / HZ
) - 1);
705 sh_cmt_set_next(ch
, ch
->max_match_value
);
708 static int sh_cmt_clock_event_shutdown(struct clock_event_device
*ced
)
710 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
712 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
716 static int sh_cmt_clock_event_set_state(struct clock_event_device
*ced
,
719 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
721 /* deal with old setting first */
722 if (clockevent_state_oneshot(ced
) || clockevent_state_periodic(ced
))
723 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
725 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for %s clock events\n",
726 ch
->index
, periodic
? "periodic" : "oneshot");
727 sh_cmt_clock_event_start(ch
, periodic
);
731 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device
*ced
)
733 return sh_cmt_clock_event_set_state(ced
, 0);
736 static int sh_cmt_clock_event_set_periodic(struct clock_event_device
*ced
)
738 return sh_cmt_clock_event_set_state(ced
, 1);
741 static int sh_cmt_clock_event_next(unsigned long delta
,
742 struct clock_event_device
*ced
)
744 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
746 BUG_ON(!clockevent_state_oneshot(ced
));
747 if (likely(ch
->flags
& FLAG_IRQCONTEXT
))
748 ch
->next_match_value
= delta
- 1;
750 sh_cmt_set_next(ch
, delta
- 1);
755 static void sh_cmt_clock_event_suspend(struct clock_event_device
*ced
)
757 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
759 pm_genpd_syscore_poweroff(&ch
->cmt
->pdev
->dev
);
760 clk_unprepare(ch
->cmt
->clk
);
763 static void sh_cmt_clock_event_resume(struct clock_event_device
*ced
)
765 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
767 clk_prepare(ch
->cmt
->clk
);
768 pm_genpd_syscore_poweron(&ch
->cmt
->pdev
->dev
);
771 static int sh_cmt_register_clockevent(struct sh_cmt_channel
*ch
,
774 struct clock_event_device
*ced
= &ch
->ced
;
778 irq
= platform_get_irq(ch
->cmt
->pdev
, ch
->index
);
782 ret
= request_irq(irq
, sh_cmt_interrupt
,
783 IRQF_TIMER
| IRQF_IRQPOLL
| IRQF_NOBALANCING
,
784 dev_name(&ch
->cmt
->pdev
->dev
), ch
);
786 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: failed to request irq %d\n",
792 ced
->features
= CLOCK_EVT_FEAT_PERIODIC
;
793 ced
->features
|= CLOCK_EVT_FEAT_ONESHOT
;
795 ced
->cpumask
= cpu_possible_mask
;
796 ced
->set_next_event
= sh_cmt_clock_event_next
;
797 ced
->set_state_shutdown
= sh_cmt_clock_event_shutdown
;
798 ced
->set_state_periodic
= sh_cmt_clock_event_set_periodic
;
799 ced
->set_state_oneshot
= sh_cmt_clock_event_set_oneshot
;
800 ced
->suspend
= sh_cmt_clock_event_suspend
;
801 ced
->resume
= sh_cmt_clock_event_resume
;
803 /* TODO: calculate good shift from rate and counter bit width */
805 ced
->mult
= div_sc(ch
->cmt
->rate
, NSEC_PER_SEC
, ced
->shift
);
806 ced
->max_delta_ns
= clockevent_delta2ns(ch
->max_match_value
, ced
);
807 ced
->max_delta_ticks
= ch
->max_match_value
;
808 ced
->min_delta_ns
= clockevent_delta2ns(0x1f, ced
);
809 ced
->min_delta_ticks
= 0x1f;
811 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for clock events\n",
813 clockevents_register_device(ced
);
818 static int sh_cmt_register(struct sh_cmt_channel
*ch
, const char *name
,
819 bool clockevent
, bool clocksource
)
824 ch
->cmt
->has_clockevent
= true;
825 ret
= sh_cmt_register_clockevent(ch
, name
);
831 ch
->cmt
->has_clocksource
= true;
832 sh_cmt_register_clocksource(ch
, name
);
838 static int sh_cmt_setup_channel(struct sh_cmt_channel
*ch
, unsigned int index
,
839 unsigned int hwidx
, bool clockevent
,
840 bool clocksource
, struct sh_cmt_device
*cmt
)
844 /* Skip unused channels. */
845 if (!clockevent
&& !clocksource
)
851 ch
->timer_bit
= hwidx
;
854 * Compute the address of the channel control register block. For the
855 * timers with a per-channel start/stop register, compute its address
858 switch (cmt
->info
->model
) {
860 ch
->ioctrl
= cmt
->mapbase
+ 2 + ch
->hwidx
* 6;
864 ch
->ioctrl
= cmt
->mapbase
+ 0x10 + ch
->hwidx
* 0x10;
866 case SH_CMT0_RCAR_GEN2
:
867 case SH_CMT1_RCAR_GEN2
:
868 ch
->iostart
= cmt
->mapbase
+ ch
->hwidx
* 0x100;
869 ch
->ioctrl
= ch
->iostart
+ 0x10;
874 if (cmt
->info
->width
== (sizeof(ch
->max_match_value
) * 8))
875 ch
->max_match_value
= ~0;
877 ch
->max_match_value
= (1 << cmt
->info
->width
) - 1;
879 ch
->match_value
= ch
->max_match_value
;
880 raw_spin_lock_init(&ch
->lock
);
882 ret
= sh_cmt_register(ch
, dev_name(&cmt
->pdev
->dev
),
883 clockevent
, clocksource
);
885 dev_err(&cmt
->pdev
->dev
, "ch%u: registration failed\n",
889 ch
->cs_enabled
= false;
894 static int sh_cmt_map_memory(struct sh_cmt_device
*cmt
)
896 struct resource
*mem
;
898 mem
= platform_get_resource(cmt
->pdev
, IORESOURCE_MEM
, 0);
900 dev_err(&cmt
->pdev
->dev
, "failed to get I/O memory\n");
904 cmt
->mapbase
= ioremap_nocache(mem
->start
, resource_size(mem
));
905 if (cmt
->mapbase
== NULL
) {
906 dev_err(&cmt
->pdev
->dev
, "failed to remap I/O memory\n");
913 static const struct platform_device_id sh_cmt_id_table
[] = {
914 { "sh-cmt-16", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_16BIT
] },
915 { "sh-cmt-32", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_32BIT
] },
918 MODULE_DEVICE_TABLE(platform
, sh_cmt_id_table
);
920 static const struct of_device_id sh_cmt_of_table
[] __maybe_unused
= {
922 /* deprecated, preserved for backward compatibility */
923 .compatible
= "renesas,cmt-48",
924 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
927 /* deprecated, preserved for backward compatibility */
928 .compatible
= "renesas,cmt-48-gen2",
929 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
932 .compatible
= "renesas,r8a7740-cmt1",
933 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
936 .compatible
= "renesas,sh73a0-cmt1",
937 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
940 .compatible
= "renesas,rcar-gen2-cmt0",
941 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
944 .compatible
= "renesas,rcar-gen2-cmt1",
945 .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
]
948 .compatible
= "renesas,rcar-gen3-cmt0",
949 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
952 .compatible
= "renesas,rcar-gen3-cmt1",
953 .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
]
957 MODULE_DEVICE_TABLE(of
, sh_cmt_of_table
);
959 static int sh_cmt_setup(struct sh_cmt_device
*cmt
, struct platform_device
*pdev
)
966 raw_spin_lock_init(&cmt
->lock
);
968 if (IS_ENABLED(CONFIG_OF
) && pdev
->dev
.of_node
) {
969 cmt
->info
= of_device_get_match_data(&pdev
->dev
);
970 cmt
->hw_channels
= cmt
->info
->channels_mask
;
971 } else if (pdev
->dev
.platform_data
) {
972 struct sh_timer_config
*cfg
= pdev
->dev
.platform_data
;
973 const struct platform_device_id
*id
= pdev
->id_entry
;
975 cmt
->info
= (const struct sh_cmt_info
*)id
->driver_data
;
976 cmt
->hw_channels
= cfg
->channels_mask
;
978 dev_err(&cmt
->pdev
->dev
, "missing platform data\n");
982 /* Get hold of clock. */
983 cmt
->clk
= clk_get(&cmt
->pdev
->dev
, "fck");
984 if (IS_ERR(cmt
->clk
)) {
985 dev_err(&cmt
->pdev
->dev
, "cannot get clock\n");
986 return PTR_ERR(cmt
->clk
);
989 ret
= clk_prepare(cmt
->clk
);
993 /* Determine clock rate. */
994 ret
= clk_enable(cmt
->clk
);
996 goto err_clk_unprepare
;
998 if (cmt
->info
->width
== 16)
999 cmt
->rate
= clk_get_rate(cmt
->clk
) / 512;
1001 cmt
->rate
= clk_get_rate(cmt
->clk
) / 8;
1003 clk_disable(cmt
->clk
);
1005 /* Map the memory resource(s). */
1006 ret
= sh_cmt_map_memory(cmt
);
1008 goto err_clk_unprepare
;
1010 /* Allocate and setup the channels. */
1011 cmt
->num_channels
= hweight8(cmt
->hw_channels
);
1012 cmt
->channels
= kcalloc(cmt
->num_channels
, sizeof(*cmt
->channels
),
1014 if (cmt
->channels
== NULL
) {
1020 * Use the first channel as a clock event device and the second channel
1021 * as a clock source. If only one channel is available use it for both.
1023 for (i
= 0, mask
= cmt
->hw_channels
; i
< cmt
->num_channels
; ++i
) {
1024 unsigned int hwidx
= ffs(mask
) - 1;
1025 bool clocksource
= i
== 1 || cmt
->num_channels
== 1;
1026 bool clockevent
= i
== 0;
1028 ret
= sh_cmt_setup_channel(&cmt
->channels
[i
], i
, hwidx
,
1029 clockevent
, clocksource
, cmt
);
1033 mask
&= ~(1 << hwidx
);
1036 platform_set_drvdata(pdev
, cmt
);
1041 kfree(cmt
->channels
);
1042 iounmap(cmt
->mapbase
);
1044 clk_unprepare(cmt
->clk
);
1050 static int sh_cmt_probe(struct platform_device
*pdev
)
1052 struct sh_cmt_device
*cmt
= platform_get_drvdata(pdev
);
1055 if (!is_early_platform_device(pdev
)) {
1056 pm_runtime_set_active(&pdev
->dev
);
1057 pm_runtime_enable(&pdev
->dev
);
1061 dev_info(&pdev
->dev
, "kept as earlytimer\n");
1065 cmt
= kzalloc(sizeof(*cmt
), GFP_KERNEL
);
1069 ret
= sh_cmt_setup(cmt
, pdev
);
1072 pm_runtime_idle(&pdev
->dev
);
1075 if (is_early_platform_device(pdev
))
1079 if (cmt
->has_clockevent
|| cmt
->has_clocksource
)
1080 pm_runtime_irq_safe(&pdev
->dev
);
1082 pm_runtime_idle(&pdev
->dev
);
1087 static int sh_cmt_remove(struct platform_device
*pdev
)
1089 return -EBUSY
; /* cannot unregister clockevent and clocksource */
1092 static struct platform_driver sh_cmt_device_driver
= {
1093 .probe
= sh_cmt_probe
,
1094 .remove
= sh_cmt_remove
,
1097 .of_match_table
= of_match_ptr(sh_cmt_of_table
),
1099 .id_table
= sh_cmt_id_table
,
1102 static int __init
sh_cmt_init(void)
1104 return platform_driver_register(&sh_cmt_device_driver
);
1107 static void __exit
sh_cmt_exit(void)
1109 platform_driver_unregister(&sh_cmt_device_driver
);
1112 early_platform_init("earlytimer", &sh_cmt_device_driver
);
1113 subsys_initcall(sh_cmt_init
);
1114 module_exit(sh_cmt_exit
);
1116 MODULE_AUTHOR("Magnus Damm");
1117 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1118 MODULE_LICENSE("GPL v2");