iocost: Fix check condition of iocg abs_vdebt
[linux/fpc-iii.git] / drivers / iommu / amd_iommu.c
blob3a7094f4813f27493aaeec3d552e554d8fe7db46
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-direct.h>
23 #include <linux/iommu-helper.h>
24 #include <linux/iommu.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/dma-contiguous.h>
32 #include <linux/irqdomain.h>
33 #include <linux/percpu.h>
34 #include <linux/iova.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/msidef.h>
40 #include <asm/proto.h>
41 #include <asm/iommu.h>
42 #include <asm/gart.h>
43 #include <asm/dma.h>
45 #include "amd_iommu_proto.h"
46 #include "amd_iommu_types.h"
47 #include "irq_remapping.h"
49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
51 #define LOOP_TIMEOUT 100000
53 /* IO virtual address start page frame number */
54 #define IOVA_START_PFN (1)
55 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
57 /* Reserved IOVA ranges */
58 #define MSI_RANGE_START (0xfee00000)
59 #define MSI_RANGE_END (0xfeefffff)
60 #define HT_RANGE_START (0xfd00000000ULL)
61 #define HT_RANGE_END (0xffffffffffULL)
64 * This bitmap is used to advertise the page sizes our hardware support
65 * to the IOMMU core, which will then use this information to split
66 * physically contiguous memory regions it is mapping into page sizes
67 * that we support.
69 * 512GB Pages are not supported due to a hardware bug
71 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
73 static DEFINE_SPINLOCK(pd_bitmap_lock);
75 /* List of all available dev_data structures */
76 static LLIST_HEAD(dev_data_list);
78 LIST_HEAD(ioapic_map);
79 LIST_HEAD(hpet_map);
80 LIST_HEAD(acpihid_map);
83 * Domain for untranslated devices - only allocated
84 * if iommu=pt passed on kernel cmd line.
86 const struct iommu_ops amd_iommu_ops;
88 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
89 int amd_iommu_max_glx_val = -1;
91 static const struct dma_map_ops amd_iommu_dma_ops;
94 * general struct to manage commands send to an IOMMU
96 struct iommu_cmd {
97 u32 data[4];
100 struct kmem_cache *amd_iommu_irq_cache;
102 static void update_domain(struct protection_domain *domain);
103 static int protection_domain_init(struct protection_domain *domain);
104 static void detach_device(struct device *dev);
105 static void iova_domain_flush_tlb(struct iova_domain *iovad);
108 * Data container for a dma_ops specific protection domain
110 struct dma_ops_domain {
111 /* generic protection domain information */
112 struct protection_domain domain;
114 /* IOVA RB-Tree */
115 struct iova_domain iovad;
118 static struct iova_domain reserved_iova_ranges;
119 static struct lock_class_key reserved_rbtree_key;
121 /****************************************************************************
123 * Helper functions
125 ****************************************************************************/
127 static inline int match_hid_uid(struct device *dev,
128 struct acpihid_map_entry *entry)
130 struct acpi_device *adev = ACPI_COMPANION(dev);
131 const char *hid, *uid;
133 if (!adev)
134 return -ENODEV;
136 hid = acpi_device_hid(adev);
137 uid = acpi_device_uid(adev);
139 if (!hid || !(*hid))
140 return -ENODEV;
142 if (!uid || !(*uid))
143 return strcmp(hid, entry->hid);
145 if (!(*entry->uid))
146 return strcmp(hid, entry->hid);
148 return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
151 static inline u16 get_pci_device_id(struct device *dev)
153 struct pci_dev *pdev = to_pci_dev(dev);
155 return pci_dev_id(pdev);
158 static inline int get_acpihid_device_id(struct device *dev,
159 struct acpihid_map_entry **entry)
161 struct acpihid_map_entry *p;
163 list_for_each_entry(p, &acpihid_map, list) {
164 if (!match_hid_uid(dev, p)) {
165 if (entry)
166 *entry = p;
167 return p->devid;
170 return -EINVAL;
173 static inline int get_device_id(struct device *dev)
175 int devid;
177 if (dev_is_pci(dev))
178 devid = get_pci_device_id(dev);
179 else
180 devid = get_acpihid_device_id(dev, NULL);
182 return devid;
185 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
187 return container_of(dom, struct protection_domain, domain);
190 static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
192 BUG_ON(domain->flags != PD_DMA_OPS_MASK);
193 return container_of(domain, struct dma_ops_domain, domain);
196 static struct iommu_dev_data *alloc_dev_data(u16 devid)
198 struct iommu_dev_data *dev_data;
200 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
201 if (!dev_data)
202 return NULL;
204 spin_lock_init(&dev_data->lock);
205 dev_data->devid = devid;
206 ratelimit_default_init(&dev_data->rs);
208 llist_add(&dev_data->dev_data_list, &dev_data_list);
209 return dev_data;
212 static struct iommu_dev_data *search_dev_data(u16 devid)
214 struct iommu_dev_data *dev_data;
215 struct llist_node *node;
217 if (llist_empty(&dev_data_list))
218 return NULL;
220 node = dev_data_list.first;
221 llist_for_each_entry(dev_data, node, dev_data_list) {
222 if (dev_data->devid == devid)
223 return dev_data;
226 return NULL;
229 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
231 u16 devid = pci_dev_id(pdev);
233 if (devid == alias)
234 return 0;
236 amd_iommu_rlookup_table[alias] =
237 amd_iommu_rlookup_table[devid];
238 memcpy(amd_iommu_dev_table[alias].data,
239 amd_iommu_dev_table[devid].data,
240 sizeof(amd_iommu_dev_table[alias].data));
242 return 0;
245 static void clone_aliases(struct pci_dev *pdev)
247 if (!pdev)
248 return;
251 * The IVRS alias stored in the alias table may not be
252 * part of the PCI DMA aliases if it's bus differs
253 * from the original device.
255 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
257 pci_for_each_dma_alias(pdev, clone_alias, NULL);
260 static struct pci_dev *setup_aliases(struct device *dev)
262 struct pci_dev *pdev = to_pci_dev(dev);
263 u16 ivrs_alias;
265 /* For ACPI HID devices, there are no aliases */
266 if (!dev_is_pci(dev))
267 return NULL;
270 * Add the IVRS alias to the pci aliases if it is on the same
271 * bus. The IVRS table may know about a quirk that we don't.
273 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
274 if (ivrs_alias != pci_dev_id(pdev) &&
275 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
276 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
278 clone_aliases(pdev);
280 return pdev;
283 static struct iommu_dev_data *find_dev_data(u16 devid)
285 struct iommu_dev_data *dev_data;
286 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
288 dev_data = search_dev_data(devid);
290 if (dev_data == NULL) {
291 dev_data = alloc_dev_data(devid);
292 if (!dev_data)
293 return NULL;
295 if (translation_pre_enabled(iommu))
296 dev_data->defer_attach = true;
299 return dev_data;
302 struct iommu_dev_data *get_dev_data(struct device *dev)
304 return dev->archdata.iommu;
306 EXPORT_SYMBOL(get_dev_data);
309 * Find or create an IOMMU group for a acpihid device.
311 static struct iommu_group *acpihid_device_group(struct device *dev)
313 struct acpihid_map_entry *p, *entry = NULL;
314 int devid;
316 devid = get_acpihid_device_id(dev, &entry);
317 if (devid < 0)
318 return ERR_PTR(devid);
320 list_for_each_entry(p, &acpihid_map, list) {
321 if ((devid == p->devid) && p->group)
322 entry->group = p->group;
325 if (!entry->group)
326 entry->group = generic_device_group(dev);
327 else
328 iommu_group_ref_get(entry->group);
330 return entry->group;
333 static bool pci_iommuv2_capable(struct pci_dev *pdev)
335 static const int caps[] = {
336 PCI_EXT_CAP_ID_ATS,
337 PCI_EXT_CAP_ID_PRI,
338 PCI_EXT_CAP_ID_PASID,
340 int i, pos;
342 if (pci_ats_disabled())
343 return false;
345 for (i = 0; i < 3; ++i) {
346 pos = pci_find_ext_capability(pdev, caps[i]);
347 if (pos == 0)
348 return false;
351 return true;
354 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
356 struct iommu_dev_data *dev_data;
358 dev_data = get_dev_data(&pdev->dev);
360 return dev_data->errata & (1 << erratum) ? true : false;
364 * This function checks if the driver got a valid device from the caller to
365 * avoid dereferencing invalid pointers.
367 static bool check_device(struct device *dev)
369 int devid;
371 if (!dev || !dev->dma_mask)
372 return false;
374 devid = get_device_id(dev);
375 if (devid < 0)
376 return false;
378 /* Out of our scope? */
379 if (devid > amd_iommu_last_bdf)
380 return false;
382 if (amd_iommu_rlookup_table[devid] == NULL)
383 return false;
385 return true;
388 static void init_iommu_group(struct device *dev)
390 struct iommu_group *group;
392 group = iommu_group_get_for_dev(dev);
393 if (IS_ERR(group))
394 return;
396 iommu_group_put(group);
399 static int iommu_init_device(struct device *dev)
401 struct iommu_dev_data *dev_data;
402 struct amd_iommu *iommu;
403 int devid;
405 if (dev->archdata.iommu)
406 return 0;
408 devid = get_device_id(dev);
409 if (devid < 0)
410 return devid;
412 iommu = amd_iommu_rlookup_table[devid];
414 dev_data = find_dev_data(devid);
415 if (!dev_data)
416 return -ENOMEM;
418 dev_data->pdev = setup_aliases(dev);
421 * By default we use passthrough mode for IOMMUv2 capable device.
422 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
423 * invalid address), we ignore the capability for the device so
424 * it'll be forced to go into translation mode.
426 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
427 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
428 struct amd_iommu *iommu;
430 iommu = amd_iommu_rlookup_table[dev_data->devid];
431 dev_data->iommu_v2 = iommu->is_iommu_v2;
434 dev->archdata.iommu = dev_data;
436 iommu_device_link(&iommu->iommu, dev);
438 return 0;
441 static void iommu_ignore_device(struct device *dev)
443 int devid;
445 devid = get_device_id(dev);
446 if (devid < 0)
447 return;
449 amd_iommu_rlookup_table[devid] = NULL;
450 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
452 setup_aliases(dev);
455 static void iommu_uninit_device(struct device *dev)
457 struct iommu_dev_data *dev_data;
458 struct amd_iommu *iommu;
459 int devid;
461 devid = get_device_id(dev);
462 if (devid < 0)
463 return;
465 iommu = amd_iommu_rlookup_table[devid];
467 dev_data = search_dev_data(devid);
468 if (!dev_data)
469 return;
471 if (dev_data->domain)
472 detach_device(dev);
474 iommu_device_unlink(&iommu->iommu, dev);
476 iommu_group_remove_device(dev);
478 /* Remove dma-ops */
479 dev->dma_ops = NULL;
482 * We keep dev_data around for unplugged devices and reuse it when the
483 * device is re-plugged - not doing so would introduce a ton of races.
488 * Helper function to get the first pte of a large mapping
490 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
491 unsigned long *count)
493 unsigned long pte_mask, pg_size, cnt;
494 u64 *fpte;
496 pg_size = PTE_PAGE_SIZE(*pte);
497 cnt = PAGE_SIZE_PTE_COUNT(pg_size);
498 pte_mask = ~((cnt << 3) - 1);
499 fpte = (u64 *)(((unsigned long)pte) & pte_mask);
501 if (page_size)
502 *page_size = pg_size;
504 if (count)
505 *count = cnt;
507 return fpte;
510 /****************************************************************************
512 * Interrupt handling functions
514 ****************************************************************************/
516 static void dump_dte_entry(u16 devid)
518 int i;
520 for (i = 0; i < 4; ++i)
521 pr_err("DTE[%d]: %016llx\n", i,
522 amd_iommu_dev_table[devid].data[i]);
525 static void dump_command(unsigned long phys_addr)
527 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
528 int i;
530 for (i = 0; i < 4; ++i)
531 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
534 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
535 u64 address, int flags)
537 struct iommu_dev_data *dev_data = NULL;
538 struct pci_dev *pdev;
540 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
541 devid & 0xff);
542 if (pdev)
543 dev_data = get_dev_data(&pdev->dev);
545 if (dev_data && __ratelimit(&dev_data->rs)) {
546 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
547 domain_id, address, flags);
548 } else if (printk_ratelimit()) {
549 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
550 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
551 domain_id, address, flags);
554 if (pdev)
555 pci_dev_put(pdev);
558 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
560 struct device *dev = iommu->iommu.dev;
561 int type, devid, pasid, flags, tag;
562 volatile u32 *event = __evt;
563 int count = 0;
564 u64 address;
566 retry:
567 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
568 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
569 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
570 (event[1] & EVENT_DOMID_MASK_LO);
571 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
572 address = (u64)(((u64)event[3]) << 32) | event[2];
574 if (type == 0) {
575 /* Did we hit the erratum? */
576 if (++count == LOOP_TIMEOUT) {
577 pr_err("No event written to event log\n");
578 return;
580 udelay(1);
581 goto retry;
584 if (type == EVENT_TYPE_IO_FAULT) {
585 amd_iommu_report_page_fault(devid, pasid, address, flags);
586 return;
589 switch (type) {
590 case EVENT_TYPE_ILL_DEV:
591 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
592 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
593 pasid, address, flags);
594 dump_dte_entry(devid);
595 break;
596 case EVENT_TYPE_DEV_TAB_ERR:
597 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
598 "address=0x%llx flags=0x%04x]\n",
599 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
600 address, flags);
601 break;
602 case EVENT_TYPE_PAGE_TAB_ERR:
603 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
604 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
605 pasid, address, flags);
606 break;
607 case EVENT_TYPE_ILL_CMD:
608 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
609 dump_command(address);
610 break;
611 case EVENT_TYPE_CMD_HARD_ERR:
612 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
613 address, flags);
614 break;
615 case EVENT_TYPE_IOTLB_INV_TO:
616 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
617 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 address);
619 break;
620 case EVENT_TYPE_INV_DEV_REQ:
621 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
622 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
623 pasid, address, flags);
624 break;
625 case EVENT_TYPE_INV_PPR_REQ:
626 pasid = ((event[0] >> 16) & 0xFFFF)
627 | ((event[1] << 6) & 0xF0000);
628 tag = event[1] & 0x03FF;
629 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
630 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
631 pasid, address, flags, tag);
632 break;
633 default:
634 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
635 event[0], event[1], event[2], event[3]);
638 memset(__evt, 0, 4 * sizeof(u32));
641 static void iommu_poll_events(struct amd_iommu *iommu)
643 u32 head, tail;
645 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
646 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
648 while (head != tail) {
649 iommu_print_event(iommu, iommu->evt_buf + head);
650 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
653 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
656 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
658 struct amd_iommu_fault fault;
660 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
661 pr_err_ratelimited("Unknown PPR request received\n");
662 return;
665 fault.address = raw[1];
666 fault.pasid = PPR_PASID(raw[0]);
667 fault.device_id = PPR_DEVID(raw[0]);
668 fault.tag = PPR_TAG(raw[0]);
669 fault.flags = PPR_FLAGS(raw[0]);
671 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
674 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
676 u32 head, tail;
678 if (iommu->ppr_log == NULL)
679 return;
681 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
682 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
684 while (head != tail) {
685 volatile u64 *raw;
686 u64 entry[2];
687 int i;
689 raw = (u64 *)(iommu->ppr_log + head);
692 * Hardware bug: Interrupt may arrive before the entry is
693 * written to memory. If this happens we need to wait for the
694 * entry to arrive.
696 for (i = 0; i < LOOP_TIMEOUT; ++i) {
697 if (PPR_REQ_TYPE(raw[0]) != 0)
698 break;
699 udelay(1);
702 /* Avoid memcpy function-call overhead */
703 entry[0] = raw[0];
704 entry[1] = raw[1];
707 * To detect the hardware bug we need to clear the entry
708 * back to zero.
710 raw[0] = raw[1] = 0UL;
712 /* Update head pointer of hardware ring-buffer */
713 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
714 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
716 /* Handle PPR entry */
717 iommu_handle_ppr_entry(iommu, entry);
719 /* Refresh ring-buffer information */
720 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
721 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
725 #ifdef CONFIG_IRQ_REMAP
726 static int (*iommu_ga_log_notifier)(u32);
728 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
730 iommu_ga_log_notifier = notifier;
732 return 0;
734 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
736 static void iommu_poll_ga_log(struct amd_iommu *iommu)
738 u32 head, tail, cnt = 0;
740 if (iommu->ga_log == NULL)
741 return;
743 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
744 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
746 while (head != tail) {
747 volatile u64 *raw;
748 u64 log_entry;
750 raw = (u64 *)(iommu->ga_log + head);
751 cnt++;
753 /* Avoid memcpy function-call overhead */
754 log_entry = *raw;
756 /* Update head pointer of hardware ring-buffer */
757 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
758 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
760 /* Handle GA entry */
761 switch (GA_REQ_TYPE(log_entry)) {
762 case GA_GUEST_NR:
763 if (!iommu_ga_log_notifier)
764 break;
766 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
767 __func__, GA_DEVID(log_entry),
768 GA_TAG(log_entry));
770 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
771 pr_err("GA log notifier failed.\n");
772 break;
773 default:
774 break;
778 #endif /* CONFIG_IRQ_REMAP */
780 #define AMD_IOMMU_INT_MASK \
781 (MMIO_STATUS_EVT_INT_MASK | \
782 MMIO_STATUS_PPR_INT_MASK | \
783 MMIO_STATUS_GALOG_INT_MASK)
785 irqreturn_t amd_iommu_int_thread(int irq, void *data)
787 struct amd_iommu *iommu = (struct amd_iommu *) data;
788 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
790 while (status & AMD_IOMMU_INT_MASK) {
791 /* Enable EVT and PPR and GA interrupts again */
792 writel(AMD_IOMMU_INT_MASK,
793 iommu->mmio_base + MMIO_STATUS_OFFSET);
795 if (status & MMIO_STATUS_EVT_INT_MASK) {
796 pr_devel("Processing IOMMU Event Log\n");
797 iommu_poll_events(iommu);
800 if (status & MMIO_STATUS_PPR_INT_MASK) {
801 pr_devel("Processing IOMMU PPR Log\n");
802 iommu_poll_ppr_log(iommu);
805 #ifdef CONFIG_IRQ_REMAP
806 if (status & MMIO_STATUS_GALOG_INT_MASK) {
807 pr_devel("Processing IOMMU GA Log\n");
808 iommu_poll_ga_log(iommu);
810 #endif
813 * Hardware bug: ERBT1312
814 * When re-enabling interrupt (by writing 1
815 * to clear the bit), the hardware might also try to set
816 * the interrupt bit in the event status register.
817 * In this scenario, the bit will be set, and disable
818 * subsequent interrupts.
820 * Workaround: The IOMMU driver should read back the
821 * status register and check if the interrupt bits are cleared.
822 * If not, driver will need to go through the interrupt handler
823 * again and re-clear the bits
825 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
827 return IRQ_HANDLED;
830 irqreturn_t amd_iommu_int_handler(int irq, void *data)
832 return IRQ_WAKE_THREAD;
835 /****************************************************************************
837 * IOMMU command queuing functions
839 ****************************************************************************/
841 static int wait_on_sem(volatile u64 *sem)
843 int i = 0;
845 while (*sem == 0 && i < LOOP_TIMEOUT) {
846 udelay(1);
847 i += 1;
850 if (i == LOOP_TIMEOUT) {
851 pr_alert("Completion-Wait loop timed out\n");
852 return -EIO;
855 return 0;
858 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
859 struct iommu_cmd *cmd)
861 u8 *target;
863 target = iommu->cmd_buf + iommu->cmd_buf_tail;
865 iommu->cmd_buf_tail += sizeof(*cmd);
866 iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
868 /* Copy command to buffer */
869 memcpy(target, cmd, sizeof(*cmd));
871 /* Tell the IOMMU about it */
872 writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
875 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
877 u64 paddr = iommu_virt_to_phys((void *)address);
879 WARN_ON(address & 0x7ULL);
881 memset(cmd, 0, sizeof(*cmd));
882 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
883 cmd->data[1] = upper_32_bits(paddr);
884 cmd->data[2] = 1;
885 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
888 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
890 memset(cmd, 0, sizeof(*cmd));
891 cmd->data[0] = devid;
892 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
895 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
896 size_t size, u16 domid, int pde)
898 u64 pages;
899 bool s;
901 pages = iommu_num_pages(address, size, PAGE_SIZE);
902 s = false;
904 if (pages > 1) {
906 * If we have to flush more than one page, flush all
907 * TLB entries for this domain
909 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
910 s = true;
913 address &= PAGE_MASK;
915 memset(cmd, 0, sizeof(*cmd));
916 cmd->data[1] |= domid;
917 cmd->data[2] = lower_32_bits(address);
918 cmd->data[3] = upper_32_bits(address);
919 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
920 if (s) /* size bit - we flush more than one 4kb page */
921 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
922 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
923 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
926 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
927 u64 address, size_t size)
929 u64 pages;
930 bool s;
932 pages = iommu_num_pages(address, size, PAGE_SIZE);
933 s = false;
935 if (pages > 1) {
937 * If we have to flush more than one page, flush all
938 * TLB entries for this domain
940 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
941 s = true;
944 address &= PAGE_MASK;
946 memset(cmd, 0, sizeof(*cmd));
947 cmd->data[0] = devid;
948 cmd->data[0] |= (qdep & 0xff) << 24;
949 cmd->data[1] = devid;
950 cmd->data[2] = lower_32_bits(address);
951 cmd->data[3] = upper_32_bits(address);
952 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
953 if (s)
954 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
957 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
958 u64 address, bool size)
960 memset(cmd, 0, sizeof(*cmd));
962 address &= ~(0xfffULL);
964 cmd->data[0] = pasid;
965 cmd->data[1] = domid;
966 cmd->data[2] = lower_32_bits(address);
967 cmd->data[3] = upper_32_bits(address);
968 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
969 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
970 if (size)
971 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
972 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
975 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
976 int qdep, u64 address, bool size)
978 memset(cmd, 0, sizeof(*cmd));
980 address &= ~(0xfffULL);
982 cmd->data[0] = devid;
983 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
984 cmd->data[0] |= (qdep & 0xff) << 24;
985 cmd->data[1] = devid;
986 cmd->data[1] |= (pasid & 0xff) << 16;
987 cmd->data[2] = lower_32_bits(address);
988 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
989 cmd->data[3] = upper_32_bits(address);
990 if (size)
991 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
992 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
995 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
996 int status, int tag, bool gn)
998 memset(cmd, 0, sizeof(*cmd));
1000 cmd->data[0] = devid;
1001 if (gn) {
1002 cmd->data[1] = pasid;
1003 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1005 cmd->data[3] = tag & 0x1ff;
1006 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1008 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1011 static void build_inv_all(struct iommu_cmd *cmd)
1013 memset(cmd, 0, sizeof(*cmd));
1014 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1017 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1019 memset(cmd, 0, sizeof(*cmd));
1020 cmd->data[0] = devid;
1021 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1025 * Writes the command to the IOMMUs command buffer and informs the
1026 * hardware about the new command.
1028 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1029 struct iommu_cmd *cmd,
1030 bool sync)
1032 unsigned int count = 0;
1033 u32 left, next_tail;
1035 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1036 again:
1037 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1039 if (left <= 0x20) {
1040 /* Skip udelay() the first time around */
1041 if (count++) {
1042 if (count == LOOP_TIMEOUT) {
1043 pr_err("Command buffer timeout\n");
1044 return -EIO;
1047 udelay(1);
1050 /* Update head and recheck remaining space */
1051 iommu->cmd_buf_head = readl(iommu->mmio_base +
1052 MMIO_CMD_HEAD_OFFSET);
1054 goto again;
1057 copy_cmd_to_buffer(iommu, cmd);
1059 /* Do we need to make sure all commands are processed? */
1060 iommu->need_sync = sync;
1062 return 0;
1065 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1066 struct iommu_cmd *cmd,
1067 bool sync)
1069 unsigned long flags;
1070 int ret;
1072 raw_spin_lock_irqsave(&iommu->lock, flags);
1073 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1074 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1076 return ret;
1079 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1081 return iommu_queue_command_sync(iommu, cmd, true);
1085 * This function queues a completion wait command into the command
1086 * buffer of an IOMMU
1088 static int iommu_completion_wait(struct amd_iommu *iommu)
1090 struct iommu_cmd cmd;
1091 unsigned long flags;
1092 int ret;
1094 if (!iommu->need_sync)
1095 return 0;
1098 build_completion_wait(&cmd, (u64)&iommu->cmd_sem);
1100 raw_spin_lock_irqsave(&iommu->lock, flags);
1102 iommu->cmd_sem = 0;
1104 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1105 if (ret)
1106 goto out_unlock;
1108 ret = wait_on_sem(&iommu->cmd_sem);
1110 out_unlock:
1111 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1113 return ret;
1116 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1118 struct iommu_cmd cmd;
1120 build_inv_dte(&cmd, devid);
1122 return iommu_queue_command(iommu, &cmd);
1125 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1127 u32 devid;
1129 for (devid = 0; devid <= 0xffff; ++devid)
1130 iommu_flush_dte(iommu, devid);
1132 iommu_completion_wait(iommu);
1136 * This function uses heavy locking and may disable irqs for some time. But
1137 * this is no issue because it is only called during resume.
1139 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1141 u32 dom_id;
1143 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1144 struct iommu_cmd cmd;
1145 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1146 dom_id, 1);
1147 iommu_queue_command(iommu, &cmd);
1150 iommu_completion_wait(iommu);
1153 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1155 struct iommu_cmd cmd;
1157 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1158 dom_id, 1);
1159 iommu_queue_command(iommu, &cmd);
1161 iommu_completion_wait(iommu);
1164 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1166 struct iommu_cmd cmd;
1168 build_inv_all(&cmd);
1170 iommu_queue_command(iommu, &cmd);
1171 iommu_completion_wait(iommu);
1174 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1176 struct iommu_cmd cmd;
1178 build_inv_irt(&cmd, devid);
1180 iommu_queue_command(iommu, &cmd);
1183 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1185 u32 devid;
1187 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1188 iommu_flush_irt(iommu, devid);
1190 iommu_completion_wait(iommu);
1193 void iommu_flush_all_caches(struct amd_iommu *iommu)
1195 if (iommu_feature(iommu, FEATURE_IA)) {
1196 amd_iommu_flush_all(iommu);
1197 } else {
1198 amd_iommu_flush_dte_all(iommu);
1199 amd_iommu_flush_irt_all(iommu);
1200 amd_iommu_flush_tlb_all(iommu);
1205 * Command send function for flushing on-device TLB
1207 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1208 u64 address, size_t size)
1210 struct amd_iommu *iommu;
1211 struct iommu_cmd cmd;
1212 int qdep;
1214 qdep = dev_data->ats.qdep;
1215 iommu = amd_iommu_rlookup_table[dev_data->devid];
1217 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1219 return iommu_queue_command(iommu, &cmd);
1222 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1224 struct amd_iommu *iommu = data;
1226 return iommu_flush_dte(iommu, alias);
1230 * Command send function for invalidating a device table entry
1232 static int device_flush_dte(struct iommu_dev_data *dev_data)
1234 struct amd_iommu *iommu;
1235 u16 alias;
1236 int ret;
1238 iommu = amd_iommu_rlookup_table[dev_data->devid];
1240 if (dev_data->pdev)
1241 ret = pci_for_each_dma_alias(dev_data->pdev,
1242 device_flush_dte_alias, iommu);
1243 else
1244 ret = iommu_flush_dte(iommu, dev_data->devid);
1245 if (ret)
1246 return ret;
1248 alias = amd_iommu_alias_table[dev_data->devid];
1249 if (alias != dev_data->devid) {
1250 ret = iommu_flush_dte(iommu, alias);
1251 if (ret)
1252 return ret;
1255 if (dev_data->ats.enabled)
1256 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1258 return ret;
1262 * TLB invalidation function which is called from the mapping functions.
1263 * It invalidates a single PTE if the range to flush is within a single
1264 * page. Otherwise it flushes the whole TLB of the IOMMU.
1266 static void __domain_flush_pages(struct protection_domain *domain,
1267 u64 address, size_t size, int pde)
1269 struct iommu_dev_data *dev_data;
1270 struct iommu_cmd cmd;
1271 int ret = 0, i;
1273 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1275 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1276 if (!domain->dev_iommu[i])
1277 continue;
1280 * Devices of this domain are behind this IOMMU
1281 * We need a TLB flush
1283 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1286 list_for_each_entry(dev_data, &domain->dev_list, list) {
1288 if (!dev_data->ats.enabled)
1289 continue;
1291 ret |= device_flush_iotlb(dev_data, address, size);
1294 WARN_ON(ret);
1297 static void domain_flush_pages(struct protection_domain *domain,
1298 u64 address, size_t size)
1300 __domain_flush_pages(domain, address, size, 0);
1303 /* Flush the whole IO/TLB for a given protection domain */
1304 static void domain_flush_tlb(struct protection_domain *domain)
1306 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1309 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1310 static void domain_flush_tlb_pde(struct protection_domain *domain)
1312 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1315 static void domain_flush_complete(struct protection_domain *domain)
1317 int i;
1319 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1320 if (domain && !domain->dev_iommu[i])
1321 continue;
1324 * Devices of this domain are behind this IOMMU
1325 * We need to wait for completion of all commands.
1327 iommu_completion_wait(amd_iommus[i]);
1331 /* Flush the not present cache if it exists */
1332 static void domain_flush_np_cache(struct protection_domain *domain,
1333 dma_addr_t iova, size_t size)
1335 if (unlikely(amd_iommu_np_cache)) {
1336 unsigned long flags;
1338 spin_lock_irqsave(&domain->lock, flags);
1339 domain_flush_pages(domain, iova, size);
1340 domain_flush_complete(domain);
1341 spin_unlock_irqrestore(&domain->lock, flags);
1347 * This function flushes the DTEs for all devices in domain
1349 static void domain_flush_devices(struct protection_domain *domain)
1351 struct iommu_dev_data *dev_data;
1353 list_for_each_entry(dev_data, &domain->dev_list, list)
1354 device_flush_dte(dev_data);
1357 /****************************************************************************
1359 * The functions below are used the create the page table mappings for
1360 * unity mapped regions.
1362 ****************************************************************************/
1364 static void free_page_list(struct page *freelist)
1366 while (freelist != NULL) {
1367 unsigned long p = (unsigned long)page_address(freelist);
1368 freelist = freelist->freelist;
1369 free_page(p);
1373 static struct page *free_pt_page(unsigned long pt, struct page *freelist)
1375 struct page *p = virt_to_page((void *)pt);
1377 p->freelist = freelist;
1379 return p;
1382 #define DEFINE_FREE_PT_FN(LVL, FN) \
1383 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1385 unsigned long p; \
1386 u64 *pt; \
1387 int i; \
1389 pt = (u64 *)__pt; \
1391 for (i = 0; i < 512; ++i) { \
1392 /* PTE present? */ \
1393 if (!IOMMU_PTE_PRESENT(pt[i])) \
1394 continue; \
1396 /* Large PTE? */ \
1397 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1398 PM_PTE_LEVEL(pt[i]) == 7) \
1399 continue; \
1401 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1402 freelist = FN(p, freelist); \
1405 return free_pt_page((unsigned long)pt, freelist); \
1408 DEFINE_FREE_PT_FN(l2, free_pt_page)
1409 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1410 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1411 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1412 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1414 static struct page *free_sub_pt(unsigned long root, int mode,
1415 struct page *freelist)
1417 switch (mode) {
1418 case PAGE_MODE_NONE:
1419 case PAGE_MODE_7_LEVEL:
1420 break;
1421 case PAGE_MODE_1_LEVEL:
1422 freelist = free_pt_page(root, freelist);
1423 break;
1424 case PAGE_MODE_2_LEVEL:
1425 freelist = free_pt_l2(root, freelist);
1426 break;
1427 case PAGE_MODE_3_LEVEL:
1428 freelist = free_pt_l3(root, freelist);
1429 break;
1430 case PAGE_MODE_4_LEVEL:
1431 freelist = free_pt_l4(root, freelist);
1432 break;
1433 case PAGE_MODE_5_LEVEL:
1434 freelist = free_pt_l5(root, freelist);
1435 break;
1436 case PAGE_MODE_6_LEVEL:
1437 freelist = free_pt_l6(root, freelist);
1438 break;
1439 default:
1440 BUG();
1443 return freelist;
1446 static void free_pagetable(struct protection_domain *domain)
1448 unsigned long root = (unsigned long)domain->pt_root;
1449 struct page *freelist = NULL;
1451 BUG_ON(domain->mode < PAGE_MODE_NONE ||
1452 domain->mode > PAGE_MODE_6_LEVEL);
1454 freelist = free_sub_pt(root, domain->mode, freelist);
1456 free_page_list(freelist);
1460 * This function is used to add another level to an IO page table. Adding
1461 * another level increases the size of the address space by 9 bits to a size up
1462 * to 64 bits.
1464 static bool increase_address_space(struct protection_domain *domain,
1465 unsigned long address,
1466 gfp_t gfp)
1468 unsigned long flags;
1469 bool ret = false;
1470 u64 *pte;
1472 spin_lock_irqsave(&domain->lock, flags);
1474 if (address <= PM_LEVEL_SIZE(domain->mode) ||
1475 WARN_ON_ONCE(domain->mode == PAGE_MODE_6_LEVEL))
1476 goto out;
1478 pte = (void *)get_zeroed_page(gfp);
1479 if (!pte)
1480 goto out;
1482 *pte = PM_LEVEL_PDE(domain->mode,
1483 iommu_virt_to_phys(domain->pt_root));
1484 domain->pt_root = pte;
1485 domain->mode += 1;
1487 ret = true;
1489 out:
1490 spin_unlock_irqrestore(&domain->lock, flags);
1492 return ret;
1495 static u64 *alloc_pte(struct protection_domain *domain,
1496 unsigned long address,
1497 unsigned long page_size,
1498 u64 **pte_page,
1499 gfp_t gfp,
1500 bool *updated)
1502 int level, end_lvl;
1503 u64 *pte, *page;
1505 BUG_ON(!is_power_of_2(page_size));
1507 while (address > PM_LEVEL_SIZE(domain->mode))
1508 *updated = increase_address_space(domain, address, gfp) || *updated;
1510 level = domain->mode - 1;
1511 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1512 address = PAGE_SIZE_ALIGN(address, page_size);
1513 end_lvl = PAGE_SIZE_LEVEL(page_size);
1515 while (level > end_lvl) {
1516 u64 __pte, __npte;
1517 int pte_level;
1519 __pte = *pte;
1520 pte_level = PM_PTE_LEVEL(__pte);
1523 * If we replace a series of large PTEs, we need
1524 * to tear down all of them.
1526 if (IOMMU_PTE_PRESENT(__pte) &&
1527 pte_level == PAGE_MODE_7_LEVEL) {
1528 unsigned long count, i;
1529 u64 *lpte;
1531 lpte = first_pte_l7(pte, NULL, &count);
1534 * Unmap the replicated PTEs that still match the
1535 * original large mapping
1537 for (i = 0; i < count; ++i)
1538 cmpxchg64(&lpte[i], __pte, 0ULL);
1540 *updated = true;
1541 continue;
1544 if (!IOMMU_PTE_PRESENT(__pte) ||
1545 pte_level == PAGE_MODE_NONE) {
1546 page = (u64 *)get_zeroed_page(gfp);
1548 if (!page)
1549 return NULL;
1551 __npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1553 /* pte could have been changed somewhere. */
1554 if (cmpxchg64(pte, __pte, __npte) != __pte)
1555 free_page((unsigned long)page);
1556 else if (IOMMU_PTE_PRESENT(__pte))
1557 *updated = true;
1559 continue;
1562 /* No level skipping support yet */
1563 if (pte_level != level)
1564 return NULL;
1566 level -= 1;
1568 pte = IOMMU_PTE_PAGE(__pte);
1570 if (pte_page && level == end_lvl)
1571 *pte_page = pte;
1573 pte = &pte[PM_LEVEL_INDEX(level, address)];
1576 return pte;
1580 * This function checks if there is a PTE for a given dma address. If
1581 * there is one, it returns the pointer to it.
1583 static u64 *fetch_pte(struct protection_domain *domain,
1584 unsigned long address,
1585 unsigned long *page_size)
1587 int level;
1588 u64 *pte;
1590 *page_size = 0;
1592 if (address > PM_LEVEL_SIZE(domain->mode))
1593 return NULL;
1595 level = domain->mode - 1;
1596 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1597 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1599 while (level > 0) {
1601 /* Not Present */
1602 if (!IOMMU_PTE_PRESENT(*pte))
1603 return NULL;
1605 /* Large PTE */
1606 if (PM_PTE_LEVEL(*pte) == 7 ||
1607 PM_PTE_LEVEL(*pte) == 0)
1608 break;
1610 /* No level skipping support yet */
1611 if (PM_PTE_LEVEL(*pte) != level)
1612 return NULL;
1614 level -= 1;
1616 /* Walk to the next level */
1617 pte = IOMMU_PTE_PAGE(*pte);
1618 pte = &pte[PM_LEVEL_INDEX(level, address)];
1619 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1623 * If we have a series of large PTEs, make
1624 * sure to return a pointer to the first one.
1626 if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
1627 pte = first_pte_l7(pte, page_size, NULL);
1629 return pte;
1632 static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
1634 unsigned long pt;
1635 int mode;
1637 while (cmpxchg64(pte, pteval, 0) != pteval) {
1638 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1639 pteval = *pte;
1642 if (!IOMMU_PTE_PRESENT(pteval))
1643 return freelist;
1645 pt = (unsigned long)IOMMU_PTE_PAGE(pteval);
1646 mode = IOMMU_PTE_MODE(pteval);
1648 return free_sub_pt(pt, mode, freelist);
1652 * Generic mapping functions. It maps a physical address into a DMA
1653 * address space. It allocates the page table pages if necessary.
1654 * In the future it can be extended to a generic mapping function
1655 * supporting all features of AMD IOMMU page tables like level skipping
1656 * and full 64 bit address spaces.
1658 static int iommu_map_page(struct protection_domain *dom,
1659 unsigned long bus_addr,
1660 unsigned long phys_addr,
1661 unsigned long page_size,
1662 int prot,
1663 gfp_t gfp)
1665 struct page *freelist = NULL;
1666 bool updated = false;
1667 u64 __pte, *pte;
1668 int ret, i, count;
1670 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1671 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1673 ret = -EINVAL;
1674 if (!(prot & IOMMU_PROT_MASK))
1675 goto out;
1677 count = PAGE_SIZE_PTE_COUNT(page_size);
1678 pte = alloc_pte(dom, bus_addr, page_size, NULL, gfp, &updated);
1680 ret = -ENOMEM;
1681 if (!pte)
1682 goto out;
1684 for (i = 0; i < count; ++i)
1685 freelist = free_clear_pte(&pte[i], pte[i], freelist);
1687 if (freelist != NULL)
1688 updated = true;
1690 if (count > 1) {
1691 __pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1692 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1693 } else
1694 __pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1696 if (prot & IOMMU_PROT_IR)
1697 __pte |= IOMMU_PTE_IR;
1698 if (prot & IOMMU_PROT_IW)
1699 __pte |= IOMMU_PTE_IW;
1701 for (i = 0; i < count; ++i)
1702 pte[i] = __pte;
1704 ret = 0;
1706 out:
1707 if (updated) {
1708 unsigned long flags;
1710 spin_lock_irqsave(&dom->lock, flags);
1711 update_domain(dom);
1712 spin_unlock_irqrestore(&dom->lock, flags);
1715 /* Everything flushed out, free pages now */
1716 free_page_list(freelist);
1718 return ret;
1721 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1722 unsigned long bus_addr,
1723 unsigned long page_size)
1725 unsigned long long unmapped;
1726 unsigned long unmap_size;
1727 u64 *pte;
1729 BUG_ON(!is_power_of_2(page_size));
1731 unmapped = 0;
1733 while (unmapped < page_size) {
1735 pte = fetch_pte(dom, bus_addr, &unmap_size);
1737 if (pte) {
1738 int i, count;
1740 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1741 for (i = 0; i < count; i++)
1742 pte[i] = 0ULL;
1745 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1746 unmapped += unmap_size;
1749 BUG_ON(unmapped && !is_power_of_2(unmapped));
1751 return unmapped;
1754 /****************************************************************************
1756 * The next functions belong to the address allocator for the dma_ops
1757 * interface functions.
1759 ****************************************************************************/
1762 static unsigned long dma_ops_alloc_iova(struct device *dev,
1763 struct dma_ops_domain *dma_dom,
1764 unsigned int pages, u64 dma_mask)
1766 unsigned long pfn = 0;
1768 pages = __roundup_pow_of_two(pages);
1770 if (dma_mask > DMA_BIT_MASK(32))
1771 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1772 IOVA_PFN(DMA_BIT_MASK(32)), false);
1774 if (!pfn)
1775 pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1776 IOVA_PFN(dma_mask), true);
1778 return (pfn << PAGE_SHIFT);
1781 static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
1782 unsigned long address,
1783 unsigned int pages)
1785 pages = __roundup_pow_of_two(pages);
1786 address >>= PAGE_SHIFT;
1788 free_iova_fast(&dma_dom->iovad, address, pages);
1791 /****************************************************************************
1793 * The next functions belong to the domain allocation. A domain is
1794 * allocated for every IOMMU as the default domain. If device isolation
1795 * is enabled, every device get its own domain. The most important thing
1796 * about domains is the page table mapping the DMA address space they
1797 * contain.
1799 ****************************************************************************/
1801 static u16 domain_id_alloc(void)
1803 int id;
1805 spin_lock(&pd_bitmap_lock);
1806 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1807 BUG_ON(id == 0);
1808 if (id > 0 && id < MAX_DOMAIN_ID)
1809 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1810 else
1811 id = 0;
1812 spin_unlock(&pd_bitmap_lock);
1814 return id;
1817 static void domain_id_free(int id)
1819 spin_lock(&pd_bitmap_lock);
1820 if (id > 0 && id < MAX_DOMAIN_ID)
1821 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1822 spin_unlock(&pd_bitmap_lock);
1825 static void free_gcr3_tbl_level1(u64 *tbl)
1827 u64 *ptr;
1828 int i;
1830 for (i = 0; i < 512; ++i) {
1831 if (!(tbl[i] & GCR3_VALID))
1832 continue;
1834 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1836 free_page((unsigned long)ptr);
1840 static void free_gcr3_tbl_level2(u64 *tbl)
1842 u64 *ptr;
1843 int i;
1845 for (i = 0; i < 512; ++i) {
1846 if (!(tbl[i] & GCR3_VALID))
1847 continue;
1849 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1851 free_gcr3_tbl_level1(ptr);
1855 static void free_gcr3_table(struct protection_domain *domain)
1857 if (domain->glx == 2)
1858 free_gcr3_tbl_level2(domain->gcr3_tbl);
1859 else if (domain->glx == 1)
1860 free_gcr3_tbl_level1(domain->gcr3_tbl);
1861 else
1862 BUG_ON(domain->glx != 0);
1864 free_page((unsigned long)domain->gcr3_tbl);
1867 static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
1869 unsigned long flags;
1871 spin_lock_irqsave(&dom->domain.lock, flags);
1872 domain_flush_tlb(&dom->domain);
1873 domain_flush_complete(&dom->domain);
1874 spin_unlock_irqrestore(&dom->domain.lock, flags);
1877 static void iova_domain_flush_tlb(struct iova_domain *iovad)
1879 struct dma_ops_domain *dom;
1881 dom = container_of(iovad, struct dma_ops_domain, iovad);
1883 dma_ops_domain_flush_tlb(dom);
1887 * Free a domain, only used if something went wrong in the
1888 * allocation path and we need to free an already allocated page table
1890 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1892 if (!dom)
1893 return;
1895 put_iova_domain(&dom->iovad);
1897 free_pagetable(&dom->domain);
1899 if (dom->domain.id)
1900 domain_id_free(dom->domain.id);
1902 kfree(dom);
1906 * Allocates a new protection domain usable for the dma_ops functions.
1907 * It also initializes the page table and the address allocator data
1908 * structures required for the dma_ops interface
1910 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1912 struct dma_ops_domain *dma_dom;
1914 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1915 if (!dma_dom)
1916 return NULL;
1918 if (protection_domain_init(&dma_dom->domain))
1919 goto free_dma_dom;
1921 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1922 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1923 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1924 if (!dma_dom->domain.pt_root)
1925 goto free_dma_dom;
1927 init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1929 if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1930 goto free_dma_dom;
1932 /* Initialize reserved ranges */
1933 copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1935 return dma_dom;
1937 free_dma_dom:
1938 dma_ops_domain_free(dma_dom);
1940 return NULL;
1944 * little helper function to check whether a given protection domain is a
1945 * dma_ops domain
1947 static bool dma_ops_domain(struct protection_domain *domain)
1949 return domain->flags & PD_DMA_OPS_MASK;
1952 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1953 bool ats, bool ppr)
1955 u64 pte_root = 0;
1956 u64 flags = 0;
1957 u32 old_domid;
1959 if (domain->mode != PAGE_MODE_NONE)
1960 pte_root = iommu_virt_to_phys(domain->pt_root);
1962 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1963 << DEV_ENTRY_MODE_SHIFT;
1964 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1966 flags = amd_iommu_dev_table[devid].data[1];
1968 if (ats)
1969 flags |= DTE_FLAG_IOTLB;
1971 if (ppr) {
1972 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1974 if (iommu_feature(iommu, FEATURE_EPHSUP))
1975 pte_root |= 1ULL << DEV_ENTRY_PPR;
1978 if (domain->flags & PD_IOMMUV2_MASK) {
1979 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1980 u64 glx = domain->glx;
1981 u64 tmp;
1983 pte_root |= DTE_FLAG_GV;
1984 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1986 /* First mask out possible old values for GCR3 table */
1987 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1988 flags &= ~tmp;
1990 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1991 flags &= ~tmp;
1993 /* Encode GCR3 table into DTE */
1994 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1995 pte_root |= tmp;
1997 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1998 flags |= tmp;
2000 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2001 flags |= tmp;
2004 flags &= ~DEV_DOMID_MASK;
2005 flags |= domain->id;
2007 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
2008 amd_iommu_dev_table[devid].data[1] = flags;
2009 amd_iommu_dev_table[devid].data[0] = pte_root;
2012 * A kdump kernel might be replacing a domain ID that was copied from
2013 * the previous kernel--if so, it needs to flush the translation cache
2014 * entries for the old domain ID that is being overwritten
2016 if (old_domid) {
2017 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
2019 amd_iommu_flush_tlb_domid(iommu, old_domid);
2023 static void clear_dte_entry(u16 devid)
2025 /* remove entry from the device table seen by the hardware */
2026 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
2027 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2029 amd_iommu_apply_erratum_63(devid);
2032 static void do_attach(struct iommu_dev_data *dev_data,
2033 struct protection_domain *domain)
2035 struct amd_iommu *iommu;
2036 bool ats;
2038 iommu = amd_iommu_rlookup_table[dev_data->devid];
2039 ats = dev_data->ats.enabled;
2041 /* Update data structures */
2042 dev_data->domain = domain;
2043 list_add(&dev_data->list, &domain->dev_list);
2045 /* Do reference counting */
2046 domain->dev_iommu[iommu->index] += 1;
2047 domain->dev_cnt += 1;
2049 /* Update device table */
2050 set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
2051 clone_aliases(dev_data->pdev);
2053 device_flush_dte(dev_data);
2056 static void do_detach(struct iommu_dev_data *dev_data)
2058 struct protection_domain *domain = dev_data->domain;
2059 struct amd_iommu *iommu;
2061 iommu = amd_iommu_rlookup_table[dev_data->devid];
2063 /* Update data structures */
2064 dev_data->domain = NULL;
2065 list_del(&dev_data->list);
2066 clear_dte_entry(dev_data->devid);
2067 clone_aliases(dev_data->pdev);
2069 /* Flush the DTE entry */
2070 device_flush_dte(dev_data);
2072 /* Flush IOTLB */
2073 domain_flush_tlb_pde(domain);
2075 /* Wait for the flushes to finish */
2076 domain_flush_complete(domain);
2078 /* decrease reference counters - needs to happen after the flushes */
2079 domain->dev_iommu[iommu->index] -= 1;
2080 domain->dev_cnt -= 1;
2083 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2085 pci_disable_ats(pdev);
2086 pci_disable_pri(pdev);
2087 pci_disable_pasid(pdev);
2090 /* FIXME: Change generic reset-function to do the same */
2091 static int pri_reset_while_enabled(struct pci_dev *pdev)
2093 u16 control;
2094 int pos;
2096 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2097 if (!pos)
2098 return -EINVAL;
2100 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2101 control |= PCI_PRI_CTRL_RESET;
2102 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2104 return 0;
2107 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2109 bool reset_enable;
2110 int reqs, ret;
2112 /* FIXME: Hardcode number of outstanding requests for now */
2113 reqs = 32;
2114 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2115 reqs = 1;
2116 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2118 /* Only allow access to user-accessible pages */
2119 ret = pci_enable_pasid(pdev, 0);
2120 if (ret)
2121 goto out_err;
2123 /* First reset the PRI state of the device */
2124 ret = pci_reset_pri(pdev);
2125 if (ret)
2126 goto out_err;
2128 /* Enable PRI */
2129 ret = pci_enable_pri(pdev, reqs);
2130 if (ret)
2131 goto out_err;
2133 if (reset_enable) {
2134 ret = pri_reset_while_enabled(pdev);
2135 if (ret)
2136 goto out_err;
2139 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2140 if (ret)
2141 goto out_err;
2143 return 0;
2145 out_err:
2146 pci_disable_pri(pdev);
2147 pci_disable_pasid(pdev);
2149 return ret;
2153 * If a device is not yet associated with a domain, this function makes the
2154 * device visible in the domain
2156 static int attach_device(struct device *dev,
2157 struct protection_domain *domain)
2159 struct pci_dev *pdev;
2160 struct iommu_dev_data *dev_data;
2161 unsigned long flags;
2162 int ret;
2164 spin_lock_irqsave(&domain->lock, flags);
2166 dev_data = get_dev_data(dev);
2168 spin_lock(&dev_data->lock);
2170 ret = -EBUSY;
2171 if (dev_data->domain != NULL)
2172 goto out;
2174 if (!dev_is_pci(dev))
2175 goto skip_ats_check;
2177 pdev = to_pci_dev(dev);
2178 if (domain->flags & PD_IOMMUV2_MASK) {
2179 ret = -EINVAL;
2180 if (!dev_data->passthrough)
2181 goto out;
2183 if (dev_data->iommu_v2) {
2184 if (pdev_iommuv2_enable(pdev) != 0)
2185 goto out;
2187 dev_data->ats.enabled = true;
2188 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2189 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
2191 } else if (amd_iommu_iotlb_sup &&
2192 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2193 dev_data->ats.enabled = true;
2194 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2197 skip_ats_check:
2198 ret = 0;
2200 do_attach(dev_data, domain);
2203 * We might boot into a crash-kernel here. The crashed kernel
2204 * left the caches in the IOMMU dirty. So we have to flush
2205 * here to evict all dirty stuff.
2207 domain_flush_tlb_pde(domain);
2209 domain_flush_complete(domain);
2211 out:
2212 spin_unlock(&dev_data->lock);
2214 spin_unlock_irqrestore(&domain->lock, flags);
2216 return ret;
2220 * Removes a device from a protection domain (with devtable_lock held)
2222 static void detach_device(struct device *dev)
2224 struct protection_domain *domain;
2225 struct iommu_dev_data *dev_data;
2226 unsigned long flags;
2228 dev_data = get_dev_data(dev);
2229 domain = dev_data->domain;
2231 spin_lock_irqsave(&domain->lock, flags);
2233 spin_lock(&dev_data->lock);
2236 * First check if the device is still attached. It might already
2237 * be detached from its domain because the generic
2238 * iommu_detach_group code detached it and we try again here in
2239 * our alias handling.
2241 if (WARN_ON(!dev_data->domain))
2242 goto out;
2244 do_detach(dev_data);
2246 if (!dev_is_pci(dev))
2247 goto out;
2249 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2250 pdev_iommuv2_disable(to_pci_dev(dev));
2251 else if (dev_data->ats.enabled)
2252 pci_disable_ats(to_pci_dev(dev));
2254 dev_data->ats.enabled = false;
2256 out:
2257 spin_unlock(&dev_data->lock);
2259 spin_unlock_irqrestore(&domain->lock, flags);
2262 static int amd_iommu_add_device(struct device *dev)
2264 struct iommu_dev_data *dev_data;
2265 struct iommu_domain *domain;
2266 struct amd_iommu *iommu;
2267 int ret, devid;
2269 if (!check_device(dev) || get_dev_data(dev))
2270 return 0;
2272 devid = get_device_id(dev);
2273 if (devid < 0)
2274 return devid;
2276 iommu = amd_iommu_rlookup_table[devid];
2278 ret = iommu_init_device(dev);
2279 if (ret) {
2280 if (ret != -ENOTSUPP)
2281 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2283 iommu_ignore_device(dev);
2284 dev->dma_ops = NULL;
2285 goto out;
2287 init_iommu_group(dev);
2289 dev_data = get_dev_data(dev);
2291 BUG_ON(!dev_data);
2293 if (dev_data->iommu_v2)
2294 iommu_request_dm_for_dev(dev);
2296 /* Domains are initialized for this device - have a look what we ended up with */
2297 domain = iommu_get_domain_for_dev(dev);
2298 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2299 dev_data->passthrough = true;
2300 else
2301 dev->dma_ops = &amd_iommu_dma_ops;
2303 out:
2304 iommu_completion_wait(iommu);
2306 return 0;
2309 static void amd_iommu_remove_device(struct device *dev)
2311 struct amd_iommu *iommu;
2312 int devid;
2314 if (!check_device(dev))
2315 return;
2317 devid = get_device_id(dev);
2318 if (devid < 0)
2319 return;
2321 iommu = amd_iommu_rlookup_table[devid];
2323 iommu_uninit_device(dev);
2324 iommu_completion_wait(iommu);
2327 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2329 if (dev_is_pci(dev))
2330 return pci_device_group(dev);
2332 return acpihid_device_group(dev);
2335 /*****************************************************************************
2337 * The next functions belong to the dma_ops mapping/unmapping code.
2339 *****************************************************************************/
2342 * In the dma_ops path we only have the struct device. This function
2343 * finds the corresponding IOMMU, the protection domain and the
2344 * requestor id for a given device.
2345 * If the device is not yet associated with a domain this is also done
2346 * in this function.
2348 static struct protection_domain *get_domain(struct device *dev)
2350 struct protection_domain *domain;
2351 struct iommu_domain *io_domain;
2353 if (!check_device(dev))
2354 return ERR_PTR(-EINVAL);
2356 domain = get_dev_data(dev)->domain;
2357 if (domain == NULL && get_dev_data(dev)->defer_attach) {
2358 get_dev_data(dev)->defer_attach = false;
2359 io_domain = iommu_get_domain_for_dev(dev);
2360 domain = to_pdomain(io_domain);
2361 attach_device(dev, domain);
2363 if (domain == NULL)
2364 return ERR_PTR(-EBUSY);
2366 if (!dma_ops_domain(domain))
2367 return ERR_PTR(-EBUSY);
2369 return domain;
2372 static void update_device_table(struct protection_domain *domain)
2374 struct iommu_dev_data *dev_data;
2376 list_for_each_entry(dev_data, &domain->dev_list, list) {
2377 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
2378 dev_data->iommu_v2);
2379 clone_aliases(dev_data->pdev);
2383 static void update_domain(struct protection_domain *domain)
2385 update_device_table(domain);
2387 domain_flush_devices(domain);
2388 domain_flush_tlb_pde(domain);
2389 domain_flush_complete(domain);
2392 static int dir2prot(enum dma_data_direction direction)
2394 if (direction == DMA_TO_DEVICE)
2395 return IOMMU_PROT_IR;
2396 else if (direction == DMA_FROM_DEVICE)
2397 return IOMMU_PROT_IW;
2398 else if (direction == DMA_BIDIRECTIONAL)
2399 return IOMMU_PROT_IW | IOMMU_PROT_IR;
2400 else
2401 return 0;
2405 * This function contains common code for mapping of a physically
2406 * contiguous memory region into DMA address space. It is used by all
2407 * mapping functions provided with this IOMMU driver.
2408 * Must be called with the domain lock held.
2410 static dma_addr_t __map_single(struct device *dev,
2411 struct dma_ops_domain *dma_dom,
2412 phys_addr_t paddr,
2413 size_t size,
2414 enum dma_data_direction direction,
2415 u64 dma_mask)
2417 dma_addr_t offset = paddr & ~PAGE_MASK;
2418 dma_addr_t address, start, ret;
2419 unsigned long flags;
2420 unsigned int pages;
2421 int prot = 0;
2422 int i;
2424 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2425 paddr &= PAGE_MASK;
2427 address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2428 if (!address)
2429 goto out;
2431 prot = dir2prot(direction);
2433 start = address;
2434 for (i = 0; i < pages; ++i) {
2435 ret = iommu_map_page(&dma_dom->domain, start, paddr,
2436 PAGE_SIZE, prot, GFP_ATOMIC);
2437 if (ret)
2438 goto out_unmap;
2440 paddr += PAGE_SIZE;
2441 start += PAGE_SIZE;
2443 address += offset;
2445 domain_flush_np_cache(&dma_dom->domain, address, size);
2447 out:
2448 return address;
2450 out_unmap:
2452 for (--i; i >= 0; --i) {
2453 start -= PAGE_SIZE;
2454 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2457 spin_lock_irqsave(&dma_dom->domain.lock, flags);
2458 domain_flush_tlb(&dma_dom->domain);
2459 domain_flush_complete(&dma_dom->domain);
2460 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2462 dma_ops_free_iova(dma_dom, address, pages);
2464 return DMA_MAPPING_ERROR;
2468 * Does the reverse of the __map_single function. Must be called with
2469 * the domain lock held too
2471 static void __unmap_single(struct dma_ops_domain *dma_dom,
2472 dma_addr_t dma_addr,
2473 size_t size,
2474 int dir)
2476 dma_addr_t i, start;
2477 unsigned int pages;
2479 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2480 dma_addr &= PAGE_MASK;
2481 start = dma_addr;
2483 for (i = 0; i < pages; ++i) {
2484 iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2485 start += PAGE_SIZE;
2488 if (amd_iommu_unmap_flush) {
2489 unsigned long flags;
2491 spin_lock_irqsave(&dma_dom->domain.lock, flags);
2492 domain_flush_tlb(&dma_dom->domain);
2493 domain_flush_complete(&dma_dom->domain);
2494 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
2495 dma_ops_free_iova(dma_dom, dma_addr, pages);
2496 } else {
2497 pages = __roundup_pow_of_two(pages);
2498 queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
2503 * The exported map_single function for dma_ops.
2505 static dma_addr_t map_page(struct device *dev, struct page *page,
2506 unsigned long offset, size_t size,
2507 enum dma_data_direction dir,
2508 unsigned long attrs)
2510 phys_addr_t paddr = page_to_phys(page) + offset;
2511 struct protection_domain *domain;
2512 struct dma_ops_domain *dma_dom;
2513 u64 dma_mask;
2515 domain = get_domain(dev);
2516 if (PTR_ERR(domain) == -EINVAL)
2517 return (dma_addr_t)paddr;
2518 else if (IS_ERR(domain))
2519 return DMA_MAPPING_ERROR;
2521 dma_mask = *dev->dma_mask;
2522 dma_dom = to_dma_ops_domain(domain);
2524 return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2528 * The exported unmap_single function for dma_ops.
2530 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2531 enum dma_data_direction dir, unsigned long attrs)
2533 struct protection_domain *domain;
2534 struct dma_ops_domain *dma_dom;
2536 domain = get_domain(dev);
2537 if (IS_ERR(domain))
2538 return;
2540 dma_dom = to_dma_ops_domain(domain);
2542 __unmap_single(dma_dom, dma_addr, size, dir);
2545 static int sg_num_pages(struct device *dev,
2546 struct scatterlist *sglist,
2547 int nelems)
2549 unsigned long mask, boundary_size;
2550 struct scatterlist *s;
2551 int i, npages = 0;
2553 mask = dma_get_seg_boundary(dev);
2554 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
2555 1UL << (BITS_PER_LONG - PAGE_SHIFT);
2557 for_each_sg(sglist, s, nelems, i) {
2558 int p, n;
2560 s->dma_address = npages << PAGE_SHIFT;
2561 p = npages % boundary_size;
2562 n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2563 if (p + n > boundary_size)
2564 npages += boundary_size - p;
2565 npages += n;
2568 return npages;
2572 * The exported map_sg function for dma_ops (handles scatter-gather
2573 * lists).
2575 static int map_sg(struct device *dev, struct scatterlist *sglist,
2576 int nelems, enum dma_data_direction direction,
2577 unsigned long attrs)
2579 int mapped_pages = 0, npages = 0, prot = 0, i;
2580 struct protection_domain *domain;
2581 struct dma_ops_domain *dma_dom;
2582 struct scatterlist *s;
2583 unsigned long address;
2584 u64 dma_mask;
2585 int ret;
2587 domain = get_domain(dev);
2588 if (IS_ERR(domain))
2589 return 0;
2591 dma_dom = to_dma_ops_domain(domain);
2592 dma_mask = *dev->dma_mask;
2594 npages = sg_num_pages(dev, sglist, nelems);
2596 address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2597 if (!address)
2598 goto out_err;
2600 prot = dir2prot(direction);
2602 /* Map all sg entries */
2603 for_each_sg(sglist, s, nelems, i) {
2604 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2606 for (j = 0; j < pages; ++j) {
2607 unsigned long bus_addr, phys_addr;
2609 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2610 phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
2611 ret = iommu_map_page(domain, bus_addr, phys_addr,
2612 PAGE_SIZE, prot,
2613 GFP_ATOMIC | __GFP_NOWARN);
2614 if (ret)
2615 goto out_unmap;
2617 mapped_pages += 1;
2621 /* Everything is mapped - write the right values into s->dma_address */
2622 for_each_sg(sglist, s, nelems, i) {
2624 * Add in the remaining piece of the scatter-gather offset that
2625 * was masked out when we were determining the physical address
2626 * via (sg_phys(s) & PAGE_MASK) earlier.
2628 s->dma_address += address + (s->offset & ~PAGE_MASK);
2629 s->dma_length = s->length;
2632 if (s)
2633 domain_flush_np_cache(domain, s->dma_address, s->dma_length);
2635 return nelems;
2637 out_unmap:
2638 dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
2639 npages, ret);
2641 for_each_sg(sglist, s, nelems, i) {
2642 int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
2644 for (j = 0; j < pages; ++j) {
2645 unsigned long bus_addr;
2647 bus_addr = address + s->dma_address + (j << PAGE_SHIFT);
2648 iommu_unmap_page(domain, bus_addr, PAGE_SIZE);
2650 if (--mapped_pages == 0)
2651 goto out_free_iova;
2655 out_free_iova:
2656 free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2658 out_err:
2659 return 0;
2663 * The exported map_sg function for dma_ops (handles scatter-gather
2664 * lists).
2666 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2667 int nelems, enum dma_data_direction dir,
2668 unsigned long attrs)
2670 struct protection_domain *domain;
2671 struct dma_ops_domain *dma_dom;
2672 unsigned long startaddr;
2673 int npages;
2675 domain = get_domain(dev);
2676 if (IS_ERR(domain))
2677 return;
2679 startaddr = sg_dma_address(sglist) & PAGE_MASK;
2680 dma_dom = to_dma_ops_domain(domain);
2681 npages = sg_num_pages(dev, sglist, nelems);
2683 __unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2687 * The exported alloc_coherent function for dma_ops.
2689 static void *alloc_coherent(struct device *dev, size_t size,
2690 dma_addr_t *dma_addr, gfp_t flag,
2691 unsigned long attrs)
2693 u64 dma_mask = dev->coherent_dma_mask;
2694 struct protection_domain *domain;
2695 struct dma_ops_domain *dma_dom;
2696 struct page *page;
2698 domain = get_domain(dev);
2699 if (PTR_ERR(domain) == -EINVAL) {
2700 page = alloc_pages(flag, get_order(size));
2701 *dma_addr = page_to_phys(page);
2702 return page_address(page);
2703 } else if (IS_ERR(domain))
2704 return NULL;
2706 dma_dom = to_dma_ops_domain(domain);
2707 size = PAGE_ALIGN(size);
2708 dma_mask = dev->coherent_dma_mask;
2709 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2710 flag |= __GFP_ZERO;
2712 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2713 if (!page) {
2714 if (!gfpflags_allow_blocking(flag))
2715 return NULL;
2717 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2718 get_order(size), flag & __GFP_NOWARN);
2719 if (!page)
2720 return NULL;
2723 if (!dma_mask)
2724 dma_mask = *dev->dma_mask;
2726 *dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2727 size, DMA_BIDIRECTIONAL, dma_mask);
2729 if (*dma_addr == DMA_MAPPING_ERROR)
2730 goto out_free;
2732 return page_address(page);
2734 out_free:
2736 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2737 __free_pages(page, get_order(size));
2739 return NULL;
2743 * The exported free_coherent function for dma_ops.
2745 static void free_coherent(struct device *dev, size_t size,
2746 void *virt_addr, dma_addr_t dma_addr,
2747 unsigned long attrs)
2749 struct protection_domain *domain;
2750 struct dma_ops_domain *dma_dom;
2751 struct page *page;
2753 page = virt_to_page(virt_addr);
2754 size = PAGE_ALIGN(size);
2756 domain = get_domain(dev);
2757 if (IS_ERR(domain))
2758 goto free_mem;
2760 dma_dom = to_dma_ops_domain(domain);
2762 __unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2764 free_mem:
2765 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2766 __free_pages(page, get_order(size));
2770 * This function is called by the DMA layer to find out if we can handle a
2771 * particular device. It is part of the dma_ops.
2773 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2775 if (!dma_direct_supported(dev, mask))
2776 return 0;
2777 return check_device(dev);
2780 static const struct dma_map_ops amd_iommu_dma_ops = {
2781 .alloc = alloc_coherent,
2782 .free = free_coherent,
2783 .map_page = map_page,
2784 .unmap_page = unmap_page,
2785 .map_sg = map_sg,
2786 .unmap_sg = unmap_sg,
2787 .dma_supported = amd_iommu_dma_supported,
2788 .mmap = dma_common_mmap,
2789 .get_sgtable = dma_common_get_sgtable,
2792 static int init_reserved_iova_ranges(void)
2794 struct pci_dev *pdev = NULL;
2795 struct iova *val;
2797 init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2799 lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
2800 &reserved_rbtree_key);
2802 /* MSI memory range */
2803 val = reserve_iova(&reserved_iova_ranges,
2804 IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
2805 if (!val) {
2806 pr_err("Reserving MSI range failed\n");
2807 return -ENOMEM;
2810 /* HT memory range */
2811 val = reserve_iova(&reserved_iova_ranges,
2812 IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
2813 if (!val) {
2814 pr_err("Reserving HT range failed\n");
2815 return -ENOMEM;
2819 * Memory used for PCI resources
2820 * FIXME: Check whether we can reserve the PCI-hole completly
2822 for_each_pci_dev(pdev) {
2823 int i;
2825 for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
2826 struct resource *r = &pdev->resource[i];
2828 if (!(r->flags & IORESOURCE_MEM))
2829 continue;
2831 val = reserve_iova(&reserved_iova_ranges,
2832 IOVA_PFN(r->start),
2833 IOVA_PFN(r->end));
2834 if (!val) {
2835 pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2836 return -ENOMEM;
2841 return 0;
2844 int __init amd_iommu_init_api(void)
2846 int ret, err = 0;
2848 ret = iova_cache_get();
2849 if (ret)
2850 return ret;
2852 ret = init_reserved_iova_ranges();
2853 if (ret)
2854 return ret;
2856 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2857 if (err)
2858 return err;
2859 #ifdef CONFIG_ARM_AMBA
2860 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
2861 if (err)
2862 return err;
2863 #endif
2864 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
2865 if (err)
2866 return err;
2868 return 0;
2871 int __init amd_iommu_init_dma_ops(void)
2873 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
2874 iommu_detected = 1;
2876 if (amd_iommu_unmap_flush)
2877 pr_info("IO/TLB flush on unmap enabled\n");
2878 else
2879 pr_info("Lazy IO/TLB flushing enabled\n");
2881 return 0;
2885 /*****************************************************************************
2887 * The following functions belong to the exported interface of AMD IOMMU
2889 * This interface allows access to lower level functions of the IOMMU
2890 * like protection domain handling and assignement of devices to domains
2891 * which is not possible with the dma_ops interface.
2893 *****************************************************************************/
2895 static void cleanup_domain(struct protection_domain *domain)
2897 struct iommu_dev_data *entry;
2898 unsigned long flags;
2900 spin_lock_irqsave(&domain->lock, flags);
2902 while (!list_empty(&domain->dev_list)) {
2903 entry = list_first_entry(&domain->dev_list,
2904 struct iommu_dev_data, list);
2905 BUG_ON(!entry->domain);
2906 do_detach(entry);
2909 spin_unlock_irqrestore(&domain->lock, flags);
2912 static void protection_domain_free(struct protection_domain *domain)
2914 if (!domain)
2915 return;
2917 if (domain->id)
2918 domain_id_free(domain->id);
2920 kfree(domain);
2923 static int protection_domain_init(struct protection_domain *domain)
2925 spin_lock_init(&domain->lock);
2926 mutex_init(&domain->api_lock);
2927 domain->id = domain_id_alloc();
2928 if (!domain->id)
2929 return -ENOMEM;
2930 INIT_LIST_HEAD(&domain->dev_list);
2932 return 0;
2935 static struct protection_domain *protection_domain_alloc(void)
2937 struct protection_domain *domain;
2939 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2940 if (!domain)
2941 return NULL;
2943 if (protection_domain_init(domain))
2944 goto out_err;
2946 return domain;
2948 out_err:
2949 kfree(domain);
2951 return NULL;
2954 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2956 struct protection_domain *pdomain;
2957 struct dma_ops_domain *dma_domain;
2959 switch (type) {
2960 case IOMMU_DOMAIN_UNMANAGED:
2961 pdomain = protection_domain_alloc();
2962 if (!pdomain)
2963 return NULL;
2965 pdomain->mode = PAGE_MODE_3_LEVEL;
2966 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2967 if (!pdomain->pt_root) {
2968 protection_domain_free(pdomain);
2969 return NULL;
2972 pdomain->domain.geometry.aperture_start = 0;
2973 pdomain->domain.geometry.aperture_end = ~0ULL;
2974 pdomain->domain.geometry.force_aperture = true;
2976 break;
2977 case IOMMU_DOMAIN_DMA:
2978 dma_domain = dma_ops_domain_alloc();
2979 if (!dma_domain) {
2980 pr_err("Failed to allocate\n");
2981 return NULL;
2983 pdomain = &dma_domain->domain;
2984 break;
2985 case IOMMU_DOMAIN_IDENTITY:
2986 pdomain = protection_domain_alloc();
2987 if (!pdomain)
2988 return NULL;
2990 pdomain->mode = PAGE_MODE_NONE;
2991 break;
2992 default:
2993 return NULL;
2996 return &pdomain->domain;
2999 static void amd_iommu_domain_free(struct iommu_domain *dom)
3001 struct protection_domain *domain;
3002 struct dma_ops_domain *dma_dom;
3004 domain = to_pdomain(dom);
3006 if (domain->dev_cnt > 0)
3007 cleanup_domain(domain);
3009 BUG_ON(domain->dev_cnt != 0);
3011 if (!dom)
3012 return;
3014 switch (dom->type) {
3015 case IOMMU_DOMAIN_DMA:
3016 /* Now release the domain */
3017 dma_dom = to_dma_ops_domain(domain);
3018 dma_ops_domain_free(dma_dom);
3019 break;
3020 default:
3021 if (domain->mode != PAGE_MODE_NONE)
3022 free_pagetable(domain);
3024 if (domain->flags & PD_IOMMUV2_MASK)
3025 free_gcr3_table(domain);
3027 protection_domain_free(domain);
3028 break;
3032 static void amd_iommu_detach_device(struct iommu_domain *dom,
3033 struct device *dev)
3035 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3036 struct amd_iommu *iommu;
3037 int devid;
3039 if (!check_device(dev))
3040 return;
3042 devid = get_device_id(dev);
3043 if (devid < 0)
3044 return;
3046 if (dev_data->domain != NULL)
3047 detach_device(dev);
3049 iommu = amd_iommu_rlookup_table[devid];
3050 if (!iommu)
3051 return;
3053 #ifdef CONFIG_IRQ_REMAP
3054 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
3055 (dom->type == IOMMU_DOMAIN_UNMANAGED))
3056 dev_data->use_vapic = 0;
3057 #endif
3059 iommu_completion_wait(iommu);
3062 static int amd_iommu_attach_device(struct iommu_domain *dom,
3063 struct device *dev)
3065 struct protection_domain *domain = to_pdomain(dom);
3066 struct iommu_dev_data *dev_data;
3067 struct amd_iommu *iommu;
3068 int ret;
3070 if (!check_device(dev))
3071 return -EINVAL;
3073 dev_data = dev->archdata.iommu;
3075 iommu = amd_iommu_rlookup_table[dev_data->devid];
3076 if (!iommu)
3077 return -EINVAL;
3079 if (dev_data->domain)
3080 detach_device(dev);
3082 ret = attach_device(dev, domain);
3084 #ifdef CONFIG_IRQ_REMAP
3085 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3086 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
3087 dev_data->use_vapic = 1;
3088 else
3089 dev_data->use_vapic = 0;
3091 #endif
3093 iommu_completion_wait(iommu);
3095 return ret;
3098 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3099 phys_addr_t paddr, size_t page_size, int iommu_prot)
3101 struct protection_domain *domain = to_pdomain(dom);
3102 int prot = 0;
3103 int ret;
3105 if (domain->mode == PAGE_MODE_NONE)
3106 return -EINVAL;
3108 if (iommu_prot & IOMMU_READ)
3109 prot |= IOMMU_PROT_IR;
3110 if (iommu_prot & IOMMU_WRITE)
3111 prot |= IOMMU_PROT_IW;
3113 mutex_lock(&domain->api_lock);
3114 ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3115 mutex_unlock(&domain->api_lock);
3117 domain_flush_np_cache(domain, iova, page_size);
3119 return ret;
3122 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3123 size_t page_size,
3124 struct iommu_iotlb_gather *gather)
3126 struct protection_domain *domain = to_pdomain(dom);
3127 size_t unmap_size;
3129 if (domain->mode == PAGE_MODE_NONE)
3130 return 0;
3132 mutex_lock(&domain->api_lock);
3133 unmap_size = iommu_unmap_page(domain, iova, page_size);
3134 mutex_unlock(&domain->api_lock);
3136 return unmap_size;
3139 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3140 dma_addr_t iova)
3142 struct protection_domain *domain = to_pdomain(dom);
3143 unsigned long offset_mask, pte_pgsize;
3144 u64 *pte, __pte;
3146 if (domain->mode == PAGE_MODE_NONE)
3147 return iova;
3149 pte = fetch_pte(domain, iova, &pte_pgsize);
3151 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3152 return 0;
3154 offset_mask = pte_pgsize - 1;
3155 __pte = __sme_clr(*pte & PM_ADDR_MASK);
3157 return (__pte & ~offset_mask) | (iova & offset_mask);
3160 static bool amd_iommu_capable(enum iommu_cap cap)
3162 switch (cap) {
3163 case IOMMU_CAP_CACHE_COHERENCY:
3164 return true;
3165 case IOMMU_CAP_INTR_REMAP:
3166 return (irq_remapping_enabled == 1);
3167 case IOMMU_CAP_NOEXEC:
3168 return false;
3169 default:
3170 break;
3173 return false;
3176 static void amd_iommu_get_resv_regions(struct device *dev,
3177 struct list_head *head)
3179 struct iommu_resv_region *region;
3180 struct unity_map_entry *entry;
3181 int devid;
3183 devid = get_device_id(dev);
3184 if (devid < 0)
3185 return;
3187 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3188 int type, prot = 0;
3189 size_t length;
3191 if (devid < entry->devid_start || devid > entry->devid_end)
3192 continue;
3194 type = IOMMU_RESV_DIRECT;
3195 length = entry->address_end - entry->address_start;
3196 if (entry->prot & IOMMU_PROT_IR)
3197 prot |= IOMMU_READ;
3198 if (entry->prot & IOMMU_PROT_IW)
3199 prot |= IOMMU_WRITE;
3200 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
3201 /* Exclusion range */
3202 type = IOMMU_RESV_RESERVED;
3204 region = iommu_alloc_resv_region(entry->address_start,
3205 length, prot, type);
3206 if (!region) {
3207 dev_err(dev, "Out of memory allocating dm-regions\n");
3208 return;
3210 list_add_tail(&region->list, head);
3213 region = iommu_alloc_resv_region(MSI_RANGE_START,
3214 MSI_RANGE_END - MSI_RANGE_START + 1,
3215 0, IOMMU_RESV_MSI);
3216 if (!region)
3217 return;
3218 list_add_tail(&region->list, head);
3220 region = iommu_alloc_resv_region(HT_RANGE_START,
3221 HT_RANGE_END - HT_RANGE_START + 1,
3222 0, IOMMU_RESV_RESERVED);
3223 if (!region)
3224 return;
3225 list_add_tail(&region->list, head);
3228 static void amd_iommu_put_resv_regions(struct device *dev,
3229 struct list_head *head)
3231 struct iommu_resv_region *entry, *next;
3233 list_for_each_entry_safe(entry, next, head, list)
3234 kfree(entry);
3237 static void amd_iommu_apply_resv_region(struct device *dev,
3238 struct iommu_domain *domain,
3239 struct iommu_resv_region *region)
3241 struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3242 unsigned long start, end;
3244 start = IOVA_PFN(region->start);
3245 end = IOVA_PFN(region->start + region->length - 1);
3247 WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
3250 static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
3251 struct device *dev)
3253 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3254 return dev_data->defer_attach;
3257 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
3259 struct protection_domain *dom = to_pdomain(domain);
3260 unsigned long flags;
3262 spin_lock_irqsave(&dom->lock, flags);
3263 domain_flush_tlb_pde(dom);
3264 domain_flush_complete(dom);
3265 spin_unlock_irqrestore(&dom->lock, flags);
3268 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
3269 struct iommu_iotlb_gather *gather)
3271 amd_iommu_flush_iotlb_all(domain);
3274 const struct iommu_ops amd_iommu_ops = {
3275 .capable = amd_iommu_capable,
3276 .domain_alloc = amd_iommu_domain_alloc,
3277 .domain_free = amd_iommu_domain_free,
3278 .attach_dev = amd_iommu_attach_device,
3279 .detach_dev = amd_iommu_detach_device,
3280 .map = amd_iommu_map,
3281 .unmap = amd_iommu_unmap,
3282 .iova_to_phys = amd_iommu_iova_to_phys,
3283 .add_device = amd_iommu_add_device,
3284 .remove_device = amd_iommu_remove_device,
3285 .device_group = amd_iommu_device_group,
3286 .get_resv_regions = amd_iommu_get_resv_regions,
3287 .put_resv_regions = amd_iommu_put_resv_regions,
3288 .apply_resv_region = amd_iommu_apply_resv_region,
3289 .is_attach_deferred = amd_iommu_is_attach_deferred,
3290 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3291 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
3292 .iotlb_sync = amd_iommu_iotlb_sync,
3295 /*****************************************************************************
3297 * The next functions do a basic initialization of IOMMU for pass through
3298 * mode
3300 * In passthrough mode the IOMMU is initialized and enabled but not used for
3301 * DMA-API translation.
3303 *****************************************************************************/
3305 /* IOMMUv2 specific functions */
3306 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3308 return atomic_notifier_chain_register(&ppr_notifier, nb);
3310 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3312 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3314 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3316 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3318 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3320 struct protection_domain *domain = to_pdomain(dom);
3321 unsigned long flags;
3323 spin_lock_irqsave(&domain->lock, flags);
3325 /* Update data structure */
3326 domain->mode = PAGE_MODE_NONE;
3328 /* Make changes visible to IOMMUs */
3329 update_domain(domain);
3331 /* Page-table is not visible to IOMMU anymore, so free it */
3332 free_pagetable(domain);
3334 spin_unlock_irqrestore(&domain->lock, flags);
3336 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3338 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3340 struct protection_domain *domain = to_pdomain(dom);
3341 unsigned long flags;
3342 int levels, ret;
3344 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3345 return -EINVAL;
3347 /* Number of GCR3 table levels required */
3348 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3349 levels += 1;
3351 if (levels > amd_iommu_max_glx_val)
3352 return -EINVAL;
3354 spin_lock_irqsave(&domain->lock, flags);
3357 * Save us all sanity checks whether devices already in the
3358 * domain support IOMMUv2. Just force that the domain has no
3359 * devices attached when it is switched into IOMMUv2 mode.
3361 ret = -EBUSY;
3362 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3363 goto out;
3365 ret = -ENOMEM;
3366 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3367 if (domain->gcr3_tbl == NULL)
3368 goto out;
3370 domain->glx = levels;
3371 domain->flags |= PD_IOMMUV2_MASK;
3373 update_domain(domain);
3375 ret = 0;
3377 out:
3378 spin_unlock_irqrestore(&domain->lock, flags);
3380 return ret;
3382 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3384 static int __flush_pasid(struct protection_domain *domain, int pasid,
3385 u64 address, bool size)
3387 struct iommu_dev_data *dev_data;
3388 struct iommu_cmd cmd;
3389 int i, ret;
3391 if (!(domain->flags & PD_IOMMUV2_MASK))
3392 return -EINVAL;
3394 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3397 * IOMMU TLB needs to be flushed before Device TLB to
3398 * prevent device TLB refill from IOMMU TLB
3400 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3401 if (domain->dev_iommu[i] == 0)
3402 continue;
3404 ret = iommu_queue_command(amd_iommus[i], &cmd);
3405 if (ret != 0)
3406 goto out;
3409 /* Wait until IOMMU TLB flushes are complete */
3410 domain_flush_complete(domain);
3412 /* Now flush device TLBs */
3413 list_for_each_entry(dev_data, &domain->dev_list, list) {
3414 struct amd_iommu *iommu;
3415 int qdep;
3418 There might be non-IOMMUv2 capable devices in an IOMMUv2
3419 * domain.
3421 if (!dev_data->ats.enabled)
3422 continue;
3424 qdep = dev_data->ats.qdep;
3425 iommu = amd_iommu_rlookup_table[dev_data->devid];
3427 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3428 qdep, address, size);
3430 ret = iommu_queue_command(iommu, &cmd);
3431 if (ret != 0)
3432 goto out;
3435 /* Wait until all device TLBs are flushed */
3436 domain_flush_complete(domain);
3438 ret = 0;
3440 out:
3442 return ret;
3445 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3446 u64 address)
3448 return __flush_pasid(domain, pasid, address, false);
3451 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3452 u64 address)
3454 struct protection_domain *domain = to_pdomain(dom);
3455 unsigned long flags;
3456 int ret;
3458 spin_lock_irqsave(&domain->lock, flags);
3459 ret = __amd_iommu_flush_page(domain, pasid, address);
3460 spin_unlock_irqrestore(&domain->lock, flags);
3462 return ret;
3464 EXPORT_SYMBOL(amd_iommu_flush_page);
3466 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3468 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3469 true);
3472 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3474 struct protection_domain *domain = to_pdomain(dom);
3475 unsigned long flags;
3476 int ret;
3478 spin_lock_irqsave(&domain->lock, flags);
3479 ret = __amd_iommu_flush_tlb(domain, pasid);
3480 spin_unlock_irqrestore(&domain->lock, flags);
3482 return ret;
3484 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3486 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3488 int index;
3489 u64 *pte;
3491 while (true) {
3493 index = (pasid >> (9 * level)) & 0x1ff;
3494 pte = &root[index];
3496 if (level == 0)
3497 break;
3499 if (!(*pte & GCR3_VALID)) {
3500 if (!alloc)
3501 return NULL;
3503 root = (void *)get_zeroed_page(GFP_ATOMIC);
3504 if (root == NULL)
3505 return NULL;
3507 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
3510 root = iommu_phys_to_virt(*pte & PAGE_MASK);
3512 level -= 1;
3515 return pte;
3518 static int __set_gcr3(struct protection_domain *domain, int pasid,
3519 unsigned long cr3)
3521 u64 *pte;
3523 if (domain->mode != PAGE_MODE_NONE)
3524 return -EINVAL;
3526 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3527 if (pte == NULL)
3528 return -ENOMEM;
3530 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3532 return __amd_iommu_flush_tlb(domain, pasid);
3535 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3537 u64 *pte;
3539 if (domain->mode != PAGE_MODE_NONE)
3540 return -EINVAL;
3542 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3543 if (pte == NULL)
3544 return 0;
3546 *pte = 0;
3548 return __amd_iommu_flush_tlb(domain, pasid);
3551 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3552 unsigned long cr3)
3554 struct protection_domain *domain = to_pdomain(dom);
3555 unsigned long flags;
3556 int ret;
3558 spin_lock_irqsave(&domain->lock, flags);
3559 ret = __set_gcr3(domain, pasid, cr3);
3560 spin_unlock_irqrestore(&domain->lock, flags);
3562 return ret;
3564 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3566 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3568 struct protection_domain *domain = to_pdomain(dom);
3569 unsigned long flags;
3570 int ret;
3572 spin_lock_irqsave(&domain->lock, flags);
3573 ret = __clear_gcr3(domain, pasid);
3574 spin_unlock_irqrestore(&domain->lock, flags);
3576 return ret;
3578 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3580 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3581 int status, int tag)
3583 struct iommu_dev_data *dev_data;
3584 struct amd_iommu *iommu;
3585 struct iommu_cmd cmd;
3587 dev_data = get_dev_data(&pdev->dev);
3588 iommu = amd_iommu_rlookup_table[dev_data->devid];
3590 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3591 tag, dev_data->pri_tlp);
3593 return iommu_queue_command(iommu, &cmd);
3595 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3597 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3599 struct protection_domain *pdomain;
3601 pdomain = get_domain(&pdev->dev);
3602 if (IS_ERR(pdomain))
3603 return NULL;
3605 /* Only return IOMMUv2 domains */
3606 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3607 return NULL;
3609 return &pdomain->domain;
3611 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3613 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3615 struct iommu_dev_data *dev_data;
3617 if (!amd_iommu_v2_supported())
3618 return;
3620 dev_data = get_dev_data(&pdev->dev);
3621 dev_data->errata |= (1 << erratum);
3623 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3625 int amd_iommu_device_info(struct pci_dev *pdev,
3626 struct amd_iommu_device_info *info)
3628 int max_pasids;
3629 int pos;
3631 if (pdev == NULL || info == NULL)
3632 return -EINVAL;
3634 if (!amd_iommu_v2_supported())
3635 return -EINVAL;
3637 memset(info, 0, sizeof(*info));
3639 if (!pci_ats_disabled()) {
3640 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3641 if (pos)
3642 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3645 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3646 if (pos)
3647 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3649 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3650 if (pos) {
3651 int features;
3653 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3654 max_pasids = min(max_pasids, (1 << 20));
3656 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3657 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3659 features = pci_pasid_features(pdev);
3660 if (features & PCI_PASID_CAP_EXEC)
3661 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3662 if (features & PCI_PASID_CAP_PRIV)
3663 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3666 return 0;
3668 EXPORT_SYMBOL(amd_iommu_device_info);
3670 #ifdef CONFIG_IRQ_REMAP
3672 /*****************************************************************************
3674 * Interrupt Remapping Implementation
3676 *****************************************************************************/
3678 static struct irq_chip amd_ir_chip;
3679 static DEFINE_SPINLOCK(iommu_table_lock);
3681 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3683 u64 dte;
3685 dte = amd_iommu_dev_table[devid].data[2];
3686 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3687 dte |= iommu_virt_to_phys(table->table);
3688 dte |= DTE_IRQ_REMAP_INTCTL;
3689 dte |= DTE_IRQ_TABLE_LEN;
3690 dte |= DTE_IRQ_REMAP_ENABLE;
3692 amd_iommu_dev_table[devid].data[2] = dte;
3695 static struct irq_remap_table *get_irq_table(u16 devid)
3697 struct irq_remap_table *table;
3699 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
3700 "%s: no iommu for devid %x\n", __func__, devid))
3701 return NULL;
3703 table = irq_lookup_table[devid];
3704 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
3705 return NULL;
3707 return table;
3710 static struct irq_remap_table *__alloc_irq_table(void)
3712 struct irq_remap_table *table;
3714 table = kzalloc(sizeof(*table), GFP_KERNEL);
3715 if (!table)
3716 return NULL;
3718 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
3719 if (!table->table) {
3720 kfree(table);
3721 return NULL;
3723 raw_spin_lock_init(&table->lock);
3725 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3726 memset(table->table, 0,
3727 MAX_IRQS_PER_TABLE * sizeof(u32));
3728 else
3729 memset(table->table, 0,
3730 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3731 return table;
3734 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3735 struct irq_remap_table *table)
3737 irq_lookup_table[devid] = table;
3738 set_dte_irq_entry(devid, table);
3739 iommu_flush_dte(iommu, devid);
3742 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3743 void *data)
3745 struct irq_remap_table *table = data;
3747 irq_lookup_table[alias] = table;
3748 set_dte_irq_entry(alias, table);
3750 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
3752 return 0;
3755 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
3757 struct irq_remap_table *table = NULL;
3758 struct irq_remap_table *new_table = NULL;
3759 struct amd_iommu *iommu;
3760 unsigned long flags;
3761 u16 alias;
3763 spin_lock_irqsave(&iommu_table_lock, flags);
3765 iommu = amd_iommu_rlookup_table[devid];
3766 if (!iommu)
3767 goto out_unlock;
3769 table = irq_lookup_table[devid];
3770 if (table)
3771 goto out_unlock;
3773 alias = amd_iommu_alias_table[devid];
3774 table = irq_lookup_table[alias];
3775 if (table) {
3776 set_remap_table_entry(iommu, devid, table);
3777 goto out_wait;
3779 spin_unlock_irqrestore(&iommu_table_lock, flags);
3781 /* Nothing there yet, allocate new irq remapping table */
3782 new_table = __alloc_irq_table();
3783 if (!new_table)
3784 return NULL;
3786 spin_lock_irqsave(&iommu_table_lock, flags);
3788 table = irq_lookup_table[devid];
3789 if (table)
3790 goto out_unlock;
3792 table = irq_lookup_table[alias];
3793 if (table) {
3794 set_remap_table_entry(iommu, devid, table);
3795 goto out_wait;
3798 table = new_table;
3799 new_table = NULL;
3801 if (pdev)
3802 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3803 table);
3804 else
3805 set_remap_table_entry(iommu, devid, table);
3807 if (devid != alias)
3808 set_remap_table_entry(iommu, alias, table);
3810 out_wait:
3811 iommu_completion_wait(iommu);
3813 out_unlock:
3814 spin_unlock_irqrestore(&iommu_table_lock, flags);
3816 if (new_table) {
3817 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3818 kfree(new_table);
3820 return table;
3823 static int alloc_irq_index(u16 devid, int count, bool align,
3824 struct pci_dev *pdev)
3826 struct irq_remap_table *table;
3827 int index, c, alignment = 1;
3828 unsigned long flags;
3829 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3831 if (!iommu)
3832 return -ENODEV;
3834 table = alloc_irq_table(devid, pdev);
3835 if (!table)
3836 return -ENODEV;
3838 if (align)
3839 alignment = roundup_pow_of_two(count);
3841 raw_spin_lock_irqsave(&table->lock, flags);
3843 /* Scan table for free entries */
3844 for (index = ALIGN(table->min_index, alignment), c = 0;
3845 index < MAX_IRQS_PER_TABLE;) {
3846 if (!iommu->irte_ops->is_allocated(table, index)) {
3847 c += 1;
3848 } else {
3849 c = 0;
3850 index = ALIGN(index + 1, alignment);
3851 continue;
3854 if (c == count) {
3855 for (; c != 0; --c)
3856 iommu->irte_ops->set_allocated(table, index - c + 1);
3858 index -= count - 1;
3859 goto out;
3862 index++;
3865 index = -ENOSPC;
3867 out:
3868 raw_spin_unlock_irqrestore(&table->lock, flags);
3870 return index;
3873 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
3874 struct amd_ir_data *data)
3876 struct irq_remap_table *table;
3877 struct amd_iommu *iommu;
3878 unsigned long flags;
3879 struct irte_ga *entry;
3881 iommu = amd_iommu_rlookup_table[devid];
3882 if (iommu == NULL)
3883 return -EINVAL;
3885 table = get_irq_table(devid);
3886 if (!table)
3887 return -ENOMEM;
3889 raw_spin_lock_irqsave(&table->lock, flags);
3891 entry = (struct irte_ga *)table->table;
3892 entry = &entry[index];
3893 entry->lo.fields_remap.valid = 0;
3894 entry->hi.val = irte->hi.val;
3895 entry->lo.val = irte->lo.val;
3896 entry->lo.fields_remap.valid = 1;
3897 if (data)
3898 data->ref = entry;
3900 raw_spin_unlock_irqrestore(&table->lock, flags);
3902 iommu_flush_irt(iommu, devid);
3903 iommu_completion_wait(iommu);
3905 return 0;
3908 static int modify_irte(u16 devid, int index, union irte *irte)
3910 struct irq_remap_table *table;
3911 struct amd_iommu *iommu;
3912 unsigned long flags;
3914 iommu = amd_iommu_rlookup_table[devid];
3915 if (iommu == NULL)
3916 return -EINVAL;
3918 table = get_irq_table(devid);
3919 if (!table)
3920 return -ENOMEM;
3922 raw_spin_lock_irqsave(&table->lock, flags);
3923 table->table[index] = irte->val;
3924 raw_spin_unlock_irqrestore(&table->lock, flags);
3926 iommu_flush_irt(iommu, devid);
3927 iommu_completion_wait(iommu);
3929 return 0;
3932 static void free_irte(u16 devid, int index)
3934 struct irq_remap_table *table;
3935 struct amd_iommu *iommu;
3936 unsigned long flags;
3938 iommu = amd_iommu_rlookup_table[devid];
3939 if (iommu == NULL)
3940 return;
3942 table = get_irq_table(devid);
3943 if (!table)
3944 return;
3946 raw_spin_lock_irqsave(&table->lock, flags);
3947 iommu->irte_ops->clear_allocated(table, index);
3948 raw_spin_unlock_irqrestore(&table->lock, flags);
3950 iommu_flush_irt(iommu, devid);
3951 iommu_completion_wait(iommu);
3954 static void irte_prepare(void *entry,
3955 u32 delivery_mode, u32 dest_mode,
3956 u8 vector, u32 dest_apicid, int devid)
3958 union irte *irte = (union irte *) entry;
3960 irte->val = 0;
3961 irte->fields.vector = vector;
3962 irte->fields.int_type = delivery_mode;
3963 irte->fields.destination = dest_apicid;
3964 irte->fields.dm = dest_mode;
3965 irte->fields.valid = 1;
3968 static void irte_ga_prepare(void *entry,
3969 u32 delivery_mode, u32 dest_mode,
3970 u8 vector, u32 dest_apicid, int devid)
3972 struct irte_ga *irte = (struct irte_ga *) entry;
3974 irte->lo.val = 0;
3975 irte->hi.val = 0;
3976 irte->lo.fields_remap.int_type = delivery_mode;
3977 irte->lo.fields_remap.dm = dest_mode;
3978 irte->hi.fields.vector = vector;
3979 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3980 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3981 irte->lo.fields_remap.valid = 1;
3984 static void irte_activate(void *entry, u16 devid, u16 index)
3986 union irte *irte = (union irte *) entry;
3988 irte->fields.valid = 1;
3989 modify_irte(devid, index, irte);
3992 static void irte_ga_activate(void *entry, u16 devid, u16 index)
3994 struct irte_ga *irte = (struct irte_ga *) entry;
3996 irte->lo.fields_remap.valid = 1;
3997 modify_irte_ga(devid, index, irte, NULL);
4000 static void irte_deactivate(void *entry, u16 devid, u16 index)
4002 union irte *irte = (union irte *) entry;
4004 irte->fields.valid = 0;
4005 modify_irte(devid, index, irte);
4008 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
4010 struct irte_ga *irte = (struct irte_ga *) entry;
4012 irte->lo.fields_remap.valid = 0;
4013 modify_irte_ga(devid, index, irte, NULL);
4016 static void irte_set_affinity(void *entry, u16 devid, u16 index,
4017 u8 vector, u32 dest_apicid)
4019 union irte *irte = (union irte *) entry;
4021 irte->fields.vector = vector;
4022 irte->fields.destination = dest_apicid;
4023 modify_irte(devid, index, irte);
4026 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
4027 u8 vector, u32 dest_apicid)
4029 struct irte_ga *irte = (struct irte_ga *) entry;
4031 if (!irte->lo.fields_remap.guest_mode) {
4032 irte->hi.fields.vector = vector;
4033 irte->lo.fields_remap.destination =
4034 APICID_TO_IRTE_DEST_LO(dest_apicid);
4035 irte->hi.fields.destination =
4036 APICID_TO_IRTE_DEST_HI(dest_apicid);
4037 modify_irte_ga(devid, index, irte, NULL);
4041 #define IRTE_ALLOCATED (~1U)
4042 static void irte_set_allocated(struct irq_remap_table *table, int index)
4044 table->table[index] = IRTE_ALLOCATED;
4047 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
4049 struct irte_ga *ptr = (struct irte_ga *)table->table;
4050 struct irte_ga *irte = &ptr[index];
4052 memset(&irte->lo.val, 0, sizeof(u64));
4053 memset(&irte->hi.val, 0, sizeof(u64));
4054 irte->hi.fields.vector = 0xff;
4057 static bool irte_is_allocated(struct irq_remap_table *table, int index)
4059 union irte *ptr = (union irte *)table->table;
4060 union irte *irte = &ptr[index];
4062 return irte->val != 0;
4065 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
4067 struct irte_ga *ptr = (struct irte_ga *)table->table;
4068 struct irte_ga *irte = &ptr[index];
4070 return irte->hi.fields.vector != 0;
4073 static void irte_clear_allocated(struct irq_remap_table *table, int index)
4075 table->table[index] = 0;
4078 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
4080 struct irte_ga *ptr = (struct irte_ga *)table->table;
4081 struct irte_ga *irte = &ptr[index];
4083 memset(&irte->lo.val, 0, sizeof(u64));
4084 memset(&irte->hi.val, 0, sizeof(u64));
4087 static int get_devid(struct irq_alloc_info *info)
4089 int devid = -1;
4091 switch (info->type) {
4092 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4093 devid = get_ioapic_devid(info->ioapic_id);
4094 break;
4095 case X86_IRQ_ALLOC_TYPE_HPET:
4096 devid = get_hpet_devid(info->hpet_id);
4097 break;
4098 case X86_IRQ_ALLOC_TYPE_MSI:
4099 case X86_IRQ_ALLOC_TYPE_MSIX:
4100 devid = get_device_id(&info->msi_dev->dev);
4101 break;
4102 default:
4103 BUG_ON(1);
4104 break;
4107 return devid;
4110 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
4112 struct amd_iommu *iommu;
4113 int devid;
4115 if (!info)
4116 return NULL;
4118 devid = get_devid(info);
4119 if (devid >= 0) {
4120 iommu = amd_iommu_rlookup_table[devid];
4121 if (iommu)
4122 return iommu->ir_domain;
4125 return NULL;
4128 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4130 struct amd_iommu *iommu;
4131 int devid;
4133 if (!info)
4134 return NULL;
4136 switch (info->type) {
4137 case X86_IRQ_ALLOC_TYPE_MSI:
4138 case X86_IRQ_ALLOC_TYPE_MSIX:
4139 devid = get_device_id(&info->msi_dev->dev);
4140 if (devid < 0)
4141 return NULL;
4143 iommu = amd_iommu_rlookup_table[devid];
4144 if (iommu)
4145 return iommu->msi_domain;
4146 break;
4147 default:
4148 break;
4151 return NULL;
4154 struct irq_remap_ops amd_iommu_irq_ops = {
4155 .prepare = amd_iommu_prepare,
4156 .enable = amd_iommu_enable,
4157 .disable = amd_iommu_disable,
4158 .reenable = amd_iommu_reenable,
4159 .enable_faulting = amd_iommu_enable_faulting,
4160 .get_ir_irq_domain = get_ir_irq_domain,
4161 .get_irq_domain = get_irq_domain,
4164 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
4165 struct irq_cfg *irq_cfg,
4166 struct irq_alloc_info *info,
4167 int devid, int index, int sub_handle)
4169 struct irq_2_irte *irte_info = &data->irq_2_irte;
4170 struct msi_msg *msg = &data->msi_entry;
4171 struct IO_APIC_route_entry *entry;
4172 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
4174 if (!iommu)
4175 return;
4177 data->irq_2_irte.devid = devid;
4178 data->irq_2_irte.index = index + sub_handle;
4179 iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
4180 apic->irq_dest_mode, irq_cfg->vector,
4181 irq_cfg->dest_apicid, devid);
4183 switch (info->type) {
4184 case X86_IRQ_ALLOC_TYPE_IOAPIC:
4185 /* Setup IOAPIC entry */
4186 entry = info->ioapic_entry;
4187 info->ioapic_entry = NULL;
4188 memset(entry, 0, sizeof(*entry));
4189 entry->vector = index;
4190 entry->mask = 0;
4191 entry->trigger = info->ioapic_trigger;
4192 entry->polarity = info->ioapic_polarity;
4193 /* Mask level triggered irqs. */
4194 if (info->ioapic_trigger)
4195 entry->mask = 1;
4196 break;
4198 case X86_IRQ_ALLOC_TYPE_HPET:
4199 case X86_IRQ_ALLOC_TYPE_MSI:
4200 case X86_IRQ_ALLOC_TYPE_MSIX:
4201 msg->address_hi = MSI_ADDR_BASE_HI;
4202 msg->address_lo = MSI_ADDR_BASE_LO;
4203 msg->data = irte_info->index;
4204 break;
4206 default:
4207 BUG_ON(1);
4208 break;
4212 struct amd_irte_ops irte_32_ops = {
4213 .prepare = irte_prepare,
4214 .activate = irte_activate,
4215 .deactivate = irte_deactivate,
4216 .set_affinity = irte_set_affinity,
4217 .set_allocated = irte_set_allocated,
4218 .is_allocated = irte_is_allocated,
4219 .clear_allocated = irte_clear_allocated,
4222 struct amd_irte_ops irte_128_ops = {
4223 .prepare = irte_ga_prepare,
4224 .activate = irte_ga_activate,
4225 .deactivate = irte_ga_deactivate,
4226 .set_affinity = irte_ga_set_affinity,
4227 .set_allocated = irte_ga_set_allocated,
4228 .is_allocated = irte_ga_is_allocated,
4229 .clear_allocated = irte_ga_clear_allocated,
4232 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4233 unsigned int nr_irqs, void *arg)
4235 struct irq_alloc_info *info = arg;
4236 struct irq_data *irq_data;
4237 struct amd_ir_data *data = NULL;
4238 struct irq_cfg *cfg;
4239 int i, ret, devid;
4240 int index;
4242 if (!info)
4243 return -EINVAL;
4244 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4245 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4246 return -EINVAL;
4249 * With IRQ remapping enabled, don't need contiguous CPU vectors
4250 * to support multiple MSI interrupts.
4252 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4253 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4255 devid = get_devid(info);
4256 if (devid < 0)
4257 return -EINVAL;
4259 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4260 if (ret < 0)
4261 return ret;
4263 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4264 struct irq_remap_table *table;
4265 struct amd_iommu *iommu;
4267 table = alloc_irq_table(devid, NULL);
4268 if (table) {
4269 if (!table->min_index) {
4271 * Keep the first 32 indexes free for IOAPIC
4272 * interrupts.
4274 table->min_index = 32;
4275 iommu = amd_iommu_rlookup_table[devid];
4276 for (i = 0; i < 32; ++i)
4277 iommu->irte_ops->set_allocated(table, i);
4279 WARN_ON(table->min_index != 32);
4280 index = info->ioapic_pin;
4281 } else {
4282 index = -ENOMEM;
4284 } else if (info->type == X86_IRQ_ALLOC_TYPE_MSI ||
4285 info->type == X86_IRQ_ALLOC_TYPE_MSIX) {
4286 bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);
4288 index = alloc_irq_index(devid, nr_irqs, align, info->msi_dev);
4289 } else {
4290 index = alloc_irq_index(devid, nr_irqs, false, NULL);
4293 if (index < 0) {
4294 pr_warn("Failed to allocate IRTE\n");
4295 ret = index;
4296 goto out_free_parent;
4299 for (i = 0; i < nr_irqs; i++) {
4300 irq_data = irq_domain_get_irq_data(domain, virq + i);
4301 cfg = irqd_cfg(irq_data);
4302 if (!irq_data || !cfg) {
4303 ret = -EINVAL;
4304 goto out_free_data;
4307 ret = -ENOMEM;
4308 data = kzalloc(sizeof(*data), GFP_KERNEL);
4309 if (!data)
4310 goto out_free_data;
4312 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
4313 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
4314 else
4315 data->entry = kzalloc(sizeof(struct irte_ga),
4316 GFP_KERNEL);
4317 if (!data->entry) {
4318 kfree(data);
4319 goto out_free_data;
4322 irq_data->hwirq = (devid << 16) + i;
4323 irq_data->chip_data = data;
4324 irq_data->chip = &amd_ir_chip;
4325 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4326 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4329 return 0;
4331 out_free_data:
4332 for (i--; i >= 0; i--) {
4333 irq_data = irq_domain_get_irq_data(domain, virq + i);
4334 if (irq_data)
4335 kfree(irq_data->chip_data);
4337 for (i = 0; i < nr_irqs; i++)
4338 free_irte(devid, index + i);
4339 out_free_parent:
4340 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4341 return ret;
4344 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4345 unsigned int nr_irqs)
4347 struct irq_2_irte *irte_info;
4348 struct irq_data *irq_data;
4349 struct amd_ir_data *data;
4350 int i;
4352 for (i = 0; i < nr_irqs; i++) {
4353 irq_data = irq_domain_get_irq_data(domain, virq + i);
4354 if (irq_data && irq_data->chip_data) {
4355 data = irq_data->chip_data;
4356 irte_info = &data->irq_2_irte;
4357 free_irte(irte_info->devid, irte_info->index);
4358 kfree(data->entry);
4359 kfree(data);
4362 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4365 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4366 struct amd_ir_data *ir_data,
4367 struct irq_2_irte *irte_info,
4368 struct irq_cfg *cfg);
4370 static int irq_remapping_activate(struct irq_domain *domain,
4371 struct irq_data *irq_data, bool reserve)
4373 struct amd_ir_data *data = irq_data->chip_data;
4374 struct irq_2_irte *irte_info = &data->irq_2_irte;
4375 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4376 struct irq_cfg *cfg = irqd_cfg(irq_data);
4378 if (!iommu)
4379 return 0;
4381 iommu->irte_ops->activate(data->entry, irte_info->devid,
4382 irte_info->index);
4383 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4384 return 0;
4387 static void irq_remapping_deactivate(struct irq_domain *domain,
4388 struct irq_data *irq_data)
4390 struct amd_ir_data *data = irq_data->chip_data;
4391 struct irq_2_irte *irte_info = &data->irq_2_irte;
4392 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4394 if (iommu)
4395 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
4396 irte_info->index);
4399 static const struct irq_domain_ops amd_ir_domain_ops = {
4400 .alloc = irq_remapping_alloc,
4401 .free = irq_remapping_free,
4402 .activate = irq_remapping_activate,
4403 .deactivate = irq_remapping_deactivate,
4406 int amd_iommu_activate_guest_mode(void *data)
4408 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4409 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4411 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4412 !entry || entry->lo.fields_vapic.guest_mode)
4413 return 0;
4415 entry->lo.val = 0;
4416 entry->hi.val = 0;
4418 entry->lo.fields_vapic.guest_mode = 1;
4419 entry->lo.fields_vapic.ga_log_intr = 1;
4420 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
4421 entry->hi.fields.vector = ir_data->ga_vector;
4422 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
4424 return modify_irte_ga(ir_data->irq_2_irte.devid,
4425 ir_data->irq_2_irte.index, entry, ir_data);
4427 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
4429 int amd_iommu_deactivate_guest_mode(void *data)
4431 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4432 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4433 struct irq_cfg *cfg = ir_data->cfg;
4435 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4436 !entry || !entry->lo.fields_vapic.guest_mode)
4437 return 0;
4439 entry->lo.val = 0;
4440 entry->hi.val = 0;
4442 entry->lo.fields_remap.dm = apic->irq_dest_mode;
4443 entry->lo.fields_remap.int_type = apic->irq_delivery_mode;
4444 entry->hi.fields.vector = cfg->vector;
4445 entry->lo.fields_remap.destination =
4446 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
4447 entry->hi.fields.destination =
4448 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4450 return modify_irte_ga(ir_data->irq_2_irte.devid,
4451 ir_data->irq_2_irte.index, entry, ir_data);
4453 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
4455 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
4457 int ret;
4458 struct amd_iommu *iommu;
4459 struct amd_iommu_pi_data *pi_data = vcpu_info;
4460 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
4461 struct amd_ir_data *ir_data = data->chip_data;
4462 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4463 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
4465 /* Note:
4466 * This device has never been set up for guest mode.
4467 * we should not modify the IRTE
4469 if (!dev_data || !dev_data->use_vapic)
4470 return 0;
4472 ir_data->cfg = irqd_cfg(data);
4473 pi_data->ir_data = ir_data;
4475 /* Note:
4476 * SVM tries to set up for VAPIC mode, but we are in
4477 * legacy mode. So, we force legacy mode instead.
4479 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
4480 pr_debug("%s: Fall back to using intr legacy remap\n",
4481 __func__);
4482 pi_data->is_guest_mode = false;
4485 iommu = amd_iommu_rlookup_table[irte_info->devid];
4486 if (iommu == NULL)
4487 return -EINVAL;
4489 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
4490 if (pi_data->is_guest_mode) {
4491 ir_data->ga_root_ptr = (pi_data->base >> 12);
4492 ir_data->ga_vector = vcpu_pi_info->vector;
4493 ir_data->ga_tag = pi_data->ga_tag;
4494 ret = amd_iommu_activate_guest_mode(ir_data);
4495 if (!ret)
4496 ir_data->cached_ga_tag = pi_data->ga_tag;
4497 } else {
4498 ret = amd_iommu_deactivate_guest_mode(ir_data);
4501 * This communicates the ga_tag back to the caller
4502 * so that it can do all the necessary clean up.
4504 if (!ret)
4505 ir_data->cached_ga_tag = 0;
4508 return ret;
4512 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4513 struct amd_ir_data *ir_data,
4514 struct irq_2_irte *irte_info,
4515 struct irq_cfg *cfg)
4519 * Atomically updates the IRTE with the new destination, vector
4520 * and flushes the interrupt entry cache.
4522 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
4523 irte_info->index, cfg->vector,
4524 cfg->dest_apicid);
4527 static int amd_ir_set_affinity(struct irq_data *data,
4528 const struct cpumask *mask, bool force)
4530 struct amd_ir_data *ir_data = data->chip_data;
4531 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4532 struct irq_cfg *cfg = irqd_cfg(data);
4533 struct irq_data *parent = data->parent_data;
4534 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4535 int ret;
4537 if (!iommu)
4538 return -ENODEV;
4540 ret = parent->chip->irq_set_affinity(parent, mask, force);
4541 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4542 return ret;
4544 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4546 * After this point, all the interrupts will start arriving
4547 * at the new destination. So, time to cleanup the previous
4548 * vector allocation.
4550 send_cleanup_vector(cfg);
4552 return IRQ_SET_MASK_OK_DONE;
4555 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4557 struct amd_ir_data *ir_data = irq_data->chip_data;
4559 *msg = ir_data->msi_entry;
4562 static struct irq_chip amd_ir_chip = {
4563 .name = "AMD-IR",
4564 .irq_ack = apic_ack_irq,
4565 .irq_set_affinity = amd_ir_set_affinity,
4566 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4567 .irq_compose_msi_msg = ir_compose_msi_msg,
4570 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4572 struct fwnode_handle *fn;
4574 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
4575 if (!fn)
4576 return -ENOMEM;
4577 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
4578 if (!iommu->ir_domain) {
4579 irq_domain_free_fwnode(fn);
4580 return -ENOMEM;
4583 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4584 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
4585 "AMD-IR-MSI",
4586 iommu->index);
4587 return 0;
4590 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4592 unsigned long flags;
4593 struct amd_iommu *iommu;
4594 struct irq_remap_table *table;
4595 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4596 int devid = ir_data->irq_2_irte.devid;
4597 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4598 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
4600 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4601 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
4602 return 0;
4604 iommu = amd_iommu_rlookup_table[devid];
4605 if (!iommu)
4606 return -ENODEV;
4608 table = get_irq_table(devid);
4609 if (!table)
4610 return -ENODEV;
4612 raw_spin_lock_irqsave(&table->lock, flags);
4614 if (ref->lo.fields_vapic.guest_mode) {
4615 if (cpu >= 0) {
4616 ref->lo.fields_vapic.destination =
4617 APICID_TO_IRTE_DEST_LO(cpu);
4618 ref->hi.fields.destination =
4619 APICID_TO_IRTE_DEST_HI(cpu);
4621 ref->lo.fields_vapic.is_run = is_run;
4622 barrier();
4625 raw_spin_unlock_irqrestore(&table->lock, flags);
4627 iommu_flush_irt(iommu, devid);
4628 iommu_completion_wait(iommu);
4629 return 0;
4631 EXPORT_SYMBOL(amd_iommu_update_ga);
4632 #endif