1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-direct.h>
23 #include <linux/iommu-helper.h>
24 #include <linux/iommu.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/dma-contiguous.h>
32 #include <linux/irqdomain.h>
33 #include <linux/percpu.h>
34 #include <linux/iova.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/msidef.h>
40 #include <asm/proto.h>
41 #include <asm/iommu.h>
45 #include "amd_iommu_proto.h"
46 #include "amd_iommu_types.h"
47 #include "irq_remapping.h"
49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
51 #define LOOP_TIMEOUT 100000
53 /* IO virtual address start page frame number */
54 #define IOVA_START_PFN (1)
55 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
57 /* Reserved IOVA ranges */
58 #define MSI_RANGE_START (0xfee00000)
59 #define MSI_RANGE_END (0xfeefffff)
60 #define HT_RANGE_START (0xfd00000000ULL)
61 #define HT_RANGE_END (0xffffffffffULL)
64 * This bitmap is used to advertise the page sizes our hardware support
65 * to the IOMMU core, which will then use this information to split
66 * physically contiguous memory regions it is mapping into page sizes
69 * 512GB Pages are not supported due to a hardware bug
71 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
73 static DEFINE_SPINLOCK(pd_bitmap_lock
);
75 /* List of all available dev_data structures */
76 static LLIST_HEAD(dev_data_list
);
78 LIST_HEAD(ioapic_map
);
80 LIST_HEAD(acpihid_map
);
83 * Domain for untranslated devices - only allocated
84 * if iommu=pt passed on kernel cmd line.
86 const struct iommu_ops amd_iommu_ops
;
88 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
89 int amd_iommu_max_glx_val
= -1;
91 static const struct dma_map_ops amd_iommu_dma_ops
;
94 * general struct to manage commands send to an IOMMU
100 struct kmem_cache
*amd_iommu_irq_cache
;
102 static void update_domain(struct protection_domain
*domain
);
103 static int protection_domain_init(struct protection_domain
*domain
);
104 static void detach_device(struct device
*dev
);
105 static void iova_domain_flush_tlb(struct iova_domain
*iovad
);
108 * Data container for a dma_ops specific protection domain
110 struct dma_ops_domain
{
111 /* generic protection domain information */
112 struct protection_domain domain
;
115 struct iova_domain iovad
;
118 static struct iova_domain reserved_iova_ranges
;
119 static struct lock_class_key reserved_rbtree_key
;
121 /****************************************************************************
125 ****************************************************************************/
127 static inline int match_hid_uid(struct device
*dev
,
128 struct acpihid_map_entry
*entry
)
130 struct acpi_device
*adev
= ACPI_COMPANION(dev
);
131 const char *hid
, *uid
;
136 hid
= acpi_device_hid(adev
);
137 uid
= acpi_device_uid(adev
);
143 return strcmp(hid
, entry
->hid
);
146 return strcmp(hid
, entry
->hid
);
148 return (strcmp(hid
, entry
->hid
) || strcmp(uid
, entry
->uid
));
151 static inline u16
get_pci_device_id(struct device
*dev
)
153 struct pci_dev
*pdev
= to_pci_dev(dev
);
155 return pci_dev_id(pdev
);
158 static inline int get_acpihid_device_id(struct device
*dev
,
159 struct acpihid_map_entry
**entry
)
161 struct acpihid_map_entry
*p
;
163 list_for_each_entry(p
, &acpihid_map
, list
) {
164 if (!match_hid_uid(dev
, p
)) {
173 static inline int get_device_id(struct device
*dev
)
178 devid
= get_pci_device_id(dev
);
180 devid
= get_acpihid_device_id(dev
, NULL
);
185 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
187 return container_of(dom
, struct protection_domain
, domain
);
190 static struct dma_ops_domain
* to_dma_ops_domain(struct protection_domain
*domain
)
192 BUG_ON(domain
->flags
!= PD_DMA_OPS_MASK
);
193 return container_of(domain
, struct dma_ops_domain
, domain
);
196 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
198 struct iommu_dev_data
*dev_data
;
200 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
204 spin_lock_init(&dev_data
->lock
);
205 dev_data
->devid
= devid
;
206 ratelimit_default_init(&dev_data
->rs
);
208 llist_add(&dev_data
->dev_data_list
, &dev_data_list
);
212 static struct iommu_dev_data
*search_dev_data(u16 devid
)
214 struct iommu_dev_data
*dev_data
;
215 struct llist_node
*node
;
217 if (llist_empty(&dev_data_list
))
220 node
= dev_data_list
.first
;
221 llist_for_each_entry(dev_data
, node
, dev_data_list
) {
222 if (dev_data
->devid
== devid
)
229 static int clone_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
231 u16 devid
= pci_dev_id(pdev
);
236 amd_iommu_rlookup_table
[alias
] =
237 amd_iommu_rlookup_table
[devid
];
238 memcpy(amd_iommu_dev_table
[alias
].data
,
239 amd_iommu_dev_table
[devid
].data
,
240 sizeof(amd_iommu_dev_table
[alias
].data
));
245 static void clone_aliases(struct pci_dev
*pdev
)
251 * The IVRS alias stored in the alias table may not be
252 * part of the PCI DMA aliases if it's bus differs
253 * from the original device.
255 clone_alias(pdev
, amd_iommu_alias_table
[pci_dev_id(pdev
)], NULL
);
257 pci_for_each_dma_alias(pdev
, clone_alias
, NULL
);
260 static struct pci_dev
*setup_aliases(struct device
*dev
)
262 struct pci_dev
*pdev
= to_pci_dev(dev
);
265 /* For ACPI HID devices, there are no aliases */
266 if (!dev_is_pci(dev
))
270 * Add the IVRS alias to the pci aliases if it is on the same
271 * bus. The IVRS table may know about a quirk that we don't.
273 ivrs_alias
= amd_iommu_alias_table
[pci_dev_id(pdev
)];
274 if (ivrs_alias
!= pci_dev_id(pdev
) &&
275 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
)
276 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff, 1);
283 static struct iommu_dev_data
*find_dev_data(u16 devid
)
285 struct iommu_dev_data
*dev_data
;
286 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
288 dev_data
= search_dev_data(devid
);
290 if (dev_data
== NULL
) {
291 dev_data
= alloc_dev_data(devid
);
295 if (translation_pre_enabled(iommu
))
296 dev_data
->defer_attach
= true;
302 struct iommu_dev_data
*get_dev_data(struct device
*dev
)
304 return dev
->archdata
.iommu
;
306 EXPORT_SYMBOL(get_dev_data
);
309 * Find or create an IOMMU group for a acpihid device.
311 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
313 struct acpihid_map_entry
*p
, *entry
= NULL
;
316 devid
= get_acpihid_device_id(dev
, &entry
);
318 return ERR_PTR(devid
);
320 list_for_each_entry(p
, &acpihid_map
, list
) {
321 if ((devid
== p
->devid
) && p
->group
)
322 entry
->group
= p
->group
;
326 entry
->group
= generic_device_group(dev
);
328 iommu_group_ref_get(entry
->group
);
333 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
335 static const int caps
[] = {
338 PCI_EXT_CAP_ID_PASID
,
342 if (pci_ats_disabled())
345 for (i
= 0; i
< 3; ++i
) {
346 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
354 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
356 struct iommu_dev_data
*dev_data
;
358 dev_data
= get_dev_data(&pdev
->dev
);
360 return dev_data
->errata
& (1 << erratum
) ? true : false;
364 * This function checks if the driver got a valid device from the caller to
365 * avoid dereferencing invalid pointers.
367 static bool check_device(struct device
*dev
)
371 if (!dev
|| !dev
->dma_mask
)
374 devid
= get_device_id(dev
);
378 /* Out of our scope? */
379 if (devid
> amd_iommu_last_bdf
)
382 if (amd_iommu_rlookup_table
[devid
] == NULL
)
388 static void init_iommu_group(struct device
*dev
)
390 struct iommu_group
*group
;
392 group
= iommu_group_get_for_dev(dev
);
396 iommu_group_put(group
);
399 static int iommu_init_device(struct device
*dev
)
401 struct iommu_dev_data
*dev_data
;
402 struct amd_iommu
*iommu
;
405 if (dev
->archdata
.iommu
)
408 devid
= get_device_id(dev
);
412 iommu
= amd_iommu_rlookup_table
[devid
];
414 dev_data
= find_dev_data(devid
);
418 dev_data
->pdev
= setup_aliases(dev
);
421 * By default we use passthrough mode for IOMMUv2 capable device.
422 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
423 * invalid address), we ignore the capability for the device so
424 * it'll be forced to go into translation mode.
426 if ((iommu_default_passthrough() || !amd_iommu_force_isolation
) &&
427 dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
428 struct amd_iommu
*iommu
;
430 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
431 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
434 dev
->archdata
.iommu
= dev_data
;
436 iommu_device_link(&iommu
->iommu
, dev
);
441 static void iommu_ignore_device(struct device
*dev
)
445 devid
= get_device_id(dev
);
449 amd_iommu_rlookup_table
[devid
] = NULL
;
450 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
455 static void iommu_uninit_device(struct device
*dev
)
457 struct iommu_dev_data
*dev_data
;
458 struct amd_iommu
*iommu
;
461 devid
= get_device_id(dev
);
465 iommu
= amd_iommu_rlookup_table
[devid
];
467 dev_data
= search_dev_data(devid
);
471 if (dev_data
->domain
)
474 iommu_device_unlink(&iommu
->iommu
, dev
);
476 iommu_group_remove_device(dev
);
482 * We keep dev_data around for unplugged devices and reuse it when the
483 * device is re-plugged - not doing so would introduce a ton of races.
488 * Helper function to get the first pte of a large mapping
490 static u64
*first_pte_l7(u64
*pte
, unsigned long *page_size
,
491 unsigned long *count
)
493 unsigned long pte_mask
, pg_size
, cnt
;
496 pg_size
= PTE_PAGE_SIZE(*pte
);
497 cnt
= PAGE_SIZE_PTE_COUNT(pg_size
);
498 pte_mask
= ~((cnt
<< 3) - 1);
499 fpte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
502 *page_size
= pg_size
;
510 /****************************************************************************
512 * Interrupt handling functions
514 ****************************************************************************/
516 static void dump_dte_entry(u16 devid
)
520 for (i
= 0; i
< 4; ++i
)
521 pr_err("DTE[%d]: %016llx\n", i
,
522 amd_iommu_dev_table
[devid
].data
[i
]);
525 static void dump_command(unsigned long phys_addr
)
527 struct iommu_cmd
*cmd
= iommu_phys_to_virt(phys_addr
);
530 for (i
= 0; i
< 4; ++i
)
531 pr_err("CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
534 static void amd_iommu_report_page_fault(u16 devid
, u16 domain_id
,
535 u64 address
, int flags
)
537 struct iommu_dev_data
*dev_data
= NULL
;
538 struct pci_dev
*pdev
;
540 pdev
= pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid
),
543 dev_data
= get_dev_data(&pdev
->dev
);
545 if (dev_data
&& __ratelimit(&dev_data
->rs
)) {
546 pci_err(pdev
, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
547 domain_id
, address
, flags
);
548 } else if (printk_ratelimit()) {
549 pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
550 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
551 domain_id
, address
, flags
);
558 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
560 struct device
*dev
= iommu
->iommu
.dev
;
561 int type
, devid
, pasid
, flags
, tag
;
562 volatile u32
*event
= __evt
;
567 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
568 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
569 pasid
= (event
[0] & EVENT_DOMID_MASK_HI
) |
570 (event
[1] & EVENT_DOMID_MASK_LO
);
571 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
572 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
575 /* Did we hit the erratum? */
576 if (++count
== LOOP_TIMEOUT
) {
577 pr_err("No event written to event log\n");
584 if (type
== EVENT_TYPE_IO_FAULT
) {
585 amd_iommu_report_page_fault(devid
, pasid
, address
, flags
);
590 case EVENT_TYPE_ILL_DEV
:
591 dev_err(dev
, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
592 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
593 pasid
, address
, flags
);
594 dump_dte_entry(devid
);
596 case EVENT_TYPE_DEV_TAB_ERR
:
597 dev_err(dev
, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
598 "address=0x%llx flags=0x%04x]\n",
599 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
602 case EVENT_TYPE_PAGE_TAB_ERR
:
603 dev_err(dev
, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
604 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
605 pasid
, address
, flags
);
607 case EVENT_TYPE_ILL_CMD
:
608 dev_err(dev
, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address
);
609 dump_command(address
);
611 case EVENT_TYPE_CMD_HARD_ERR
:
612 dev_err(dev
, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
615 case EVENT_TYPE_IOTLB_INV_TO
:
616 dev_err(dev
, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
617 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
620 case EVENT_TYPE_INV_DEV_REQ
:
621 dev_err(dev
, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
622 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
623 pasid
, address
, flags
);
625 case EVENT_TYPE_INV_PPR_REQ
:
626 pasid
= ((event
[0] >> 16) & 0xFFFF)
627 | ((event
[1] << 6) & 0xF0000);
628 tag
= event
[1] & 0x03FF;
629 dev_err(dev
, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
630 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
631 pasid
, address
, flags
, tag
);
634 dev_err(dev
, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
635 event
[0], event
[1], event
[2], event
[3]);
638 memset(__evt
, 0, 4 * sizeof(u32
));
641 static void iommu_poll_events(struct amd_iommu
*iommu
)
645 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
646 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
648 while (head
!= tail
) {
649 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
650 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
653 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
656 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
658 struct amd_iommu_fault fault
;
660 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
661 pr_err_ratelimited("Unknown PPR request received\n");
665 fault
.address
= raw
[1];
666 fault
.pasid
= PPR_PASID(raw
[0]);
667 fault
.device_id
= PPR_DEVID(raw
[0]);
668 fault
.tag
= PPR_TAG(raw
[0]);
669 fault
.flags
= PPR_FLAGS(raw
[0]);
671 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
674 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
678 if (iommu
->ppr_log
== NULL
)
681 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
682 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
684 while (head
!= tail
) {
689 raw
= (u64
*)(iommu
->ppr_log
+ head
);
692 * Hardware bug: Interrupt may arrive before the entry is
693 * written to memory. If this happens we need to wait for the
696 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
697 if (PPR_REQ_TYPE(raw
[0]) != 0)
702 /* Avoid memcpy function-call overhead */
707 * To detect the hardware bug we need to clear the entry
710 raw
[0] = raw
[1] = 0UL;
712 /* Update head pointer of hardware ring-buffer */
713 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
714 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
716 /* Handle PPR entry */
717 iommu_handle_ppr_entry(iommu
, entry
);
719 /* Refresh ring-buffer information */
720 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
721 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
725 #ifdef CONFIG_IRQ_REMAP
726 static int (*iommu_ga_log_notifier
)(u32
);
728 int amd_iommu_register_ga_log_notifier(int (*notifier
)(u32
))
730 iommu_ga_log_notifier
= notifier
;
734 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier
);
736 static void iommu_poll_ga_log(struct amd_iommu
*iommu
)
738 u32 head
, tail
, cnt
= 0;
740 if (iommu
->ga_log
== NULL
)
743 head
= readl(iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
744 tail
= readl(iommu
->mmio_base
+ MMIO_GA_TAIL_OFFSET
);
746 while (head
!= tail
) {
750 raw
= (u64
*)(iommu
->ga_log
+ head
);
753 /* Avoid memcpy function-call overhead */
756 /* Update head pointer of hardware ring-buffer */
757 head
= (head
+ GA_ENTRY_SIZE
) % GA_LOG_SIZE
;
758 writel(head
, iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
760 /* Handle GA entry */
761 switch (GA_REQ_TYPE(log_entry
)) {
763 if (!iommu_ga_log_notifier
)
766 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
767 __func__
, GA_DEVID(log_entry
),
770 if (iommu_ga_log_notifier(GA_TAG(log_entry
)) != 0)
771 pr_err("GA log notifier failed.\n");
778 #endif /* CONFIG_IRQ_REMAP */
780 #define AMD_IOMMU_INT_MASK \
781 (MMIO_STATUS_EVT_INT_MASK | \
782 MMIO_STATUS_PPR_INT_MASK | \
783 MMIO_STATUS_GALOG_INT_MASK)
785 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
787 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
788 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
790 while (status
& AMD_IOMMU_INT_MASK
) {
791 /* Enable EVT and PPR and GA interrupts again */
792 writel(AMD_IOMMU_INT_MASK
,
793 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
795 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
796 pr_devel("Processing IOMMU Event Log\n");
797 iommu_poll_events(iommu
);
800 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
801 pr_devel("Processing IOMMU PPR Log\n");
802 iommu_poll_ppr_log(iommu
);
805 #ifdef CONFIG_IRQ_REMAP
806 if (status
& MMIO_STATUS_GALOG_INT_MASK
) {
807 pr_devel("Processing IOMMU GA Log\n");
808 iommu_poll_ga_log(iommu
);
813 * Hardware bug: ERBT1312
814 * When re-enabling interrupt (by writing 1
815 * to clear the bit), the hardware might also try to set
816 * the interrupt bit in the event status register.
817 * In this scenario, the bit will be set, and disable
818 * subsequent interrupts.
820 * Workaround: The IOMMU driver should read back the
821 * status register and check if the interrupt bits are cleared.
822 * If not, driver will need to go through the interrupt handler
823 * again and re-clear the bits
825 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
830 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
832 return IRQ_WAKE_THREAD
;
835 /****************************************************************************
837 * IOMMU command queuing functions
839 ****************************************************************************/
841 static int wait_on_sem(volatile u64
*sem
)
845 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
850 if (i
== LOOP_TIMEOUT
) {
851 pr_alert("Completion-Wait loop timed out\n");
858 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
859 struct iommu_cmd
*cmd
)
863 target
= iommu
->cmd_buf
+ iommu
->cmd_buf_tail
;
865 iommu
->cmd_buf_tail
+= sizeof(*cmd
);
866 iommu
->cmd_buf_tail
%= CMD_BUFFER_SIZE
;
868 /* Copy command to buffer */
869 memcpy(target
, cmd
, sizeof(*cmd
));
871 /* Tell the IOMMU about it */
872 writel(iommu
->cmd_buf_tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
875 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
877 u64 paddr
= iommu_virt_to_phys((void *)address
);
879 WARN_ON(address
& 0x7ULL
);
881 memset(cmd
, 0, sizeof(*cmd
));
882 cmd
->data
[0] = lower_32_bits(paddr
) | CMD_COMPL_WAIT_STORE_MASK
;
883 cmd
->data
[1] = upper_32_bits(paddr
);
885 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
888 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
890 memset(cmd
, 0, sizeof(*cmd
));
891 cmd
->data
[0] = devid
;
892 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
895 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
896 size_t size
, u16 domid
, int pde
)
901 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
906 * If we have to flush more than one page, flush all
907 * TLB entries for this domain
909 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
913 address
&= PAGE_MASK
;
915 memset(cmd
, 0, sizeof(*cmd
));
916 cmd
->data
[1] |= domid
;
917 cmd
->data
[2] = lower_32_bits(address
);
918 cmd
->data
[3] = upper_32_bits(address
);
919 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
920 if (s
) /* size bit - we flush more than one 4kb page */
921 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
922 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
923 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
926 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
927 u64 address
, size_t size
)
932 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
937 * If we have to flush more than one page, flush all
938 * TLB entries for this domain
940 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
944 address
&= PAGE_MASK
;
946 memset(cmd
, 0, sizeof(*cmd
));
947 cmd
->data
[0] = devid
;
948 cmd
->data
[0] |= (qdep
& 0xff) << 24;
949 cmd
->data
[1] = devid
;
950 cmd
->data
[2] = lower_32_bits(address
);
951 cmd
->data
[3] = upper_32_bits(address
);
952 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
954 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
957 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
958 u64 address
, bool size
)
960 memset(cmd
, 0, sizeof(*cmd
));
962 address
&= ~(0xfffULL
);
964 cmd
->data
[0] = pasid
;
965 cmd
->data
[1] = domid
;
966 cmd
->data
[2] = lower_32_bits(address
);
967 cmd
->data
[3] = upper_32_bits(address
);
968 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
969 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
971 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
972 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
975 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
976 int qdep
, u64 address
, bool size
)
978 memset(cmd
, 0, sizeof(*cmd
));
980 address
&= ~(0xfffULL
);
982 cmd
->data
[0] = devid
;
983 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
984 cmd
->data
[0] |= (qdep
& 0xff) << 24;
985 cmd
->data
[1] = devid
;
986 cmd
->data
[1] |= (pasid
& 0xff) << 16;
987 cmd
->data
[2] = lower_32_bits(address
);
988 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
989 cmd
->data
[3] = upper_32_bits(address
);
991 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
992 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
995 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
996 int status
, int tag
, bool gn
)
998 memset(cmd
, 0, sizeof(*cmd
));
1000 cmd
->data
[0] = devid
;
1002 cmd
->data
[1] = pasid
;
1003 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
1005 cmd
->data
[3] = tag
& 0x1ff;
1006 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
1008 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
1011 static void build_inv_all(struct iommu_cmd
*cmd
)
1013 memset(cmd
, 0, sizeof(*cmd
));
1014 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
1017 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
1019 memset(cmd
, 0, sizeof(*cmd
));
1020 cmd
->data
[0] = devid
;
1021 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
1025 * Writes the command to the IOMMUs command buffer and informs the
1026 * hardware about the new command.
1028 static int __iommu_queue_command_sync(struct amd_iommu
*iommu
,
1029 struct iommu_cmd
*cmd
,
1032 unsigned int count
= 0;
1033 u32 left
, next_tail
;
1035 next_tail
= (iommu
->cmd_buf_tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
1037 left
= (iommu
->cmd_buf_head
- next_tail
) % CMD_BUFFER_SIZE
;
1040 /* Skip udelay() the first time around */
1042 if (count
== LOOP_TIMEOUT
) {
1043 pr_err("Command buffer timeout\n");
1050 /* Update head and recheck remaining space */
1051 iommu
->cmd_buf_head
= readl(iommu
->mmio_base
+
1052 MMIO_CMD_HEAD_OFFSET
);
1057 copy_cmd_to_buffer(iommu
, cmd
);
1059 /* Do we need to make sure all commands are processed? */
1060 iommu
->need_sync
= sync
;
1065 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1066 struct iommu_cmd
*cmd
,
1069 unsigned long flags
;
1072 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1073 ret
= __iommu_queue_command_sync(iommu
, cmd
, sync
);
1074 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1079 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1081 return iommu_queue_command_sync(iommu
, cmd
, true);
1085 * This function queues a completion wait command into the command
1086 * buffer of an IOMMU
1088 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1090 struct iommu_cmd cmd
;
1091 unsigned long flags
;
1094 if (!iommu
->need_sync
)
1098 build_completion_wait(&cmd
, (u64
)&iommu
->cmd_sem
);
1100 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1104 ret
= __iommu_queue_command_sync(iommu
, &cmd
, false);
1108 ret
= wait_on_sem(&iommu
->cmd_sem
);
1111 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1116 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1118 struct iommu_cmd cmd
;
1120 build_inv_dte(&cmd
, devid
);
1122 return iommu_queue_command(iommu
, &cmd
);
1125 static void amd_iommu_flush_dte_all(struct amd_iommu
*iommu
)
1129 for (devid
= 0; devid
<= 0xffff; ++devid
)
1130 iommu_flush_dte(iommu
, devid
);
1132 iommu_completion_wait(iommu
);
1136 * This function uses heavy locking and may disable irqs for some time. But
1137 * this is no issue because it is only called during resume.
1139 static void amd_iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1143 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1144 struct iommu_cmd cmd
;
1145 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1147 iommu_queue_command(iommu
, &cmd
);
1150 iommu_completion_wait(iommu
);
1153 static void amd_iommu_flush_tlb_domid(struct amd_iommu
*iommu
, u32 dom_id
)
1155 struct iommu_cmd cmd
;
1157 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1159 iommu_queue_command(iommu
, &cmd
);
1161 iommu_completion_wait(iommu
);
1164 static void amd_iommu_flush_all(struct amd_iommu
*iommu
)
1166 struct iommu_cmd cmd
;
1168 build_inv_all(&cmd
);
1170 iommu_queue_command(iommu
, &cmd
);
1171 iommu_completion_wait(iommu
);
1174 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1176 struct iommu_cmd cmd
;
1178 build_inv_irt(&cmd
, devid
);
1180 iommu_queue_command(iommu
, &cmd
);
1183 static void amd_iommu_flush_irt_all(struct amd_iommu
*iommu
)
1187 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1188 iommu_flush_irt(iommu
, devid
);
1190 iommu_completion_wait(iommu
);
1193 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1195 if (iommu_feature(iommu
, FEATURE_IA
)) {
1196 amd_iommu_flush_all(iommu
);
1198 amd_iommu_flush_dte_all(iommu
);
1199 amd_iommu_flush_irt_all(iommu
);
1200 amd_iommu_flush_tlb_all(iommu
);
1205 * Command send function for flushing on-device TLB
1207 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1208 u64 address
, size_t size
)
1210 struct amd_iommu
*iommu
;
1211 struct iommu_cmd cmd
;
1214 qdep
= dev_data
->ats
.qdep
;
1215 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1217 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1219 return iommu_queue_command(iommu
, &cmd
);
1222 static int device_flush_dte_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
1224 struct amd_iommu
*iommu
= data
;
1226 return iommu_flush_dte(iommu
, alias
);
1230 * Command send function for invalidating a device table entry
1232 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1234 struct amd_iommu
*iommu
;
1238 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1241 ret
= pci_for_each_dma_alias(dev_data
->pdev
,
1242 device_flush_dte_alias
, iommu
);
1244 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1248 alias
= amd_iommu_alias_table
[dev_data
->devid
];
1249 if (alias
!= dev_data
->devid
) {
1250 ret
= iommu_flush_dte(iommu
, alias
);
1255 if (dev_data
->ats
.enabled
)
1256 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1262 * TLB invalidation function which is called from the mapping functions.
1263 * It invalidates a single PTE if the range to flush is within a single
1264 * page. Otherwise it flushes the whole TLB of the IOMMU.
1266 static void __domain_flush_pages(struct protection_domain
*domain
,
1267 u64 address
, size_t size
, int pde
)
1269 struct iommu_dev_data
*dev_data
;
1270 struct iommu_cmd cmd
;
1273 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1275 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1276 if (!domain
->dev_iommu
[i
])
1280 * Devices of this domain are behind this IOMMU
1281 * We need a TLB flush
1283 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1286 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1288 if (!dev_data
->ats
.enabled
)
1291 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1297 static void domain_flush_pages(struct protection_domain
*domain
,
1298 u64 address
, size_t size
)
1300 __domain_flush_pages(domain
, address
, size
, 0);
1303 /* Flush the whole IO/TLB for a given protection domain */
1304 static void domain_flush_tlb(struct protection_domain
*domain
)
1306 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1309 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1310 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1312 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1315 static void domain_flush_complete(struct protection_domain
*domain
)
1319 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1320 if (domain
&& !domain
->dev_iommu
[i
])
1324 * Devices of this domain are behind this IOMMU
1325 * We need to wait for completion of all commands.
1327 iommu_completion_wait(amd_iommus
[i
]);
1331 /* Flush the not present cache if it exists */
1332 static void domain_flush_np_cache(struct protection_domain
*domain
,
1333 dma_addr_t iova
, size_t size
)
1335 if (unlikely(amd_iommu_np_cache
)) {
1336 unsigned long flags
;
1338 spin_lock_irqsave(&domain
->lock
, flags
);
1339 domain_flush_pages(domain
, iova
, size
);
1340 domain_flush_complete(domain
);
1341 spin_unlock_irqrestore(&domain
->lock
, flags
);
1347 * This function flushes the DTEs for all devices in domain
1349 static void domain_flush_devices(struct protection_domain
*domain
)
1351 struct iommu_dev_data
*dev_data
;
1353 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1354 device_flush_dte(dev_data
);
1357 /****************************************************************************
1359 * The functions below are used the create the page table mappings for
1360 * unity mapped regions.
1362 ****************************************************************************/
1364 static void free_page_list(struct page
*freelist
)
1366 while (freelist
!= NULL
) {
1367 unsigned long p
= (unsigned long)page_address(freelist
);
1368 freelist
= freelist
->freelist
;
1373 static struct page
*free_pt_page(unsigned long pt
, struct page
*freelist
)
1375 struct page
*p
= virt_to_page((void *)pt
);
1377 p
->freelist
= freelist
;
1382 #define DEFINE_FREE_PT_FN(LVL, FN) \
1383 static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist) \
1391 for (i = 0; i < 512; ++i) { \
1392 /* PTE present? */ \
1393 if (!IOMMU_PTE_PRESENT(pt[i])) \
1397 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1398 PM_PTE_LEVEL(pt[i]) == 7) \
1401 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1402 freelist = FN(p, freelist); \
1405 return free_pt_page((unsigned long)pt, freelist); \
1408 DEFINE_FREE_PT_FN(l2
, free_pt_page
)
1409 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1410 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1411 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1412 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1414 static struct page
*free_sub_pt(unsigned long root
, int mode
,
1415 struct page
*freelist
)
1418 case PAGE_MODE_NONE
:
1419 case PAGE_MODE_7_LEVEL
:
1421 case PAGE_MODE_1_LEVEL
:
1422 freelist
= free_pt_page(root
, freelist
);
1424 case PAGE_MODE_2_LEVEL
:
1425 freelist
= free_pt_l2(root
, freelist
);
1427 case PAGE_MODE_3_LEVEL
:
1428 freelist
= free_pt_l3(root
, freelist
);
1430 case PAGE_MODE_4_LEVEL
:
1431 freelist
= free_pt_l4(root
, freelist
);
1433 case PAGE_MODE_5_LEVEL
:
1434 freelist
= free_pt_l5(root
, freelist
);
1436 case PAGE_MODE_6_LEVEL
:
1437 freelist
= free_pt_l6(root
, freelist
);
1446 static void free_pagetable(struct protection_domain
*domain
)
1448 unsigned long root
= (unsigned long)domain
->pt_root
;
1449 struct page
*freelist
= NULL
;
1451 BUG_ON(domain
->mode
< PAGE_MODE_NONE
||
1452 domain
->mode
> PAGE_MODE_6_LEVEL
);
1454 freelist
= free_sub_pt(root
, domain
->mode
, freelist
);
1456 free_page_list(freelist
);
1460 * This function is used to add another level to an IO page table. Adding
1461 * another level increases the size of the address space by 9 bits to a size up
1464 static bool increase_address_space(struct protection_domain
*domain
,
1465 unsigned long address
,
1468 unsigned long flags
;
1472 spin_lock_irqsave(&domain
->lock
, flags
);
1474 if (address
<= PM_LEVEL_SIZE(domain
->mode
) ||
1475 WARN_ON_ONCE(domain
->mode
== PAGE_MODE_6_LEVEL
))
1478 pte
= (void *)get_zeroed_page(gfp
);
1482 *pte
= PM_LEVEL_PDE(domain
->mode
,
1483 iommu_virt_to_phys(domain
->pt_root
));
1484 domain
->pt_root
= pte
;
1490 spin_unlock_irqrestore(&domain
->lock
, flags
);
1495 static u64
*alloc_pte(struct protection_domain
*domain
,
1496 unsigned long address
,
1497 unsigned long page_size
,
1505 BUG_ON(!is_power_of_2(page_size
));
1507 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1508 *updated
= increase_address_space(domain
, address
, gfp
) || *updated
;
1510 level
= domain
->mode
- 1;
1511 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1512 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1513 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1515 while (level
> end_lvl
) {
1520 pte_level
= PM_PTE_LEVEL(__pte
);
1523 * If we replace a series of large PTEs, we need
1524 * to tear down all of them.
1526 if (IOMMU_PTE_PRESENT(__pte
) &&
1527 pte_level
== PAGE_MODE_7_LEVEL
) {
1528 unsigned long count
, i
;
1531 lpte
= first_pte_l7(pte
, NULL
, &count
);
1534 * Unmap the replicated PTEs that still match the
1535 * original large mapping
1537 for (i
= 0; i
< count
; ++i
)
1538 cmpxchg64(&lpte
[i
], __pte
, 0ULL);
1544 if (!IOMMU_PTE_PRESENT(__pte
) ||
1545 pte_level
== PAGE_MODE_NONE
) {
1546 page
= (u64
*)get_zeroed_page(gfp
);
1551 __npte
= PM_LEVEL_PDE(level
, iommu_virt_to_phys(page
));
1553 /* pte could have been changed somewhere. */
1554 if (cmpxchg64(pte
, __pte
, __npte
) != __pte
)
1555 free_page((unsigned long)page
);
1556 else if (IOMMU_PTE_PRESENT(__pte
))
1562 /* No level skipping support yet */
1563 if (pte_level
!= level
)
1568 pte
= IOMMU_PTE_PAGE(__pte
);
1570 if (pte_page
&& level
== end_lvl
)
1573 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1580 * This function checks if there is a PTE for a given dma address. If
1581 * there is one, it returns the pointer to it.
1583 static u64
*fetch_pte(struct protection_domain
*domain
,
1584 unsigned long address
,
1585 unsigned long *page_size
)
1592 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1595 level
= domain
->mode
- 1;
1596 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1597 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1602 if (!IOMMU_PTE_PRESENT(*pte
))
1606 if (PM_PTE_LEVEL(*pte
) == 7 ||
1607 PM_PTE_LEVEL(*pte
) == 0)
1610 /* No level skipping support yet */
1611 if (PM_PTE_LEVEL(*pte
) != level
)
1616 /* Walk to the next level */
1617 pte
= IOMMU_PTE_PAGE(*pte
);
1618 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1619 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1623 * If we have a series of large PTEs, make
1624 * sure to return a pointer to the first one.
1626 if (PM_PTE_LEVEL(*pte
) == PAGE_MODE_7_LEVEL
)
1627 pte
= first_pte_l7(pte
, page_size
, NULL
);
1632 static struct page
*free_clear_pte(u64
*pte
, u64 pteval
, struct page
*freelist
)
1637 while (cmpxchg64(pte
, pteval
, 0) != pteval
) {
1638 pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
1642 if (!IOMMU_PTE_PRESENT(pteval
))
1645 pt
= (unsigned long)IOMMU_PTE_PAGE(pteval
);
1646 mode
= IOMMU_PTE_MODE(pteval
);
1648 return free_sub_pt(pt
, mode
, freelist
);
1652 * Generic mapping functions. It maps a physical address into a DMA
1653 * address space. It allocates the page table pages if necessary.
1654 * In the future it can be extended to a generic mapping function
1655 * supporting all features of AMD IOMMU page tables like level skipping
1656 * and full 64 bit address spaces.
1658 static int iommu_map_page(struct protection_domain
*dom
,
1659 unsigned long bus_addr
,
1660 unsigned long phys_addr
,
1661 unsigned long page_size
,
1665 struct page
*freelist
= NULL
;
1666 bool updated
= false;
1670 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1671 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1674 if (!(prot
& IOMMU_PROT_MASK
))
1677 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1678 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
, &updated
);
1684 for (i
= 0; i
< count
; ++i
)
1685 freelist
= free_clear_pte(&pte
[i
], pte
[i
], freelist
);
1687 if (freelist
!= NULL
)
1691 __pte
= PAGE_SIZE_PTE(__sme_set(phys_addr
), page_size
);
1692 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1694 __pte
= __sme_set(phys_addr
) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1696 if (prot
& IOMMU_PROT_IR
)
1697 __pte
|= IOMMU_PTE_IR
;
1698 if (prot
& IOMMU_PROT_IW
)
1699 __pte
|= IOMMU_PTE_IW
;
1701 for (i
= 0; i
< count
; ++i
)
1708 unsigned long flags
;
1710 spin_lock_irqsave(&dom
->lock
, flags
);
1712 spin_unlock_irqrestore(&dom
->lock
, flags
);
1715 /* Everything flushed out, free pages now */
1716 free_page_list(freelist
);
1721 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1722 unsigned long bus_addr
,
1723 unsigned long page_size
)
1725 unsigned long long unmapped
;
1726 unsigned long unmap_size
;
1729 BUG_ON(!is_power_of_2(page_size
));
1733 while (unmapped
< page_size
) {
1735 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1740 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1741 for (i
= 0; i
< count
; i
++)
1745 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1746 unmapped
+= unmap_size
;
1749 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1754 /****************************************************************************
1756 * The next functions belong to the address allocator for the dma_ops
1757 * interface functions.
1759 ****************************************************************************/
1762 static unsigned long dma_ops_alloc_iova(struct device
*dev
,
1763 struct dma_ops_domain
*dma_dom
,
1764 unsigned int pages
, u64 dma_mask
)
1766 unsigned long pfn
= 0;
1768 pages
= __roundup_pow_of_two(pages
);
1770 if (dma_mask
> DMA_BIT_MASK(32))
1771 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1772 IOVA_PFN(DMA_BIT_MASK(32)), false);
1775 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1776 IOVA_PFN(dma_mask
), true);
1778 return (pfn
<< PAGE_SHIFT
);
1781 static void dma_ops_free_iova(struct dma_ops_domain
*dma_dom
,
1782 unsigned long address
,
1785 pages
= __roundup_pow_of_two(pages
);
1786 address
>>= PAGE_SHIFT
;
1788 free_iova_fast(&dma_dom
->iovad
, address
, pages
);
1791 /****************************************************************************
1793 * The next functions belong to the domain allocation. A domain is
1794 * allocated for every IOMMU as the default domain. If device isolation
1795 * is enabled, every device get its own domain. The most important thing
1796 * about domains is the page table mapping the DMA address space they
1799 ****************************************************************************/
1801 static u16
domain_id_alloc(void)
1805 spin_lock(&pd_bitmap_lock
);
1806 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1808 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1809 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1812 spin_unlock(&pd_bitmap_lock
);
1817 static void domain_id_free(int id
)
1819 spin_lock(&pd_bitmap_lock
);
1820 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1821 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1822 spin_unlock(&pd_bitmap_lock
);
1825 static void free_gcr3_tbl_level1(u64
*tbl
)
1830 for (i
= 0; i
< 512; ++i
) {
1831 if (!(tbl
[i
] & GCR3_VALID
))
1834 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1836 free_page((unsigned long)ptr
);
1840 static void free_gcr3_tbl_level2(u64
*tbl
)
1845 for (i
= 0; i
< 512; ++i
) {
1846 if (!(tbl
[i
] & GCR3_VALID
))
1849 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1851 free_gcr3_tbl_level1(ptr
);
1855 static void free_gcr3_table(struct protection_domain
*domain
)
1857 if (domain
->glx
== 2)
1858 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1859 else if (domain
->glx
== 1)
1860 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1862 BUG_ON(domain
->glx
!= 0);
1864 free_page((unsigned long)domain
->gcr3_tbl
);
1867 static void dma_ops_domain_flush_tlb(struct dma_ops_domain
*dom
)
1869 unsigned long flags
;
1871 spin_lock_irqsave(&dom
->domain
.lock
, flags
);
1872 domain_flush_tlb(&dom
->domain
);
1873 domain_flush_complete(&dom
->domain
);
1874 spin_unlock_irqrestore(&dom
->domain
.lock
, flags
);
1877 static void iova_domain_flush_tlb(struct iova_domain
*iovad
)
1879 struct dma_ops_domain
*dom
;
1881 dom
= container_of(iovad
, struct dma_ops_domain
, iovad
);
1883 dma_ops_domain_flush_tlb(dom
);
1887 * Free a domain, only used if something went wrong in the
1888 * allocation path and we need to free an already allocated page table
1890 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1895 put_iova_domain(&dom
->iovad
);
1897 free_pagetable(&dom
->domain
);
1900 domain_id_free(dom
->domain
.id
);
1906 * Allocates a new protection domain usable for the dma_ops functions.
1907 * It also initializes the page table and the address allocator data
1908 * structures required for the dma_ops interface
1910 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1912 struct dma_ops_domain
*dma_dom
;
1914 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1918 if (protection_domain_init(&dma_dom
->domain
))
1921 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
1922 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1923 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1924 if (!dma_dom
->domain
.pt_root
)
1927 init_iova_domain(&dma_dom
->iovad
, PAGE_SIZE
, IOVA_START_PFN
);
1929 if (init_iova_flush_queue(&dma_dom
->iovad
, iova_domain_flush_tlb
, NULL
))
1932 /* Initialize reserved ranges */
1933 copy_reserved_iova(&reserved_iova_ranges
, &dma_dom
->iovad
);
1938 dma_ops_domain_free(dma_dom
);
1944 * little helper function to check whether a given protection domain is a
1947 static bool dma_ops_domain(struct protection_domain
*domain
)
1949 return domain
->flags
& PD_DMA_OPS_MASK
;
1952 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
,
1959 if (domain
->mode
!= PAGE_MODE_NONE
)
1960 pte_root
= iommu_virt_to_phys(domain
->pt_root
);
1962 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1963 << DEV_ENTRY_MODE_SHIFT
;
1964 pte_root
|= DTE_FLAG_IR
| DTE_FLAG_IW
| DTE_FLAG_V
| DTE_FLAG_TV
;
1966 flags
= amd_iommu_dev_table
[devid
].data
[1];
1969 flags
|= DTE_FLAG_IOTLB
;
1972 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
1974 if (iommu_feature(iommu
, FEATURE_EPHSUP
))
1975 pte_root
|= 1ULL << DEV_ENTRY_PPR
;
1978 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1979 u64 gcr3
= iommu_virt_to_phys(domain
->gcr3_tbl
);
1980 u64 glx
= domain
->glx
;
1983 pte_root
|= DTE_FLAG_GV
;
1984 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1986 /* First mask out possible old values for GCR3 table */
1987 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1990 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1993 /* Encode GCR3 table into DTE */
1994 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1997 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
2000 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
2004 flags
&= ~DEV_DOMID_MASK
;
2005 flags
|= domain
->id
;
2007 old_domid
= amd_iommu_dev_table
[devid
].data
[1] & DEV_DOMID_MASK
;
2008 amd_iommu_dev_table
[devid
].data
[1] = flags
;
2009 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
2012 * A kdump kernel might be replacing a domain ID that was copied from
2013 * the previous kernel--if so, it needs to flush the translation cache
2014 * entries for the old domain ID that is being overwritten
2017 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
2019 amd_iommu_flush_tlb_domid(iommu
, old_domid
);
2023 static void clear_dte_entry(u16 devid
)
2025 /* remove entry from the device table seen by the hardware */
2026 amd_iommu_dev_table
[devid
].data
[0] = DTE_FLAG_V
| DTE_FLAG_TV
;
2027 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
2029 amd_iommu_apply_erratum_63(devid
);
2032 static void do_attach(struct iommu_dev_data
*dev_data
,
2033 struct protection_domain
*domain
)
2035 struct amd_iommu
*iommu
;
2038 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2039 ats
= dev_data
->ats
.enabled
;
2041 /* Update data structures */
2042 dev_data
->domain
= domain
;
2043 list_add(&dev_data
->list
, &domain
->dev_list
);
2045 /* Do reference counting */
2046 domain
->dev_iommu
[iommu
->index
] += 1;
2047 domain
->dev_cnt
+= 1;
2049 /* Update device table */
2050 set_dte_entry(dev_data
->devid
, domain
, ats
, dev_data
->iommu_v2
);
2051 clone_aliases(dev_data
->pdev
);
2053 device_flush_dte(dev_data
);
2056 static void do_detach(struct iommu_dev_data
*dev_data
)
2058 struct protection_domain
*domain
= dev_data
->domain
;
2059 struct amd_iommu
*iommu
;
2061 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2063 /* Update data structures */
2064 dev_data
->domain
= NULL
;
2065 list_del(&dev_data
->list
);
2066 clear_dte_entry(dev_data
->devid
);
2067 clone_aliases(dev_data
->pdev
);
2069 /* Flush the DTE entry */
2070 device_flush_dte(dev_data
);
2073 domain_flush_tlb_pde(domain
);
2075 /* Wait for the flushes to finish */
2076 domain_flush_complete(domain
);
2078 /* decrease reference counters - needs to happen after the flushes */
2079 domain
->dev_iommu
[iommu
->index
] -= 1;
2080 domain
->dev_cnt
-= 1;
2083 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
2085 pci_disable_ats(pdev
);
2086 pci_disable_pri(pdev
);
2087 pci_disable_pasid(pdev
);
2090 /* FIXME: Change generic reset-function to do the same */
2091 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
2096 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2100 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
2101 control
|= PCI_PRI_CTRL_RESET
;
2102 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2107 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2112 /* FIXME: Hardcode number of outstanding requests for now */
2114 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2116 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2118 /* Only allow access to user-accessible pages */
2119 ret
= pci_enable_pasid(pdev
, 0);
2123 /* First reset the PRI state of the device */
2124 ret
= pci_reset_pri(pdev
);
2129 ret
= pci_enable_pri(pdev
, reqs
);
2134 ret
= pri_reset_while_enabled(pdev
);
2139 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2146 pci_disable_pri(pdev
);
2147 pci_disable_pasid(pdev
);
2153 * If a device is not yet associated with a domain, this function makes the
2154 * device visible in the domain
2156 static int attach_device(struct device
*dev
,
2157 struct protection_domain
*domain
)
2159 struct pci_dev
*pdev
;
2160 struct iommu_dev_data
*dev_data
;
2161 unsigned long flags
;
2164 spin_lock_irqsave(&domain
->lock
, flags
);
2166 dev_data
= get_dev_data(dev
);
2168 spin_lock(&dev_data
->lock
);
2171 if (dev_data
->domain
!= NULL
)
2174 if (!dev_is_pci(dev
))
2175 goto skip_ats_check
;
2177 pdev
= to_pci_dev(dev
);
2178 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2180 if (!dev_data
->passthrough
)
2183 if (dev_data
->iommu_v2
) {
2184 if (pdev_iommuv2_enable(pdev
) != 0)
2187 dev_data
->ats
.enabled
= true;
2188 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2189 dev_data
->pri_tlp
= pci_prg_resp_pasid_required(pdev
);
2191 } else if (amd_iommu_iotlb_sup
&&
2192 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2193 dev_data
->ats
.enabled
= true;
2194 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2200 do_attach(dev_data
, domain
);
2203 * We might boot into a crash-kernel here. The crashed kernel
2204 * left the caches in the IOMMU dirty. So we have to flush
2205 * here to evict all dirty stuff.
2207 domain_flush_tlb_pde(domain
);
2209 domain_flush_complete(domain
);
2212 spin_unlock(&dev_data
->lock
);
2214 spin_unlock_irqrestore(&domain
->lock
, flags
);
2220 * Removes a device from a protection domain (with devtable_lock held)
2222 static void detach_device(struct device
*dev
)
2224 struct protection_domain
*domain
;
2225 struct iommu_dev_data
*dev_data
;
2226 unsigned long flags
;
2228 dev_data
= get_dev_data(dev
);
2229 domain
= dev_data
->domain
;
2231 spin_lock_irqsave(&domain
->lock
, flags
);
2233 spin_lock(&dev_data
->lock
);
2236 * First check if the device is still attached. It might already
2237 * be detached from its domain because the generic
2238 * iommu_detach_group code detached it and we try again here in
2239 * our alias handling.
2241 if (WARN_ON(!dev_data
->domain
))
2244 do_detach(dev_data
);
2246 if (!dev_is_pci(dev
))
2249 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2250 pdev_iommuv2_disable(to_pci_dev(dev
));
2251 else if (dev_data
->ats
.enabled
)
2252 pci_disable_ats(to_pci_dev(dev
));
2254 dev_data
->ats
.enabled
= false;
2257 spin_unlock(&dev_data
->lock
);
2259 spin_unlock_irqrestore(&domain
->lock
, flags
);
2262 static int amd_iommu_add_device(struct device
*dev
)
2264 struct iommu_dev_data
*dev_data
;
2265 struct iommu_domain
*domain
;
2266 struct amd_iommu
*iommu
;
2269 if (!check_device(dev
) || get_dev_data(dev
))
2272 devid
= get_device_id(dev
);
2276 iommu
= amd_iommu_rlookup_table
[devid
];
2278 ret
= iommu_init_device(dev
);
2280 if (ret
!= -ENOTSUPP
)
2281 dev_err(dev
, "Failed to initialize - trying to proceed anyway\n");
2283 iommu_ignore_device(dev
);
2284 dev
->dma_ops
= NULL
;
2287 init_iommu_group(dev
);
2289 dev_data
= get_dev_data(dev
);
2293 if (dev_data
->iommu_v2
)
2294 iommu_request_dm_for_dev(dev
);
2296 /* Domains are initialized for this device - have a look what we ended up with */
2297 domain
= iommu_get_domain_for_dev(dev
);
2298 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2299 dev_data
->passthrough
= true;
2301 dev
->dma_ops
= &amd_iommu_dma_ops
;
2304 iommu_completion_wait(iommu
);
2309 static void amd_iommu_remove_device(struct device
*dev
)
2311 struct amd_iommu
*iommu
;
2314 if (!check_device(dev
))
2317 devid
= get_device_id(dev
);
2321 iommu
= amd_iommu_rlookup_table
[devid
];
2323 iommu_uninit_device(dev
);
2324 iommu_completion_wait(iommu
);
2327 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2329 if (dev_is_pci(dev
))
2330 return pci_device_group(dev
);
2332 return acpihid_device_group(dev
);
2335 /*****************************************************************************
2337 * The next functions belong to the dma_ops mapping/unmapping code.
2339 *****************************************************************************/
2342 * In the dma_ops path we only have the struct device. This function
2343 * finds the corresponding IOMMU, the protection domain and the
2344 * requestor id for a given device.
2345 * If the device is not yet associated with a domain this is also done
2348 static struct protection_domain
*get_domain(struct device
*dev
)
2350 struct protection_domain
*domain
;
2351 struct iommu_domain
*io_domain
;
2353 if (!check_device(dev
))
2354 return ERR_PTR(-EINVAL
);
2356 domain
= get_dev_data(dev
)->domain
;
2357 if (domain
== NULL
&& get_dev_data(dev
)->defer_attach
) {
2358 get_dev_data(dev
)->defer_attach
= false;
2359 io_domain
= iommu_get_domain_for_dev(dev
);
2360 domain
= to_pdomain(io_domain
);
2361 attach_device(dev
, domain
);
2364 return ERR_PTR(-EBUSY
);
2366 if (!dma_ops_domain(domain
))
2367 return ERR_PTR(-EBUSY
);
2372 static void update_device_table(struct protection_domain
*domain
)
2374 struct iommu_dev_data
*dev_data
;
2376 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2377 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
,
2378 dev_data
->iommu_v2
);
2379 clone_aliases(dev_data
->pdev
);
2383 static void update_domain(struct protection_domain
*domain
)
2385 update_device_table(domain
);
2387 domain_flush_devices(domain
);
2388 domain_flush_tlb_pde(domain
);
2389 domain_flush_complete(domain
);
2392 static int dir2prot(enum dma_data_direction direction
)
2394 if (direction
== DMA_TO_DEVICE
)
2395 return IOMMU_PROT_IR
;
2396 else if (direction
== DMA_FROM_DEVICE
)
2397 return IOMMU_PROT_IW
;
2398 else if (direction
== DMA_BIDIRECTIONAL
)
2399 return IOMMU_PROT_IW
| IOMMU_PROT_IR
;
2405 * This function contains common code for mapping of a physically
2406 * contiguous memory region into DMA address space. It is used by all
2407 * mapping functions provided with this IOMMU driver.
2408 * Must be called with the domain lock held.
2410 static dma_addr_t
__map_single(struct device
*dev
,
2411 struct dma_ops_domain
*dma_dom
,
2414 enum dma_data_direction direction
,
2417 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2418 dma_addr_t address
, start
, ret
;
2419 unsigned long flags
;
2424 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2427 address
= dma_ops_alloc_iova(dev
, dma_dom
, pages
, dma_mask
);
2431 prot
= dir2prot(direction
);
2434 for (i
= 0; i
< pages
; ++i
) {
2435 ret
= iommu_map_page(&dma_dom
->domain
, start
, paddr
,
2436 PAGE_SIZE
, prot
, GFP_ATOMIC
);
2445 domain_flush_np_cache(&dma_dom
->domain
, address
, size
);
2452 for (--i
; i
>= 0; --i
) {
2454 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2457 spin_lock_irqsave(&dma_dom
->domain
.lock
, flags
);
2458 domain_flush_tlb(&dma_dom
->domain
);
2459 domain_flush_complete(&dma_dom
->domain
);
2460 spin_unlock_irqrestore(&dma_dom
->domain
.lock
, flags
);
2462 dma_ops_free_iova(dma_dom
, address
, pages
);
2464 return DMA_MAPPING_ERROR
;
2468 * Does the reverse of the __map_single function. Must be called with
2469 * the domain lock held too
2471 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2472 dma_addr_t dma_addr
,
2476 dma_addr_t i
, start
;
2479 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2480 dma_addr
&= PAGE_MASK
;
2483 for (i
= 0; i
< pages
; ++i
) {
2484 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2488 if (amd_iommu_unmap_flush
) {
2489 unsigned long flags
;
2491 spin_lock_irqsave(&dma_dom
->domain
.lock
, flags
);
2492 domain_flush_tlb(&dma_dom
->domain
);
2493 domain_flush_complete(&dma_dom
->domain
);
2494 spin_unlock_irqrestore(&dma_dom
->domain
.lock
, flags
);
2495 dma_ops_free_iova(dma_dom
, dma_addr
, pages
);
2497 pages
= __roundup_pow_of_two(pages
);
2498 queue_iova(&dma_dom
->iovad
, dma_addr
>> PAGE_SHIFT
, pages
, 0);
2503 * The exported map_single function for dma_ops.
2505 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2506 unsigned long offset
, size_t size
,
2507 enum dma_data_direction dir
,
2508 unsigned long attrs
)
2510 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2511 struct protection_domain
*domain
;
2512 struct dma_ops_domain
*dma_dom
;
2515 domain
= get_domain(dev
);
2516 if (PTR_ERR(domain
) == -EINVAL
)
2517 return (dma_addr_t
)paddr
;
2518 else if (IS_ERR(domain
))
2519 return DMA_MAPPING_ERROR
;
2521 dma_mask
= *dev
->dma_mask
;
2522 dma_dom
= to_dma_ops_domain(domain
);
2524 return __map_single(dev
, dma_dom
, paddr
, size
, dir
, dma_mask
);
2528 * The exported unmap_single function for dma_ops.
2530 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2531 enum dma_data_direction dir
, unsigned long attrs
)
2533 struct protection_domain
*domain
;
2534 struct dma_ops_domain
*dma_dom
;
2536 domain
= get_domain(dev
);
2540 dma_dom
= to_dma_ops_domain(domain
);
2542 __unmap_single(dma_dom
, dma_addr
, size
, dir
);
2545 static int sg_num_pages(struct device
*dev
,
2546 struct scatterlist
*sglist
,
2549 unsigned long mask
, boundary_size
;
2550 struct scatterlist
*s
;
2553 mask
= dma_get_seg_boundary(dev
);
2554 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
2555 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
2557 for_each_sg(sglist
, s
, nelems
, i
) {
2560 s
->dma_address
= npages
<< PAGE_SHIFT
;
2561 p
= npages
% boundary_size
;
2562 n
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2563 if (p
+ n
> boundary_size
)
2564 npages
+= boundary_size
- p
;
2572 * The exported map_sg function for dma_ops (handles scatter-gather
2575 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2576 int nelems
, enum dma_data_direction direction
,
2577 unsigned long attrs
)
2579 int mapped_pages
= 0, npages
= 0, prot
= 0, i
;
2580 struct protection_domain
*domain
;
2581 struct dma_ops_domain
*dma_dom
;
2582 struct scatterlist
*s
;
2583 unsigned long address
;
2587 domain
= get_domain(dev
);
2591 dma_dom
= to_dma_ops_domain(domain
);
2592 dma_mask
= *dev
->dma_mask
;
2594 npages
= sg_num_pages(dev
, sglist
, nelems
);
2596 address
= dma_ops_alloc_iova(dev
, dma_dom
, npages
, dma_mask
);
2600 prot
= dir2prot(direction
);
2602 /* Map all sg entries */
2603 for_each_sg(sglist
, s
, nelems
, i
) {
2604 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2606 for (j
= 0; j
< pages
; ++j
) {
2607 unsigned long bus_addr
, phys_addr
;
2609 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2610 phys_addr
= (sg_phys(s
) & PAGE_MASK
) + (j
<< PAGE_SHIFT
);
2611 ret
= iommu_map_page(domain
, bus_addr
, phys_addr
,
2613 GFP_ATOMIC
| __GFP_NOWARN
);
2621 /* Everything is mapped - write the right values into s->dma_address */
2622 for_each_sg(sglist
, s
, nelems
, i
) {
2624 * Add in the remaining piece of the scatter-gather offset that
2625 * was masked out when we were determining the physical address
2626 * via (sg_phys(s) & PAGE_MASK) earlier.
2628 s
->dma_address
+= address
+ (s
->offset
& ~PAGE_MASK
);
2629 s
->dma_length
= s
->length
;
2633 domain_flush_np_cache(domain
, s
->dma_address
, s
->dma_length
);
2638 dev_err(dev
, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
2641 for_each_sg(sglist
, s
, nelems
, i
) {
2642 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2644 for (j
= 0; j
< pages
; ++j
) {
2645 unsigned long bus_addr
;
2647 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2648 iommu_unmap_page(domain
, bus_addr
, PAGE_SIZE
);
2650 if (--mapped_pages
== 0)
2656 free_iova_fast(&dma_dom
->iovad
, address
>> PAGE_SHIFT
, npages
);
2663 * The exported map_sg function for dma_ops (handles scatter-gather
2666 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2667 int nelems
, enum dma_data_direction dir
,
2668 unsigned long attrs
)
2670 struct protection_domain
*domain
;
2671 struct dma_ops_domain
*dma_dom
;
2672 unsigned long startaddr
;
2675 domain
= get_domain(dev
);
2679 startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
2680 dma_dom
= to_dma_ops_domain(domain
);
2681 npages
= sg_num_pages(dev
, sglist
, nelems
);
2683 __unmap_single(dma_dom
, startaddr
, npages
<< PAGE_SHIFT
, dir
);
2687 * The exported alloc_coherent function for dma_ops.
2689 static void *alloc_coherent(struct device
*dev
, size_t size
,
2690 dma_addr_t
*dma_addr
, gfp_t flag
,
2691 unsigned long attrs
)
2693 u64 dma_mask
= dev
->coherent_dma_mask
;
2694 struct protection_domain
*domain
;
2695 struct dma_ops_domain
*dma_dom
;
2698 domain
= get_domain(dev
);
2699 if (PTR_ERR(domain
) == -EINVAL
) {
2700 page
= alloc_pages(flag
, get_order(size
));
2701 *dma_addr
= page_to_phys(page
);
2702 return page_address(page
);
2703 } else if (IS_ERR(domain
))
2706 dma_dom
= to_dma_ops_domain(domain
);
2707 size
= PAGE_ALIGN(size
);
2708 dma_mask
= dev
->coherent_dma_mask
;
2709 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2712 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2714 if (!gfpflags_allow_blocking(flag
))
2717 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2718 get_order(size
), flag
& __GFP_NOWARN
);
2724 dma_mask
= *dev
->dma_mask
;
2726 *dma_addr
= __map_single(dev
, dma_dom
, page_to_phys(page
),
2727 size
, DMA_BIDIRECTIONAL
, dma_mask
);
2729 if (*dma_addr
== DMA_MAPPING_ERROR
)
2732 return page_address(page
);
2736 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2737 __free_pages(page
, get_order(size
));
2743 * The exported free_coherent function for dma_ops.
2745 static void free_coherent(struct device
*dev
, size_t size
,
2746 void *virt_addr
, dma_addr_t dma_addr
,
2747 unsigned long attrs
)
2749 struct protection_domain
*domain
;
2750 struct dma_ops_domain
*dma_dom
;
2753 page
= virt_to_page(virt_addr
);
2754 size
= PAGE_ALIGN(size
);
2756 domain
= get_domain(dev
);
2760 dma_dom
= to_dma_ops_domain(domain
);
2762 __unmap_single(dma_dom
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2765 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2766 __free_pages(page
, get_order(size
));
2770 * This function is called by the DMA layer to find out if we can handle a
2771 * particular device. It is part of the dma_ops.
2773 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2775 if (!dma_direct_supported(dev
, mask
))
2777 return check_device(dev
);
2780 static const struct dma_map_ops amd_iommu_dma_ops
= {
2781 .alloc
= alloc_coherent
,
2782 .free
= free_coherent
,
2783 .map_page
= map_page
,
2784 .unmap_page
= unmap_page
,
2786 .unmap_sg
= unmap_sg
,
2787 .dma_supported
= amd_iommu_dma_supported
,
2788 .mmap
= dma_common_mmap
,
2789 .get_sgtable
= dma_common_get_sgtable
,
2792 static int init_reserved_iova_ranges(void)
2794 struct pci_dev
*pdev
= NULL
;
2797 init_iova_domain(&reserved_iova_ranges
, PAGE_SIZE
, IOVA_START_PFN
);
2799 lockdep_set_class(&reserved_iova_ranges
.iova_rbtree_lock
,
2800 &reserved_rbtree_key
);
2802 /* MSI memory range */
2803 val
= reserve_iova(&reserved_iova_ranges
,
2804 IOVA_PFN(MSI_RANGE_START
), IOVA_PFN(MSI_RANGE_END
));
2806 pr_err("Reserving MSI range failed\n");
2810 /* HT memory range */
2811 val
= reserve_iova(&reserved_iova_ranges
,
2812 IOVA_PFN(HT_RANGE_START
), IOVA_PFN(HT_RANGE_END
));
2814 pr_err("Reserving HT range failed\n");
2819 * Memory used for PCI resources
2820 * FIXME: Check whether we can reserve the PCI-hole completly
2822 for_each_pci_dev(pdev
) {
2825 for (i
= 0; i
< PCI_NUM_RESOURCES
; ++i
) {
2826 struct resource
*r
= &pdev
->resource
[i
];
2828 if (!(r
->flags
& IORESOURCE_MEM
))
2831 val
= reserve_iova(&reserved_iova_ranges
,
2835 pci_err(pdev
, "Reserve pci-resource range %pR failed\n", r
);
2844 int __init
amd_iommu_init_api(void)
2848 ret
= iova_cache_get();
2852 ret
= init_reserved_iova_ranges();
2856 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2859 #ifdef CONFIG_ARM_AMBA
2860 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2864 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2871 int __init
amd_iommu_init_dma_ops(void)
2873 swiotlb
= (iommu_default_passthrough() || sme_me_mask
) ? 1 : 0;
2876 if (amd_iommu_unmap_flush
)
2877 pr_info("IO/TLB flush on unmap enabled\n");
2879 pr_info("Lazy IO/TLB flushing enabled\n");
2885 /*****************************************************************************
2887 * The following functions belong to the exported interface of AMD IOMMU
2889 * This interface allows access to lower level functions of the IOMMU
2890 * like protection domain handling and assignement of devices to domains
2891 * which is not possible with the dma_ops interface.
2893 *****************************************************************************/
2895 static void cleanup_domain(struct protection_domain
*domain
)
2897 struct iommu_dev_data
*entry
;
2898 unsigned long flags
;
2900 spin_lock_irqsave(&domain
->lock
, flags
);
2902 while (!list_empty(&domain
->dev_list
)) {
2903 entry
= list_first_entry(&domain
->dev_list
,
2904 struct iommu_dev_data
, list
);
2905 BUG_ON(!entry
->domain
);
2909 spin_unlock_irqrestore(&domain
->lock
, flags
);
2912 static void protection_domain_free(struct protection_domain
*domain
)
2918 domain_id_free(domain
->id
);
2923 static int protection_domain_init(struct protection_domain
*domain
)
2925 spin_lock_init(&domain
->lock
);
2926 mutex_init(&domain
->api_lock
);
2927 domain
->id
= domain_id_alloc();
2930 INIT_LIST_HEAD(&domain
->dev_list
);
2935 static struct protection_domain
*protection_domain_alloc(void)
2937 struct protection_domain
*domain
;
2939 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2943 if (protection_domain_init(domain
))
2954 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2956 struct protection_domain
*pdomain
;
2957 struct dma_ops_domain
*dma_domain
;
2960 case IOMMU_DOMAIN_UNMANAGED
:
2961 pdomain
= protection_domain_alloc();
2965 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2966 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2967 if (!pdomain
->pt_root
) {
2968 protection_domain_free(pdomain
);
2972 pdomain
->domain
.geometry
.aperture_start
= 0;
2973 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2974 pdomain
->domain
.geometry
.force_aperture
= true;
2977 case IOMMU_DOMAIN_DMA
:
2978 dma_domain
= dma_ops_domain_alloc();
2980 pr_err("Failed to allocate\n");
2983 pdomain
= &dma_domain
->domain
;
2985 case IOMMU_DOMAIN_IDENTITY
:
2986 pdomain
= protection_domain_alloc();
2990 pdomain
->mode
= PAGE_MODE_NONE
;
2996 return &pdomain
->domain
;
2999 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
3001 struct protection_domain
*domain
;
3002 struct dma_ops_domain
*dma_dom
;
3004 domain
= to_pdomain(dom
);
3006 if (domain
->dev_cnt
> 0)
3007 cleanup_domain(domain
);
3009 BUG_ON(domain
->dev_cnt
!= 0);
3014 switch (dom
->type
) {
3015 case IOMMU_DOMAIN_DMA
:
3016 /* Now release the domain */
3017 dma_dom
= to_dma_ops_domain(domain
);
3018 dma_ops_domain_free(dma_dom
);
3021 if (domain
->mode
!= PAGE_MODE_NONE
)
3022 free_pagetable(domain
);
3024 if (domain
->flags
& PD_IOMMUV2_MASK
)
3025 free_gcr3_table(domain
);
3027 protection_domain_free(domain
);
3032 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
3035 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3036 struct amd_iommu
*iommu
;
3039 if (!check_device(dev
))
3042 devid
= get_device_id(dev
);
3046 if (dev_data
->domain
!= NULL
)
3049 iommu
= amd_iommu_rlookup_table
[devid
];
3053 #ifdef CONFIG_IRQ_REMAP
3054 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) &&
3055 (dom
->type
== IOMMU_DOMAIN_UNMANAGED
))
3056 dev_data
->use_vapic
= 0;
3059 iommu_completion_wait(iommu
);
3062 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
3065 struct protection_domain
*domain
= to_pdomain(dom
);
3066 struct iommu_dev_data
*dev_data
;
3067 struct amd_iommu
*iommu
;
3070 if (!check_device(dev
))
3073 dev_data
= dev
->archdata
.iommu
;
3075 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3079 if (dev_data
->domain
)
3082 ret
= attach_device(dev
, domain
);
3084 #ifdef CONFIG_IRQ_REMAP
3085 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
3086 if (dom
->type
== IOMMU_DOMAIN_UNMANAGED
)
3087 dev_data
->use_vapic
= 1;
3089 dev_data
->use_vapic
= 0;
3093 iommu_completion_wait(iommu
);
3098 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3099 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3101 struct protection_domain
*domain
= to_pdomain(dom
);
3105 if (domain
->mode
== PAGE_MODE_NONE
)
3108 if (iommu_prot
& IOMMU_READ
)
3109 prot
|= IOMMU_PROT_IR
;
3110 if (iommu_prot
& IOMMU_WRITE
)
3111 prot
|= IOMMU_PROT_IW
;
3113 mutex_lock(&domain
->api_lock
);
3114 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, GFP_KERNEL
);
3115 mutex_unlock(&domain
->api_lock
);
3117 domain_flush_np_cache(domain
, iova
, page_size
);
3122 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3124 struct iommu_iotlb_gather
*gather
)
3126 struct protection_domain
*domain
= to_pdomain(dom
);
3129 if (domain
->mode
== PAGE_MODE_NONE
)
3132 mutex_lock(&domain
->api_lock
);
3133 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3134 mutex_unlock(&domain
->api_lock
);
3139 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3142 struct protection_domain
*domain
= to_pdomain(dom
);
3143 unsigned long offset_mask
, pte_pgsize
;
3146 if (domain
->mode
== PAGE_MODE_NONE
)
3149 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3151 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3154 offset_mask
= pte_pgsize
- 1;
3155 __pte
= __sme_clr(*pte
& PM_ADDR_MASK
);
3157 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3160 static bool amd_iommu_capable(enum iommu_cap cap
)
3163 case IOMMU_CAP_CACHE_COHERENCY
:
3165 case IOMMU_CAP_INTR_REMAP
:
3166 return (irq_remapping_enabled
== 1);
3167 case IOMMU_CAP_NOEXEC
:
3176 static void amd_iommu_get_resv_regions(struct device
*dev
,
3177 struct list_head
*head
)
3179 struct iommu_resv_region
*region
;
3180 struct unity_map_entry
*entry
;
3183 devid
= get_device_id(dev
);
3187 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3191 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3194 type
= IOMMU_RESV_DIRECT
;
3195 length
= entry
->address_end
- entry
->address_start
;
3196 if (entry
->prot
& IOMMU_PROT_IR
)
3198 if (entry
->prot
& IOMMU_PROT_IW
)
3199 prot
|= IOMMU_WRITE
;
3200 if (entry
->prot
& IOMMU_UNITY_MAP_FLAG_EXCL_RANGE
)
3201 /* Exclusion range */
3202 type
= IOMMU_RESV_RESERVED
;
3204 region
= iommu_alloc_resv_region(entry
->address_start
,
3205 length
, prot
, type
);
3207 dev_err(dev
, "Out of memory allocating dm-regions\n");
3210 list_add_tail(®ion
->list
, head
);
3213 region
= iommu_alloc_resv_region(MSI_RANGE_START
,
3214 MSI_RANGE_END
- MSI_RANGE_START
+ 1,
3218 list_add_tail(®ion
->list
, head
);
3220 region
= iommu_alloc_resv_region(HT_RANGE_START
,
3221 HT_RANGE_END
- HT_RANGE_START
+ 1,
3222 0, IOMMU_RESV_RESERVED
);
3225 list_add_tail(®ion
->list
, head
);
3228 static void amd_iommu_put_resv_regions(struct device
*dev
,
3229 struct list_head
*head
)
3231 struct iommu_resv_region
*entry
, *next
;
3233 list_for_each_entry_safe(entry
, next
, head
, list
)
3237 static void amd_iommu_apply_resv_region(struct device
*dev
,
3238 struct iommu_domain
*domain
,
3239 struct iommu_resv_region
*region
)
3241 struct dma_ops_domain
*dma_dom
= to_dma_ops_domain(to_pdomain(domain
));
3242 unsigned long start
, end
;
3244 start
= IOVA_PFN(region
->start
);
3245 end
= IOVA_PFN(region
->start
+ region
->length
- 1);
3247 WARN_ON_ONCE(reserve_iova(&dma_dom
->iovad
, start
, end
) == NULL
);
3250 static bool amd_iommu_is_attach_deferred(struct iommu_domain
*domain
,
3253 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3254 return dev_data
->defer_attach
;
3257 static void amd_iommu_flush_iotlb_all(struct iommu_domain
*domain
)
3259 struct protection_domain
*dom
= to_pdomain(domain
);
3260 unsigned long flags
;
3262 spin_lock_irqsave(&dom
->lock
, flags
);
3263 domain_flush_tlb_pde(dom
);
3264 domain_flush_complete(dom
);
3265 spin_unlock_irqrestore(&dom
->lock
, flags
);
3268 static void amd_iommu_iotlb_sync(struct iommu_domain
*domain
,
3269 struct iommu_iotlb_gather
*gather
)
3271 amd_iommu_flush_iotlb_all(domain
);
3274 const struct iommu_ops amd_iommu_ops
= {
3275 .capable
= amd_iommu_capable
,
3276 .domain_alloc
= amd_iommu_domain_alloc
,
3277 .domain_free
= amd_iommu_domain_free
,
3278 .attach_dev
= amd_iommu_attach_device
,
3279 .detach_dev
= amd_iommu_detach_device
,
3280 .map
= amd_iommu_map
,
3281 .unmap
= amd_iommu_unmap
,
3282 .iova_to_phys
= amd_iommu_iova_to_phys
,
3283 .add_device
= amd_iommu_add_device
,
3284 .remove_device
= amd_iommu_remove_device
,
3285 .device_group
= amd_iommu_device_group
,
3286 .get_resv_regions
= amd_iommu_get_resv_regions
,
3287 .put_resv_regions
= amd_iommu_put_resv_regions
,
3288 .apply_resv_region
= amd_iommu_apply_resv_region
,
3289 .is_attach_deferred
= amd_iommu_is_attach_deferred
,
3290 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3291 .flush_iotlb_all
= amd_iommu_flush_iotlb_all
,
3292 .iotlb_sync
= amd_iommu_iotlb_sync
,
3295 /*****************************************************************************
3297 * The next functions do a basic initialization of IOMMU for pass through
3300 * In passthrough mode the IOMMU is initialized and enabled but not used for
3301 * DMA-API translation.
3303 *****************************************************************************/
3305 /* IOMMUv2 specific functions */
3306 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3308 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3310 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3312 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3314 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3316 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3318 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3320 struct protection_domain
*domain
= to_pdomain(dom
);
3321 unsigned long flags
;
3323 spin_lock_irqsave(&domain
->lock
, flags
);
3325 /* Update data structure */
3326 domain
->mode
= PAGE_MODE_NONE
;
3328 /* Make changes visible to IOMMUs */
3329 update_domain(domain
);
3331 /* Page-table is not visible to IOMMU anymore, so free it */
3332 free_pagetable(domain
);
3334 spin_unlock_irqrestore(&domain
->lock
, flags
);
3336 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3338 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3340 struct protection_domain
*domain
= to_pdomain(dom
);
3341 unsigned long flags
;
3344 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3347 /* Number of GCR3 table levels required */
3348 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3351 if (levels
> amd_iommu_max_glx_val
)
3354 spin_lock_irqsave(&domain
->lock
, flags
);
3357 * Save us all sanity checks whether devices already in the
3358 * domain support IOMMUv2. Just force that the domain has no
3359 * devices attached when it is switched into IOMMUv2 mode.
3362 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3366 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3367 if (domain
->gcr3_tbl
== NULL
)
3370 domain
->glx
= levels
;
3371 domain
->flags
|= PD_IOMMUV2_MASK
;
3373 update_domain(domain
);
3378 spin_unlock_irqrestore(&domain
->lock
, flags
);
3382 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3384 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3385 u64 address
, bool size
)
3387 struct iommu_dev_data
*dev_data
;
3388 struct iommu_cmd cmd
;
3391 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3394 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3397 * IOMMU TLB needs to be flushed before Device TLB to
3398 * prevent device TLB refill from IOMMU TLB
3400 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
3401 if (domain
->dev_iommu
[i
] == 0)
3404 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3409 /* Wait until IOMMU TLB flushes are complete */
3410 domain_flush_complete(domain
);
3412 /* Now flush device TLBs */
3413 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3414 struct amd_iommu
*iommu
;
3418 There might be non-IOMMUv2 capable devices in an IOMMUv2
3421 if (!dev_data
->ats
.enabled
)
3424 qdep
= dev_data
->ats
.qdep
;
3425 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3427 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3428 qdep
, address
, size
);
3430 ret
= iommu_queue_command(iommu
, &cmd
);
3435 /* Wait until all device TLBs are flushed */
3436 domain_flush_complete(domain
);
3445 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3448 return __flush_pasid(domain
, pasid
, address
, false);
3451 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3454 struct protection_domain
*domain
= to_pdomain(dom
);
3455 unsigned long flags
;
3458 spin_lock_irqsave(&domain
->lock
, flags
);
3459 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3460 spin_unlock_irqrestore(&domain
->lock
, flags
);
3464 EXPORT_SYMBOL(amd_iommu_flush_page
);
3466 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3468 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3472 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3474 struct protection_domain
*domain
= to_pdomain(dom
);
3475 unsigned long flags
;
3478 spin_lock_irqsave(&domain
->lock
, flags
);
3479 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3480 spin_unlock_irqrestore(&domain
->lock
, flags
);
3484 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3486 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3493 index
= (pasid
>> (9 * level
)) & 0x1ff;
3499 if (!(*pte
& GCR3_VALID
)) {
3503 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3507 *pte
= iommu_virt_to_phys(root
) | GCR3_VALID
;
3510 root
= iommu_phys_to_virt(*pte
& PAGE_MASK
);
3518 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3523 if (domain
->mode
!= PAGE_MODE_NONE
)
3526 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3530 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3532 return __amd_iommu_flush_tlb(domain
, pasid
);
3535 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3539 if (domain
->mode
!= PAGE_MODE_NONE
)
3542 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3548 return __amd_iommu_flush_tlb(domain
, pasid
);
3551 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3554 struct protection_domain
*domain
= to_pdomain(dom
);
3555 unsigned long flags
;
3558 spin_lock_irqsave(&domain
->lock
, flags
);
3559 ret
= __set_gcr3(domain
, pasid
, cr3
);
3560 spin_unlock_irqrestore(&domain
->lock
, flags
);
3564 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3566 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3568 struct protection_domain
*domain
= to_pdomain(dom
);
3569 unsigned long flags
;
3572 spin_lock_irqsave(&domain
->lock
, flags
);
3573 ret
= __clear_gcr3(domain
, pasid
);
3574 spin_unlock_irqrestore(&domain
->lock
, flags
);
3578 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3580 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3581 int status
, int tag
)
3583 struct iommu_dev_data
*dev_data
;
3584 struct amd_iommu
*iommu
;
3585 struct iommu_cmd cmd
;
3587 dev_data
= get_dev_data(&pdev
->dev
);
3588 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3590 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3591 tag
, dev_data
->pri_tlp
);
3593 return iommu_queue_command(iommu
, &cmd
);
3595 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3597 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3599 struct protection_domain
*pdomain
;
3601 pdomain
= get_domain(&pdev
->dev
);
3602 if (IS_ERR(pdomain
))
3605 /* Only return IOMMUv2 domains */
3606 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3609 return &pdomain
->domain
;
3611 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3613 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3615 struct iommu_dev_data
*dev_data
;
3617 if (!amd_iommu_v2_supported())
3620 dev_data
= get_dev_data(&pdev
->dev
);
3621 dev_data
->errata
|= (1 << erratum
);
3623 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3625 int amd_iommu_device_info(struct pci_dev
*pdev
,
3626 struct amd_iommu_device_info
*info
)
3631 if (pdev
== NULL
|| info
== NULL
)
3634 if (!amd_iommu_v2_supported())
3637 memset(info
, 0, sizeof(*info
));
3639 if (!pci_ats_disabled()) {
3640 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3642 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3645 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3647 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3649 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3653 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3654 max_pasids
= min(max_pasids
, (1 << 20));
3656 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3657 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3659 features
= pci_pasid_features(pdev
);
3660 if (features
& PCI_PASID_CAP_EXEC
)
3661 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3662 if (features
& PCI_PASID_CAP_PRIV
)
3663 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3668 EXPORT_SYMBOL(amd_iommu_device_info
);
3670 #ifdef CONFIG_IRQ_REMAP
3672 /*****************************************************************************
3674 * Interrupt Remapping Implementation
3676 *****************************************************************************/
3678 static struct irq_chip amd_ir_chip
;
3679 static DEFINE_SPINLOCK(iommu_table_lock
);
3681 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3685 dte
= amd_iommu_dev_table
[devid
].data
[2];
3686 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3687 dte
|= iommu_virt_to_phys(table
->table
);
3688 dte
|= DTE_IRQ_REMAP_INTCTL
;
3689 dte
|= DTE_IRQ_TABLE_LEN
;
3690 dte
|= DTE_IRQ_REMAP_ENABLE
;
3692 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3695 static struct irq_remap_table
*get_irq_table(u16 devid
)
3697 struct irq_remap_table
*table
;
3699 if (WARN_ONCE(!amd_iommu_rlookup_table
[devid
],
3700 "%s: no iommu for devid %x\n", __func__
, devid
))
3703 table
= irq_lookup_table
[devid
];
3704 if (WARN_ONCE(!table
, "%s: no table for devid %x\n", __func__
, devid
))
3710 static struct irq_remap_table
*__alloc_irq_table(void)
3712 struct irq_remap_table
*table
;
3714 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
3718 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_KERNEL
);
3719 if (!table
->table
) {
3723 raw_spin_lock_init(&table
->lock
);
3725 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3726 memset(table
->table
, 0,
3727 MAX_IRQS_PER_TABLE
* sizeof(u32
));
3729 memset(table
->table
, 0,
3730 (MAX_IRQS_PER_TABLE
* (sizeof(u64
) * 2)));
3734 static void set_remap_table_entry(struct amd_iommu
*iommu
, u16 devid
,
3735 struct irq_remap_table
*table
)
3737 irq_lookup_table
[devid
] = table
;
3738 set_dte_irq_entry(devid
, table
);
3739 iommu_flush_dte(iommu
, devid
);
3742 static int set_remap_table_entry_alias(struct pci_dev
*pdev
, u16 alias
,
3745 struct irq_remap_table
*table
= data
;
3747 irq_lookup_table
[alias
] = table
;
3748 set_dte_irq_entry(alias
, table
);
3750 iommu_flush_dte(amd_iommu_rlookup_table
[alias
], alias
);
3755 static struct irq_remap_table
*alloc_irq_table(u16 devid
, struct pci_dev
*pdev
)
3757 struct irq_remap_table
*table
= NULL
;
3758 struct irq_remap_table
*new_table
= NULL
;
3759 struct amd_iommu
*iommu
;
3760 unsigned long flags
;
3763 spin_lock_irqsave(&iommu_table_lock
, flags
);
3765 iommu
= amd_iommu_rlookup_table
[devid
];
3769 table
= irq_lookup_table
[devid
];
3773 alias
= amd_iommu_alias_table
[devid
];
3774 table
= irq_lookup_table
[alias
];
3776 set_remap_table_entry(iommu
, devid
, table
);
3779 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3781 /* Nothing there yet, allocate new irq remapping table */
3782 new_table
= __alloc_irq_table();
3786 spin_lock_irqsave(&iommu_table_lock
, flags
);
3788 table
= irq_lookup_table
[devid
];
3792 table
= irq_lookup_table
[alias
];
3794 set_remap_table_entry(iommu
, devid
, table
);
3802 pci_for_each_dma_alias(pdev
, set_remap_table_entry_alias
,
3805 set_remap_table_entry(iommu
, devid
, table
);
3808 set_remap_table_entry(iommu
, alias
, table
);
3811 iommu_completion_wait(iommu
);
3814 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3817 kmem_cache_free(amd_iommu_irq_cache
, new_table
->table
);
3823 static int alloc_irq_index(u16 devid
, int count
, bool align
,
3824 struct pci_dev
*pdev
)
3826 struct irq_remap_table
*table
;
3827 int index
, c
, alignment
= 1;
3828 unsigned long flags
;
3829 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3834 table
= alloc_irq_table(devid
, pdev
);
3839 alignment
= roundup_pow_of_two(count
);
3841 raw_spin_lock_irqsave(&table
->lock
, flags
);
3843 /* Scan table for free entries */
3844 for (index
= ALIGN(table
->min_index
, alignment
), c
= 0;
3845 index
< MAX_IRQS_PER_TABLE
;) {
3846 if (!iommu
->irte_ops
->is_allocated(table
, index
)) {
3850 index
= ALIGN(index
+ 1, alignment
);
3856 iommu
->irte_ops
->set_allocated(table
, index
- c
+ 1);
3868 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3873 static int modify_irte_ga(u16 devid
, int index
, struct irte_ga
*irte
,
3874 struct amd_ir_data
*data
)
3876 struct irq_remap_table
*table
;
3877 struct amd_iommu
*iommu
;
3878 unsigned long flags
;
3879 struct irte_ga
*entry
;
3881 iommu
= amd_iommu_rlookup_table
[devid
];
3885 table
= get_irq_table(devid
);
3889 raw_spin_lock_irqsave(&table
->lock
, flags
);
3891 entry
= (struct irte_ga
*)table
->table
;
3892 entry
= &entry
[index
];
3893 entry
->lo
.fields_remap
.valid
= 0;
3894 entry
->hi
.val
= irte
->hi
.val
;
3895 entry
->lo
.val
= irte
->lo
.val
;
3896 entry
->lo
.fields_remap
.valid
= 1;
3900 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3902 iommu_flush_irt(iommu
, devid
);
3903 iommu_completion_wait(iommu
);
3908 static int modify_irte(u16 devid
, int index
, union irte
*irte
)
3910 struct irq_remap_table
*table
;
3911 struct amd_iommu
*iommu
;
3912 unsigned long flags
;
3914 iommu
= amd_iommu_rlookup_table
[devid
];
3918 table
= get_irq_table(devid
);
3922 raw_spin_lock_irqsave(&table
->lock
, flags
);
3923 table
->table
[index
] = irte
->val
;
3924 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3926 iommu_flush_irt(iommu
, devid
);
3927 iommu_completion_wait(iommu
);
3932 static void free_irte(u16 devid
, int index
)
3934 struct irq_remap_table
*table
;
3935 struct amd_iommu
*iommu
;
3936 unsigned long flags
;
3938 iommu
= amd_iommu_rlookup_table
[devid
];
3942 table
= get_irq_table(devid
);
3946 raw_spin_lock_irqsave(&table
->lock
, flags
);
3947 iommu
->irte_ops
->clear_allocated(table
, index
);
3948 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3950 iommu_flush_irt(iommu
, devid
);
3951 iommu_completion_wait(iommu
);
3954 static void irte_prepare(void *entry
,
3955 u32 delivery_mode
, u32 dest_mode
,
3956 u8 vector
, u32 dest_apicid
, int devid
)
3958 union irte
*irte
= (union irte
*) entry
;
3961 irte
->fields
.vector
= vector
;
3962 irte
->fields
.int_type
= delivery_mode
;
3963 irte
->fields
.destination
= dest_apicid
;
3964 irte
->fields
.dm
= dest_mode
;
3965 irte
->fields
.valid
= 1;
3968 static void irte_ga_prepare(void *entry
,
3969 u32 delivery_mode
, u32 dest_mode
,
3970 u8 vector
, u32 dest_apicid
, int devid
)
3972 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3976 irte
->lo
.fields_remap
.int_type
= delivery_mode
;
3977 irte
->lo
.fields_remap
.dm
= dest_mode
;
3978 irte
->hi
.fields
.vector
= vector
;
3979 irte
->lo
.fields_remap
.destination
= APICID_TO_IRTE_DEST_LO(dest_apicid
);
3980 irte
->hi
.fields
.destination
= APICID_TO_IRTE_DEST_HI(dest_apicid
);
3981 irte
->lo
.fields_remap
.valid
= 1;
3984 static void irte_activate(void *entry
, u16 devid
, u16 index
)
3986 union irte
*irte
= (union irte
*) entry
;
3988 irte
->fields
.valid
= 1;
3989 modify_irte(devid
, index
, irte
);
3992 static void irte_ga_activate(void *entry
, u16 devid
, u16 index
)
3994 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3996 irte
->lo
.fields_remap
.valid
= 1;
3997 modify_irte_ga(devid
, index
, irte
, NULL
);
4000 static void irte_deactivate(void *entry
, u16 devid
, u16 index
)
4002 union irte
*irte
= (union irte
*) entry
;
4004 irte
->fields
.valid
= 0;
4005 modify_irte(devid
, index
, irte
);
4008 static void irte_ga_deactivate(void *entry
, u16 devid
, u16 index
)
4010 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
4012 irte
->lo
.fields_remap
.valid
= 0;
4013 modify_irte_ga(devid
, index
, irte
, NULL
);
4016 static void irte_set_affinity(void *entry
, u16 devid
, u16 index
,
4017 u8 vector
, u32 dest_apicid
)
4019 union irte
*irte
= (union irte
*) entry
;
4021 irte
->fields
.vector
= vector
;
4022 irte
->fields
.destination
= dest_apicid
;
4023 modify_irte(devid
, index
, irte
);
4026 static void irte_ga_set_affinity(void *entry
, u16 devid
, u16 index
,
4027 u8 vector
, u32 dest_apicid
)
4029 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
4031 if (!irte
->lo
.fields_remap
.guest_mode
) {
4032 irte
->hi
.fields
.vector
= vector
;
4033 irte
->lo
.fields_remap
.destination
=
4034 APICID_TO_IRTE_DEST_LO(dest_apicid
);
4035 irte
->hi
.fields
.destination
=
4036 APICID_TO_IRTE_DEST_HI(dest_apicid
);
4037 modify_irte_ga(devid
, index
, irte
, NULL
);
4041 #define IRTE_ALLOCATED (~1U)
4042 static void irte_set_allocated(struct irq_remap_table
*table
, int index
)
4044 table
->table
[index
] = IRTE_ALLOCATED
;
4047 static void irte_ga_set_allocated(struct irq_remap_table
*table
, int index
)
4049 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
4050 struct irte_ga
*irte
= &ptr
[index
];
4052 memset(&irte
->lo
.val
, 0, sizeof(u64
));
4053 memset(&irte
->hi
.val
, 0, sizeof(u64
));
4054 irte
->hi
.fields
.vector
= 0xff;
4057 static bool irte_is_allocated(struct irq_remap_table
*table
, int index
)
4059 union irte
*ptr
= (union irte
*)table
->table
;
4060 union irte
*irte
= &ptr
[index
];
4062 return irte
->val
!= 0;
4065 static bool irte_ga_is_allocated(struct irq_remap_table
*table
, int index
)
4067 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
4068 struct irte_ga
*irte
= &ptr
[index
];
4070 return irte
->hi
.fields
.vector
!= 0;
4073 static void irte_clear_allocated(struct irq_remap_table
*table
, int index
)
4075 table
->table
[index
] = 0;
4078 static void irte_ga_clear_allocated(struct irq_remap_table
*table
, int index
)
4080 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
4081 struct irte_ga
*irte
= &ptr
[index
];
4083 memset(&irte
->lo
.val
, 0, sizeof(u64
));
4084 memset(&irte
->hi
.val
, 0, sizeof(u64
));
4087 static int get_devid(struct irq_alloc_info
*info
)
4091 switch (info
->type
) {
4092 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4093 devid
= get_ioapic_devid(info
->ioapic_id
);
4095 case X86_IRQ_ALLOC_TYPE_HPET
:
4096 devid
= get_hpet_devid(info
->hpet_id
);
4098 case X86_IRQ_ALLOC_TYPE_MSI
:
4099 case X86_IRQ_ALLOC_TYPE_MSIX
:
4100 devid
= get_device_id(&info
->msi_dev
->dev
);
4110 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
4112 struct amd_iommu
*iommu
;
4118 devid
= get_devid(info
);
4120 iommu
= amd_iommu_rlookup_table
[devid
];
4122 return iommu
->ir_domain
;
4128 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
4130 struct amd_iommu
*iommu
;
4136 switch (info
->type
) {
4137 case X86_IRQ_ALLOC_TYPE_MSI
:
4138 case X86_IRQ_ALLOC_TYPE_MSIX
:
4139 devid
= get_device_id(&info
->msi_dev
->dev
);
4143 iommu
= amd_iommu_rlookup_table
[devid
];
4145 return iommu
->msi_domain
;
4154 struct irq_remap_ops amd_iommu_irq_ops
= {
4155 .prepare
= amd_iommu_prepare
,
4156 .enable
= amd_iommu_enable
,
4157 .disable
= amd_iommu_disable
,
4158 .reenable
= amd_iommu_reenable
,
4159 .enable_faulting
= amd_iommu_enable_faulting
,
4160 .get_ir_irq_domain
= get_ir_irq_domain
,
4161 .get_irq_domain
= get_irq_domain
,
4164 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
4165 struct irq_cfg
*irq_cfg
,
4166 struct irq_alloc_info
*info
,
4167 int devid
, int index
, int sub_handle
)
4169 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4170 struct msi_msg
*msg
= &data
->msi_entry
;
4171 struct IO_APIC_route_entry
*entry
;
4172 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
4177 data
->irq_2_irte
.devid
= devid
;
4178 data
->irq_2_irte
.index
= index
+ sub_handle
;
4179 iommu
->irte_ops
->prepare(data
->entry
, apic
->irq_delivery_mode
,
4180 apic
->irq_dest_mode
, irq_cfg
->vector
,
4181 irq_cfg
->dest_apicid
, devid
);
4183 switch (info
->type
) {
4184 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4185 /* Setup IOAPIC entry */
4186 entry
= info
->ioapic_entry
;
4187 info
->ioapic_entry
= NULL
;
4188 memset(entry
, 0, sizeof(*entry
));
4189 entry
->vector
= index
;
4191 entry
->trigger
= info
->ioapic_trigger
;
4192 entry
->polarity
= info
->ioapic_polarity
;
4193 /* Mask level triggered irqs. */
4194 if (info
->ioapic_trigger
)
4198 case X86_IRQ_ALLOC_TYPE_HPET
:
4199 case X86_IRQ_ALLOC_TYPE_MSI
:
4200 case X86_IRQ_ALLOC_TYPE_MSIX
:
4201 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4202 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4203 msg
->data
= irte_info
->index
;
4212 struct amd_irte_ops irte_32_ops
= {
4213 .prepare
= irte_prepare
,
4214 .activate
= irte_activate
,
4215 .deactivate
= irte_deactivate
,
4216 .set_affinity
= irte_set_affinity
,
4217 .set_allocated
= irte_set_allocated
,
4218 .is_allocated
= irte_is_allocated
,
4219 .clear_allocated
= irte_clear_allocated
,
4222 struct amd_irte_ops irte_128_ops
= {
4223 .prepare
= irte_ga_prepare
,
4224 .activate
= irte_ga_activate
,
4225 .deactivate
= irte_ga_deactivate
,
4226 .set_affinity
= irte_ga_set_affinity
,
4227 .set_allocated
= irte_ga_set_allocated
,
4228 .is_allocated
= irte_ga_is_allocated
,
4229 .clear_allocated
= irte_ga_clear_allocated
,
4232 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
4233 unsigned int nr_irqs
, void *arg
)
4235 struct irq_alloc_info
*info
= arg
;
4236 struct irq_data
*irq_data
;
4237 struct amd_ir_data
*data
= NULL
;
4238 struct irq_cfg
*cfg
;
4244 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
4245 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
4249 * With IRQ remapping enabled, don't need contiguous CPU vectors
4250 * to support multiple MSI interrupts.
4252 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
4253 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
4255 devid
= get_devid(info
);
4259 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
4263 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
4264 struct irq_remap_table
*table
;
4265 struct amd_iommu
*iommu
;
4267 table
= alloc_irq_table(devid
, NULL
);
4269 if (!table
->min_index
) {
4271 * Keep the first 32 indexes free for IOAPIC
4274 table
->min_index
= 32;
4275 iommu
= amd_iommu_rlookup_table
[devid
];
4276 for (i
= 0; i
< 32; ++i
)
4277 iommu
->irte_ops
->set_allocated(table
, i
);
4279 WARN_ON(table
->min_index
!= 32);
4280 index
= info
->ioapic_pin
;
4284 } else if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
||
4285 info
->type
== X86_IRQ_ALLOC_TYPE_MSIX
) {
4286 bool align
= (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
);
4288 index
= alloc_irq_index(devid
, nr_irqs
, align
, info
->msi_dev
);
4290 index
= alloc_irq_index(devid
, nr_irqs
, false, NULL
);
4294 pr_warn("Failed to allocate IRTE\n");
4296 goto out_free_parent
;
4299 for (i
= 0; i
< nr_irqs
; i
++) {
4300 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4301 cfg
= irqd_cfg(irq_data
);
4302 if (!irq_data
|| !cfg
) {
4308 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
4312 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
4313 data
->entry
= kzalloc(sizeof(union irte
), GFP_KERNEL
);
4315 data
->entry
= kzalloc(sizeof(struct irte_ga
),
4322 irq_data
->hwirq
= (devid
<< 16) + i
;
4323 irq_data
->chip_data
= data
;
4324 irq_data
->chip
= &amd_ir_chip
;
4325 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
4326 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
4332 for (i
--; i
>= 0; i
--) {
4333 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4335 kfree(irq_data
->chip_data
);
4337 for (i
= 0; i
< nr_irqs
; i
++)
4338 free_irte(devid
, index
+ i
);
4340 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4344 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4345 unsigned int nr_irqs
)
4347 struct irq_2_irte
*irte_info
;
4348 struct irq_data
*irq_data
;
4349 struct amd_ir_data
*data
;
4352 for (i
= 0; i
< nr_irqs
; i
++) {
4353 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4354 if (irq_data
&& irq_data
->chip_data
) {
4355 data
= irq_data
->chip_data
;
4356 irte_info
= &data
->irq_2_irte
;
4357 free_irte(irte_info
->devid
, irte_info
->index
);
4362 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4365 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4366 struct amd_ir_data
*ir_data
,
4367 struct irq_2_irte
*irte_info
,
4368 struct irq_cfg
*cfg
);
4370 static int irq_remapping_activate(struct irq_domain
*domain
,
4371 struct irq_data
*irq_data
, bool reserve
)
4373 struct amd_ir_data
*data
= irq_data
->chip_data
;
4374 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4375 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4376 struct irq_cfg
*cfg
= irqd_cfg(irq_data
);
4381 iommu
->irte_ops
->activate(data
->entry
, irte_info
->devid
,
4383 amd_ir_update_irte(irq_data
, iommu
, data
, irte_info
, cfg
);
4387 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4388 struct irq_data
*irq_data
)
4390 struct amd_ir_data
*data
= irq_data
->chip_data
;
4391 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4392 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4395 iommu
->irte_ops
->deactivate(data
->entry
, irte_info
->devid
,
4399 static const struct irq_domain_ops amd_ir_domain_ops
= {
4400 .alloc
= irq_remapping_alloc
,
4401 .free
= irq_remapping_free
,
4402 .activate
= irq_remapping_activate
,
4403 .deactivate
= irq_remapping_deactivate
,
4406 int amd_iommu_activate_guest_mode(void *data
)
4408 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4409 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4411 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4412 !entry
|| entry
->lo
.fields_vapic
.guest_mode
)
4418 entry
->lo
.fields_vapic
.guest_mode
= 1;
4419 entry
->lo
.fields_vapic
.ga_log_intr
= 1;
4420 entry
->hi
.fields
.ga_root_ptr
= ir_data
->ga_root_ptr
;
4421 entry
->hi
.fields
.vector
= ir_data
->ga_vector
;
4422 entry
->lo
.fields_vapic
.ga_tag
= ir_data
->ga_tag
;
4424 return modify_irte_ga(ir_data
->irq_2_irte
.devid
,
4425 ir_data
->irq_2_irte
.index
, entry
, ir_data
);
4427 EXPORT_SYMBOL(amd_iommu_activate_guest_mode
);
4429 int amd_iommu_deactivate_guest_mode(void *data
)
4431 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4432 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4433 struct irq_cfg
*cfg
= ir_data
->cfg
;
4435 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4436 !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4442 entry
->lo
.fields_remap
.dm
= apic
->irq_dest_mode
;
4443 entry
->lo
.fields_remap
.int_type
= apic
->irq_delivery_mode
;
4444 entry
->hi
.fields
.vector
= cfg
->vector
;
4445 entry
->lo
.fields_remap
.destination
=
4446 APICID_TO_IRTE_DEST_LO(cfg
->dest_apicid
);
4447 entry
->hi
.fields
.destination
=
4448 APICID_TO_IRTE_DEST_HI(cfg
->dest_apicid
);
4450 return modify_irte_ga(ir_data
->irq_2_irte
.devid
,
4451 ir_data
->irq_2_irte
.index
, entry
, ir_data
);
4453 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode
);
4455 static int amd_ir_set_vcpu_affinity(struct irq_data
*data
, void *vcpu_info
)
4458 struct amd_iommu
*iommu
;
4459 struct amd_iommu_pi_data
*pi_data
= vcpu_info
;
4460 struct vcpu_data
*vcpu_pi_info
= pi_data
->vcpu_data
;
4461 struct amd_ir_data
*ir_data
= data
->chip_data
;
4462 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4463 struct iommu_dev_data
*dev_data
= search_dev_data(irte_info
->devid
);
4466 * This device has never been set up for guest mode.
4467 * we should not modify the IRTE
4469 if (!dev_data
|| !dev_data
->use_vapic
)
4472 ir_data
->cfg
= irqd_cfg(data
);
4473 pi_data
->ir_data
= ir_data
;
4476 * SVM tries to set up for VAPIC mode, but we are in
4477 * legacy mode. So, we force legacy mode instead.
4479 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
4480 pr_debug("%s: Fall back to using intr legacy remap\n",
4482 pi_data
->is_guest_mode
= false;
4485 iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4489 pi_data
->prev_ga_tag
= ir_data
->cached_ga_tag
;
4490 if (pi_data
->is_guest_mode
) {
4491 ir_data
->ga_root_ptr
= (pi_data
->base
>> 12);
4492 ir_data
->ga_vector
= vcpu_pi_info
->vector
;
4493 ir_data
->ga_tag
= pi_data
->ga_tag
;
4494 ret
= amd_iommu_activate_guest_mode(ir_data
);
4496 ir_data
->cached_ga_tag
= pi_data
->ga_tag
;
4498 ret
= amd_iommu_deactivate_guest_mode(ir_data
);
4501 * This communicates the ga_tag back to the caller
4502 * so that it can do all the necessary clean up.
4505 ir_data
->cached_ga_tag
= 0;
4512 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4513 struct amd_ir_data
*ir_data
,
4514 struct irq_2_irte
*irte_info
,
4515 struct irq_cfg
*cfg
)
4519 * Atomically updates the IRTE with the new destination, vector
4520 * and flushes the interrupt entry cache.
4522 iommu
->irte_ops
->set_affinity(ir_data
->entry
, irte_info
->devid
,
4523 irte_info
->index
, cfg
->vector
,
4527 static int amd_ir_set_affinity(struct irq_data
*data
,
4528 const struct cpumask
*mask
, bool force
)
4530 struct amd_ir_data
*ir_data
= data
->chip_data
;
4531 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4532 struct irq_cfg
*cfg
= irqd_cfg(data
);
4533 struct irq_data
*parent
= data
->parent_data
;
4534 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4540 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4541 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4544 amd_ir_update_irte(data
, iommu
, ir_data
, irte_info
, cfg
);
4546 * After this point, all the interrupts will start arriving
4547 * at the new destination. So, time to cleanup the previous
4548 * vector allocation.
4550 send_cleanup_vector(cfg
);
4552 return IRQ_SET_MASK_OK_DONE
;
4555 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4557 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4559 *msg
= ir_data
->msi_entry
;
4562 static struct irq_chip amd_ir_chip
= {
4564 .irq_ack
= apic_ack_irq
,
4565 .irq_set_affinity
= amd_ir_set_affinity
,
4566 .irq_set_vcpu_affinity
= amd_ir_set_vcpu_affinity
,
4567 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4570 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4572 struct fwnode_handle
*fn
;
4574 fn
= irq_domain_alloc_named_id_fwnode("AMD-IR", iommu
->index
);
4577 iommu
->ir_domain
= irq_domain_create_tree(fn
, &amd_ir_domain_ops
, iommu
);
4578 if (!iommu
->ir_domain
) {
4579 irq_domain_free_fwnode(fn
);
4583 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4584 iommu
->msi_domain
= arch_create_remap_msi_irq_domain(iommu
->ir_domain
,
4590 int amd_iommu_update_ga(int cpu
, bool is_run
, void *data
)
4592 unsigned long flags
;
4593 struct amd_iommu
*iommu
;
4594 struct irq_remap_table
*table
;
4595 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4596 int devid
= ir_data
->irq_2_irte
.devid
;
4597 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4598 struct irte_ga
*ref
= (struct irte_ga
*) ir_data
->ref
;
4600 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4601 !ref
|| !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4604 iommu
= amd_iommu_rlookup_table
[devid
];
4608 table
= get_irq_table(devid
);
4612 raw_spin_lock_irqsave(&table
->lock
, flags
);
4614 if (ref
->lo
.fields_vapic
.guest_mode
) {
4616 ref
->lo
.fields_vapic
.destination
=
4617 APICID_TO_IRTE_DEST_LO(cpu
);
4618 ref
->hi
.fields
.destination
=
4619 APICID_TO_IRTE_DEST_HI(cpu
);
4621 ref
->lo
.fields_vapic
.is_run
= is_run
;
4625 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
4627 iommu_flush_irt(iommu
, devid
);
4628 iommu_completion_wait(iommu
);
4631 EXPORT_SYMBOL(amd_iommu_update_ga
);