1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/init.h>
47 #include <asm/types.h>
48 #include <linux/atomic.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/err.h>
53 #include <linux/kthread.h>
54 #include <linux/kernel.h>
55 #include <linux/syscalls.h>
57 #include <linux/audit.h>
60 #include <net/netlink.h>
61 #include <linux/skbuff.h>
62 #ifdef CONFIG_SECURITY
63 #include <linux/security.h>
65 #include <linux/freezer.h>
66 #include <linux/tty.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED -1
75 #define AUDIT_UNINITIALIZED 0
76 #define AUDIT_INITIALIZED 1
77 static int audit_initialized
;
81 #define AUDIT_LOCKED 2
83 u32 audit_ever_enabled
;
85 EXPORT_SYMBOL_GPL(audit_enabled
);
87 /* Default state when kernel boots without any parameters. */
88 static u32 audit_default
;
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32 audit_failure
= AUDIT_FAIL_PRINTK
;
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
99 static __u32 audit_nlk_portid
;
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104 static u32 audit_rate_limit
;
106 /* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108 static u32 audit_backlog_limit
= 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32 audit_backlog_wait_time
= AUDIT_BACKLOG_WAIT_TIME
;
111 static u32 audit_backlog_wait_overflow
= 0;
113 /* The identity of the user shutting down the audit system. */
114 kuid_t audit_sig_uid
= INVALID_UID
;
115 pid_t audit_sig_pid
= -1;
116 u32 audit_sig_sid
= 0;
118 /* Records can be lost in several ways:
119 0) [suppressed in audit_alloc]
120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121 2) out of memory in audit_log_move [alloc_skb]
122 3) suppressed due to audit_rate_limit
123 4) suppressed due to audit_backlog_limit
125 static atomic_t audit_lost
= ATOMIC_INIT(0);
127 /* The netlink socket. */
128 static struct sock
*audit_sock
;
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash
[AUDIT_INODE_BUCKETS
];
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136 * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock
);
138 static int audit_freelist_count
;
139 static LIST_HEAD(audit_freelist
);
141 static struct sk_buff_head audit_skb_queue
;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue
;
144 static struct task_struct
*kauditd_task
;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait
);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait
);
148 static struct audit_features af
= {.vers
= AUDIT_FEATURE_VERSION
,
153 static char *audit_feature_names
[2] = {
154 "only_unset_loginuid",
155 "loginuid_immutable",
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex
);
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163 * audit records. Since printk uses a 1024 byte buffer, this buffer
164 * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE (2*NR_CPUS)
171 /* The audit_buffer is used when formatting an audit record. The caller
172 * locks briefly to get the record off the freelist or to allocate the
173 * buffer, and locks briefly to send the buffer to the netlink layer or
174 * to place it on a transmit queue. Multiple audit_buffers can be in
175 * use simultaneously. */
176 struct audit_buffer
{
177 struct list_head list
;
178 struct sk_buff
*skb
; /* formatted skb ready to send */
179 struct audit_context
*ctx
; /* NULL or associated context */
189 static void audit_set_portid(struct audit_buffer
*ab
, __u32 portid
)
192 struct nlmsghdr
*nlh
= nlmsg_hdr(ab
->skb
);
193 nlh
->nlmsg_pid
= portid
;
197 void audit_panic(const char *message
)
199 switch (audit_failure
) {
200 case AUDIT_FAIL_SILENT
:
202 case AUDIT_FAIL_PRINTK
:
203 if (printk_ratelimit())
204 pr_err("%s\n", message
);
206 case AUDIT_FAIL_PANIC
:
207 /* test audit_pid since printk is always losey, why bother? */
209 panic("audit: %s\n", message
);
214 static inline int audit_rate_check(void)
216 static unsigned long last_check
= 0;
217 static int messages
= 0;
218 static DEFINE_SPINLOCK(lock
);
221 unsigned long elapsed
;
224 if (!audit_rate_limit
) return 1;
226 spin_lock_irqsave(&lock
, flags
);
227 if (++messages
< audit_rate_limit
) {
231 elapsed
= now
- last_check
;
238 spin_unlock_irqrestore(&lock
, flags
);
244 * audit_log_lost - conditionally log lost audit message event
245 * @message: the message stating reason for lost audit message
247 * Emit at least 1 message per second, even if audit_rate_check is
249 * Always increment the lost messages counter.
251 void audit_log_lost(const char *message
)
253 static unsigned long last_msg
= 0;
254 static DEFINE_SPINLOCK(lock
);
259 atomic_inc(&audit_lost
);
261 print
= (audit_failure
== AUDIT_FAIL_PANIC
|| !audit_rate_limit
);
264 spin_lock_irqsave(&lock
, flags
);
266 if (now
- last_msg
> HZ
) {
270 spin_unlock_irqrestore(&lock
, flags
);
274 if (printk_ratelimit())
275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 atomic_read(&audit_lost
),
278 audit_backlog_limit
);
279 audit_panic(message
);
283 static int audit_log_config_change(char *function_name
, u32
new, u32 old
,
286 struct audit_buffer
*ab
;
289 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_CONFIG_CHANGE
);
292 audit_log_format(ab
, "%s=%u old=%u", function_name
, new, old
);
293 audit_log_session_info(ab
);
294 rc
= audit_log_task_context(ab
);
296 allow_changes
= 0; /* Something weird, deny request */
297 audit_log_format(ab
, " res=%d", allow_changes
);
302 static int audit_do_config_change(char *function_name
, u32
*to_change
, u32
new)
304 int allow_changes
, rc
= 0;
305 u32 old
= *to_change
;
307 /* check if we are locked */
308 if (audit_enabled
== AUDIT_LOCKED
)
313 if (audit_enabled
!= AUDIT_OFF
) {
314 rc
= audit_log_config_change(function_name
, new, old
, allow_changes
);
319 /* If we are allowed, make the change */
320 if (allow_changes
== 1)
322 /* Not allowed, update reason */
328 static int audit_set_rate_limit(u32 limit
)
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit
, limit
);
333 static int audit_set_backlog_limit(u32 limit
)
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit
, limit
);
338 static int audit_set_backlog_wait_time(u32 timeout
)
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time
, timeout
);
344 static int audit_set_enabled(u32 state
)
347 if (state
< AUDIT_OFF
|| state
> AUDIT_LOCKED
)
350 rc
= audit_do_config_change("audit_enabled", &audit_enabled
, state
);
352 audit_ever_enabled
|= !!state
;
357 static int audit_set_failure(u32 state
)
359 if (state
!= AUDIT_FAIL_SILENT
360 && state
!= AUDIT_FAIL_PRINTK
361 && state
!= AUDIT_FAIL_PANIC
)
364 return audit_do_config_change("audit_failure", &audit_failure
, state
);
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
376 static void audit_hold_skb(struct sk_buff
*skb
)
379 (!audit_backlog_limit
||
380 skb_queue_len(&audit_skb_hold_queue
) < audit_backlog_limit
))
381 skb_queue_tail(&audit_skb_hold_queue
, skb
);
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
390 static void audit_printk_skb(struct sk_buff
*skb
)
392 struct nlmsghdr
*nlh
= nlmsg_hdr(skb
);
393 char *data
= nlmsg_data(nlh
);
395 if (nlh
->nlmsg_type
!= AUDIT_EOE
) {
396 if (printk_ratelimit())
397 pr_notice("type=%d %s\n", nlh
->nlmsg_type
, data
);
399 audit_log_lost("printk limit exceeded\n");
405 static void kauditd_send_skb(struct sk_buff
*skb
)
408 /* take a reference in case we can't send it and we want to hold it */
410 err
= netlink_unicast(audit_sock
, skb
, audit_nlk_portid
, 0);
412 BUG_ON(err
!= -ECONNREFUSED
); /* Shouldn't happen */
414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid
);
415 audit_log_lost("auditd disappeared\n");
419 /* we might get lucky and get this in the next auditd */
422 /* drop the extra reference if sent ok */
427 * flush_hold_queue - empty the hold queue if auditd appears
429 * If auditd just started, drain the queue of messages already
430 * sent to syslog/printk. Remember loss here is ok. We already
431 * called audit_log_lost() if it didn't go out normally. so the
432 * race between the skb_dequeue and the next check for audit_pid
435 * If you ever find kauditd to be too slow we can get a perf win
436 * by doing our own locking and keeping better track if there
437 * are messages in this queue. I don't see the need now, but
438 * in 5 years when I want to play with this again I'll see this
439 * note and still have no friggin idea what i'm thinking today.
441 static void flush_hold_queue(void)
445 if (!audit_default
|| !audit_pid
)
448 skb
= skb_dequeue(&audit_skb_hold_queue
);
452 while (skb
&& audit_pid
) {
453 kauditd_send_skb(skb
);
454 skb
= skb_dequeue(&audit_skb_hold_queue
);
458 * if auditd just disappeared but we
459 * dequeued an skb we need to drop ref
465 static int kauditd_thread(void *dummy
)
468 while (!kthread_should_stop()) {
470 DECLARE_WAITQUEUE(wait
, current
);
474 skb
= skb_dequeue(&audit_skb_queue
);
477 if (skb_queue_len(&audit_skb_queue
) <= audit_backlog_limit
)
478 wake_up(&audit_backlog_wait
);
480 kauditd_send_skb(skb
);
482 audit_printk_skb(skb
);
485 set_current_state(TASK_INTERRUPTIBLE
);
486 add_wait_queue(&kauditd_wait
, &wait
);
488 if (!skb_queue_len(&audit_skb_queue
)) {
493 __set_current_state(TASK_RUNNING
);
494 remove_wait_queue(&kauditd_wait
, &wait
);
499 int audit_send_list(void *_dest
)
501 struct audit_netlink_list
*dest
= _dest
;
503 struct net
*net
= dest
->net
;
504 struct audit_net
*aunet
= net_generic(net
, audit_net_id
);
506 /* wait for parent to finish and send an ACK */
507 mutex_lock(&audit_cmd_mutex
);
508 mutex_unlock(&audit_cmd_mutex
);
510 while ((skb
= __skb_dequeue(&dest
->q
)) != NULL
)
511 netlink_unicast(aunet
->nlsk
, skb
, dest
->portid
, 0);
519 struct sk_buff
*audit_make_reply(__u32 portid
, int seq
, int type
, int done
,
520 int multi
, const void *payload
, int size
)
523 struct nlmsghdr
*nlh
;
525 int flags
= multi
? NLM_F_MULTI
: 0;
526 int t
= done
? NLMSG_DONE
: type
;
528 skb
= nlmsg_new(size
, GFP_KERNEL
);
532 nlh
= nlmsg_put(skb
, portid
, seq
, t
, size
, flags
);
535 data
= nlmsg_data(nlh
);
536 memcpy(data
, payload
, size
);
544 static int audit_send_reply_thread(void *arg
)
546 struct audit_reply
*reply
= (struct audit_reply
*)arg
;
547 struct net
*net
= reply
->net
;
548 struct audit_net
*aunet
= net_generic(net
, audit_net_id
);
550 mutex_lock(&audit_cmd_mutex
);
551 mutex_unlock(&audit_cmd_mutex
);
553 /* Ignore failure. It'll only happen if the sender goes away,
554 because our timeout is set to infinite. */
555 netlink_unicast(aunet
->nlsk
, reply
->skb
, reply
->portid
, 0);
561 * audit_send_reply - send an audit reply message via netlink
562 * @request_skb: skb of request we are replying to (used to target the reply)
563 * @seq: sequence number
564 * @type: audit message type
565 * @done: done (last) flag
566 * @multi: multi-part message flag
567 * @payload: payload data
568 * @size: payload size
570 * Allocates an skb, builds the netlink message, and sends it to the port id.
571 * No failure notifications.
573 static void audit_send_reply(struct sk_buff
*request_skb
, int seq
, int type
, int done
,
574 int multi
, const void *payload
, int size
)
576 u32 portid
= NETLINK_CB(request_skb
).portid
;
577 struct net
*net
= sock_net(NETLINK_CB(request_skb
).sk
);
579 struct task_struct
*tsk
;
580 struct audit_reply
*reply
= kmalloc(sizeof(struct audit_reply
),
586 skb
= audit_make_reply(portid
, seq
, type
, done
, multi
, payload
, size
);
590 reply
->net
= get_net(net
);
591 reply
->portid
= portid
;
594 tsk
= kthread_run(audit_send_reply_thread
, reply
, "audit_send_reply");
603 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
606 static int audit_netlink_ok(struct sk_buff
*skb
, u16 msg_type
)
610 /* Only support the initial namespaces for now. */
612 * We return ECONNREFUSED because it tricks userspace into thinking
613 * that audit was not configured into the kernel. Lots of users
614 * configure their PAM stack (because that's what the distro does)
615 * to reject login if unable to send messages to audit. If we return
616 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
617 * configured in and will let login proceed. If we return EPERM
618 * userspace will reject all logins. This should be removed when we
619 * support non init namespaces!!
621 if ((current_user_ns() != &init_user_ns
) ||
622 (task_active_pid_ns(current
) != &init_pid_ns
))
623 return -ECONNREFUSED
;
632 case AUDIT_GET_FEATURE
:
633 case AUDIT_SET_FEATURE
:
634 case AUDIT_LIST_RULES
:
637 case AUDIT_SIGNAL_INFO
:
641 case AUDIT_MAKE_EQUIV
:
642 if (!netlink_capable(skb
, CAP_AUDIT_CONTROL
))
646 case AUDIT_FIRST_USER_MSG
... AUDIT_LAST_USER_MSG
:
647 case AUDIT_FIRST_USER_MSG2
... AUDIT_LAST_USER_MSG2
:
648 if (!netlink_capable(skb
, CAP_AUDIT_WRITE
))
651 default: /* bad msg */
658 static int audit_log_common_recv_msg(struct audit_buffer
**ab
, u16 msg_type
)
661 uid_t uid
= from_kuid(&init_user_ns
, current_uid());
663 if (!audit_enabled
&& msg_type
!= AUDIT_USER_AVC
) {
668 *ab
= audit_log_start(NULL
, GFP_KERNEL
, msg_type
);
671 audit_log_format(*ab
, "pid=%d uid=%u", task_tgid_vnr(current
), uid
);
672 audit_log_session_info(*ab
);
673 audit_log_task_context(*ab
);
678 int is_audit_feature_set(int i
)
680 return af
.features
& AUDIT_FEATURE_TO_MASK(i
);
684 static int audit_get_feature(struct sk_buff
*skb
)
688 seq
= nlmsg_hdr(skb
)->nlmsg_seq
;
690 audit_send_reply(skb
, seq
, AUDIT_GET_FEATURE
, 0, 0, &af
, sizeof(af
));
695 static void audit_log_feature_change(int which
, u32 old_feature
, u32 new_feature
,
696 u32 old_lock
, u32 new_lock
, int res
)
698 struct audit_buffer
*ab
;
700 if (audit_enabled
== AUDIT_OFF
)
703 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_FEATURE_CHANGE
);
704 audit_log_task_info(ab
, current
);
705 audit_log_format(ab
, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
706 audit_feature_names
[which
], !!old_feature
, !!new_feature
,
707 !!old_lock
, !!new_lock
, res
);
711 static int audit_set_feature(struct sk_buff
*skb
)
713 struct audit_features
*uaf
;
716 BUILD_BUG_ON(AUDIT_LAST_FEATURE
+ 1 > sizeof(audit_feature_names
)/sizeof(audit_feature_names
[0]));
717 uaf
= nlmsg_data(nlmsg_hdr(skb
));
719 /* if there is ever a version 2 we should handle that here */
721 for (i
= 0; i
<= AUDIT_LAST_FEATURE
; i
++) {
722 u32 feature
= AUDIT_FEATURE_TO_MASK(i
);
723 u32 old_feature
, new_feature
, old_lock
, new_lock
;
725 /* if we are not changing this feature, move along */
726 if (!(feature
& uaf
->mask
))
729 old_feature
= af
.features
& feature
;
730 new_feature
= uaf
->features
& feature
;
731 new_lock
= (uaf
->lock
| af
.lock
) & feature
;
732 old_lock
= af
.lock
& feature
;
734 /* are we changing a locked feature? */
735 if (old_lock
&& (new_feature
!= old_feature
)) {
736 audit_log_feature_change(i
, old_feature
, new_feature
,
737 old_lock
, new_lock
, 0);
741 /* nothing invalid, do the changes */
742 for (i
= 0; i
<= AUDIT_LAST_FEATURE
; i
++) {
743 u32 feature
= AUDIT_FEATURE_TO_MASK(i
);
744 u32 old_feature
, new_feature
, old_lock
, new_lock
;
746 /* if we are not changing this feature, move along */
747 if (!(feature
& uaf
->mask
))
750 old_feature
= af
.features
& feature
;
751 new_feature
= uaf
->features
& feature
;
752 old_lock
= af
.lock
& feature
;
753 new_lock
= (uaf
->lock
| af
.lock
) & feature
;
755 if (new_feature
!= old_feature
)
756 audit_log_feature_change(i
, old_feature
, new_feature
,
757 old_lock
, new_lock
, 1);
760 af
.features
|= feature
;
762 af
.features
&= ~feature
;
769 static int audit_receive_msg(struct sk_buff
*skb
, struct nlmsghdr
*nlh
)
774 struct audit_buffer
*ab
;
775 u16 msg_type
= nlh
->nlmsg_type
;
776 struct audit_sig_info
*sig_data
;
780 err
= audit_netlink_ok(skb
, msg_type
);
784 /* As soon as there's any sign of userspace auditd,
785 * start kauditd to talk to it */
787 kauditd_task
= kthread_run(kauditd_thread
, NULL
, "kauditd");
788 if (IS_ERR(kauditd_task
)) {
789 err
= PTR_ERR(kauditd_task
);
794 seq
= nlh
->nlmsg_seq
;
795 data
= nlmsg_data(nlh
);
799 struct audit_status s
;
800 memset(&s
, 0, sizeof(s
));
801 s
.enabled
= audit_enabled
;
802 s
.failure
= audit_failure
;
804 s
.rate_limit
= audit_rate_limit
;
805 s
.backlog_limit
= audit_backlog_limit
;
806 s
.lost
= atomic_read(&audit_lost
);
807 s
.backlog
= skb_queue_len(&audit_skb_queue
);
808 s
.version
= AUDIT_VERSION_LATEST
;
809 s
.backlog_wait_time
= audit_backlog_wait_time
;
810 audit_send_reply(skb
, seq
, AUDIT_GET
, 0, 0, &s
, sizeof(s
));
814 struct audit_status s
;
815 memset(&s
, 0, sizeof(s
));
816 /* guard against past and future API changes */
817 memcpy(&s
, data
, min_t(size_t, sizeof(s
), nlmsg_len(nlh
)));
818 if (s
.mask
& AUDIT_STATUS_ENABLED
) {
819 err
= audit_set_enabled(s
.enabled
);
823 if (s
.mask
& AUDIT_STATUS_FAILURE
) {
824 err
= audit_set_failure(s
.failure
);
828 if (s
.mask
& AUDIT_STATUS_PID
) {
831 if ((!new_pid
) && (task_tgid_vnr(current
) != audit_pid
))
833 if (audit_enabled
!= AUDIT_OFF
)
834 audit_log_config_change("audit_pid", new_pid
, audit_pid
, 1);
836 audit_nlk_portid
= NETLINK_CB(skb
).portid
;
837 audit_sock
= skb
->sk
;
839 if (s
.mask
& AUDIT_STATUS_RATE_LIMIT
) {
840 err
= audit_set_rate_limit(s
.rate_limit
);
844 if (s
.mask
& AUDIT_STATUS_BACKLOG_LIMIT
) {
845 err
= audit_set_backlog_limit(s
.backlog_limit
);
849 if (s
.mask
& AUDIT_STATUS_BACKLOG_WAIT_TIME
) {
850 if (sizeof(s
) > (size_t)nlh
->nlmsg_len
)
852 if (s
.backlog_wait_time
< 0 ||
853 s
.backlog_wait_time
> 10*AUDIT_BACKLOG_WAIT_TIME
)
855 err
= audit_set_backlog_wait_time(s
.backlog_wait_time
);
861 case AUDIT_GET_FEATURE
:
862 err
= audit_get_feature(skb
);
866 case AUDIT_SET_FEATURE
:
867 err
= audit_set_feature(skb
);
872 case AUDIT_FIRST_USER_MSG
... AUDIT_LAST_USER_MSG
:
873 case AUDIT_FIRST_USER_MSG2
... AUDIT_LAST_USER_MSG2
:
874 if (!audit_enabled
&& msg_type
!= AUDIT_USER_AVC
)
877 err
= audit_filter_user(msg_type
);
878 if (err
== 1) { /* match or error */
880 if (msg_type
== AUDIT_USER_TTY
) {
881 err
= tty_audit_push_current();
885 mutex_unlock(&audit_cmd_mutex
);
886 audit_log_common_recv_msg(&ab
, msg_type
);
887 if (msg_type
!= AUDIT_USER_TTY
)
888 audit_log_format(ab
, " msg='%.*s'",
889 AUDIT_MESSAGE_TEXT_MAX
,
894 audit_log_format(ab
, " data=");
895 size
= nlmsg_len(nlh
);
897 ((unsigned char *)data
)[size
- 1] == '\0')
899 audit_log_n_untrustedstring(ab
, data
, size
);
901 audit_set_portid(ab
, NETLINK_CB(skb
).portid
);
903 mutex_lock(&audit_cmd_mutex
);
908 if (nlmsg_len(nlh
) < sizeof(struct audit_rule_data
))
910 if (audit_enabled
== AUDIT_LOCKED
) {
911 audit_log_common_recv_msg(&ab
, AUDIT_CONFIG_CHANGE
);
912 audit_log_format(ab
, " audit_enabled=%d res=0", audit_enabled
);
916 err
= audit_rule_change(msg_type
, NETLINK_CB(skb
).portid
,
917 seq
, data
, nlmsg_len(nlh
));
919 case AUDIT_LIST_RULES
:
920 err
= audit_list_rules_send(skb
, seq
);
924 audit_log_common_recv_msg(&ab
, AUDIT_CONFIG_CHANGE
);
925 audit_log_format(ab
, " op=trim res=1");
928 case AUDIT_MAKE_EQUIV
: {
931 size_t msglen
= nlmsg_len(nlh
);
935 if (msglen
< 2 * sizeof(u32
))
937 memcpy(sizes
, bufp
, 2 * sizeof(u32
));
938 bufp
+= 2 * sizeof(u32
);
939 msglen
-= 2 * sizeof(u32
);
940 old
= audit_unpack_string(&bufp
, &msglen
, sizes
[0]);
945 new = audit_unpack_string(&bufp
, &msglen
, sizes
[1]);
951 /* OK, here comes... */
952 err
= audit_tag_tree(old
, new);
954 audit_log_common_recv_msg(&ab
, AUDIT_CONFIG_CHANGE
);
956 audit_log_format(ab
, " op=make_equiv old=");
957 audit_log_untrustedstring(ab
, old
);
958 audit_log_format(ab
, " new=");
959 audit_log_untrustedstring(ab
, new);
960 audit_log_format(ab
, " res=%d", !err
);
966 case AUDIT_SIGNAL_INFO
:
969 err
= security_secid_to_secctx(audit_sig_sid
, &ctx
, &len
);
973 sig_data
= kmalloc(sizeof(*sig_data
) + len
, GFP_KERNEL
);
976 security_release_secctx(ctx
, len
);
979 sig_data
->uid
= from_kuid(&init_user_ns
, audit_sig_uid
);
980 sig_data
->pid
= audit_sig_pid
;
982 memcpy(sig_data
->ctx
, ctx
, len
);
983 security_release_secctx(ctx
, len
);
985 audit_send_reply(skb
, seq
, AUDIT_SIGNAL_INFO
, 0, 0,
986 sig_data
, sizeof(*sig_data
) + len
);
989 case AUDIT_TTY_GET
: {
990 struct audit_tty_status s
;
991 struct task_struct
*tsk
= current
;
993 spin_lock(&tsk
->sighand
->siglock
);
994 s
.enabled
= tsk
->signal
->audit_tty
;
995 s
.log_passwd
= tsk
->signal
->audit_tty_log_passwd
;
996 spin_unlock(&tsk
->sighand
->siglock
);
998 audit_send_reply(skb
, seq
, AUDIT_TTY_GET
, 0, 0, &s
, sizeof(s
));
1001 case AUDIT_TTY_SET
: {
1002 struct audit_tty_status s
, old
;
1003 struct task_struct
*tsk
= current
;
1004 struct audit_buffer
*ab
;
1006 memset(&s
, 0, sizeof(s
));
1007 /* guard against past and future API changes */
1008 memcpy(&s
, data
, min_t(size_t, sizeof(s
), nlmsg_len(nlh
)));
1009 /* check if new data is valid */
1010 if ((s
.enabled
!= 0 && s
.enabled
!= 1) ||
1011 (s
.log_passwd
!= 0 && s
.log_passwd
!= 1))
1014 spin_lock(&tsk
->sighand
->siglock
);
1015 old
.enabled
= tsk
->signal
->audit_tty
;
1016 old
.log_passwd
= tsk
->signal
->audit_tty_log_passwd
;
1018 tsk
->signal
->audit_tty
= s
.enabled
;
1019 tsk
->signal
->audit_tty_log_passwd
= s
.log_passwd
;
1021 spin_unlock(&tsk
->sighand
->siglock
);
1023 audit_log_common_recv_msg(&ab
, AUDIT_CONFIG_CHANGE
);
1024 audit_log_format(ab
, " op=tty_set old-enabled=%d new-enabled=%d"
1025 " old-log_passwd=%d new-log_passwd=%d res=%d",
1026 old
.enabled
, s
.enabled
, old
.log_passwd
,
1027 s
.log_passwd
, !err
);
1036 return err
< 0 ? err
: 0;
1040 * Get message from skb. Each message is processed by audit_receive_msg.
1041 * Malformed skbs with wrong length are discarded silently.
1043 static void audit_receive_skb(struct sk_buff
*skb
)
1045 struct nlmsghdr
*nlh
;
1047 * len MUST be signed for nlmsg_next to be able to dec it below 0
1048 * if the nlmsg_len was not aligned
1053 nlh
= nlmsg_hdr(skb
);
1056 while (nlmsg_ok(nlh
, len
)) {
1057 err
= audit_receive_msg(skb
, nlh
);
1058 /* if err or if this message says it wants a response */
1059 if (err
|| (nlh
->nlmsg_flags
& NLM_F_ACK
))
1060 netlink_ack(skb
, nlh
, err
);
1062 nlh
= nlmsg_next(nlh
, &len
);
1066 /* Receive messages from netlink socket. */
1067 static void audit_receive(struct sk_buff
*skb
)
1069 mutex_lock(&audit_cmd_mutex
);
1070 audit_receive_skb(skb
);
1071 mutex_unlock(&audit_cmd_mutex
);
1074 static int __net_init
audit_net_init(struct net
*net
)
1076 struct netlink_kernel_cfg cfg
= {
1077 .input
= audit_receive
,
1080 struct audit_net
*aunet
= net_generic(net
, audit_net_id
);
1082 aunet
->nlsk
= netlink_kernel_create(net
, NETLINK_AUDIT
, &cfg
);
1083 if (aunet
->nlsk
== NULL
) {
1084 audit_panic("cannot initialize netlink socket in namespace");
1087 aunet
->nlsk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
1091 static void __net_exit
audit_net_exit(struct net
*net
)
1093 struct audit_net
*aunet
= net_generic(net
, audit_net_id
);
1094 struct sock
*sock
= aunet
->nlsk
;
1095 if (sock
== audit_sock
) {
1100 rcu_assign_pointer(aunet
->nlsk
, NULL
);
1102 netlink_kernel_release(sock
);
1105 static struct pernet_operations audit_net_ops __net_initdata
= {
1106 .init
= audit_net_init
,
1107 .exit
= audit_net_exit
,
1108 .id
= &audit_net_id
,
1109 .size
= sizeof(struct audit_net
),
1112 /* Initialize audit support at boot time. */
1113 static int __init
audit_init(void)
1117 if (audit_initialized
== AUDIT_DISABLED
)
1120 pr_info("initializing netlink subsys (%s)\n",
1121 audit_default
? "enabled" : "disabled");
1122 register_pernet_subsys(&audit_net_ops
);
1124 skb_queue_head_init(&audit_skb_queue
);
1125 skb_queue_head_init(&audit_skb_hold_queue
);
1126 audit_initialized
= AUDIT_INITIALIZED
;
1127 audit_enabled
= audit_default
;
1128 audit_ever_enabled
|= !!audit_default
;
1130 audit_log(NULL
, GFP_KERNEL
, AUDIT_KERNEL
, "initialized");
1132 for (i
= 0; i
< AUDIT_INODE_BUCKETS
; i
++)
1133 INIT_LIST_HEAD(&audit_inode_hash
[i
]);
1137 __initcall(audit_init
);
1139 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1140 static int __init
audit_enable(char *str
)
1142 audit_default
= !!simple_strtol(str
, NULL
, 0);
1144 audit_initialized
= AUDIT_DISABLED
;
1146 pr_info("%s\n", audit_default
?
1147 "enabled (after initialization)" : "disabled (until reboot)");
1151 __setup("audit=", audit_enable
);
1153 /* Process kernel command-line parameter at boot time.
1154 * audit_backlog_limit=<n> */
1155 static int __init
audit_backlog_limit_set(char *str
)
1157 u32 audit_backlog_limit_arg
;
1159 pr_info("audit_backlog_limit: ");
1160 if (kstrtouint(str
, 0, &audit_backlog_limit_arg
)) {
1161 pr_cont("using default of %u, unable to parse %s\n",
1162 audit_backlog_limit
, str
);
1166 audit_backlog_limit
= audit_backlog_limit_arg
;
1167 pr_cont("%d\n", audit_backlog_limit
);
1171 __setup("audit_backlog_limit=", audit_backlog_limit_set
);
1173 static void audit_buffer_free(struct audit_buffer
*ab
)
1175 unsigned long flags
;
1183 spin_lock_irqsave(&audit_freelist_lock
, flags
);
1184 if (audit_freelist_count
> AUDIT_MAXFREE
)
1187 audit_freelist_count
++;
1188 list_add(&ab
->list
, &audit_freelist
);
1190 spin_unlock_irqrestore(&audit_freelist_lock
, flags
);
1193 static struct audit_buffer
* audit_buffer_alloc(struct audit_context
*ctx
,
1194 gfp_t gfp_mask
, int type
)
1196 unsigned long flags
;
1197 struct audit_buffer
*ab
= NULL
;
1198 struct nlmsghdr
*nlh
;
1200 spin_lock_irqsave(&audit_freelist_lock
, flags
);
1201 if (!list_empty(&audit_freelist
)) {
1202 ab
= list_entry(audit_freelist
.next
,
1203 struct audit_buffer
, list
);
1204 list_del(&ab
->list
);
1205 --audit_freelist_count
;
1207 spin_unlock_irqrestore(&audit_freelist_lock
, flags
);
1210 ab
= kmalloc(sizeof(*ab
), gfp_mask
);
1216 ab
->gfp_mask
= gfp_mask
;
1218 ab
->skb
= nlmsg_new(AUDIT_BUFSIZ
, gfp_mask
);
1222 nlh
= nlmsg_put(ab
->skb
, 0, 0, type
, 0, 0);
1232 audit_buffer_free(ab
);
1237 * audit_serial - compute a serial number for the audit record
1239 * Compute a serial number for the audit record. Audit records are
1240 * written to user-space as soon as they are generated, so a complete
1241 * audit record may be written in several pieces. The timestamp of the
1242 * record and this serial number are used by the user-space tools to
1243 * determine which pieces belong to the same audit record. The
1244 * (timestamp,serial) tuple is unique for each syscall and is live from
1245 * syscall entry to syscall exit.
1247 * NOTE: Another possibility is to store the formatted records off the
1248 * audit context (for those records that have a context), and emit them
1249 * all at syscall exit. However, this could delay the reporting of
1250 * significant errors until syscall exit (or never, if the system
1253 unsigned int audit_serial(void)
1255 static DEFINE_SPINLOCK(serial_lock
);
1256 static unsigned int serial
= 0;
1258 unsigned long flags
;
1261 spin_lock_irqsave(&serial_lock
, flags
);
1264 } while (unlikely(!ret
));
1265 spin_unlock_irqrestore(&serial_lock
, flags
);
1270 static inline void audit_get_stamp(struct audit_context
*ctx
,
1271 struct timespec
*t
, unsigned int *serial
)
1273 if (!ctx
|| !auditsc_get_stamp(ctx
, t
, serial
)) {
1275 *serial
= audit_serial();
1280 * Wait for auditd to drain the queue a little
1282 static long wait_for_auditd(long sleep_time
)
1284 DECLARE_WAITQUEUE(wait
, current
);
1285 set_current_state(TASK_UNINTERRUPTIBLE
);
1286 add_wait_queue_exclusive(&audit_backlog_wait
, &wait
);
1288 if (audit_backlog_limit
&&
1289 skb_queue_len(&audit_skb_queue
) > audit_backlog_limit
)
1290 sleep_time
= schedule_timeout(sleep_time
);
1292 __set_current_state(TASK_RUNNING
);
1293 remove_wait_queue(&audit_backlog_wait
, &wait
);
1299 * audit_log_start - obtain an audit buffer
1300 * @ctx: audit_context (may be NULL)
1301 * @gfp_mask: type of allocation
1302 * @type: audit message type
1304 * Returns audit_buffer pointer on success or NULL on error.
1306 * Obtain an audit buffer. This routine does locking to obtain the
1307 * audit buffer, but then no locking is required for calls to
1308 * audit_log_*format. If the task (ctx) is a task that is currently in a
1309 * syscall, then the syscall is marked as auditable and an audit record
1310 * will be written at syscall exit. If there is no associated task, then
1311 * task context (ctx) should be NULL.
1313 struct audit_buffer
*audit_log_start(struct audit_context
*ctx
, gfp_t gfp_mask
,
1316 struct audit_buffer
*ab
= NULL
;
1318 unsigned int uninitialized_var(serial
);
1319 int reserve
= 5; /* Allow atomic callers to go up to five
1320 entries over the normal backlog limit */
1321 unsigned long timeout_start
= jiffies
;
1323 if (audit_initialized
!= AUDIT_INITIALIZED
)
1326 if (unlikely(audit_filter_type(type
)))
1329 if (gfp_mask
& __GFP_WAIT
) {
1330 if (audit_pid
&& audit_pid
== current
->pid
)
1331 gfp_mask
&= ~__GFP_WAIT
;
1336 while (audit_backlog_limit
1337 && skb_queue_len(&audit_skb_queue
) > audit_backlog_limit
+ reserve
) {
1338 if (gfp_mask
& __GFP_WAIT
&& audit_backlog_wait_time
) {
1341 sleep_time
= timeout_start
+ audit_backlog_wait_time
- jiffies
;
1342 if (sleep_time
> 0) {
1343 sleep_time
= wait_for_auditd(sleep_time
);
1348 if (audit_rate_check() && printk_ratelimit())
1349 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1350 skb_queue_len(&audit_skb_queue
),
1351 audit_backlog_limit
);
1352 audit_log_lost("backlog limit exceeded");
1353 audit_backlog_wait_time
= audit_backlog_wait_overflow
;
1354 wake_up(&audit_backlog_wait
);
1358 audit_backlog_wait_time
= AUDIT_BACKLOG_WAIT_TIME
;
1360 ab
= audit_buffer_alloc(ctx
, gfp_mask
, type
);
1362 audit_log_lost("out of memory in audit_log_start");
1366 audit_get_stamp(ab
->ctx
, &t
, &serial
);
1368 audit_log_format(ab
, "audit(%lu.%03lu:%u): ",
1369 t
.tv_sec
, t
.tv_nsec
/1000000, serial
);
1374 * audit_expand - expand skb in the audit buffer
1376 * @extra: space to add at tail of the skb
1378 * Returns 0 (no space) on failed expansion, or available space if
1381 static inline int audit_expand(struct audit_buffer
*ab
, int extra
)
1383 struct sk_buff
*skb
= ab
->skb
;
1384 int oldtail
= skb_tailroom(skb
);
1385 int ret
= pskb_expand_head(skb
, 0, extra
, ab
->gfp_mask
);
1386 int newtail
= skb_tailroom(skb
);
1389 audit_log_lost("out of memory in audit_expand");
1393 skb
->truesize
+= newtail
- oldtail
;
1398 * Format an audit message into the audit buffer. If there isn't enough
1399 * room in the audit buffer, more room will be allocated and vsnprint
1400 * will be called a second time. Currently, we assume that a printk
1401 * can't format message larger than 1024 bytes, so we don't either.
1403 static void audit_log_vformat(struct audit_buffer
*ab
, const char *fmt
,
1407 struct sk_buff
*skb
;
1415 avail
= skb_tailroom(skb
);
1417 avail
= audit_expand(ab
, AUDIT_BUFSIZ
);
1421 va_copy(args2
, args
);
1422 len
= vsnprintf(skb_tail_pointer(skb
), avail
, fmt
, args
);
1424 /* The printk buffer is 1024 bytes long, so if we get
1425 * here and AUDIT_BUFSIZ is at least 1024, then we can
1426 * log everything that printk could have logged. */
1427 avail
= audit_expand(ab
,
1428 max_t(unsigned, AUDIT_BUFSIZ
, 1+len
-avail
));
1431 len
= vsnprintf(skb_tail_pointer(skb
), avail
, fmt
, args2
);
1442 * audit_log_format - format a message into the audit buffer.
1444 * @fmt: format string
1445 * @...: optional parameters matching @fmt string
1447 * All the work is done in audit_log_vformat.
1449 void audit_log_format(struct audit_buffer
*ab
, const char *fmt
, ...)
1455 va_start(args
, fmt
);
1456 audit_log_vformat(ab
, fmt
, args
);
1461 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1462 * @ab: the audit_buffer
1463 * @buf: buffer to convert to hex
1464 * @len: length of @buf to be converted
1466 * No return value; failure to expand is silently ignored.
1468 * This function will take the passed buf and convert it into a string of
1469 * ascii hex digits. The new string is placed onto the skb.
1471 void audit_log_n_hex(struct audit_buffer
*ab
, const unsigned char *buf
,
1474 int i
, avail
, new_len
;
1476 struct sk_buff
*skb
;
1483 avail
= skb_tailroom(skb
);
1485 if (new_len
>= avail
) {
1486 /* Round the buffer request up to the next multiple */
1487 new_len
= AUDIT_BUFSIZ
*(((new_len
-avail
)/AUDIT_BUFSIZ
) + 1);
1488 avail
= audit_expand(ab
, new_len
);
1493 ptr
= skb_tail_pointer(skb
);
1494 for (i
= 0; i
< len
; i
++)
1495 ptr
= hex_byte_pack_upper(ptr
, buf
[i
]);
1497 skb_put(skb
, len
<< 1); /* new string is twice the old string */
1501 * Format a string of no more than slen characters into the audit buffer,
1502 * enclosed in quote marks.
1504 void audit_log_n_string(struct audit_buffer
*ab
, const char *string
,
1509 struct sk_buff
*skb
;
1516 avail
= skb_tailroom(skb
);
1517 new_len
= slen
+ 3; /* enclosing quotes + null terminator */
1518 if (new_len
> avail
) {
1519 avail
= audit_expand(ab
, new_len
);
1523 ptr
= skb_tail_pointer(skb
);
1525 memcpy(ptr
, string
, slen
);
1529 skb_put(skb
, slen
+ 2); /* don't include null terminator */
1533 * audit_string_contains_control - does a string need to be logged in hex
1534 * @string: string to be checked
1535 * @len: max length of the string to check
1537 int audit_string_contains_control(const char *string
, size_t len
)
1539 const unsigned char *p
;
1540 for (p
= string
; p
< (const unsigned char *)string
+ len
; p
++) {
1541 if (*p
== '"' || *p
< 0x21 || *p
> 0x7e)
1548 * audit_log_n_untrustedstring - log a string that may contain random characters
1550 * @len: length of string (not including trailing null)
1551 * @string: string to be logged
1553 * This code will escape a string that is passed to it if the string
1554 * contains a control character, unprintable character, double quote mark,
1555 * or a space. Unescaped strings will start and end with a double quote mark.
1556 * Strings that are escaped are printed in hex (2 digits per char).
1558 * The caller specifies the number of characters in the string to log, which may
1559 * or may not be the entire string.
1561 void audit_log_n_untrustedstring(struct audit_buffer
*ab
, const char *string
,
1564 if (audit_string_contains_control(string
, len
))
1565 audit_log_n_hex(ab
, string
, len
);
1567 audit_log_n_string(ab
, string
, len
);
1571 * audit_log_untrustedstring - log a string that may contain random characters
1573 * @string: string to be logged
1575 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1576 * determine string length.
1578 void audit_log_untrustedstring(struct audit_buffer
*ab
, const char *string
)
1580 audit_log_n_untrustedstring(ab
, string
, strlen(string
));
1583 /* This is a helper-function to print the escaped d_path */
1584 void audit_log_d_path(struct audit_buffer
*ab
, const char *prefix
,
1585 const struct path
*path
)
1590 audit_log_format(ab
, "%s", prefix
);
1592 /* We will allow 11 spaces for ' (deleted)' to be appended */
1593 pathname
= kmalloc(PATH_MAX
+11, ab
->gfp_mask
);
1595 audit_log_string(ab
, "<no_memory>");
1598 p
= d_path(path
, pathname
, PATH_MAX
+11);
1599 if (IS_ERR(p
)) { /* Should never happen since we send PATH_MAX */
1600 /* FIXME: can we save some information here? */
1601 audit_log_string(ab
, "<too_long>");
1603 audit_log_untrustedstring(ab
, p
);
1607 void audit_log_session_info(struct audit_buffer
*ab
)
1609 unsigned int sessionid
= audit_get_sessionid(current
);
1610 uid_t auid
= from_kuid(&init_user_ns
, audit_get_loginuid(current
));
1612 audit_log_format(ab
, " auid=%u ses=%u", auid
, sessionid
);
1615 void audit_log_key(struct audit_buffer
*ab
, char *key
)
1617 audit_log_format(ab
, " key=");
1619 audit_log_untrustedstring(ab
, key
);
1621 audit_log_format(ab
, "(null)");
1624 void audit_log_cap(struct audit_buffer
*ab
, char *prefix
, kernel_cap_t
*cap
)
1628 audit_log_format(ab
, " %s=", prefix
);
1629 CAP_FOR_EACH_U32(i
) {
1630 audit_log_format(ab
, "%08x",
1631 cap
->cap
[CAP_LAST_U32
- i
]);
1635 void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1637 kernel_cap_t
*perm
= &name
->fcap
.permitted
;
1638 kernel_cap_t
*inh
= &name
->fcap
.inheritable
;
1641 if (!cap_isclear(*perm
)) {
1642 audit_log_cap(ab
, "cap_fp", perm
);
1645 if (!cap_isclear(*inh
)) {
1646 audit_log_cap(ab
, "cap_fi", inh
);
1651 audit_log_format(ab
, " cap_fe=%d cap_fver=%x",
1652 name
->fcap
.fE
, name
->fcap_ver
);
1655 static inline int audit_copy_fcaps(struct audit_names
*name
,
1656 const struct dentry
*dentry
)
1658 struct cpu_vfs_cap_data caps
;
1664 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
1668 name
->fcap
.permitted
= caps
.permitted
;
1669 name
->fcap
.inheritable
= caps
.inheritable
;
1670 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
1671 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >>
1672 VFS_CAP_REVISION_SHIFT
;
1677 /* Copy inode data into an audit_names. */
1678 void audit_copy_inode(struct audit_names
*name
, const struct dentry
*dentry
,
1679 const struct inode
*inode
)
1681 name
->ino
= inode
->i_ino
;
1682 name
->dev
= inode
->i_sb
->s_dev
;
1683 name
->mode
= inode
->i_mode
;
1684 name
->uid
= inode
->i_uid
;
1685 name
->gid
= inode
->i_gid
;
1686 name
->rdev
= inode
->i_rdev
;
1687 security_inode_getsecid(inode
, &name
->osid
);
1688 audit_copy_fcaps(name
, dentry
);
1692 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1693 * @context: audit_context for the task
1694 * @n: audit_names structure with reportable details
1695 * @path: optional path to report instead of audit_names->name
1696 * @record_num: record number to report when handling a list of names
1697 * @call_panic: optional pointer to int that will be updated if secid fails
1699 void audit_log_name(struct audit_context
*context
, struct audit_names
*n
,
1700 struct path
*path
, int record_num
, int *call_panic
)
1702 struct audit_buffer
*ab
;
1703 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1707 audit_log_format(ab
, "item=%d", record_num
);
1710 audit_log_d_path(ab
, " name=", path
);
1712 switch (n
->name_len
) {
1713 case AUDIT_NAME_FULL
:
1714 /* log the full path */
1715 audit_log_format(ab
, " name=");
1716 audit_log_untrustedstring(ab
, n
->name
->name
);
1719 /* name was specified as a relative path and the
1720 * directory component is the cwd */
1721 audit_log_d_path(ab
, " name=", &context
->pwd
);
1724 /* log the name's directory component */
1725 audit_log_format(ab
, " name=");
1726 audit_log_n_untrustedstring(ab
, n
->name
->name
,
1730 audit_log_format(ab
, " name=(null)");
1732 if (n
->ino
!= (unsigned long)-1) {
1733 audit_log_format(ab
, " inode=%lu"
1734 " dev=%02x:%02x mode=%#ho"
1735 " ouid=%u ogid=%u rdev=%02x:%02x",
1740 from_kuid(&init_user_ns
, n
->uid
),
1741 from_kgid(&init_user_ns
, n
->gid
),
1748 if (security_secid_to_secctx(
1749 n
->osid
, &ctx
, &len
)) {
1750 audit_log_format(ab
, " osid=%u", n
->osid
);
1754 audit_log_format(ab
, " obj=%s", ctx
);
1755 security_release_secctx(ctx
, len
);
1759 /* log the audit_names record type */
1760 audit_log_format(ab
, " nametype=");
1762 case AUDIT_TYPE_NORMAL
:
1763 audit_log_format(ab
, "NORMAL");
1765 case AUDIT_TYPE_PARENT
:
1766 audit_log_format(ab
, "PARENT");
1768 case AUDIT_TYPE_CHILD_DELETE
:
1769 audit_log_format(ab
, "DELETE");
1771 case AUDIT_TYPE_CHILD_CREATE
:
1772 audit_log_format(ab
, "CREATE");
1775 audit_log_format(ab
, "UNKNOWN");
1779 audit_log_fcaps(ab
, n
);
1783 int audit_log_task_context(struct audit_buffer
*ab
)
1790 security_task_getsecid(current
, &sid
);
1794 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
1796 if (error
!= -EINVAL
)
1801 audit_log_format(ab
, " subj=%s", ctx
);
1802 security_release_secctx(ctx
, len
);
1806 audit_panic("error in audit_log_task_context");
1809 EXPORT_SYMBOL(audit_log_task_context
);
1811 void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
1813 const struct cred
*cred
;
1814 char name
[sizeof(tsk
->comm
)];
1815 struct mm_struct
*mm
= tsk
->mm
;
1821 /* tsk == current */
1822 cred
= current_cred();
1824 spin_lock_irq(&tsk
->sighand
->siglock
);
1825 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1826 tty
= tsk
->signal
->tty
->name
;
1829 spin_unlock_irq(&tsk
->sighand
->siglock
);
1831 audit_log_format(ab
,
1832 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1833 " euid=%u suid=%u fsuid=%u"
1834 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1837 from_kuid(&init_user_ns
, audit_get_loginuid(tsk
)),
1838 from_kuid(&init_user_ns
, cred
->uid
),
1839 from_kgid(&init_user_ns
, cred
->gid
),
1840 from_kuid(&init_user_ns
, cred
->euid
),
1841 from_kuid(&init_user_ns
, cred
->suid
),
1842 from_kuid(&init_user_ns
, cred
->fsuid
),
1843 from_kgid(&init_user_ns
, cred
->egid
),
1844 from_kgid(&init_user_ns
, cred
->sgid
),
1845 from_kgid(&init_user_ns
, cred
->fsgid
),
1846 tty
, audit_get_sessionid(tsk
));
1848 get_task_comm(name
, tsk
);
1849 audit_log_format(ab
, " comm=");
1850 audit_log_untrustedstring(ab
, name
);
1853 down_read(&mm
->mmap_sem
);
1855 audit_log_d_path(ab
, " exe=", &mm
->exe_file
->f_path
);
1856 up_read(&mm
->mmap_sem
);
1858 audit_log_format(ab
, " exe=(null)");
1859 audit_log_task_context(ab
);
1861 EXPORT_SYMBOL(audit_log_task_info
);
1864 * audit_log_link_denied - report a link restriction denial
1865 * @operation: specific link opreation
1866 * @link: the path that triggered the restriction
1868 void audit_log_link_denied(const char *operation
, struct path
*link
)
1870 struct audit_buffer
*ab
;
1871 struct audit_names
*name
;
1873 name
= kzalloc(sizeof(*name
), GFP_NOFS
);
1877 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1878 ab
= audit_log_start(current
->audit_context
, GFP_KERNEL
,
1882 audit_log_format(ab
, "op=%s", operation
);
1883 audit_log_task_info(ab
, current
);
1884 audit_log_format(ab
, " res=0");
1887 /* Generate AUDIT_PATH record with object. */
1888 name
->type
= AUDIT_TYPE_NORMAL
;
1889 audit_copy_inode(name
, link
->dentry
, link
->dentry
->d_inode
);
1890 audit_log_name(current
->audit_context
, name
, link
, 0, NULL
);
1896 * audit_log_end - end one audit record
1897 * @ab: the audit_buffer
1899 * The netlink_* functions cannot be called inside an irq context, so
1900 * the audit buffer is placed on a queue and a tasklet is scheduled to
1901 * remove them from the queue outside the irq context. May be called in
1904 void audit_log_end(struct audit_buffer
*ab
)
1908 if (!audit_rate_check()) {
1909 audit_log_lost("rate limit exceeded");
1911 struct nlmsghdr
*nlh
= nlmsg_hdr(ab
->skb
);
1912 nlh
->nlmsg_len
= ab
->skb
->len
- NLMSG_HDRLEN
;
1915 skb_queue_tail(&audit_skb_queue
, ab
->skb
);
1916 wake_up_interruptible(&kauditd_wait
);
1918 audit_printk_skb(ab
->skb
);
1922 audit_buffer_free(ab
);
1926 * audit_log - Log an audit record
1927 * @ctx: audit context
1928 * @gfp_mask: type of allocation
1929 * @type: audit message type
1930 * @fmt: format string to use
1931 * @...: variable parameters matching the format string
1933 * This is a convenience function that calls audit_log_start,
1934 * audit_log_vformat, and audit_log_end. It may be called
1937 void audit_log(struct audit_context
*ctx
, gfp_t gfp_mask
, int type
,
1938 const char *fmt
, ...)
1940 struct audit_buffer
*ab
;
1943 ab
= audit_log_start(ctx
, gfp_mask
, type
);
1945 va_start(args
, fmt
);
1946 audit_log_vformat(ab
, fmt
, args
);
1952 #ifdef CONFIG_SECURITY
1954 * audit_log_secctx - Converts and logs SELinux context
1956 * @secid: security number
1958 * This is a helper function that calls security_secid_to_secctx to convert
1959 * secid to secctx and then adds the (converted) SELinux context to the audit
1960 * log by calling audit_log_format, thus also preventing leak of internal secid
1961 * to userspace. If secid cannot be converted audit_panic is called.
1963 void audit_log_secctx(struct audit_buffer
*ab
, u32 secid
)
1968 if (security_secid_to_secctx(secid
, &secctx
, &len
)) {
1969 audit_panic("Cannot convert secid to context");
1971 audit_log_format(ab
, " obj=%s", secctx
);
1972 security_release_secctx(secctx
, len
);
1975 EXPORT_SYMBOL(audit_log_secctx
);
1978 EXPORT_SYMBOL(audit_log_start
);
1979 EXPORT_SYMBOL(audit_log_end
);
1980 EXPORT_SYMBOL(audit_log_format
);
1981 EXPORT_SYMBOL(audit_log
);