blk-mq: always free hctx after request queue is freed
[linux/fpc-iii.git] / drivers / media / platform / ti-vpe / vpdma.c
blob78d716c93649a04fe5a56c258b415bdceefcc7a1
1 /*
2 * VPDMA helper library
4 * Copyright (c) 2013 Texas Instruments Inc.
6 * David Griego, <dagriego@biglakesoftware.com>
7 * Dale Farnsworth, <dale@farnsworth.org>
8 * Archit Taneja, <archit@ti.com>
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published by
12 * the Free Software Foundation.
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/firmware.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/videodev2.h>
26 #include "vpdma.h"
27 #include "vpdma_priv.h"
29 #define VPDMA_FIRMWARE "vpdma-1b8.bin"
31 const struct vpdma_data_format vpdma_yuv_fmts[] = {
32 [VPDMA_DATA_FMT_Y444] = {
33 .type = VPDMA_DATA_FMT_TYPE_YUV,
34 .data_type = DATA_TYPE_Y444,
35 .depth = 8,
37 [VPDMA_DATA_FMT_Y422] = {
38 .type = VPDMA_DATA_FMT_TYPE_YUV,
39 .data_type = DATA_TYPE_Y422,
40 .depth = 8,
42 [VPDMA_DATA_FMT_Y420] = {
43 .type = VPDMA_DATA_FMT_TYPE_YUV,
44 .data_type = DATA_TYPE_Y420,
45 .depth = 8,
47 [VPDMA_DATA_FMT_C444] = {
48 .type = VPDMA_DATA_FMT_TYPE_YUV,
49 .data_type = DATA_TYPE_C444,
50 .depth = 8,
52 [VPDMA_DATA_FMT_C422] = {
53 .type = VPDMA_DATA_FMT_TYPE_YUV,
54 .data_type = DATA_TYPE_C422,
55 .depth = 8,
57 [VPDMA_DATA_FMT_C420] = {
58 .type = VPDMA_DATA_FMT_TYPE_YUV,
59 .data_type = DATA_TYPE_C420,
60 .depth = 4,
62 [VPDMA_DATA_FMT_YCR422] = {
63 .type = VPDMA_DATA_FMT_TYPE_YUV,
64 .data_type = DATA_TYPE_YCR422,
65 .depth = 16,
67 [VPDMA_DATA_FMT_YC444] = {
68 .type = VPDMA_DATA_FMT_TYPE_YUV,
69 .data_type = DATA_TYPE_YC444,
70 .depth = 24,
72 [VPDMA_DATA_FMT_CRY422] = {
73 .type = VPDMA_DATA_FMT_TYPE_YUV,
74 .data_type = DATA_TYPE_CRY422,
75 .depth = 16,
77 [VPDMA_DATA_FMT_CBY422] = {
78 .type = VPDMA_DATA_FMT_TYPE_YUV,
79 .data_type = DATA_TYPE_CBY422,
80 .depth = 16,
82 [VPDMA_DATA_FMT_YCB422] = {
83 .type = VPDMA_DATA_FMT_TYPE_YUV,
84 .data_type = DATA_TYPE_YCB422,
85 .depth = 16,
88 EXPORT_SYMBOL(vpdma_yuv_fmts);
90 const struct vpdma_data_format vpdma_rgb_fmts[] = {
91 [VPDMA_DATA_FMT_RGB565] = {
92 .type = VPDMA_DATA_FMT_TYPE_RGB,
93 .data_type = DATA_TYPE_RGB16_565,
94 .depth = 16,
96 [VPDMA_DATA_FMT_ARGB16_1555] = {
97 .type = VPDMA_DATA_FMT_TYPE_RGB,
98 .data_type = DATA_TYPE_ARGB_1555,
99 .depth = 16,
101 [VPDMA_DATA_FMT_ARGB16] = {
102 .type = VPDMA_DATA_FMT_TYPE_RGB,
103 .data_type = DATA_TYPE_ARGB_4444,
104 .depth = 16,
106 [VPDMA_DATA_FMT_RGBA16_5551] = {
107 .type = VPDMA_DATA_FMT_TYPE_RGB,
108 .data_type = DATA_TYPE_RGBA_5551,
109 .depth = 16,
111 [VPDMA_DATA_FMT_RGBA16] = {
112 .type = VPDMA_DATA_FMT_TYPE_RGB,
113 .data_type = DATA_TYPE_RGBA_4444,
114 .depth = 16,
116 [VPDMA_DATA_FMT_ARGB24] = {
117 .type = VPDMA_DATA_FMT_TYPE_RGB,
118 .data_type = DATA_TYPE_ARGB24_6666,
119 .depth = 24,
121 [VPDMA_DATA_FMT_RGB24] = {
122 .type = VPDMA_DATA_FMT_TYPE_RGB,
123 .data_type = DATA_TYPE_RGB24_888,
124 .depth = 24,
126 [VPDMA_DATA_FMT_ARGB32] = {
127 .type = VPDMA_DATA_FMT_TYPE_RGB,
128 .data_type = DATA_TYPE_ARGB32_8888,
129 .depth = 32,
131 [VPDMA_DATA_FMT_RGBA24] = {
132 .type = VPDMA_DATA_FMT_TYPE_RGB,
133 .data_type = DATA_TYPE_RGBA24_6666,
134 .depth = 24,
136 [VPDMA_DATA_FMT_RGBA32] = {
137 .type = VPDMA_DATA_FMT_TYPE_RGB,
138 .data_type = DATA_TYPE_RGBA32_8888,
139 .depth = 32,
141 [VPDMA_DATA_FMT_BGR565] = {
142 .type = VPDMA_DATA_FMT_TYPE_RGB,
143 .data_type = DATA_TYPE_BGR16_565,
144 .depth = 16,
146 [VPDMA_DATA_FMT_ABGR16_1555] = {
147 .type = VPDMA_DATA_FMT_TYPE_RGB,
148 .data_type = DATA_TYPE_ABGR_1555,
149 .depth = 16,
151 [VPDMA_DATA_FMT_ABGR16] = {
152 .type = VPDMA_DATA_FMT_TYPE_RGB,
153 .data_type = DATA_TYPE_ABGR_4444,
154 .depth = 16,
156 [VPDMA_DATA_FMT_BGRA16_5551] = {
157 .type = VPDMA_DATA_FMT_TYPE_RGB,
158 .data_type = DATA_TYPE_BGRA_5551,
159 .depth = 16,
161 [VPDMA_DATA_FMT_BGRA16] = {
162 .type = VPDMA_DATA_FMT_TYPE_RGB,
163 .data_type = DATA_TYPE_BGRA_4444,
164 .depth = 16,
166 [VPDMA_DATA_FMT_ABGR24] = {
167 .type = VPDMA_DATA_FMT_TYPE_RGB,
168 .data_type = DATA_TYPE_ABGR24_6666,
169 .depth = 24,
171 [VPDMA_DATA_FMT_BGR24] = {
172 .type = VPDMA_DATA_FMT_TYPE_RGB,
173 .data_type = DATA_TYPE_BGR24_888,
174 .depth = 24,
176 [VPDMA_DATA_FMT_ABGR32] = {
177 .type = VPDMA_DATA_FMT_TYPE_RGB,
178 .data_type = DATA_TYPE_ABGR32_8888,
179 .depth = 32,
181 [VPDMA_DATA_FMT_BGRA24] = {
182 .type = VPDMA_DATA_FMT_TYPE_RGB,
183 .data_type = DATA_TYPE_BGRA24_6666,
184 .depth = 24,
186 [VPDMA_DATA_FMT_BGRA32] = {
187 .type = VPDMA_DATA_FMT_TYPE_RGB,
188 .data_type = DATA_TYPE_BGRA32_8888,
189 .depth = 32,
192 EXPORT_SYMBOL(vpdma_rgb_fmts);
195 * To handle RAW format we are re-using the CBY422
196 * vpdma data type so that we use the vpdma to re-order
197 * the incoming bytes, as the parser assumes that the
198 * first byte presented on the bus is the MSB of a 2
199 * bytes value.
200 * RAW8 handles from 1 to 8 bits
201 * RAW16 handles from 9 to 16 bits
203 const struct vpdma_data_format vpdma_raw_fmts[] = {
204 [VPDMA_DATA_FMT_RAW8] = {
205 .type = VPDMA_DATA_FMT_TYPE_YUV,
206 .data_type = DATA_TYPE_CBY422,
207 .depth = 8,
209 [VPDMA_DATA_FMT_RAW16] = {
210 .type = VPDMA_DATA_FMT_TYPE_YUV,
211 .data_type = DATA_TYPE_CBY422,
212 .depth = 16,
215 EXPORT_SYMBOL(vpdma_raw_fmts);
217 const struct vpdma_data_format vpdma_misc_fmts[] = {
218 [VPDMA_DATA_FMT_MV] = {
219 .type = VPDMA_DATA_FMT_TYPE_MISC,
220 .data_type = DATA_TYPE_MV,
221 .depth = 4,
224 EXPORT_SYMBOL(vpdma_misc_fmts);
226 struct vpdma_channel_info {
227 int num; /* VPDMA channel number */
228 int cstat_offset; /* client CSTAT register offset */
231 static const struct vpdma_channel_info chan_info[] = {
232 [VPE_CHAN_LUMA1_IN] = {
233 .num = VPE_CHAN_NUM_LUMA1_IN,
234 .cstat_offset = VPDMA_DEI_LUMA1_CSTAT,
236 [VPE_CHAN_CHROMA1_IN] = {
237 .num = VPE_CHAN_NUM_CHROMA1_IN,
238 .cstat_offset = VPDMA_DEI_CHROMA1_CSTAT,
240 [VPE_CHAN_LUMA2_IN] = {
241 .num = VPE_CHAN_NUM_LUMA2_IN,
242 .cstat_offset = VPDMA_DEI_LUMA2_CSTAT,
244 [VPE_CHAN_CHROMA2_IN] = {
245 .num = VPE_CHAN_NUM_CHROMA2_IN,
246 .cstat_offset = VPDMA_DEI_CHROMA2_CSTAT,
248 [VPE_CHAN_LUMA3_IN] = {
249 .num = VPE_CHAN_NUM_LUMA3_IN,
250 .cstat_offset = VPDMA_DEI_LUMA3_CSTAT,
252 [VPE_CHAN_CHROMA3_IN] = {
253 .num = VPE_CHAN_NUM_CHROMA3_IN,
254 .cstat_offset = VPDMA_DEI_CHROMA3_CSTAT,
256 [VPE_CHAN_MV_IN] = {
257 .num = VPE_CHAN_NUM_MV_IN,
258 .cstat_offset = VPDMA_DEI_MV_IN_CSTAT,
260 [VPE_CHAN_MV_OUT] = {
261 .num = VPE_CHAN_NUM_MV_OUT,
262 .cstat_offset = VPDMA_DEI_MV_OUT_CSTAT,
264 [VPE_CHAN_LUMA_OUT] = {
265 .num = VPE_CHAN_NUM_LUMA_OUT,
266 .cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
268 [VPE_CHAN_CHROMA_OUT] = {
269 .num = VPE_CHAN_NUM_CHROMA_OUT,
270 .cstat_offset = VPDMA_VIP_UP_UV_CSTAT,
272 [VPE_CHAN_RGB_OUT] = {
273 .num = VPE_CHAN_NUM_RGB_OUT,
274 .cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
278 static u32 read_reg(struct vpdma_data *vpdma, int offset)
280 return ioread32(vpdma->base + offset);
283 static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
285 iowrite32(value, vpdma->base + offset);
288 static int read_field_reg(struct vpdma_data *vpdma, int offset,
289 u32 mask, int shift)
291 return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
294 static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
295 u32 mask, int shift)
297 u32 val = read_reg(vpdma, offset);
299 val &= ~(mask << shift);
300 val |= (field & mask) << shift;
302 write_reg(vpdma, offset, val);
305 void vpdma_dump_regs(struct vpdma_data *vpdma)
307 struct device *dev = &vpdma->pdev->dev;
309 #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
311 dev_dbg(dev, "VPDMA Registers:\n");
313 DUMPREG(PID);
314 DUMPREG(LIST_ADDR);
315 DUMPREG(LIST_ATTR);
316 DUMPREG(LIST_STAT_SYNC);
317 DUMPREG(BG_RGB);
318 DUMPREG(BG_YUV);
319 DUMPREG(SETUP);
320 DUMPREG(MAX_SIZE1);
321 DUMPREG(MAX_SIZE2);
322 DUMPREG(MAX_SIZE3);
325 * dumping registers of only group0 and group3, because VPE channels
326 * lie within group0 and group3 registers
328 DUMPREG(INT_CHAN_STAT(0));
329 DUMPREG(INT_CHAN_MASK(0));
330 DUMPREG(INT_CHAN_STAT(3));
331 DUMPREG(INT_CHAN_MASK(3));
332 DUMPREG(INT_CLIENT0_STAT);
333 DUMPREG(INT_CLIENT0_MASK);
334 DUMPREG(INT_CLIENT1_STAT);
335 DUMPREG(INT_CLIENT1_MASK);
336 DUMPREG(INT_LIST0_STAT);
337 DUMPREG(INT_LIST0_MASK);
340 * these are registers specific to VPE clients, we can make this
341 * function dump client registers specific to VPE or VIP based on
342 * who is using it
344 DUMPREG(DEI_CHROMA1_CSTAT);
345 DUMPREG(DEI_LUMA1_CSTAT);
346 DUMPREG(DEI_CHROMA2_CSTAT);
347 DUMPREG(DEI_LUMA2_CSTAT);
348 DUMPREG(DEI_CHROMA3_CSTAT);
349 DUMPREG(DEI_LUMA3_CSTAT);
350 DUMPREG(DEI_MV_IN_CSTAT);
351 DUMPREG(DEI_MV_OUT_CSTAT);
352 DUMPREG(VIP_UP_Y_CSTAT);
353 DUMPREG(VIP_UP_UV_CSTAT);
354 DUMPREG(VPI_CTL_CSTAT);
356 EXPORT_SYMBOL(vpdma_dump_regs);
359 * Allocate a DMA buffer
361 int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
363 buf->size = size;
364 buf->mapped = false;
365 buf->addr = kzalloc(size, GFP_KERNEL);
366 if (!buf->addr)
367 return -ENOMEM;
369 WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0);
371 return 0;
373 EXPORT_SYMBOL(vpdma_alloc_desc_buf);
375 void vpdma_free_desc_buf(struct vpdma_buf *buf)
377 WARN_ON(buf->mapped);
378 kfree(buf->addr);
379 buf->addr = NULL;
380 buf->size = 0;
382 EXPORT_SYMBOL(vpdma_free_desc_buf);
385 * map descriptor/payload DMA buffer, enabling DMA access
387 int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
389 struct device *dev = &vpdma->pdev->dev;
391 WARN_ON(buf->mapped);
392 buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
393 DMA_BIDIRECTIONAL);
394 if (dma_mapping_error(dev, buf->dma_addr)) {
395 dev_err(dev, "failed to map buffer\n");
396 return -EINVAL;
399 buf->mapped = true;
401 return 0;
403 EXPORT_SYMBOL(vpdma_map_desc_buf);
406 * unmap descriptor/payload DMA buffer, disabling DMA access and
407 * allowing the main processor to access the data
409 void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
411 struct device *dev = &vpdma->pdev->dev;
413 if (buf->mapped)
414 dma_unmap_single(dev, buf->dma_addr, buf->size,
415 DMA_BIDIRECTIONAL);
417 buf->mapped = false;
419 EXPORT_SYMBOL(vpdma_unmap_desc_buf);
422 * Cleanup all pending descriptors of a list
423 * First, stop the current list being processed.
424 * If the VPDMA was busy, this step makes vpdma to accept post lists.
425 * To cleanup the internal FSM, post abort list descriptor for all the
426 * channels from @channels array of size @size.
428 int vpdma_list_cleanup(struct vpdma_data *vpdma, int list_num,
429 int *channels, int size)
431 struct vpdma_desc_list abort_list;
432 int i, ret, timeout = 500;
434 write_reg(vpdma, VPDMA_LIST_ATTR,
435 (list_num << VPDMA_LIST_NUM_SHFT) |
436 (1 << VPDMA_LIST_STOP_SHFT));
438 if (size <= 0 || !channels)
439 return 0;
441 ret = vpdma_create_desc_list(&abort_list,
442 size * sizeof(struct vpdma_dtd), VPDMA_LIST_TYPE_NORMAL);
443 if (ret)
444 return ret;
446 for (i = 0; i < size; i++)
447 vpdma_add_abort_channel_ctd(&abort_list, channels[i]);
449 ret = vpdma_map_desc_buf(vpdma, &abort_list.buf);
450 if (ret)
451 return ret;
452 ret = vpdma_submit_descs(vpdma, &abort_list, list_num);
453 if (ret)
454 return ret;
456 while (vpdma_list_busy(vpdma, list_num) && --timeout)
459 if (timeout == 0) {
460 dev_err(&vpdma->pdev->dev, "Timed out cleaning up VPDMA list\n");
461 return -EBUSY;
464 vpdma_unmap_desc_buf(vpdma, &abort_list.buf);
465 vpdma_free_desc_buf(&abort_list.buf);
467 return 0;
469 EXPORT_SYMBOL(vpdma_list_cleanup);
472 * create a descriptor list, the user of this list will append configuration,
473 * control and data descriptors to this list, this list will be submitted to
474 * VPDMA. VPDMA's list parser will go through each descriptor and perform the
475 * required DMA operations
477 int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
479 int r;
481 r = vpdma_alloc_desc_buf(&list->buf, size);
482 if (r)
483 return r;
485 list->next = list->buf.addr;
487 list->type = type;
489 return 0;
491 EXPORT_SYMBOL(vpdma_create_desc_list);
494 * once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
495 * to allow new descriptors to be added to the list.
497 void vpdma_reset_desc_list(struct vpdma_desc_list *list)
499 list->next = list->buf.addr;
501 EXPORT_SYMBOL(vpdma_reset_desc_list);
504 * free the buffer allocated for the VPDMA descriptor list, this should be
505 * called when the user doesn't want to use VPDMA any more.
507 void vpdma_free_desc_list(struct vpdma_desc_list *list)
509 vpdma_free_desc_buf(&list->buf);
511 list->next = NULL;
513 EXPORT_SYMBOL(vpdma_free_desc_list);
515 bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
517 return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
519 EXPORT_SYMBOL(vpdma_list_busy);
522 * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
524 int vpdma_submit_descs(struct vpdma_data *vpdma,
525 struct vpdma_desc_list *list, int list_num)
527 int list_size;
528 unsigned long flags;
530 if (vpdma_list_busy(vpdma, list_num))
531 return -EBUSY;
533 /* 16-byte granularity */
534 list_size = (list->next - list->buf.addr) >> 4;
536 spin_lock_irqsave(&vpdma->lock, flags);
537 write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
539 write_reg(vpdma, VPDMA_LIST_ATTR,
540 (list_num << VPDMA_LIST_NUM_SHFT) |
541 (list->type << VPDMA_LIST_TYPE_SHFT) |
542 list_size);
543 spin_unlock_irqrestore(&vpdma->lock, flags);
545 return 0;
547 EXPORT_SYMBOL(vpdma_submit_descs);
549 static void dump_dtd(struct vpdma_dtd *dtd);
551 void vpdma_update_dma_addr(struct vpdma_data *vpdma,
552 struct vpdma_desc_list *list, dma_addr_t dma_addr,
553 void *write_dtd, int drop, int idx)
555 struct vpdma_dtd *dtd = list->buf.addr;
556 dma_addr_t write_desc_addr;
557 int offset;
559 dtd += idx;
560 vpdma_unmap_desc_buf(vpdma, &list->buf);
562 dtd->start_addr = dma_addr;
564 /* Calculate write address from the offset of write_dtd from start
565 * of the list->buf
567 offset = (void *)write_dtd - list->buf.addr;
568 write_desc_addr = list->buf.dma_addr + offset;
570 if (drop)
571 dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
572 1, 1, 0);
573 else
574 dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
575 1, 0, 0);
577 vpdma_map_desc_buf(vpdma, &list->buf);
579 dump_dtd(dtd);
581 EXPORT_SYMBOL(vpdma_update_dma_addr);
583 void vpdma_set_max_size(struct vpdma_data *vpdma, int reg_addr,
584 u32 width, u32 height)
586 if (reg_addr != VPDMA_MAX_SIZE1 && reg_addr != VPDMA_MAX_SIZE2 &&
587 reg_addr != VPDMA_MAX_SIZE3)
588 reg_addr = VPDMA_MAX_SIZE1;
590 write_field_reg(vpdma, reg_addr, width - 1,
591 VPDMA_MAX_SIZE_WIDTH_MASK, VPDMA_MAX_SIZE_WIDTH_SHFT);
593 write_field_reg(vpdma, reg_addr, height - 1,
594 VPDMA_MAX_SIZE_HEIGHT_MASK, VPDMA_MAX_SIZE_HEIGHT_SHFT);
597 EXPORT_SYMBOL(vpdma_set_max_size);
599 static void dump_cfd(struct vpdma_cfd *cfd)
601 int class;
603 class = cfd_get_class(cfd);
605 pr_debug("config descriptor of payload class: %s\n",
606 class == CFD_CLS_BLOCK ? "simple block" :
607 "address data block");
609 if (class == CFD_CLS_BLOCK)
610 pr_debug("word0: dst_addr_offset = 0x%08x\n",
611 cfd->dest_addr_offset);
613 if (class == CFD_CLS_BLOCK)
614 pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
616 pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
618 pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, payload_len = %d\n",
619 cfd_get_pkt_type(cfd),
620 cfd_get_direct(cfd), class, cfd_get_dest(cfd),
621 cfd_get_payload_len(cfd));
625 * append a configuration descriptor to the given descriptor list, where the
626 * payload is in the form of a simple data block specified in the descriptor
627 * header, this is used to upload scaler coefficients to the scaler module
629 void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
630 struct vpdma_buf *blk, u32 dest_offset)
632 struct vpdma_cfd *cfd;
633 int len = blk->size;
635 WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
637 cfd = list->next;
638 WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
640 cfd->dest_addr_offset = dest_offset;
641 cfd->block_len = len;
642 cfd->payload_addr = (u32) blk->dma_addr;
643 cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
644 client, len >> 4);
646 list->next = cfd + 1;
648 dump_cfd(cfd);
650 EXPORT_SYMBOL(vpdma_add_cfd_block);
653 * append a configuration descriptor to the given descriptor list, where the
654 * payload is in the address data block format, this is used to a configure a
655 * discontiguous set of MMRs
657 void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
658 struct vpdma_buf *adb)
660 struct vpdma_cfd *cfd;
661 unsigned int len = adb->size;
663 WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
664 WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
666 cfd = list->next;
667 BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
669 cfd->w0 = 0;
670 cfd->w1 = 0;
671 cfd->payload_addr = (u32) adb->dma_addr;
672 cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
673 client, len >> 4);
675 list->next = cfd + 1;
677 dump_cfd(cfd);
679 EXPORT_SYMBOL(vpdma_add_cfd_adb);
682 * control descriptor format change based on what type of control descriptor it
683 * is, we only use 'sync on channel' control descriptors for now, so assume it's
684 * that
686 static void dump_ctd(struct vpdma_ctd *ctd)
688 pr_debug("control descriptor\n");
690 pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
691 ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
695 * append a 'sync on channel' type control descriptor to the given descriptor
696 * list, this descriptor stalls the VPDMA list till the time DMA is completed
697 * on the specified channel
699 void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
700 enum vpdma_channel chan)
702 struct vpdma_ctd *ctd;
704 ctd = list->next;
705 WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
707 ctd->w0 = 0;
708 ctd->w1 = 0;
709 ctd->w2 = 0;
710 ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
711 CTD_TYPE_SYNC_ON_CHANNEL);
713 list->next = ctd + 1;
715 dump_ctd(ctd);
717 EXPORT_SYMBOL(vpdma_add_sync_on_channel_ctd);
720 * append an 'abort_channel' type control descriptor to the given descriptor
721 * list, this descriptor aborts any DMA transaction happening using the
722 * specified channel
724 void vpdma_add_abort_channel_ctd(struct vpdma_desc_list *list,
725 int chan_num)
727 struct vpdma_ctd *ctd;
729 ctd = list->next;
730 WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
732 ctd->w0 = 0;
733 ctd->w1 = 0;
734 ctd->w2 = 0;
735 ctd->type_source_ctl = ctd_type_source_ctl(chan_num,
736 CTD_TYPE_ABORT_CHANNEL);
738 list->next = ctd + 1;
740 dump_ctd(ctd);
742 EXPORT_SYMBOL(vpdma_add_abort_channel_ctd);
744 static void dump_dtd(struct vpdma_dtd *dtd)
746 int dir, chan;
748 dir = dtd_get_dir(dtd);
749 chan = dtd_get_chan(dtd);
751 pr_debug("%s data transfer descriptor for channel %d\n",
752 dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
754 pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
755 dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
756 dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
757 dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
759 if (dir == DTD_DIR_IN)
760 pr_debug("word1: line_length = %d, xfer_height = %d\n",
761 dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
763 pr_debug("word2: start_addr = %pad\n", &dtd->start_addr);
765 pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, pri = %d, next_chan = %d\n",
766 dtd_get_pkt_type(dtd),
767 dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
768 dtd_get_next_chan(dtd));
770 if (dir == DTD_DIR_IN)
771 pr_debug("word4: frame_width = %d, frame_height = %d\n",
772 dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
773 else
774 pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, drp_data = %d, use_desc_reg = %d\n",
775 dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
776 dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
778 if (dir == DTD_DIR_IN)
779 pr_debug("word5: hor_start = %d, ver_start = %d\n",
780 dtd_get_h_start(dtd), dtd_get_v_start(dtd));
781 else
782 pr_debug("word5: max_width %d, max_height %d\n",
783 dtd_get_max_width(dtd), dtd_get_max_height(dtd));
785 pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0);
786 pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1);
790 * append an outbound data transfer descriptor to the given descriptor list,
791 * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
793 * @list: vpdma desc list to which we add this descriptor
794 * @width: width of the image in pixels in memory
795 * @c_rect: compose params of output image
796 * @fmt: vpdma data format of the buffer
797 * dma_addr: dma address as seen by VPDMA
798 * max_width: enum for maximum width of data transfer
799 * max_height: enum for maximum height of data transfer
800 * chan: VPDMA channel
801 * flags: VPDMA flags to configure some descriptor fields
803 void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width,
804 int stride, const struct v4l2_rect *c_rect,
805 const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
806 int max_w, int max_h, enum vpdma_channel chan, u32 flags)
808 vpdma_rawchan_add_out_dtd(list, width, stride, c_rect, fmt, dma_addr,
809 max_w, max_h, chan_info[chan].num, flags);
811 EXPORT_SYMBOL(vpdma_add_out_dtd);
813 void vpdma_rawchan_add_out_dtd(struct vpdma_desc_list *list, int width,
814 int stride, const struct v4l2_rect *c_rect,
815 const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
816 int max_w, int max_h, int raw_vpdma_chan, u32 flags)
818 int priority = 0;
819 int field = 0;
820 int notify = 1;
821 int channel, next_chan;
822 struct v4l2_rect rect = *c_rect;
823 int depth = fmt->depth;
824 struct vpdma_dtd *dtd;
826 channel = next_chan = raw_vpdma_chan;
828 if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
829 fmt->data_type == DATA_TYPE_C420) {
830 rect.height >>= 1;
831 rect.top >>= 1;
832 depth = 8;
835 dma_addr += rect.top * stride + (rect.left * depth >> 3);
837 dtd = list->next;
838 WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
840 dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
841 notify,
842 field,
843 !!(flags & VPDMA_DATA_FRAME_1D),
844 !!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
845 !!(flags & VPDMA_DATA_ODD_LINE_SKIP),
846 stride);
847 dtd->w1 = 0;
848 dtd->start_addr = (u32) dma_addr;
849 dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
850 DTD_DIR_OUT, channel, priority, next_chan);
851 dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
852 dtd->max_width_height = dtd_max_width_height(max_w, max_h);
853 dtd->client_attr0 = 0;
854 dtd->client_attr1 = 0;
856 list->next = dtd + 1;
858 dump_dtd(dtd);
860 EXPORT_SYMBOL(vpdma_rawchan_add_out_dtd);
863 * append an inbound data transfer descriptor to the given descriptor list,
864 * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
866 * @list: vpdma desc list to which we add this descriptor
867 * @width: width of the image in pixels in memory(not the cropped width)
868 * @c_rect: crop params of input image
869 * @fmt: vpdma data format of the buffer
870 * dma_addr: dma address as seen by VPDMA
871 * chan: VPDMA channel
872 * field: top or bottom field info of the input image
873 * flags: VPDMA flags to configure some descriptor fields
874 * frame_width/height: the complete width/height of the image presented to the
875 * client (this makes sense when multiple channels are
876 * connected to the same client, forming a larger frame)
877 * start_h, start_v: position where the given channel starts providing pixel
878 * data to the client (makes sense when multiple channels
879 * contribute to the client)
881 void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width,
882 int stride, const struct v4l2_rect *c_rect,
883 const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
884 enum vpdma_channel chan, int field, u32 flags, int frame_width,
885 int frame_height, int start_h, int start_v)
887 int priority = 0;
888 int notify = 1;
889 int depth = fmt->depth;
890 int channel, next_chan;
891 struct v4l2_rect rect = *c_rect;
892 struct vpdma_dtd *dtd;
894 channel = next_chan = chan_info[chan].num;
896 if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
897 fmt->data_type == DATA_TYPE_C420) {
898 rect.height >>= 1;
899 rect.top >>= 1;
900 depth = 8;
903 dma_addr += rect.top * stride + (rect.left * depth >> 3);
905 dtd = list->next;
906 WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
908 dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
909 notify,
910 field,
911 !!(flags & VPDMA_DATA_FRAME_1D),
912 !!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
913 !!(flags & VPDMA_DATA_ODD_LINE_SKIP),
914 stride);
916 dtd->xfer_length_height = dtd_xfer_length_height(rect.width,
917 rect.height);
918 dtd->start_addr = (u32) dma_addr;
919 dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
920 DTD_DIR_IN, channel, priority, next_chan);
921 dtd->frame_width_height = dtd_frame_width_height(frame_width,
922 frame_height);
923 dtd->start_h_v = dtd_start_h_v(start_h, start_v);
924 dtd->client_attr0 = 0;
925 dtd->client_attr1 = 0;
927 list->next = dtd + 1;
929 dump_dtd(dtd);
931 EXPORT_SYMBOL(vpdma_add_in_dtd);
933 int vpdma_hwlist_alloc(struct vpdma_data *vpdma, void *priv)
935 int i, list_num = -1;
936 unsigned long flags;
938 spin_lock_irqsave(&vpdma->lock, flags);
939 for (i = 0; i < VPDMA_MAX_NUM_LIST &&
940 vpdma->hwlist_used[i] == true; i++)
943 if (i < VPDMA_MAX_NUM_LIST) {
944 list_num = i;
945 vpdma->hwlist_used[i] = true;
946 vpdma->hwlist_priv[i] = priv;
948 spin_unlock_irqrestore(&vpdma->lock, flags);
950 return list_num;
952 EXPORT_SYMBOL(vpdma_hwlist_alloc);
954 void *vpdma_hwlist_get_priv(struct vpdma_data *vpdma, int list_num)
956 if (!vpdma || list_num >= VPDMA_MAX_NUM_LIST)
957 return NULL;
959 return vpdma->hwlist_priv[list_num];
961 EXPORT_SYMBOL(vpdma_hwlist_get_priv);
963 void *vpdma_hwlist_release(struct vpdma_data *vpdma, int list_num)
965 void *priv;
966 unsigned long flags;
968 spin_lock_irqsave(&vpdma->lock, flags);
969 vpdma->hwlist_used[list_num] = false;
970 priv = vpdma->hwlist_priv;
971 spin_unlock_irqrestore(&vpdma->lock, flags);
973 return priv;
975 EXPORT_SYMBOL(vpdma_hwlist_release);
977 /* set or clear the mask for list complete interrupt */
978 void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int irq_num,
979 int list_num, bool enable)
981 u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
982 u32 val;
984 val = read_reg(vpdma, reg_addr);
985 if (enable)
986 val |= (1 << (list_num * 2));
987 else
988 val &= ~(1 << (list_num * 2));
989 write_reg(vpdma, reg_addr, val);
991 EXPORT_SYMBOL(vpdma_enable_list_complete_irq);
993 /* get the LIST_STAT register */
994 unsigned int vpdma_get_list_stat(struct vpdma_data *vpdma, int irq_num)
996 u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
998 return read_reg(vpdma, reg_addr);
1000 EXPORT_SYMBOL(vpdma_get_list_stat);
1002 /* get the LIST_MASK register */
1003 unsigned int vpdma_get_list_mask(struct vpdma_data *vpdma, int irq_num)
1005 u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
1007 return read_reg(vpdma, reg_addr);
1009 EXPORT_SYMBOL(vpdma_get_list_mask);
1011 /* clear previously occurred list interrupts in the LIST_STAT register */
1012 void vpdma_clear_list_stat(struct vpdma_data *vpdma, int irq_num,
1013 int list_num)
1015 u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
1017 write_reg(vpdma, reg_addr, 3 << (list_num * 2));
1019 EXPORT_SYMBOL(vpdma_clear_list_stat);
1021 void vpdma_set_bg_color(struct vpdma_data *vpdma,
1022 struct vpdma_data_format *fmt, u32 color)
1024 if (fmt->type == VPDMA_DATA_FMT_TYPE_RGB)
1025 write_reg(vpdma, VPDMA_BG_RGB, color);
1026 else if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV)
1027 write_reg(vpdma, VPDMA_BG_YUV, color);
1029 EXPORT_SYMBOL(vpdma_set_bg_color);
1032 * configures the output mode of the line buffer for the given client, the
1033 * line buffer content can either be mirrored(each line repeated twice) or
1034 * passed to the client as is
1036 void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
1037 enum vpdma_channel chan)
1039 int client_cstat = chan_info[chan].cstat_offset;
1041 write_field_reg(vpdma, client_cstat, line_mode,
1042 VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
1044 EXPORT_SYMBOL(vpdma_set_line_mode);
1047 * configures the event which should trigger VPDMA transfer for the given
1048 * client
1050 void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
1051 enum vpdma_frame_start_event fs_event,
1052 enum vpdma_channel chan)
1054 int client_cstat = chan_info[chan].cstat_offset;
1056 write_field_reg(vpdma, client_cstat, fs_event,
1057 VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
1059 EXPORT_SYMBOL(vpdma_set_frame_start_event);
1061 static void vpdma_firmware_cb(const struct firmware *f, void *context)
1063 struct vpdma_data *vpdma = context;
1064 struct vpdma_buf fw_dma_buf;
1065 int i, r;
1067 dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
1069 if (!f || !f->data) {
1070 dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
1071 return;
1074 /* already initialized */
1075 if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1076 VPDMA_LIST_RDY_SHFT)) {
1077 vpdma->cb(vpdma->pdev);
1078 return;
1081 r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
1082 if (r) {
1083 dev_err(&vpdma->pdev->dev,
1084 "failed to allocate dma buffer for firmware\n");
1085 goto rel_fw;
1088 memcpy(fw_dma_buf.addr, f->data, f->size);
1090 vpdma_map_desc_buf(vpdma, &fw_dma_buf);
1092 write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
1094 for (i = 0; i < 100; i++) { /* max 1 second */
1095 msleep_interruptible(10);
1097 if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1098 VPDMA_LIST_RDY_SHFT))
1099 break;
1102 if (i == 100) {
1103 dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
1104 goto free_buf;
1107 vpdma->cb(vpdma->pdev);
1109 free_buf:
1110 vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
1112 vpdma_free_desc_buf(&fw_dma_buf);
1113 rel_fw:
1114 release_firmware(f);
1117 static int vpdma_load_firmware(struct vpdma_data *vpdma)
1119 int r;
1120 struct device *dev = &vpdma->pdev->dev;
1122 r = request_firmware_nowait(THIS_MODULE, 1,
1123 (const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
1124 vpdma_firmware_cb);
1125 if (r) {
1126 dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
1127 return r;
1128 } else {
1129 dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
1132 return 0;
1135 int vpdma_create(struct platform_device *pdev, struct vpdma_data *vpdma,
1136 void (*cb)(struct platform_device *pdev))
1138 struct resource *res;
1139 int r;
1141 dev_dbg(&pdev->dev, "vpdma_create\n");
1143 vpdma->pdev = pdev;
1144 vpdma->cb = cb;
1145 spin_lock_init(&vpdma->lock);
1147 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
1148 if (res == NULL) {
1149 dev_err(&pdev->dev, "missing platform resources data\n");
1150 return -ENODEV;
1153 vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1154 if (!vpdma->base) {
1155 dev_err(&pdev->dev, "failed to ioremap\n");
1156 return -ENOMEM;
1159 r = vpdma_load_firmware(vpdma);
1160 if (r) {
1161 pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
1162 return r;
1165 return 0;
1167 EXPORT_SYMBOL(vpdma_create);
1169 MODULE_AUTHOR("Texas Instruments Inc.");
1170 MODULE_FIRMWARE(VPDMA_FIRMWARE);
1171 MODULE_LICENSE("GPL v2");