2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
16 * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
18 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
28 #include <asm/byteorder.h>
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
47 #define SST49LF004B 0x0060
48 #define SST49LF040B 0x0050
49 #define SST49LF008A 0x005a
50 #define AT49BV6416 0x00d6
52 static int cfi_amdstd_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
53 static int cfi_amdstd_write_words(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
54 static int cfi_amdstd_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
55 static int cfi_amdstd_erase_chip(struct mtd_info
*, struct erase_info
*);
56 static int cfi_amdstd_erase_varsize(struct mtd_info
*, struct erase_info
*);
57 static void cfi_amdstd_sync (struct mtd_info
*);
58 static int cfi_amdstd_suspend (struct mtd_info
*);
59 static void cfi_amdstd_resume (struct mtd_info
*);
60 static int cfi_amdstd_reboot(struct notifier_block
*, unsigned long, void *);
61 static int cfi_amdstd_get_fact_prot_info(struct mtd_info
*, size_t,
62 size_t *, struct otp_info
*);
63 static int cfi_amdstd_get_user_prot_info(struct mtd_info
*, size_t,
64 size_t *, struct otp_info
*);
65 static int cfi_amdstd_secsi_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
66 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info
*, loff_t
, size_t,
68 static int cfi_amdstd_read_user_prot_reg(struct mtd_info
*, loff_t
, size_t,
70 static int cfi_amdstd_write_user_prot_reg(struct mtd_info
*, loff_t
, size_t,
72 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info
*, loff_t
, size_t);
74 static int cfi_amdstd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
75 size_t *retlen
, const u_char
*buf
);
77 static void cfi_amdstd_destroy(struct mtd_info
*);
79 struct mtd_info
*cfi_cmdset_0002(struct map_info
*, int);
80 static struct mtd_info
*cfi_amdstd_setup (struct mtd_info
*);
82 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
83 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
);
86 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
87 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
89 static int cfi_ppb_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
90 static int cfi_ppb_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
91 static int cfi_ppb_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
);
93 static struct mtd_chip_driver cfi_amdstd_chipdrv
= {
94 .probe
= NULL
, /* Not usable directly */
95 .destroy
= cfi_amdstd_destroy
,
96 .name
= "cfi_cmdset_0002",
101 /* #define DEBUG_CFI_FEATURES */
104 #ifdef DEBUG_CFI_FEATURES
105 static void cfi_tell_features(struct cfi_pri_amdstd
*extp
)
107 const char* erase_suspend
[3] = {
108 "Not supported", "Read only", "Read/write"
110 const char* top_bottom
[6] = {
111 "No WP", "8x8KiB sectors at top & bottom, no WP",
112 "Bottom boot", "Top boot",
113 "Uniform, Bottom WP", "Uniform, Top WP"
116 printk(" Silicon revision: %d\n", extp
->SiliconRevision
>> 1);
117 printk(" Address sensitive unlock: %s\n",
118 (extp
->SiliconRevision
& 1) ? "Not required" : "Required");
120 if (extp
->EraseSuspend
< ARRAY_SIZE(erase_suspend
))
121 printk(" Erase Suspend: %s\n", erase_suspend
[extp
->EraseSuspend
]);
123 printk(" Erase Suspend: Unknown value %d\n", extp
->EraseSuspend
);
125 if (extp
->BlkProt
== 0)
126 printk(" Block protection: Not supported\n");
128 printk(" Block protection: %d sectors per group\n", extp
->BlkProt
);
131 printk(" Temporary block unprotect: %s\n",
132 extp
->TmpBlkUnprotect
? "Supported" : "Not supported");
133 printk(" Block protect/unprotect scheme: %d\n", extp
->BlkProtUnprot
);
134 printk(" Number of simultaneous operations: %d\n", extp
->SimultaneousOps
);
135 printk(" Burst mode: %s\n",
136 extp
->BurstMode
? "Supported" : "Not supported");
137 if (extp
->PageMode
== 0)
138 printk(" Page mode: Not supported\n");
140 printk(" Page mode: %d word page\n", extp
->PageMode
<< 2);
142 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143 extp
->VppMin
>> 4, extp
->VppMin
& 0xf);
144 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145 extp
->VppMax
>> 4, extp
->VppMax
& 0xf);
147 if (extp
->TopBottom
< ARRAY_SIZE(top_bottom
))
148 printk(" Top/Bottom Boot Block: %s\n", top_bottom
[extp
->TopBottom
]);
150 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp
->TopBottom
);
154 #ifdef AMD_BOOTLOC_BUG
155 /* Wheee. Bring me the head of someone at AMD. */
156 static void fixup_amd_bootblock(struct mtd_info
*mtd
)
158 struct map_info
*map
= mtd
->priv
;
159 struct cfi_private
*cfi
= map
->fldrv_priv
;
160 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
161 __u8 major
= extp
->MajorVersion
;
162 __u8 minor
= extp
->MinorVersion
;
164 if (((major
<< 8) | minor
) < 0x3131) {
165 /* CFI version 1.0 => don't trust bootloc */
167 pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168 map
->name
, cfi
->mfr
, cfi
->id
);
170 /* AFAICS all 29LV400 with a bottom boot block have a device ID
171 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 * These were badly detected as they have the 0x80 bit set
173 * so treat them as a special case.
175 if (((cfi
->id
== 0xBA) || (cfi
->id
== 0x22BA)) &&
177 /* Macronix added CFI to their 2nd generation
178 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 * Fujitsu, Spansion, EON, ESI and older Macronix)
182 * Therefore also check the manufacturer.
183 * This reduces the risk of false detection due to
184 * the 8-bit device ID.
186 (cfi
->mfr
== CFI_MFR_MACRONIX
)) {
187 pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188 " detected\n", map
->name
);
189 extp
->TopBottom
= 2; /* bottom boot */
191 if (cfi
->id
& 0x80) {
192 printk(KERN_WARNING
"%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map
->name
, cfi
->id
);
193 extp
->TopBottom
= 3; /* top boot */
195 extp
->TopBottom
= 2; /* bottom boot */
198 pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199 " deduced %s from Device ID\n", map
->name
, major
, minor
,
200 extp
->TopBottom
== 2 ? "bottom" : "top");
205 static void fixup_use_write_buffers(struct mtd_info
*mtd
)
207 struct map_info
*map
= mtd
->priv
;
208 struct cfi_private
*cfi
= map
->fldrv_priv
;
209 if (cfi
->cfiq
->BufWriteTimeoutTyp
) {
210 pr_debug("Using buffer write method\n");
211 mtd
->_write
= cfi_amdstd_write_buffers
;
215 /* Atmel chips don't use the same PRI format as AMD chips */
216 static void fixup_convert_atmel_pri(struct mtd_info
*mtd
)
218 struct map_info
*map
= mtd
->priv
;
219 struct cfi_private
*cfi
= map
->fldrv_priv
;
220 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
221 struct cfi_pri_atmel atmel_pri
;
223 memcpy(&atmel_pri
, extp
, sizeof(atmel_pri
));
224 memset((char *)extp
+ 5, 0, sizeof(*extp
) - 5);
226 if (atmel_pri
.Features
& 0x02)
227 extp
->EraseSuspend
= 2;
229 /* Some chips got it backwards... */
230 if (cfi
->id
== AT49BV6416
) {
231 if (atmel_pri
.BottomBoot
)
236 if (atmel_pri
.BottomBoot
)
242 /* burst write mode not supported */
243 cfi
->cfiq
->BufWriteTimeoutTyp
= 0;
244 cfi
->cfiq
->BufWriteTimeoutMax
= 0;
247 static void fixup_use_secsi(struct mtd_info
*mtd
)
249 /* Setup for chips with a secsi area */
250 mtd
->_read_user_prot_reg
= cfi_amdstd_secsi_read
;
251 mtd
->_read_fact_prot_reg
= cfi_amdstd_secsi_read
;
254 static void fixup_use_erase_chip(struct mtd_info
*mtd
)
256 struct map_info
*map
= mtd
->priv
;
257 struct cfi_private
*cfi
= map
->fldrv_priv
;
258 if ((cfi
->cfiq
->NumEraseRegions
== 1) &&
259 ((cfi
->cfiq
->EraseRegionInfo
[0] & 0xffff) == 0)) {
260 mtd
->_erase
= cfi_amdstd_erase_chip
;
266 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
269 static void fixup_use_atmel_lock(struct mtd_info
*mtd
)
271 mtd
->_lock
= cfi_atmel_lock
;
272 mtd
->_unlock
= cfi_atmel_unlock
;
273 mtd
->flags
|= MTD_POWERUP_LOCK
;
276 static void fixup_old_sst_eraseregion(struct mtd_info
*mtd
)
278 struct map_info
*map
= mtd
->priv
;
279 struct cfi_private
*cfi
= map
->fldrv_priv
;
282 * These flashes report two separate eraseblock regions based on the
283 * sector_erase-size and block_erase-size, although they both operate on the
284 * same memory. This is not allowed according to CFI, so we just pick the
287 cfi
->cfiq
->NumEraseRegions
= 1;
290 static void fixup_sst39vf(struct mtd_info
*mtd
)
292 struct map_info
*map
= mtd
->priv
;
293 struct cfi_private
*cfi
= map
->fldrv_priv
;
295 fixup_old_sst_eraseregion(mtd
);
297 cfi
->addr_unlock1
= 0x5555;
298 cfi
->addr_unlock2
= 0x2AAA;
301 static void fixup_sst39vf_rev_b(struct mtd_info
*mtd
)
303 struct map_info
*map
= mtd
->priv
;
304 struct cfi_private
*cfi
= map
->fldrv_priv
;
306 fixup_old_sst_eraseregion(mtd
);
308 cfi
->addr_unlock1
= 0x555;
309 cfi
->addr_unlock2
= 0x2AA;
311 cfi
->sector_erase_cmd
= CMD(0x50);
314 static void fixup_sst38vf640x_sectorsize(struct mtd_info
*mtd
)
316 struct map_info
*map
= mtd
->priv
;
317 struct cfi_private
*cfi
= map
->fldrv_priv
;
319 fixup_sst39vf_rev_b(mtd
);
322 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 * it should report a size of 8KBytes (0x0020*256).
325 cfi
->cfiq
->EraseRegionInfo
[0] = 0x002003ff;
326 pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
330 static void fixup_s29gl064n_sectors(struct mtd_info
*mtd
)
332 struct map_info
*map
= mtd
->priv
;
333 struct cfi_private
*cfi
= map
->fldrv_priv
;
335 if ((cfi
->cfiq
->EraseRegionInfo
[0] & 0xffff) == 0x003f) {
336 cfi
->cfiq
->EraseRegionInfo
[0] |= 0x0040;
337 pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
342 static void fixup_s29gl032n_sectors(struct mtd_info
*mtd
)
344 struct map_info
*map
= mtd
->priv
;
345 struct cfi_private
*cfi
= map
->fldrv_priv
;
347 if ((cfi
->cfiq
->EraseRegionInfo
[1] & 0xffff) == 0x007e) {
348 cfi
->cfiq
->EraseRegionInfo
[1] &= ~0x0040;
349 pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
354 static void fixup_s29ns512p_sectors(struct mtd_info
*mtd
)
356 struct map_info
*map
= mtd
->priv
;
357 struct cfi_private
*cfi
= map
->fldrv_priv
;
360 * S29NS512P flash uses more than 8bits to report number of sectors,
361 * which is not permitted by CFI.
363 cfi
->cfiq
->EraseRegionInfo
[0] = 0x020001ff;
364 pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
368 /* Used to fix CFI-Tables of chips without Extended Query Tables */
369 static struct cfi_fixup cfi_nopri_fixup_table
[] = {
370 { CFI_MFR_SST
, 0x234a, fixup_sst39vf
}, /* SST39VF1602 */
371 { CFI_MFR_SST
, 0x234b, fixup_sst39vf
}, /* SST39VF1601 */
372 { CFI_MFR_SST
, 0x235a, fixup_sst39vf
}, /* SST39VF3202 */
373 { CFI_MFR_SST
, 0x235b, fixup_sst39vf
}, /* SST39VF3201 */
374 { CFI_MFR_SST
, 0x235c, fixup_sst39vf_rev_b
}, /* SST39VF3202B */
375 { CFI_MFR_SST
, 0x235d, fixup_sst39vf_rev_b
}, /* SST39VF3201B */
376 { CFI_MFR_SST
, 0x236c, fixup_sst39vf_rev_b
}, /* SST39VF6402B */
377 { CFI_MFR_SST
, 0x236d, fixup_sst39vf_rev_b
}, /* SST39VF6401B */
381 static struct cfi_fixup cfi_fixup_table
[] = {
382 { CFI_MFR_ATMEL
, CFI_ID_ANY
, fixup_convert_atmel_pri
},
383 #ifdef AMD_BOOTLOC_BUG
384 { CFI_MFR_AMD
, CFI_ID_ANY
, fixup_amd_bootblock
},
385 { CFI_MFR_AMIC
, CFI_ID_ANY
, fixup_amd_bootblock
},
386 { CFI_MFR_MACRONIX
, CFI_ID_ANY
, fixup_amd_bootblock
},
388 { CFI_MFR_AMD
, 0x0050, fixup_use_secsi
},
389 { CFI_MFR_AMD
, 0x0053, fixup_use_secsi
},
390 { CFI_MFR_AMD
, 0x0055, fixup_use_secsi
},
391 { CFI_MFR_AMD
, 0x0056, fixup_use_secsi
},
392 { CFI_MFR_AMD
, 0x005C, fixup_use_secsi
},
393 { CFI_MFR_AMD
, 0x005F, fixup_use_secsi
},
394 { CFI_MFR_AMD
, 0x0c01, fixup_s29gl064n_sectors
},
395 { CFI_MFR_AMD
, 0x1301, fixup_s29gl064n_sectors
},
396 { CFI_MFR_AMD
, 0x1a00, fixup_s29gl032n_sectors
},
397 { CFI_MFR_AMD
, 0x1a01, fixup_s29gl032n_sectors
},
398 { CFI_MFR_AMD
, 0x3f00, fixup_s29ns512p_sectors
},
399 { CFI_MFR_SST
, 0x536a, fixup_sst38vf640x_sectorsize
}, /* SST38VF6402 */
400 { CFI_MFR_SST
, 0x536b, fixup_sst38vf640x_sectorsize
}, /* SST38VF6401 */
401 { CFI_MFR_SST
, 0x536c, fixup_sst38vf640x_sectorsize
}, /* SST38VF6404 */
402 { CFI_MFR_SST
, 0x536d, fixup_sst38vf640x_sectorsize
}, /* SST38VF6403 */
403 #if !FORCE_WORD_WRITE
404 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_write_buffers
},
408 static struct cfi_fixup jedec_fixup_table
[] = {
409 { CFI_MFR_SST
, SST49LF004B
, fixup_use_fwh_lock
},
410 { CFI_MFR_SST
, SST49LF040B
, fixup_use_fwh_lock
},
411 { CFI_MFR_SST
, SST49LF008A
, fixup_use_fwh_lock
},
415 static struct cfi_fixup fixup_table
[] = {
416 /* The CFI vendor ids and the JEDEC vendor IDs appear
417 * to be common. It is like the devices id's are as
418 * well. This table is to pick all cases where
419 * we know that is the case.
421 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_erase_chip
},
422 { CFI_MFR_ATMEL
, AT49BV6416
, fixup_use_atmel_lock
},
427 static void cfi_fixup_major_minor(struct cfi_private
*cfi
,
428 struct cfi_pri_amdstd
*extp
)
430 if (cfi
->mfr
== CFI_MFR_SAMSUNG
) {
431 if ((extp
->MajorVersion
== '0' && extp
->MinorVersion
== '0') ||
432 (extp
->MajorVersion
== '3' && extp
->MinorVersion
== '3')) {
434 * Samsung K8P2815UQB and K8D6x16UxM chips
435 * report major=0 / minor=0.
436 * K8D3x16UxC chips report major=3 / minor=3.
438 printk(KERN_NOTICE
" Fixing Samsung's Amd/Fujitsu"
439 " Extended Query version to 1.%c\n",
441 extp
->MajorVersion
= '1';
446 * SST 38VF640x chips report major=0xFF / minor=0xFF.
448 if (cfi
->mfr
== CFI_MFR_SST
&& (cfi
->id
>> 4) == 0x0536) {
449 extp
->MajorVersion
= '1';
450 extp
->MinorVersion
= '0';
454 static int is_m29ew(struct cfi_private
*cfi
)
456 if (cfi
->mfr
== CFI_MFR_INTEL
&&
457 ((cfi
->device_type
== CFI_DEVICETYPE_X8
&& (cfi
->id
& 0xff) == 0x7e) ||
458 (cfi
->device_type
== CFI_DEVICETYPE_X16
&& cfi
->id
== 0x227e)))
464 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
465 * Some revisions of the M29EW suffer from erase suspend hang ups. In
466 * particular, it can occur when the sequence
467 * Erase Confirm -> Suspend -> Program -> Resume
468 * causes a lockup due to internal timing issues. The consequence is that the
469 * erase cannot be resumed without inserting a dummy command after programming
470 * and prior to resuming. [...] The work-around is to issue a dummy write cycle
471 * that writes an F0 command code before the RESUME command.
473 static void cfi_fixup_m29ew_erase_suspend(struct map_info
*map
,
476 struct cfi_private
*cfi
= map
->fldrv_priv
;
477 /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
479 map_write(map
, CMD(0xF0), adr
);
483 * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
485 * Some revisions of the M29EW (for example, A1 and A2 step revisions)
486 * are affected by a problem that could cause a hang up when an ERASE SUSPEND
487 * command is issued after an ERASE RESUME operation without waiting for a
488 * minimum delay. The result is that once the ERASE seems to be completed
489 * (no bits are toggling), the contents of the Flash memory block on which
490 * the erase was ongoing could be inconsistent with the expected values
491 * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
492 * values), causing a consequent failure of the ERASE operation.
493 * The occurrence of this issue could be high, especially when file system
494 * operations on the Flash are intensive. As a result, it is recommended
495 * that a patch be applied. Intensive file system operations can cause many
496 * calls to the garbage routine to free Flash space (also by erasing physical
497 * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
498 * commands can occur. The problem disappears when a delay is inserted after
499 * the RESUME command by using the udelay() function available in Linux.
500 * The DELAY value must be tuned based on the customer's platform.
501 * The maximum value that fixes the problem in all cases is 500us.
502 * But, in our experience, a delay of 30 µs to 50 µs is sufficient
504 * We have chosen 500µs because this latency is acceptable.
506 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private
*cfi
)
509 * Resolving the Delay After Resume Issue see Micron TN-13-07
510 * Worst case delay must be 500µs but 30-50µs should be ok as well
516 struct mtd_info
*cfi_cmdset_0002(struct map_info
*map
, int primary
)
518 struct cfi_private
*cfi
= map
->fldrv_priv
;
519 struct device_node __maybe_unused
*np
= map
->device_node
;
520 struct mtd_info
*mtd
;
523 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
527 mtd
->type
= MTD_NORFLASH
;
529 /* Fill in the default mtd operations */
530 mtd
->_erase
= cfi_amdstd_erase_varsize
;
531 mtd
->_write
= cfi_amdstd_write_words
;
532 mtd
->_read
= cfi_amdstd_read
;
533 mtd
->_sync
= cfi_amdstd_sync
;
534 mtd
->_suspend
= cfi_amdstd_suspend
;
535 mtd
->_resume
= cfi_amdstd_resume
;
536 mtd
->_read_user_prot_reg
= cfi_amdstd_read_user_prot_reg
;
537 mtd
->_read_fact_prot_reg
= cfi_amdstd_read_fact_prot_reg
;
538 mtd
->_get_fact_prot_info
= cfi_amdstd_get_fact_prot_info
;
539 mtd
->_get_user_prot_info
= cfi_amdstd_get_user_prot_info
;
540 mtd
->_write_user_prot_reg
= cfi_amdstd_write_user_prot_reg
;
541 mtd
->_lock_user_prot_reg
= cfi_amdstd_lock_user_prot_reg
;
542 mtd
->flags
= MTD_CAP_NORFLASH
;
543 mtd
->name
= map
->name
;
545 mtd
->writebufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
547 pr_debug("MTD %s(): write buffer size %d\n", __func__
,
550 mtd
->_panic_write
= cfi_amdstd_panic_write
;
551 mtd
->reboot_notifier
.notifier_call
= cfi_amdstd_reboot
;
553 if (cfi
->cfi_mode
==CFI_MODE_CFI
){
554 unsigned char bootloc
;
555 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
556 struct cfi_pri_amdstd
*extp
;
558 extp
= (struct cfi_pri_amdstd
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "Amd/Fujitsu");
561 * It's a real CFI chip, not one for which the probe
562 * routine faked a CFI structure.
564 cfi_fixup_major_minor(cfi
, extp
);
567 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
568 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
569 * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
570 * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
571 * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
573 if (extp
->MajorVersion
!= '1' ||
574 (extp
->MajorVersion
== '1' && (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '5'))) {
575 printk(KERN_ERR
" Unknown Amd/Fujitsu Extended Query "
576 "version %c.%c (%#02x/%#02x).\n",
577 extp
->MajorVersion
, extp
->MinorVersion
,
578 extp
->MajorVersion
, extp
->MinorVersion
);
584 printk(KERN_INFO
" Amd/Fujitsu Extended Query version %c.%c.\n",
585 extp
->MajorVersion
, extp
->MinorVersion
);
587 /* Install our own private info structure */
588 cfi
->cmdset_priv
= extp
;
590 /* Apply cfi device specific fixups */
591 cfi_fixup(mtd
, cfi_fixup_table
);
593 #ifdef DEBUG_CFI_FEATURES
594 /* Tell the user about it in lots of lovely detail */
595 cfi_tell_features(extp
);
599 if (np
&& of_property_read_bool(
600 np
, "use-advanced-sector-protection")
601 && extp
->BlkProtUnprot
== 8) {
602 printk(KERN_INFO
" Advanced Sector Protection (PPB Locking) supported\n");
603 mtd
->_lock
= cfi_ppb_lock
;
604 mtd
->_unlock
= cfi_ppb_unlock
;
605 mtd
->_is_locked
= cfi_ppb_is_locked
;
609 bootloc
= extp
->TopBottom
;
610 if ((bootloc
< 2) || (bootloc
> 5)) {
611 printk(KERN_WARNING
"%s: CFI contains unrecognised boot "
612 "bank location (%d). Assuming bottom.\n",
617 if (bootloc
== 3 && cfi
->cfiq
->NumEraseRegions
> 1) {
618 printk(KERN_WARNING
"%s: Swapping erase regions for top-boot CFI table.\n", map
->name
);
620 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
/ 2; i
++) {
621 int j
= (cfi
->cfiq
->NumEraseRegions
-1)-i
;
623 swap(cfi
->cfiq
->EraseRegionInfo
[i
],
624 cfi
->cfiq
->EraseRegionInfo
[j
]);
627 /* Set the default CFI lock/unlock addresses */
628 cfi
->addr_unlock1
= 0x555;
629 cfi
->addr_unlock2
= 0x2aa;
631 cfi_fixup(mtd
, cfi_nopri_fixup_table
);
633 if (!cfi
->addr_unlock1
|| !cfi
->addr_unlock2
) {
639 else if (cfi
->cfi_mode
== CFI_MODE_JEDEC
) {
640 /* Apply jedec specific fixups */
641 cfi_fixup(mtd
, jedec_fixup_table
);
643 /* Apply generic fixups */
644 cfi_fixup(mtd
, fixup_table
);
646 for (i
=0; i
< cfi
->numchips
; i
++) {
647 cfi
->chips
[i
].word_write_time
= 1<<cfi
->cfiq
->WordWriteTimeoutTyp
;
648 cfi
->chips
[i
].buffer_write_time
= 1<<cfi
->cfiq
->BufWriteTimeoutTyp
;
649 cfi
->chips
[i
].erase_time
= 1<<cfi
->cfiq
->BlockEraseTimeoutTyp
;
651 * First calculate the timeout max according to timeout field
652 * of struct cfi_ident that probed from chip's CFI aera, if
653 * available. Specify a minimum of 2000us, in case the CFI data
656 if (cfi
->cfiq
->BufWriteTimeoutTyp
&&
657 cfi
->cfiq
->BufWriteTimeoutMax
)
658 cfi
->chips
[i
].buffer_write_time_max
=
659 1 << (cfi
->cfiq
->BufWriteTimeoutTyp
+
660 cfi
->cfiq
->BufWriteTimeoutMax
);
662 cfi
->chips
[i
].buffer_write_time_max
= 0;
664 cfi
->chips
[i
].buffer_write_time_max
=
665 max(cfi
->chips
[i
].buffer_write_time_max
, 2000);
667 cfi
->chips
[i
].ref_point_counter
= 0;
668 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
671 map
->fldrv
= &cfi_amdstd_chipdrv
;
673 return cfi_amdstd_setup(mtd
);
675 struct mtd_info
*cfi_cmdset_0006(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0002")));
676 struct mtd_info
*cfi_cmdset_0701(struct map_info
*map
, int primary
) __attribute__((alias("cfi_cmdset_0002")));
677 EXPORT_SYMBOL_GPL(cfi_cmdset_0002
);
678 EXPORT_SYMBOL_GPL(cfi_cmdset_0006
);
679 EXPORT_SYMBOL_GPL(cfi_cmdset_0701
);
681 static struct mtd_info
*cfi_amdstd_setup(struct mtd_info
*mtd
)
683 struct map_info
*map
= mtd
->priv
;
684 struct cfi_private
*cfi
= map
->fldrv_priv
;
685 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
686 unsigned long offset
= 0;
689 printk(KERN_NOTICE
"number of %s chips: %d\n",
690 (cfi
->cfi_mode
== CFI_MODE_CFI
)?"CFI":"JEDEC",cfi
->numchips
);
691 /* Select the correct geometry setup */
692 mtd
->size
= devsize
* cfi
->numchips
;
694 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
695 mtd
->eraseregions
= kmalloc_array(mtd
->numeraseregions
,
696 sizeof(struct mtd_erase_region_info
),
698 if (!mtd
->eraseregions
)
701 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
702 unsigned long ernum
, ersize
;
703 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
704 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
706 if (mtd
->erasesize
< ersize
) {
707 mtd
->erasesize
= ersize
;
709 for (j
=0; j
<cfi
->numchips
; j
++) {
710 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
711 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
712 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
714 offset
+= (ersize
* ernum
);
716 if (offset
!= devsize
) {
718 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
722 __module_get(THIS_MODULE
);
723 register_reboot_notifier(&mtd
->reboot_notifier
);
727 kfree(mtd
->eraseregions
);
729 kfree(cfi
->cmdset_priv
);
735 * Return true if the chip is ready.
737 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
738 * non-suspended sector) and is indicated by no toggle bits toggling.
740 * Note that anything more complicated than checking if no bits are toggling
741 * (including checking DQ5 for an error status) is tricky to get working
742 * correctly and is therefore not done (particularly with interleaved chips
743 * as each chip must be checked independently of the others).
745 static int __xipram
chip_ready(struct map_info
*map
, unsigned long addr
)
749 d
= map_read(map
, addr
);
750 t
= map_read(map
, addr
);
752 return map_word_equal(map
, d
, t
);
756 * Return true if the chip is ready and has the correct value.
758 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
759 * non-suspended sector) and it is indicated by no bits toggling.
761 * Error are indicated by toggling bits or bits held with the wrong value,
762 * or with bits toggling.
764 * Note that anything more complicated than checking if no bits are toggling
765 * (including checking DQ5 for an error status) is tricky to get working
766 * correctly and is therefore not done (particularly with interleaved chips
767 * as each chip must be checked independently of the others).
770 static int __xipram
chip_good(struct map_info
*map
, unsigned long addr
, map_word expected
)
774 oldd
= map_read(map
, addr
);
775 curd
= map_read(map
, addr
);
777 return map_word_equal(map
, oldd
, curd
) &&
778 map_word_equal(map
, curd
, expected
);
781 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
783 DECLARE_WAITQUEUE(wait
, current
);
784 struct cfi_private
*cfi
= map
->fldrv_priv
;
786 struct cfi_pri_amdstd
*cfip
= (struct cfi_pri_amdstd
*)cfi
->cmdset_priv
;
789 timeo
= jiffies
+ HZ
;
791 switch (chip
->state
) {
795 if (chip_ready(map
, adr
))
798 if (time_after(jiffies
, timeo
)) {
799 printk(KERN_ERR
"Waiting for chip to be ready timed out.\n");
802 mutex_unlock(&chip
->mutex
);
804 mutex_lock(&chip
->mutex
);
805 /* Someone else might have been playing with it. */
815 if (!cfip
|| !(cfip
->EraseSuspend
& (0x1|0x2)) ||
816 !(mode
== FL_READY
|| mode
== FL_POINT
||
817 (mode
== FL_WRITING
&& (cfip
->EraseSuspend
& 0x2))))
820 /* Do not allow suspend iff read/write to EB address */
821 if ((adr
& chip
->in_progress_block_mask
) ==
822 chip
->in_progress_block_addr
)
826 /* It's harmless to issue the Erase-Suspend and Erase-Resume
827 * commands when the erase algorithm isn't in progress. */
828 map_write(map
, CMD(0xB0), chip
->in_progress_block_addr
);
829 chip
->oldstate
= FL_ERASING
;
830 chip
->state
= FL_ERASE_SUSPENDING
;
831 chip
->erase_suspended
= 1;
833 if (chip_ready(map
, adr
))
836 if (time_after(jiffies
, timeo
)) {
837 /* Should have suspended the erase by now.
838 * Send an Erase-Resume command as either
839 * there was an error (so leave the erase
840 * routine to recover from it) or we trying to
841 * use the erase-in-progress sector. */
842 put_chip(map
, chip
, adr
);
843 printk(KERN_ERR
"MTD %s(): chip not ready after erase suspend\n", __func__
);
847 mutex_unlock(&chip
->mutex
);
849 mutex_lock(&chip
->mutex
);
850 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
851 So we can just loop here. */
853 chip
->state
= FL_READY
;
856 case FL_XIP_WHILE_ERASING
:
857 if (mode
!= FL_READY
&& mode
!= FL_POINT
&&
858 (!cfip
|| !(cfip
->EraseSuspend
&2)))
860 chip
->oldstate
= chip
->state
;
861 chip
->state
= FL_READY
;
865 /* The machine is rebooting */
869 /* Only if there's no operation suspended... */
870 if (mode
== FL_READY
&& chip
->oldstate
== FL_READY
)
875 set_current_state(TASK_UNINTERRUPTIBLE
);
876 add_wait_queue(&chip
->wq
, &wait
);
877 mutex_unlock(&chip
->mutex
);
879 remove_wait_queue(&chip
->wq
, &wait
);
880 mutex_lock(&chip
->mutex
);
886 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
888 struct cfi_private
*cfi
= map
->fldrv_priv
;
890 switch(chip
->oldstate
) {
892 cfi_fixup_m29ew_erase_suspend(map
,
893 chip
->in_progress_block_addr
);
894 map_write(map
, cfi
->sector_erase_cmd
, chip
->in_progress_block_addr
);
895 cfi_fixup_m29ew_delay_after_resume(cfi
);
896 chip
->oldstate
= FL_READY
;
897 chip
->state
= FL_ERASING
;
900 case FL_XIP_WHILE_ERASING
:
901 chip
->state
= chip
->oldstate
;
902 chip
->oldstate
= FL_READY
;
909 printk(KERN_ERR
"MTD: put_chip() called with oldstate %d!!\n", chip
->oldstate
);
914 #ifdef CONFIG_MTD_XIP
917 * No interrupt what so ever can be serviced while the flash isn't in array
918 * mode. This is ensured by the xip_disable() and xip_enable() functions
919 * enclosing any code path where the flash is known not to be in array mode.
920 * And within a XIP disabled code path, only functions marked with __xipram
921 * may be called and nothing else (it's a good thing to inspect generated
922 * assembly to make sure inline functions were actually inlined and that gcc
923 * didn't emit calls to its own support functions). Also configuring MTD CFI
924 * support to a single buswidth and a single interleave is also recommended.
927 static void xip_disable(struct map_info
*map
, struct flchip
*chip
,
930 /* TODO: chips with no XIP use should ignore and return */
931 (void) map_read(map
, adr
); /* ensure mmu mapping is up to date */
935 static void __xipram
xip_enable(struct map_info
*map
, struct flchip
*chip
,
938 struct cfi_private
*cfi
= map
->fldrv_priv
;
940 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
941 map_write(map
, CMD(0xf0), adr
);
942 chip
->state
= FL_READY
;
944 (void) map_read(map
, adr
);
950 * When a delay is required for the flash operation to complete, the
951 * xip_udelay() function is polling for both the given timeout and pending
952 * (but still masked) hardware interrupts. Whenever there is an interrupt
953 * pending then the flash erase operation is suspended, array mode restored
954 * and interrupts unmasked. Task scheduling might also happen at that
955 * point. The CPU eventually returns from the interrupt or the call to
956 * schedule() and the suspended flash operation is resumed for the remaining
957 * of the delay period.
959 * Warning: this function _will_ fool interrupt latency tracing tools.
962 static void __xipram
xip_udelay(struct map_info
*map
, struct flchip
*chip
,
963 unsigned long adr
, int usec
)
965 struct cfi_private
*cfi
= map
->fldrv_priv
;
966 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
967 map_word status
, OK
= CMD(0x80);
968 unsigned long suspended
, start
= xip_currtime();
973 if (xip_irqpending() && extp
&&
974 ((chip
->state
== FL_ERASING
&& (extp
->EraseSuspend
& 2))) &&
975 (cfi_interleave_is_1(cfi
) || chip
->oldstate
== FL_READY
)) {
977 * Let's suspend the erase operation when supported.
978 * Note that we currently don't try to suspend
979 * interleaved chips if there is already another
980 * operation suspended (imagine what happens
981 * when one chip was already done with the current
982 * operation while another chip suspended it, then
983 * we resume the whole thing at once). Yes, it
986 map_write(map
, CMD(0xb0), adr
);
987 usec
-= xip_elapsed_since(start
);
988 suspended
= xip_currtime();
990 if (xip_elapsed_since(suspended
) > 100000) {
992 * The chip doesn't want to suspend
993 * after waiting for 100 msecs.
994 * This is a critical error but there
995 * is not much we can do here.
999 status
= map_read(map
, adr
);
1000 } while (!map_word_andequal(map
, status
, OK
, OK
));
1002 /* Suspend succeeded */
1003 oldstate
= chip
->state
;
1004 if (!map_word_bitsset(map
, status
, CMD(0x40)))
1006 chip
->state
= FL_XIP_WHILE_ERASING
;
1007 chip
->erase_suspended
= 1;
1008 map_write(map
, CMD(0xf0), adr
);
1009 (void) map_read(map
, adr
);
1012 mutex_unlock(&chip
->mutex
);
1017 * We're back. However someone else might have
1018 * decided to go write to the chip if we are in
1019 * a suspended erase state. If so let's wait
1022 mutex_lock(&chip
->mutex
);
1023 while (chip
->state
!= FL_XIP_WHILE_ERASING
) {
1024 DECLARE_WAITQUEUE(wait
, current
);
1025 set_current_state(TASK_UNINTERRUPTIBLE
);
1026 add_wait_queue(&chip
->wq
, &wait
);
1027 mutex_unlock(&chip
->mutex
);
1029 remove_wait_queue(&chip
->wq
, &wait
);
1030 mutex_lock(&chip
->mutex
);
1032 /* Disallow XIP again */
1033 local_irq_disable();
1035 /* Correct Erase Suspend Hangups for M29EW */
1036 cfi_fixup_m29ew_erase_suspend(map
, adr
);
1037 /* Resume the write or erase operation */
1038 map_write(map
, cfi
->sector_erase_cmd
, adr
);
1039 chip
->state
= oldstate
;
1040 start
= xip_currtime();
1041 } else if (usec
>= 1000000/HZ
) {
1043 * Try to save on CPU power when waiting delay
1044 * is at least a system timer tick period.
1045 * No need to be extremely accurate here.
1049 status
= map_read(map
, adr
);
1050 } while (!map_word_andequal(map
, status
, OK
, OK
)
1051 && xip_elapsed_since(start
) < usec
);
1054 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
1057 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1058 * the flash is actively programming or erasing since we have to poll for
1059 * the operation to complete anyway. We can't do that in a generic way with
1060 * a XIP setup so do it before the actual flash operation in this case
1061 * and stub it out from INVALIDATE_CACHE_UDELAY.
1063 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1064 INVALIDATE_CACHED_RANGE(map, from, size)
1066 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1067 UDELAY(map, chip, adr, usec)
1072 * Activating this XIP support changes the way the code works a bit. For
1073 * example the code to suspend the current process when concurrent access
1074 * happens is never executed because xip_udelay() will always return with the
1075 * same chip state as it was entered with. This is why there is no care for
1076 * the presence of add_wait_queue() or schedule() calls from within a couple
1077 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
1078 * The queueing and scheduling are always happening within xip_udelay().
1080 * Similarly, get_chip() and put_chip() just happen to always be executed
1081 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1082 * is in array mode, therefore never executing many cases therein and not
1083 * causing any problem with XIP.
1088 #define xip_disable(map, chip, adr)
1089 #define xip_enable(map, chip, adr)
1090 #define XIP_INVAL_CACHED_RANGE(x...)
1092 #define UDELAY(map, chip, adr, usec) \
1094 mutex_unlock(&chip->mutex); \
1096 mutex_lock(&chip->mutex); \
1099 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
1101 mutex_unlock(&chip->mutex); \
1102 INVALIDATE_CACHED_RANGE(map, adr, len); \
1104 mutex_lock(&chip->mutex); \
1109 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
1111 unsigned long cmd_addr
;
1112 struct cfi_private
*cfi
= map
->fldrv_priv
;
1117 /* Ensure cmd read/writes are aligned. */
1118 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
1120 mutex_lock(&chip
->mutex
);
1121 ret
= get_chip(map
, chip
, cmd_addr
, FL_READY
);
1123 mutex_unlock(&chip
->mutex
);
1127 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
1128 map_write(map
, CMD(0xf0), cmd_addr
);
1129 chip
->state
= FL_READY
;
1132 map_copy_from(map
, buf
, adr
, len
);
1134 put_chip(map
, chip
, cmd_addr
);
1136 mutex_unlock(&chip
->mutex
);
1141 static int cfi_amdstd_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1143 struct map_info
*map
= mtd
->priv
;
1144 struct cfi_private
*cfi
= map
->fldrv_priv
;
1149 /* ofs: offset within the first chip that the first read should start */
1150 chipnum
= (from
>> cfi
->chipshift
);
1151 ofs
= from
- (chipnum
<< cfi
->chipshift
);
1154 unsigned long thislen
;
1156 if (chipnum
>= cfi
->numchips
)
1159 if ((len
+ ofs
-1) >> cfi
->chipshift
)
1160 thislen
= (1<<cfi
->chipshift
) - ofs
;
1164 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
1178 typedef int (*otp_op_t
)(struct map_info
*map
, struct flchip
*chip
,
1179 loff_t adr
, size_t len
, u_char
*buf
, size_t grouplen
);
1181 static inline void otp_enter(struct map_info
*map
, struct flchip
*chip
,
1182 loff_t adr
, size_t len
)
1184 struct cfi_private
*cfi
= map
->fldrv_priv
;
1186 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1187 cfi
->device_type
, NULL
);
1188 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1189 cfi
->device_type
, NULL
);
1190 cfi_send_gen_cmd(0x88, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1191 cfi
->device_type
, NULL
);
1193 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ adr
, len
);
1196 static inline void otp_exit(struct map_info
*map
, struct flchip
*chip
,
1197 loff_t adr
, size_t len
)
1199 struct cfi_private
*cfi
= map
->fldrv_priv
;
1201 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1202 cfi
->device_type
, NULL
);
1203 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1204 cfi
->device_type
, NULL
);
1205 cfi_send_gen_cmd(0x90, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1206 cfi
->device_type
, NULL
);
1207 cfi_send_gen_cmd(0x00, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1208 cfi
->device_type
, NULL
);
1210 INVALIDATE_CACHED_RANGE(map
, chip
->start
+ adr
, len
);
1213 static inline int do_read_secsi_onechip(struct map_info
*map
,
1214 struct flchip
*chip
, loff_t adr
,
1215 size_t len
, u_char
*buf
,
1218 DECLARE_WAITQUEUE(wait
, current
);
1221 mutex_lock(&chip
->mutex
);
1223 if (chip
->state
!= FL_READY
){
1224 set_current_state(TASK_UNINTERRUPTIBLE
);
1225 add_wait_queue(&chip
->wq
, &wait
);
1227 mutex_unlock(&chip
->mutex
);
1230 remove_wait_queue(&chip
->wq
, &wait
);
1237 chip
->state
= FL_READY
;
1239 otp_enter(map
, chip
, adr
, len
);
1240 map_copy_from(map
, buf
, adr
, len
);
1241 otp_exit(map
, chip
, adr
, len
);
1244 mutex_unlock(&chip
->mutex
);
1249 static int cfi_amdstd_secsi_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
1251 struct map_info
*map
= mtd
->priv
;
1252 struct cfi_private
*cfi
= map
->fldrv_priv
;
1257 /* ofs: offset within the first chip that the first read should start */
1258 /* 8 secsi bytes per chip */
1263 unsigned long thislen
;
1265 if (chipnum
>= cfi
->numchips
)
1268 if ((len
+ ofs
-1) >> 3)
1269 thislen
= (1<<3) - ofs
;
1273 ret
= do_read_secsi_onechip(map
, &cfi
->chips
[chipnum
], ofs
,
1288 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
,
1289 unsigned long adr
, map_word datum
,
1292 static int do_otp_write(struct map_info
*map
, struct flchip
*chip
, loff_t adr
,
1293 size_t len
, u_char
*buf
, size_t grouplen
)
1297 unsigned long bus_ofs
= adr
& ~(map_bankwidth(map
)-1);
1298 int gap
= adr
- bus_ofs
;
1299 int n
= min_t(int, len
, map_bankwidth(map
) - gap
);
1300 map_word datum
= map_word_ff(map
);
1302 if (n
!= map_bankwidth(map
)) {
1303 /* partial write of a word, load old contents */
1304 otp_enter(map
, chip
, bus_ofs
, map_bankwidth(map
));
1305 datum
= map_read(map
, bus_ofs
);
1306 otp_exit(map
, chip
, bus_ofs
, map_bankwidth(map
));
1309 datum
= map_word_load_partial(map
, datum
, buf
, gap
, n
);
1310 ret
= do_write_oneword(map
, chip
, bus_ofs
, datum
, FL_OTP_WRITE
);
1322 static int do_otp_lock(struct map_info
*map
, struct flchip
*chip
, loff_t adr
,
1323 size_t len
, u_char
*buf
, size_t grouplen
)
1325 struct cfi_private
*cfi
= map
->fldrv_priv
;
1327 unsigned long timeo
;
1330 /* make sure area matches group boundaries */
1331 if ((adr
!= 0) || (len
!= grouplen
))
1334 mutex_lock(&chip
->mutex
);
1335 ret
= get_chip(map
, chip
, chip
->start
, FL_LOCKING
);
1337 mutex_unlock(&chip
->mutex
);
1340 chip
->state
= FL_LOCKING
;
1342 /* Enter lock register command */
1343 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1344 cfi
->device_type
, NULL
);
1345 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1346 cfi
->device_type
, NULL
);
1347 cfi_send_gen_cmd(0x40, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1348 cfi
->device_type
, NULL
);
1350 /* read lock register */
1351 lockreg
= cfi_read_query(map
, 0);
1353 /* set bit 0 to protect extended memory block */
1356 /* set bit 0 to protect extended memory block */
1357 /* write lock register */
1358 map_write(map
, CMD(0xA0), chip
->start
);
1359 map_write(map
, CMD(lockreg
), chip
->start
);
1361 /* wait for chip to become ready */
1362 timeo
= jiffies
+ msecs_to_jiffies(2);
1364 if (chip_ready(map
, adr
))
1367 if (time_after(jiffies
, timeo
)) {
1368 pr_err("Waiting for chip to be ready timed out.\n");
1372 UDELAY(map
, chip
, 0, 1);
1375 /* exit protection commands */
1376 map_write(map
, CMD(0x90), chip
->start
);
1377 map_write(map
, CMD(0x00), chip
->start
);
1379 chip
->state
= FL_READY
;
1380 put_chip(map
, chip
, chip
->start
);
1381 mutex_unlock(&chip
->mutex
);
1386 static int cfi_amdstd_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1387 size_t *retlen
, u_char
*buf
,
1388 otp_op_t action
, int user_regs
)
1390 struct map_info
*map
= mtd
->priv
;
1391 struct cfi_private
*cfi
= map
->fldrv_priv
;
1392 int ofs_factor
= cfi
->interleave
* cfi
->device_type
;
1395 struct flchip
*chip
;
1396 uint8_t otp
, lockreg
;
1399 size_t user_size
, factory_size
, otpsize
;
1400 loff_t user_offset
, factory_offset
, otpoffset
;
1401 int user_locked
= 0, otplocked
;
1405 for (chipnum
= 0; chipnum
< cfi
->numchips
; chipnum
++) {
1406 chip
= &cfi
->chips
[chipnum
];
1410 /* Micron M29EW family */
1411 if (is_m29ew(cfi
)) {
1414 /* check whether secsi area is factory locked
1416 mutex_lock(&chip
->mutex
);
1417 ret
= get_chip(map
, chip
, base
, FL_CFI_QUERY
);
1419 mutex_unlock(&chip
->mutex
);
1422 cfi_qry_mode_on(base
, map
, cfi
);
1423 otp
= cfi_read_query(map
, base
+ 0x3 * ofs_factor
);
1424 cfi_qry_mode_off(base
, map
, cfi
);
1425 put_chip(map
, chip
, base
);
1426 mutex_unlock(&chip
->mutex
);
1429 /* factory locked */
1431 factory_size
= 0x100;
1433 /* customer lockable */
1437 mutex_lock(&chip
->mutex
);
1438 ret
= get_chip(map
, chip
, base
, FL_LOCKING
);
1440 mutex_unlock(&chip
->mutex
);
1444 /* Enter lock register command */
1445 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
,
1446 chip
->start
, map
, cfi
,
1447 cfi
->device_type
, NULL
);
1448 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
,
1449 chip
->start
, map
, cfi
,
1450 cfi
->device_type
, NULL
);
1451 cfi_send_gen_cmd(0x40, cfi
->addr_unlock1
,
1452 chip
->start
, map
, cfi
,
1453 cfi
->device_type
, NULL
);
1454 /* read lock register */
1455 lockreg
= cfi_read_query(map
, 0);
1456 /* exit protection commands */
1457 map_write(map
, CMD(0x90), chip
->start
);
1458 map_write(map
, CMD(0x00), chip
->start
);
1459 put_chip(map
, chip
, chip
->start
);
1460 mutex_unlock(&chip
->mutex
);
1462 user_locked
= ((lockreg
& 0x01) == 0x00);
1466 otpsize
= user_regs
? user_size
: factory_size
;
1469 otpoffset
= user_regs
? user_offset
: factory_offset
;
1470 otplocked
= user_regs
? user_locked
: 1;
1473 /* return otpinfo */
1474 struct otp_info
*otpinfo
;
1475 len
-= sizeof(*otpinfo
);
1478 otpinfo
= (struct otp_info
*)buf
;
1479 otpinfo
->start
= from
;
1480 otpinfo
->length
= otpsize
;
1481 otpinfo
->locked
= otplocked
;
1482 buf
+= sizeof(*otpinfo
);
1483 *retlen
+= sizeof(*otpinfo
);
1485 } else if ((from
< otpsize
) && (len
> 0)) {
1487 size
= (len
< otpsize
- from
) ? len
: otpsize
- from
;
1488 ret
= action(map
, chip
, otpoffset
+ from
, size
, buf
,
1504 static int cfi_amdstd_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
1505 size_t *retlen
, struct otp_info
*buf
)
1507 return cfi_amdstd_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
1511 static int cfi_amdstd_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
1512 size_t *retlen
, struct otp_info
*buf
)
1514 return cfi_amdstd_otp_walk(mtd
, 0, len
, retlen
, (u_char
*)buf
,
1518 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1519 size_t len
, size_t *retlen
,
1522 return cfi_amdstd_otp_walk(mtd
, from
, len
, retlen
,
1523 buf
, do_read_secsi_onechip
, 0);
1526 static int cfi_amdstd_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1527 size_t len
, size_t *retlen
,
1530 return cfi_amdstd_otp_walk(mtd
, from
, len
, retlen
,
1531 buf
, do_read_secsi_onechip
, 1);
1534 static int cfi_amdstd_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1535 size_t len
, size_t *retlen
,
1538 return cfi_amdstd_otp_walk(mtd
, from
, len
, retlen
, buf
,
1542 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
1546 return cfi_amdstd_otp_walk(mtd
, from
, len
, &retlen
, NULL
,
1550 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
,
1551 unsigned long adr
, map_word datum
,
1554 struct cfi_private
*cfi
= map
->fldrv_priv
;
1555 unsigned long timeo
= jiffies
+ HZ
;
1557 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1558 * have a max write time of a few hundreds usec). However, we should
1559 * use the maximum timeout value given by the chip at probe time
1560 * instead. Unfortunately, struct flchip does have a field for
1561 * maximum timeout, only for typical which can be far too short
1562 * depending of the conditions. The ' + 1' is to avoid having a
1563 * timeout of 0 jiffies if HZ is smaller than 1000.
1565 unsigned long uWriteTimeout
= (HZ
/ 1000) + 1;
1572 mutex_lock(&chip
->mutex
);
1573 ret
= get_chip(map
, chip
, adr
, mode
);
1575 mutex_unlock(&chip
->mutex
);
1579 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1580 __func__
, adr
, datum
.x
[0]);
1582 if (mode
== FL_OTP_WRITE
)
1583 otp_enter(map
, chip
, adr
, map_bankwidth(map
));
1586 * Check for a NOP for the case when the datum to write is already
1587 * present - it saves time and works around buggy chips that corrupt
1588 * data at other locations when 0xff is written to a location that
1589 * already contains 0xff.
1591 oldd
= map_read(map
, adr
);
1592 if (map_word_equal(map
, oldd
, datum
)) {
1593 pr_debug("MTD %s(): NOP\n",
1598 XIP_INVAL_CACHED_RANGE(map
, adr
, map_bankwidth(map
));
1600 xip_disable(map
, chip
, adr
);
1603 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1604 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1605 cfi_send_gen_cmd(0xA0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1606 map_write(map
, datum
, adr
);
1609 INVALIDATE_CACHE_UDELAY(map
, chip
,
1610 adr
, map_bankwidth(map
),
1611 chip
->word_write_time
);
1613 /* See comment above for timeout value. */
1614 timeo
= jiffies
+ uWriteTimeout
;
1616 if (chip
->state
!= mode
) {
1617 /* Someone's suspended the write. Sleep */
1618 DECLARE_WAITQUEUE(wait
, current
);
1620 set_current_state(TASK_UNINTERRUPTIBLE
);
1621 add_wait_queue(&chip
->wq
, &wait
);
1622 mutex_unlock(&chip
->mutex
);
1624 remove_wait_queue(&chip
->wq
, &wait
);
1625 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1626 mutex_lock(&chip
->mutex
);
1630 if (time_after(jiffies
, timeo
) && !chip_ready(map
, adr
)){
1631 xip_enable(map
, chip
, adr
);
1632 printk(KERN_WARNING
"MTD %s(): software timeout\n", __func__
);
1633 xip_disable(map
, chip
, adr
);
1637 if (chip_ready(map
, adr
))
1640 /* Latency issues. Drop the lock, wait a while and retry */
1641 UDELAY(map
, chip
, adr
, 1);
1643 /* Did we succeed? */
1644 if (!chip_good(map
, adr
, datum
)) {
1645 /* reset on all failures. */
1646 map_write(map
, CMD(0xF0), chip
->start
);
1647 /* FIXME - should have reset delay before continuing */
1649 if (++retry_cnt
<= MAX_RETRIES
)
1654 xip_enable(map
, chip
, adr
);
1656 if (mode
== FL_OTP_WRITE
)
1657 otp_exit(map
, chip
, adr
, map_bankwidth(map
));
1658 chip
->state
= FL_READY
;
1660 put_chip(map
, chip
, adr
);
1661 mutex_unlock(&chip
->mutex
);
1667 static int cfi_amdstd_write_words(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1668 size_t *retlen
, const u_char
*buf
)
1670 struct map_info
*map
= mtd
->priv
;
1671 struct cfi_private
*cfi
= map
->fldrv_priv
;
1674 unsigned long ofs
, chipstart
;
1675 DECLARE_WAITQUEUE(wait
, current
);
1677 chipnum
= to
>> cfi
->chipshift
;
1678 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1679 chipstart
= cfi
->chips
[chipnum
].start
;
1681 /* If it's not bus-aligned, do the first byte write */
1682 if (ofs
& (map_bankwidth(map
)-1)) {
1683 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
)-1);
1684 int i
= ofs
- bus_ofs
;
1689 mutex_lock(&cfi
->chips
[chipnum
].mutex
);
1691 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1692 set_current_state(TASK_UNINTERRUPTIBLE
);
1693 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1695 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1698 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1702 /* Load 'tmp_buf' with old contents of flash */
1703 tmp_buf
= map_read(map
, bus_ofs
+chipstart
);
1705 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1707 /* Number of bytes to copy from buffer */
1708 n
= min_t(int, len
, map_bankwidth(map
)-i
);
1710 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, i
, n
);
1712 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1713 bus_ofs
, tmp_buf
, FL_WRITING
);
1722 if (ofs
>> cfi
->chipshift
) {
1725 if (chipnum
== cfi
->numchips
)
1730 /* We are now aligned, write as much as possible */
1731 while(len
>= map_bankwidth(map
)) {
1734 datum
= map_word_load(map
, buf
);
1736 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1737 ofs
, datum
, FL_WRITING
);
1741 ofs
+= map_bankwidth(map
);
1742 buf
+= map_bankwidth(map
);
1743 (*retlen
) += map_bankwidth(map
);
1744 len
-= map_bankwidth(map
);
1746 if (ofs
>> cfi
->chipshift
) {
1749 if (chipnum
== cfi
->numchips
)
1751 chipstart
= cfi
->chips
[chipnum
].start
;
1755 /* Write the trailing bytes if any */
1756 if (len
& (map_bankwidth(map
)-1)) {
1760 mutex_lock(&cfi
->chips
[chipnum
].mutex
);
1762 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1763 set_current_state(TASK_UNINTERRUPTIBLE
);
1764 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1766 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1769 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1773 tmp_buf
= map_read(map
, ofs
+ chipstart
);
1775 mutex_unlock(&cfi
->chips
[chipnum
].mutex
);
1777 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, 0, len
);
1779 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1780 ofs
, tmp_buf
, FL_WRITING
);
1792 * FIXME: interleaved mode not tested, and probably not supported!
1794 static int __xipram
do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
1795 unsigned long adr
, const u_char
*buf
,
1798 struct cfi_private
*cfi
= map
->fldrv_priv
;
1799 unsigned long timeo
= jiffies
+ HZ
;
1801 * Timeout is calculated according to CFI data, if available.
1802 * See more comments in cfi_cmdset_0002().
1804 unsigned long uWriteTimeout
=
1805 usecs_to_jiffies(chip
->buffer_write_time_max
);
1807 unsigned long cmd_adr
;
1814 mutex_lock(&chip
->mutex
);
1815 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
1817 mutex_unlock(&chip
->mutex
);
1821 datum
= map_word_load(map
, buf
);
1823 pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1824 __func__
, adr
, datum
.x
[0]);
1826 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
1828 xip_disable(map
, chip
, cmd_adr
);
1830 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1831 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1833 /* Write Buffer Load */
1834 map_write(map
, CMD(0x25), cmd_adr
);
1836 chip
->state
= FL_WRITING_TO_BUFFER
;
1838 /* Write length of data to come */
1839 words
= len
/ map_bankwidth(map
);
1840 map_write(map
, CMD(words
- 1), cmd_adr
);
1843 while(z
< words
* map_bankwidth(map
)) {
1844 datum
= map_word_load(map
, buf
);
1845 map_write(map
, datum
, adr
+ z
);
1847 z
+= map_bankwidth(map
);
1848 buf
+= map_bankwidth(map
);
1850 z
-= map_bankwidth(map
);
1854 /* Write Buffer Program Confirm: GO GO GO */
1855 map_write(map
, CMD(0x29), cmd_adr
);
1856 chip
->state
= FL_WRITING
;
1858 INVALIDATE_CACHE_UDELAY(map
, chip
,
1859 adr
, map_bankwidth(map
),
1860 chip
->word_write_time
);
1862 timeo
= jiffies
+ uWriteTimeout
;
1865 if (chip
->state
!= FL_WRITING
) {
1866 /* Someone's suspended the write. Sleep */
1867 DECLARE_WAITQUEUE(wait
, current
);
1869 set_current_state(TASK_UNINTERRUPTIBLE
);
1870 add_wait_queue(&chip
->wq
, &wait
);
1871 mutex_unlock(&chip
->mutex
);
1873 remove_wait_queue(&chip
->wq
, &wait
);
1874 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1875 mutex_lock(&chip
->mutex
);
1880 * We check "time_after" and "!chip_good" before checking "chip_good" to avoid
1881 * the failure due to scheduling.
1883 if (time_after(jiffies
, timeo
) && !chip_good(map
, adr
, datum
))
1886 if (chip_good(map
, adr
, datum
)) {
1887 xip_enable(map
, chip
, adr
);
1891 /* Latency issues. Drop the lock, wait a while and retry */
1892 UDELAY(map
, chip
, adr
, 1);
1896 * Recovery from write-buffer programming failures requires
1897 * the write-to-buffer-reset sequence. Since the last part
1898 * of the sequence also works as a normal reset, we can run
1899 * the same commands regardless of why we are here.
1901 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1903 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1904 cfi
->device_type
, NULL
);
1905 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1906 cfi
->device_type
, NULL
);
1907 cfi_send_gen_cmd(0xF0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1908 cfi
->device_type
, NULL
);
1909 xip_enable(map
, chip
, adr
);
1910 /* FIXME - should have reset delay before continuing */
1912 printk(KERN_WARNING
"MTD %s(): software timeout, address:0x%.8lx.\n",
1917 chip
->state
= FL_READY
;
1919 put_chip(map
, chip
, adr
);
1920 mutex_unlock(&chip
->mutex
);
1926 static int cfi_amdstd_write_buffers(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1927 size_t *retlen
, const u_char
*buf
)
1929 struct map_info
*map
= mtd
->priv
;
1930 struct cfi_private
*cfi
= map
->fldrv_priv
;
1931 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1936 chipnum
= to
>> cfi
->chipshift
;
1937 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1939 /* If it's not bus-aligned, do the first word write */
1940 if (ofs
& (map_bankwidth(map
)-1)) {
1941 size_t local_len
= (-ofs
)&(map_bankwidth(map
)-1);
1942 if (local_len
> len
)
1944 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
1945 local_len
, retlen
, buf
);
1952 if (ofs
>> cfi
->chipshift
) {
1955 if (chipnum
== cfi
->numchips
)
1960 /* Write buffer is worth it only if more than one word to write... */
1961 while (len
>= map_bankwidth(map
) * 2) {
1962 /* We must not cross write block boundaries */
1963 int size
= wbufsize
- (ofs
& (wbufsize
-1));
1967 if (size
% map_bankwidth(map
))
1968 size
-= size
% map_bankwidth(map
);
1970 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
1980 if (ofs
>> cfi
->chipshift
) {
1983 if (chipnum
== cfi
->numchips
)
1989 size_t retlen_dregs
= 0;
1991 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
1992 len
, &retlen_dregs
, buf
);
1994 *retlen
+= retlen_dregs
;
2002 * Wait for the flash chip to become ready to write data
2004 * This is only called during the panic_write() path. When panic_write()
2005 * is called, the kernel is in the process of a panic, and will soon be
2006 * dead. Therefore we don't take any locks, and attempt to get access
2007 * to the chip as soon as possible.
2009 static int cfi_amdstd_panic_wait(struct map_info
*map
, struct flchip
*chip
,
2012 struct cfi_private
*cfi
= map
->fldrv_priv
;
2017 * If the driver thinks the chip is idle, and no toggle bits
2018 * are changing, then the chip is actually idle for sure.
2020 if (chip
->state
== FL_READY
&& chip_ready(map
, adr
))
2024 * Try several times to reset the chip and then wait for it
2025 * to become idle. The upper limit of a few milliseconds of
2026 * delay isn't a big problem: the kernel is dying anyway. It
2027 * is more important to save the messages.
2029 while (retries
> 0) {
2030 const unsigned long timeo
= (HZ
/ 1000) + 1;
2032 /* send the reset command */
2033 map_write(map
, CMD(0xF0), chip
->start
);
2035 /* wait for the chip to become ready */
2036 for (i
= 0; i
< jiffies_to_usecs(timeo
); i
++) {
2037 if (chip_ready(map
, adr
))
2046 /* the chip never became ready */
2051 * Write out one word of data to a single flash chip during a kernel panic
2053 * This is only called during the panic_write() path. When panic_write()
2054 * is called, the kernel is in the process of a panic, and will soon be
2055 * dead. Therefore we don't take any locks, and attempt to get access
2056 * to the chip as soon as possible.
2058 * The implementation of this routine is intentionally similar to
2059 * do_write_oneword(), in order to ease code maintenance.
2061 static int do_panic_write_oneword(struct map_info
*map
, struct flchip
*chip
,
2062 unsigned long adr
, map_word datum
)
2064 const unsigned long uWriteTimeout
= (HZ
/ 1000) + 1;
2065 struct cfi_private
*cfi
= map
->fldrv_priv
;
2073 ret
= cfi_amdstd_panic_wait(map
, chip
, adr
);
2077 pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2078 __func__
, adr
, datum
.x
[0]);
2081 * Check for a NOP for the case when the datum to write is already
2082 * present - it saves time and works around buggy chips that corrupt
2083 * data at other locations when 0xff is written to a location that
2084 * already contains 0xff.
2086 oldd
= map_read(map
, adr
);
2087 if (map_word_equal(map
, oldd
, datum
)) {
2088 pr_debug("MTD %s(): NOP\n", __func__
);
2095 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2096 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2097 cfi_send_gen_cmd(0xA0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2098 map_write(map
, datum
, adr
);
2100 for (i
= 0; i
< jiffies_to_usecs(uWriteTimeout
); i
++) {
2101 if (chip_ready(map
, adr
))
2107 if (!chip_good(map
, adr
, datum
)) {
2108 /* reset on all failures. */
2109 map_write(map
, CMD(0xF0), chip
->start
);
2110 /* FIXME - should have reset delay before continuing */
2112 if (++retry_cnt
<= MAX_RETRIES
)
2124 * Write out some data during a kernel panic
2126 * This is used by the mtdoops driver to save the dying messages from a
2127 * kernel which has panic'd.
2129 * This routine ignores all of the locking used throughout the rest of the
2130 * driver, in order to ensure that the data gets written out no matter what
2131 * state this driver (and the flash chip itself) was in when the kernel crashed.
2133 * The implementation of this routine is intentionally similar to
2134 * cfi_amdstd_write_words(), in order to ease code maintenance.
2136 static int cfi_amdstd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2137 size_t *retlen
, const u_char
*buf
)
2139 struct map_info
*map
= mtd
->priv
;
2140 struct cfi_private
*cfi
= map
->fldrv_priv
;
2141 unsigned long ofs
, chipstart
;
2145 chipnum
= to
>> cfi
->chipshift
;
2146 ofs
= to
- (chipnum
<< cfi
->chipshift
);
2147 chipstart
= cfi
->chips
[chipnum
].start
;
2149 /* If it's not bus aligned, do the first byte write */
2150 if (ofs
& (map_bankwidth(map
) - 1)) {
2151 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
) - 1);
2152 int i
= ofs
- bus_ofs
;
2156 ret
= cfi_amdstd_panic_wait(map
, &cfi
->chips
[chipnum
], bus_ofs
);
2160 /* Load 'tmp_buf' with old contents of flash */
2161 tmp_buf
= map_read(map
, bus_ofs
+ chipstart
);
2163 /* Number of bytes to copy from buffer */
2164 n
= min_t(int, len
, map_bankwidth(map
) - i
);
2166 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, i
, n
);
2168 ret
= do_panic_write_oneword(map
, &cfi
->chips
[chipnum
],
2178 if (ofs
>> cfi
->chipshift
) {
2181 if (chipnum
== cfi
->numchips
)
2186 /* We are now aligned, write as much as possible */
2187 while (len
>= map_bankwidth(map
)) {
2190 datum
= map_word_load(map
, buf
);
2192 ret
= do_panic_write_oneword(map
, &cfi
->chips
[chipnum
],
2197 ofs
+= map_bankwidth(map
);
2198 buf
+= map_bankwidth(map
);
2199 (*retlen
) += map_bankwidth(map
);
2200 len
-= map_bankwidth(map
);
2202 if (ofs
>> cfi
->chipshift
) {
2205 if (chipnum
== cfi
->numchips
)
2208 chipstart
= cfi
->chips
[chipnum
].start
;
2212 /* Write the trailing bytes if any */
2213 if (len
& (map_bankwidth(map
) - 1)) {
2216 ret
= cfi_amdstd_panic_wait(map
, &cfi
->chips
[chipnum
], ofs
);
2220 tmp_buf
= map_read(map
, ofs
+ chipstart
);
2222 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, 0, len
);
2224 ret
= do_panic_write_oneword(map
, &cfi
->chips
[chipnum
],
2237 * Handle devices with one erase region, that only implement
2238 * the chip erase command.
2240 static int __xipram
do_erase_chip(struct map_info
*map
, struct flchip
*chip
)
2242 struct cfi_private
*cfi
= map
->fldrv_priv
;
2243 unsigned long timeo
= jiffies
+ HZ
;
2244 unsigned long int adr
;
2245 DECLARE_WAITQUEUE(wait
, current
);
2249 adr
= cfi
->addr_unlock1
;
2251 mutex_lock(&chip
->mutex
);
2252 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
2254 mutex_unlock(&chip
->mutex
);
2258 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2259 __func__
, chip
->start
);
2261 XIP_INVAL_CACHED_RANGE(map
, adr
, map
->size
);
2263 xip_disable(map
, chip
, adr
);
2266 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2267 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2268 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2269 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2270 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2271 cfi_send_gen_cmd(0x10, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2273 chip
->state
= FL_ERASING
;
2274 chip
->erase_suspended
= 0;
2275 chip
->in_progress_block_addr
= adr
;
2276 chip
->in_progress_block_mask
= ~(map
->size
- 1);
2278 INVALIDATE_CACHE_UDELAY(map
, chip
,
2280 chip
->erase_time
*500);
2282 timeo
= jiffies
+ (HZ
*20);
2285 if (chip
->state
!= FL_ERASING
) {
2286 /* Someone's suspended the erase. Sleep */
2287 set_current_state(TASK_UNINTERRUPTIBLE
);
2288 add_wait_queue(&chip
->wq
, &wait
);
2289 mutex_unlock(&chip
->mutex
);
2291 remove_wait_queue(&chip
->wq
, &wait
);
2292 mutex_lock(&chip
->mutex
);
2295 if (chip
->erase_suspended
) {
2296 /* This erase was suspended and resumed.
2297 Adjust the timeout */
2298 timeo
= jiffies
+ (HZ
*20); /* FIXME */
2299 chip
->erase_suspended
= 0;
2302 if (chip_good(map
, adr
, map_word_ff(map
)))
2305 if (time_after(jiffies
, timeo
)) {
2306 printk(KERN_WARNING
"MTD %s(): software timeout\n",
2312 /* Latency issues. Drop the lock, wait a while and retry */
2313 UDELAY(map
, chip
, adr
, 1000000/HZ
);
2315 /* Did we succeed? */
2317 /* reset on all failures. */
2318 map_write(map
, CMD(0xF0), chip
->start
);
2319 /* FIXME - should have reset delay before continuing */
2321 if (++retry_cnt
<= MAX_RETRIES
) {
2327 chip
->state
= FL_READY
;
2328 xip_enable(map
, chip
, adr
);
2330 put_chip(map
, chip
, adr
);
2331 mutex_unlock(&chip
->mutex
);
2337 static int __xipram
do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int len
, void *thunk
)
2339 struct cfi_private
*cfi
= map
->fldrv_priv
;
2340 unsigned long timeo
= jiffies
+ HZ
;
2341 DECLARE_WAITQUEUE(wait
, current
);
2347 mutex_lock(&chip
->mutex
);
2348 ret
= get_chip(map
, chip
, adr
, FL_ERASING
);
2350 mutex_unlock(&chip
->mutex
);
2354 pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2357 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
2359 xip_disable(map
, chip
, adr
);
2362 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2363 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2364 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2365 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2366 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
2367 map_write(map
, cfi
->sector_erase_cmd
, adr
);
2369 chip
->state
= FL_ERASING
;
2370 chip
->erase_suspended
= 0;
2371 chip
->in_progress_block_addr
= adr
;
2372 chip
->in_progress_block_mask
= ~(len
- 1);
2374 INVALIDATE_CACHE_UDELAY(map
, chip
,
2376 chip
->erase_time
*500);
2378 timeo
= jiffies
+ (HZ
*20);
2381 if (chip
->state
!= FL_ERASING
) {
2382 /* Someone's suspended the erase. Sleep */
2383 set_current_state(TASK_UNINTERRUPTIBLE
);
2384 add_wait_queue(&chip
->wq
, &wait
);
2385 mutex_unlock(&chip
->mutex
);
2387 remove_wait_queue(&chip
->wq
, &wait
);
2388 mutex_lock(&chip
->mutex
);
2391 if (chip
->erase_suspended
) {
2392 /* This erase was suspended and resumed.
2393 Adjust the timeout */
2394 timeo
= jiffies
+ (HZ
*20); /* FIXME */
2395 chip
->erase_suspended
= 0;
2398 if (chip_good(map
, adr
, map_word_ff(map
)))
2401 if (time_after(jiffies
, timeo
)) {
2402 printk(KERN_WARNING
"MTD %s(): software timeout\n",
2408 /* Latency issues. Drop the lock, wait a while and retry */
2409 UDELAY(map
, chip
, adr
, 1000000/HZ
);
2411 /* Did we succeed? */
2413 /* reset on all failures. */
2414 map_write(map
, CMD(0xF0), chip
->start
);
2415 /* FIXME - should have reset delay before continuing */
2417 if (++retry_cnt
<= MAX_RETRIES
) {
2423 chip
->state
= FL_READY
;
2424 xip_enable(map
, chip
, adr
);
2426 put_chip(map
, chip
, adr
);
2427 mutex_unlock(&chip
->mutex
);
2432 static int cfi_amdstd_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
2434 return cfi_varsize_frob(mtd
, do_erase_oneblock
, instr
->addr
,
2439 static int cfi_amdstd_erase_chip(struct mtd_info
*mtd
, struct erase_info
*instr
)
2441 struct map_info
*map
= mtd
->priv
;
2442 struct cfi_private
*cfi
= map
->fldrv_priv
;
2444 if (instr
->addr
!= 0)
2447 if (instr
->len
!= mtd
->size
)
2450 return do_erase_chip(map
, &cfi
->chips
[0]);
2453 static int do_atmel_lock(struct map_info
*map
, struct flchip
*chip
,
2454 unsigned long adr
, int len
, void *thunk
)
2456 struct cfi_private
*cfi
= map
->fldrv_priv
;
2459 mutex_lock(&chip
->mutex
);
2460 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_LOCKING
);
2463 chip
->state
= FL_LOCKING
;
2465 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__
, adr
, len
);
2467 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2468 cfi
->device_type
, NULL
);
2469 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2470 cfi
->device_type
, NULL
);
2471 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2472 cfi
->device_type
, NULL
);
2473 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2474 cfi
->device_type
, NULL
);
2475 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2476 cfi
->device_type
, NULL
);
2477 map_write(map
, CMD(0x40), chip
->start
+ adr
);
2479 chip
->state
= FL_READY
;
2480 put_chip(map
, chip
, adr
+ chip
->start
);
2484 mutex_unlock(&chip
->mutex
);
2488 static int do_atmel_unlock(struct map_info
*map
, struct flchip
*chip
,
2489 unsigned long adr
, int len
, void *thunk
)
2491 struct cfi_private
*cfi
= map
->fldrv_priv
;
2494 mutex_lock(&chip
->mutex
);
2495 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_UNLOCKING
);
2498 chip
->state
= FL_UNLOCKING
;
2500 pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__
, adr
, len
);
2502 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2503 cfi
->device_type
, NULL
);
2504 map_write(map
, CMD(0x70), adr
);
2506 chip
->state
= FL_READY
;
2507 put_chip(map
, chip
, adr
+ chip
->start
);
2511 mutex_unlock(&chip
->mutex
);
2515 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2517 return cfi_varsize_frob(mtd
, do_atmel_lock
, ofs
, len
, NULL
);
2520 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2522 return cfi_varsize_frob(mtd
, do_atmel_unlock
, ofs
, len
, NULL
);
2526 * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2530 struct flchip
*chip
;
2535 #define MAX_SECTORS 512
2537 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
2538 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
2539 #define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
2541 static int __maybe_unused
do_ppb_xxlock(struct map_info
*map
,
2542 struct flchip
*chip
,
2543 unsigned long adr
, int len
, void *thunk
)
2545 struct cfi_private
*cfi
= map
->fldrv_priv
;
2546 unsigned long timeo
;
2550 mutex_lock(&chip
->mutex
);
2551 ret
= get_chip(map
, chip
, adr
, FL_LOCKING
);
2553 mutex_unlock(&chip
->mutex
);
2557 pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__
, adr
, len
);
2559 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2560 cfi
->device_type
, NULL
);
2561 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
2562 cfi
->device_type
, NULL
);
2563 /* PPB entry command */
2564 cfi_send_gen_cmd(0xC0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
2565 cfi
->device_type
, NULL
);
2567 if (thunk
== DO_XXLOCK_ONEBLOCK_LOCK
) {
2568 chip
->state
= FL_LOCKING
;
2569 map_write(map
, CMD(0xA0), adr
);
2570 map_write(map
, CMD(0x00), adr
);
2571 } else if (thunk
== DO_XXLOCK_ONEBLOCK_UNLOCK
) {
2573 * Unlocking of one specific sector is not supported, so we
2574 * have to unlock all sectors of this device instead
2576 chip
->state
= FL_UNLOCKING
;
2577 map_write(map
, CMD(0x80), chip
->start
);
2578 map_write(map
, CMD(0x30), chip
->start
);
2579 } else if (thunk
== DO_XXLOCK_ONEBLOCK_GETLOCK
) {
2580 chip
->state
= FL_JEDEC_QUERY
;
2581 /* Return locked status: 0->locked, 1->unlocked */
2582 ret
= !cfi_read_query(map
, adr
);
2587 * Wait for some time as unlocking of all sectors takes quite long
2589 timeo
= jiffies
+ msecs_to_jiffies(2000); /* 2s max (un)locking */
2591 if (chip_ready(map
, adr
))
2594 if (time_after(jiffies
, timeo
)) {
2595 printk(KERN_ERR
"Waiting for chip to be ready timed out.\n");
2600 UDELAY(map
, chip
, adr
, 1);
2603 /* Exit BC commands */
2604 map_write(map
, CMD(0x90), chip
->start
);
2605 map_write(map
, CMD(0x00), chip
->start
);
2607 chip
->state
= FL_READY
;
2608 put_chip(map
, chip
, adr
);
2609 mutex_unlock(&chip
->mutex
);
2614 static int __maybe_unused
cfi_ppb_lock(struct mtd_info
*mtd
, loff_t ofs
,
2617 return cfi_varsize_frob(mtd
, do_ppb_xxlock
, ofs
, len
,
2618 DO_XXLOCK_ONEBLOCK_LOCK
);
2621 static int __maybe_unused
cfi_ppb_unlock(struct mtd_info
*mtd
, loff_t ofs
,
2624 struct mtd_erase_region_info
*regions
= mtd
->eraseregions
;
2625 struct map_info
*map
= mtd
->priv
;
2626 struct cfi_private
*cfi
= map
->fldrv_priv
;
2627 struct ppb_lock
*sect
;
2637 * PPB unlocking always unlocks all sectors of the flash chip.
2638 * We need to re-lock all previously locked sectors. So lets
2639 * first check the locking status of all sectors and save
2640 * it for future use.
2642 sect
= kcalloc(MAX_SECTORS
, sizeof(struct ppb_lock
), GFP_KERNEL
);
2647 * This code to walk all sectors is a slightly modified version
2648 * of the cfi_varsize_frob() code.
2658 int size
= regions
[i
].erasesize
;
2661 * Only test sectors that shall not be unlocked. The other
2662 * sectors shall be unlocked, so lets keep their locking
2663 * status at "unlocked" (locked=0) for the final re-locking.
2665 if ((offset
< ofs
) || (offset
>= (ofs
+ len
))) {
2666 sect
[sectors
].chip
= &cfi
->chips
[chipnum
];
2667 sect
[sectors
].adr
= adr
;
2668 sect
[sectors
].locked
= do_ppb_xxlock(
2669 map
, &cfi
->chips
[chipnum
], adr
, 0,
2670 DO_XXLOCK_ONEBLOCK_GETLOCK
);
2677 if (offset
== regions
[i
].offset
+ size
* regions
[i
].numblocks
)
2680 if (adr
>> cfi
->chipshift
) {
2681 if (offset
>= (ofs
+ len
))
2686 if (chipnum
>= cfi
->numchips
)
2691 if (sectors
>= MAX_SECTORS
) {
2692 printk(KERN_ERR
"Only %d sectors for PPB locking supported!\n",
2699 /* Now unlock the whole chip */
2700 ret
= cfi_varsize_frob(mtd
, do_ppb_xxlock
, ofs
, len
,
2701 DO_XXLOCK_ONEBLOCK_UNLOCK
);
2708 * PPB unlocking always unlocks all sectors of the flash chip.
2709 * We need to re-lock all previously locked sectors.
2711 for (i
= 0; i
< sectors
; i
++) {
2713 do_ppb_xxlock(map
, sect
[i
].chip
, sect
[i
].adr
, 0,
2714 DO_XXLOCK_ONEBLOCK_LOCK
);
2721 static int __maybe_unused
cfi_ppb_is_locked(struct mtd_info
*mtd
, loff_t ofs
,
2724 return cfi_varsize_frob(mtd
, do_ppb_xxlock
, ofs
, len
,
2725 DO_XXLOCK_ONEBLOCK_GETLOCK
) ? 1 : 0;
2728 static void cfi_amdstd_sync (struct mtd_info
*mtd
)
2730 struct map_info
*map
= mtd
->priv
;
2731 struct cfi_private
*cfi
= map
->fldrv_priv
;
2733 struct flchip
*chip
;
2735 DECLARE_WAITQUEUE(wait
, current
);
2737 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2738 chip
= &cfi
->chips
[i
];
2741 mutex_lock(&chip
->mutex
);
2743 switch(chip
->state
) {
2747 case FL_JEDEC_QUERY
:
2748 chip
->oldstate
= chip
->state
;
2749 chip
->state
= FL_SYNCING
;
2750 /* No need to wake_up() on this state change -
2751 * as the whole point is that nobody can do anything
2752 * with the chip now anyway.
2755 mutex_unlock(&chip
->mutex
);
2759 /* Not an idle state */
2760 set_current_state(TASK_UNINTERRUPTIBLE
);
2761 add_wait_queue(&chip
->wq
, &wait
);
2763 mutex_unlock(&chip
->mutex
);
2767 remove_wait_queue(&chip
->wq
, &wait
);
2773 /* Unlock the chips again */
2775 for (i
--; i
>=0; i
--) {
2776 chip
= &cfi
->chips
[i
];
2778 mutex_lock(&chip
->mutex
);
2780 if (chip
->state
== FL_SYNCING
) {
2781 chip
->state
= chip
->oldstate
;
2784 mutex_unlock(&chip
->mutex
);
2789 static int cfi_amdstd_suspend(struct mtd_info
*mtd
)
2791 struct map_info
*map
= mtd
->priv
;
2792 struct cfi_private
*cfi
= map
->fldrv_priv
;
2794 struct flchip
*chip
;
2797 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
2798 chip
= &cfi
->chips
[i
];
2800 mutex_lock(&chip
->mutex
);
2802 switch(chip
->state
) {
2806 case FL_JEDEC_QUERY
:
2807 chip
->oldstate
= chip
->state
;
2808 chip
->state
= FL_PM_SUSPENDED
;
2809 /* No need to wake_up() on this state change -
2810 * as the whole point is that nobody can do anything
2811 * with the chip now anyway.
2813 case FL_PM_SUSPENDED
:
2820 mutex_unlock(&chip
->mutex
);
2823 /* Unlock the chips again */
2826 for (i
--; i
>=0; i
--) {
2827 chip
= &cfi
->chips
[i
];
2829 mutex_lock(&chip
->mutex
);
2831 if (chip
->state
== FL_PM_SUSPENDED
) {
2832 chip
->state
= chip
->oldstate
;
2835 mutex_unlock(&chip
->mutex
);
2843 static void cfi_amdstd_resume(struct mtd_info
*mtd
)
2845 struct map_info
*map
= mtd
->priv
;
2846 struct cfi_private
*cfi
= map
->fldrv_priv
;
2848 struct flchip
*chip
;
2850 for (i
=0; i
<cfi
->numchips
; i
++) {
2852 chip
= &cfi
->chips
[i
];
2854 mutex_lock(&chip
->mutex
);
2856 if (chip
->state
== FL_PM_SUSPENDED
) {
2857 chip
->state
= FL_READY
;
2858 map_write(map
, CMD(0xF0), chip
->start
);
2862 printk(KERN_ERR
"Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2864 mutex_unlock(&chip
->mutex
);
2870 * Ensure that the flash device is put back into read array mode before
2871 * unloading the driver or rebooting. On some systems, rebooting while
2872 * the flash is in query/program/erase mode will prevent the CPU from
2873 * fetching the bootloader code, requiring a hard reset or power cycle.
2875 static int cfi_amdstd_reset(struct mtd_info
*mtd
)
2877 struct map_info
*map
= mtd
->priv
;
2878 struct cfi_private
*cfi
= map
->fldrv_priv
;
2880 struct flchip
*chip
;
2882 for (i
= 0; i
< cfi
->numchips
; i
++) {
2884 chip
= &cfi
->chips
[i
];
2886 mutex_lock(&chip
->mutex
);
2888 ret
= get_chip(map
, chip
, chip
->start
, FL_SHUTDOWN
);
2890 map_write(map
, CMD(0xF0), chip
->start
);
2891 chip
->state
= FL_SHUTDOWN
;
2892 put_chip(map
, chip
, chip
->start
);
2895 mutex_unlock(&chip
->mutex
);
2902 static int cfi_amdstd_reboot(struct notifier_block
*nb
, unsigned long val
,
2905 struct mtd_info
*mtd
;
2907 mtd
= container_of(nb
, struct mtd_info
, reboot_notifier
);
2908 cfi_amdstd_reset(mtd
);
2913 static void cfi_amdstd_destroy(struct mtd_info
*mtd
)
2915 struct map_info
*map
= mtd
->priv
;
2916 struct cfi_private
*cfi
= map
->fldrv_priv
;
2918 cfi_amdstd_reset(mtd
);
2919 unregister_reboot_notifier(&mtd
->reboot_notifier
);
2920 kfree(cfi
->cmdset_priv
);
2923 kfree(mtd
->eraseregions
);
2926 MODULE_LICENSE("GPL");
2927 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2928 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2929 MODULE_ALIAS("cfi_cmdset_0006");
2930 MODULE_ALIAS("cfi_cmdset_0701");